Univerza na Primorskem Fakulteta za matematiko, naravoslovje in informacijske tehnologije
SI | EN

Ponedeljkov seminar računalništva in informatike - Arhiv

2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012
1 2 3 4 5 6 7 8 9 10 11 12

petek, 11. november 2022 Andrej MALEČKAR: Slot game development case study

V ponedeljek, 14. novembra 2022, bo ob 16.00 uri izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 14. november 2022 ob 16.00 v FAMNIT-VP2

---------------------------------------------
PREDAVATELJ: Andrej MALEČKAR
---------------------------------------------

Andrej Malečkar is an experienced software development team lead in the gambling and casino industry. He was born on 04.10.1990 in Koper and graduated in 2016 from the Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska. His current work focuses on leading a team of front-end developers and delivering state-of-the-art on-line slot and table casino games while developing a brand new game engine.

-------------------------------------------------------------
NASLOV: Slot game development case study
-------------------------------------------------------------

POVZETEK:

In this presentation, we will go through all the development phases of a modern web-based slot game from start to finish. We will take a detailed look into all the technologies and best practices a good FE development team uses to overcome all the challenges that may arise during the development phase. After the presentation, we will present visual examples and code snippets from some of GameArt’s best-performing games. The meeting will end with a quick presentation of the company, its amazing work culture, and its brand new student programme.

Seminar bo potekal v angleškem jeziku, tokrat v živo v FAMNIT-VP2 !!!

Vabljeni!      


petek, 2. september 2022 Vanja MILESKI: Deep learning for churn prediction in retail using residual networks

V ponedeljek, 5. septembra 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 5. september 2022 ob 16.00 na daljavo

-----------------------------------------
PREDAVATELJ: Vanja MILESKI
-----------------------------------------

After graduating from the Faculty of Computer and Information Science at the University of Ljubljana in 2015, Vanja Mileski started working at the Jožef Stefan Institute (JSI). He was a Master's student at the International Postgraduate School Jožef Stefan and a student researcher at the JSI. After finishing his Master's studies, he applied his knowledge of data mining in the private sector as a Data Scientist in the retail, telecommunications, banking, stock market and insurance sectors.
His current research interests include time-series classification, deep learning, ResNet and Inception architectures.

--------------------------------------------------------------------------------------------------------
NASLOV: Deep learning for churn prediction in retail using residual networks
--------------------------------------------------------------------------------------------------------

POVZETEK:

With the advancements in Convolutional Neural Network (CNN) architectures, residual networks (ResNets) have proven successful on time series data as well. Time series features can be viewed as one-dimensional vectors, using which which we can train a deeper network using a ResNet-like architecture. Churn prediction is the process of identifying people that will cease to be customers in the future. We implement a ResNet architecture on real-life data of customer shopping habits obtained from a large retailer in Slovenia and compare them to traditional ML techniques.

 

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni!


torek, 16. avgust 2022 Arsen Matej GOLUBOVIKJ: Imputing Missing Answers In The World Values Survey

V torek, 16. avgusta 2022, bo ob 14.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 16. avgust 2022 ob 14.00 na daljavo

-------------------------------------------------------
PREDAVATELJ: Arsen Matej GOLUBOVIKJ
-------------------------------------------------------

Arsen Matej Golubovikj is a second-year student of Data Science at UP FAMNIT. He completed his Bachelor's degree in Computer Science at UP Famnit in September 2020, and is now working towards his Master's degree. He will be presenting the topic of his Master's thesis that he is completing under the mentorship of assist. prof. Branko Kavšek and prof. Marko Tkalčič.

---------------------------------------------------------------------------------------
NASLOV: Imputing Missing Answers In The World Values Survey
---------------------------------------------------------------------------------------

POVZETEK:

Many areas of science, in particular social sciences, use questionnaires to gather data. The process of collecting data through a questionnaire, called a survey, is often the prime means of gathering data directly from participants, however, it's prone to missing data. In order to keep the full survey sample, researchers must often use imputation to deal with this problem. Methods for imputation can sometimes offer reasonable estimates for the missing data, however, in the case of the survey: (i) imputation can add high noise to the data, which influences the inference, (ii) imputation becomes unreliable when more than 40% of the data is missing.
This thesis attempts to address these issues by evaluating if the usage of methods stemming from collaborative filtering (CF) in recommender systems can yield more accurate imputations of missing values in survey data. The rationale for the usage of these methods is (i) the similarity between the problem framing, methods and data representation used in CF and questionnaire imputation; (ii) the effectiveness of CF-based methods in recommender systems, especially in cases where much of the data is unavailable.
We use data from the World Values Survey, a valuable dataset in social science of high volume and veracity, to compare (i) one simple approach to imputation, (ii) two established imputation approaches (iii) two matrix completion techniques stemming from collaborative filtering.The results show that our chosen matrix completion techniques stemming from collaborative filtering perform comparable, but not better than existing imputation techniques in the case of the survey. The right technique for imputation often depends on the problem, these results beckon the consideration of CF-based techniques in future research on survey imputation.

Seminar bo tokrat izjemoma v torek od 14 uri in bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni!


ponedeljek, 20. junij 2022 Nedim ŠIŠIĆ: Neural Network Based Classification of Brain Lesions

V ponedeljek, 20. junija 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 20. junij 2022 ob 16.00 na daljavo

-------------------------------------
PREDAVATELJ: Nedim ŠIŠIĆ
-------------------------------------

Nedim Šišić is a FAMNIT student from Bosnia and Herzegovina. He is enrolled in the 2nd year of the Computer Science Master's study program. His Research Seminar mentor is Professor Peter Rogelj.

-------------------------------------------------------------------------------------
NASLOV: Neural Network Based Classification of Brain Lesions
-------------------------------------------------------------------------------------

POVZETEK:

A brain lesion is an area of tissue injury or disease within the brain. Brain-imaging techniques, such as MRI, produce images of the brain used for diagnosis or prognosis of a wide variety of injuries or conditions. Such images can be used to classify brain lesions. Recently, neural networks have been used to great success in different computer vision domains, including brain image processing. In this work, we develop a convolutional neural network that automatically classifies MRI images in multiple sclerosis patients. The image dataset consists of three-dimensional images with three channels: FLAIR MRI, QSM MRI, and a mask channel indicating lesion location. We describe data augmentation techniques we use for increasing the dataset and present the network architecture and the results of the model. Specifically, we show the results of training the network using different combinations of the three image channels.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


ponedeljek, 13. junij 2022 Martin JAKOMIN, Blaž MRAMOR: Data science at Zemanta

V ponedeljek, 13. junija 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 13. junij 2022 ob 16.00 na daljavo

--------------------------------------------------------------------------------
PREDAVATELJA: Martin JAKOMIN, Blaž MRAMOR (Zemanta)
--------------------------------------------------------------------------------

Martin Jakomin received his PhD in Computer science from University of Ljubljana in 2019. His research interests include fields of data science and machine learning. More specifically, he is interested in the areas of recommender systems, incremental learning, data fusion and data generation.
Blaž Mramor obtained his PhD in Mathematics from VU University Amsterdam in 2012 and worked afterwards as a researcher in the fields of Geometry and Analysis at University of Freiburg and at UP FAMNIT. Since 2017 he has been working as a data scientist and ML engineer, first in Allianz SE in Munich and since 2021 in Zemanta.

-----------------------------------------------
NASLOV: Data science at Zemanta
-----------------------------------------------

POVZETEK:

We will first introduce Zemanta's line of business, real-time bidding, which is an automated auction process for the purchase of on-line ad spaces. Then we will briefly present the different data science areas and the challenges that we are facing. Finally, we will focus our attention on one of our major components, the click-through-rate predictor, and explain some details about the data, the training pipelines and the choice of our ML algorithms for it.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


petek, 20. maj 2022 prof. Amira ŠERIFOVIĆ TRBALIĆ: Applications of deep learning for the medical data analysis

V ponedeljek, 23. maja 2022, bo ob 16.00 uri v predavalnici FAMNIT-VP2 izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 23. maj 2022 ob 16.00 v FAMNIT-VP2

------------------------------------------------------------------
PREDAVATELJICA: prof. Amira ŠERIFOVIĆ TRBALIĆ
------------------------------------------------------------------

Amira Šerifović Trbalić was born in Tuzla, Bosnia and Herzegovina in 1978. She received her B.Sc. degree from the Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina in 2002. In 2006, she received the M.Sc. degree in computer science at the Faculty of Electrical Engineering, University of Tuzla. She finished her doctoral thesis on medical image registration at the University of Tuzla in 2011. Research for the doctoral dissertation was conducted within the framework of the joint research project with the Computer Vision Lab, ETH Zurich, Switzerland. In 2012, she became an Assistant Professor at the University of Tuzla and was promoted to Associate Professor in 2018. Her research interests include image processing and analysis, pattern recognition, computer vision and artificial intelligence. As a principal investigator or as a participant, she was involved in many projects in these areas and published over 40 research papers, books and book chapter.

---------------------------------------------------------------------------------------------
NASLOV: Applications of deep learning for the medical data analysis
---------------------------------------------------------------------------------------------

POVZETEK:

This talk will present an overview of deep learning (DL) and discuss some recent successful applications in medicine. It will provide examples of how deep learning can be used in different problem areas and frameworks in both clinical and research settings, including medical image analysis, time series analysis, medical data synthesis and pre-processing operations. The talk will conclude with a discussion of relevant deep learning methods and their strengths and limitations.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku.

Vabljeni! 

 

 


ponedeljek, 16. maj 2022 Vanja MILESKI: Deep learning for time series data using Inception and ResNet paradigms

V ponedeljek, 16. maja 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 16. maj 2022 ob 16.00 na daljavo

-----------------------------------------
PREDAVATELJ: Vanja MILESKI
-----------------------------------------

After graduating from the Faculty of Computer and Information Science at the University of Ljubljana in 2015, Vanja Mileski started working at the Jožef Stefan Institute (JSI). He was a Master's student at the International Postgraduate School Jožef Stefan and a student researcher at the JSI. After finishing his Master's studies, he applied his knowledge of data mining in the private sector as a Data Scientist in the retail, telecommunications, banking, stock market and insurance sectors.
His current research interests include time-series classification, deep learning, ResNet and Inception architectures.

----------------------------------------------------------------------------------------------------------------
NASLOV: Deep learning for time series data using Inception and ResNet paradigms
----------------------------------------------------------------------------------------------------------------

POVZETEK:

With the advancements in Convolutional Neural Network (CNN) architectures such as Inception modules and ResNet architectures, it is of particular interest to study these advances and apply them on time series data. Time series features can be viewed as one-dimensional vectors, on which we can apply different types of filters using Inception modules, and then train a deeper network using a ResNet-like architecture. We propose an idea of combining these advancements and testing them on real-life data of customer shopping habits obtained from a large retailer in Slovenia with the hopes of beating traditional ML techniques.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


ponedeljek, 9. maj 2022 Jakob POVŠIČ: Avtentikacija z dokazi ničelnega znanja

V ponedeljek, 9. maja 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 9. maj 2022 ob 16.00 na daljavo

--------------------------------------------
PREDAVATELJ: Jakob POVŠIČ
--------------------------------------------

Jakob Povšič je študent zadnjega letnikana dodiplomskega študijskega programa 1. stopnje Računalništvo in informatika na UP FAMNIT. Trenutno se posveča področjem decentraliziranih finančnih sistemov, in širše kriptovalut in digitalne identitete.

------------------------------------------------------------------
NASLOV: Avtentikacija z dokazi ničelnega znanja
------------------------------------------------------------------

POVZETEK:

Problematika zasebnosti je vsak dan večja zaradi vse večje prisotnosti informacijskih sistemov v naših življenjih. Zdi se, da se zasebnost in tehnologija medsebojno izključujeta. Dokazi ničelnega znanja (ZKP) imajo potencial, da spremenijo, kako naši osebni podatki obstajajo v digitalnem prostoru. Predstavljena bo preprosta uporaba ZKP kot metode preverjanja gesla v avtentikacijskem sistemu.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v slovenskem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


ponedeljek, 28. marec 2022 Aleksandar TOŠIĆ: Towards a more efficient routing in P2P networks using n-ary trees

V ponedeljek, 28. marca 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 28. marec 2022 ob 16.00 na daljavo

--------------------------------------------
PREDAVATELJ: Aleksandar TOŠIĆ
--------------------------------------------

Aleksandar Tošić is a PhD candidate at UP FAMNIT. His research topics include distributed systems, distributed ledger technologies and their applications in the Internet of Things.

--------------------------------------------------------------------------------------------------------
NASLOV: Towards a more efficient routing in P2P networks using n-ary trees
--------------------------------------------------------------------------------------------------------

POVZETEK:

Blockchain networks are currently the fastest growing P2P networks. Recently, Proof of Stake consensus have gained more attention due to their low energy footprint. However, despite the protocol improvements, one of the main factors limiting transaction throughput is the ability to propagate blocks in the P2P network.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


ponedeljek, 21. marec 2022 Niki HROVATIN: Simulating Sensor Networks in NS-3

V ponedeljek, 21. marca 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno

predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 21. marec 2022 ob 16.00 na daljavo

-----------------------------------------
PREDAVATELJ: Niki HROVATIN
-----------------------------------------

Niki Hrovatin  was born in Trieste, Italy, in 1994. He received the M.S. degree in Computer Science from the University of Primorska in 2020.
He is currently a Teaching Assistant and Ph.D. student at UP FAMNIT, and a Research Assistant at InnoRenew CoE, Izola, Slovenija.
His current research interests include sensor networks, distributed systems, and blockchain.

---------------------------------------------------------------
NASLOV: Simulating Sensor Networks in NS-3
---------------------------------------------------------------

POVZETEK:

The Wireless Sensor Network (WSN) is a monitoring system consisting of a large number of wireless devices forming a multi-hop network without infrastructure. It is of particular concern to research communication protocols designed explicitly for WSN to preserve network resources and privacy.
PPWSim is presented, a simulator developed to study a privacy-preserving communication protocol for edge data processing in WSNs. The simulator is based on the simulation environment nsnam NS3; therefore, it can be easily extended or used as a framework for developing other WSN simulators.

---------------------------------------------------------------------------------------------------
Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni!


ponedeljek, 7. marec 2022 Mohamed ELSAEED: Hello Flutter!

V ponedeljek, 7. marca 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 7. marec 2022 ob 16.00 na daljavo

-----------------------------------------------
PREDAVATELJ: Mohamed ELSAEED
-----------------------------------------------

Mohamed Elsaeed is a software engineer at Google.

--------------------------------
NASLOV: Hello Flutter!
--------------------------------

POVZETEK:

In this seminar, an introduction to Flutter and Dart, a handy and easy-to-use toolset for all mobile developers, will be given. What are Flutter and Dart, and how do they work? The cross-platform features and benefits will be presented along with how to get started with them and what free resources are available on the Google platform.

---------------------------------------------------------------------------------------------------

Seminar soorganizira Google developer Student Club at University of Primorska (GDSC UP).

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 


petek, 18. februar 2022 Andrej MALEČKAR: Slot game development case study

V ponedeljek, 21. februarja 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 21. februar 2022 ob 16.00 na daljavo

---------------------------------------------
PREDAVATELJ: Andrej MALEČKAR
---------------------------------------------

Andrej Malečkar is an experienced Software development team lead in the Gambling and Casino industry. He was born on 04.10.1990 in Koper and graduated in 2016 from the Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska. His current work is focused on leading a team of front-end developers delivering state-of-the-art online slot and table casino games and developing a brand new game engine.

-------------------------------------------------------------
NASLOV: Slot game development case study
-------------------------------------------------------------

POVZETEK:

In this presentation, we will go through all development phases of a modern web-based slot game from start to finish. We will look into detail on all the technologies and best practices a good FE development team uses to overcome all the challenges during the development phase. The presentation will be followed by visual examples and code snippets from some of the best-performing games from our company's portfolio. We will finish the meeting with a quick presentation of GameArt company, its amazing work culture, and its brand new student program.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni! 

 


četrtek, 10. februar 2022 Aleksandar TOŠIĆ and Domen VAKE: Faculty Programming Competition (FTP)

V ponedeljek, 14. februarja 2022, bo ob 16.00 uri prek spletnih orodij na daljavo izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 14. februar 2022 ob 16.00 na daljavo

-------------------------------------------------------------------
PREDAVATELJA: Aleksandar TOŠIĆ in Domen VAKE
-------------------------------------------------------------------

Tako Aleksandar Tošić kot Domen Vake sta doktorska študenta, raziskovalca in asistenta na UP FAMNIT. Aleksandar Tošić je poleg tega še raziskovalec na InnoRenew CoE.

------

Both Aleksandar Tošić and Domen Vake are PhD students, researchers and teaching assistants at UP FAMNIT. Aleksandar Tošić is also a researcher at the InnoRenew CoE.

----------------------------------------------------------------------
NASLOV: Faculty Programming Competition (FTP)
----------------------------------------------------------------------

POVZETEK:

Predstavljeno bo fakultetno tekmovanje v programiranju (FTP), ki je namenjeno vsem študentom. Tema tekmovanja je programiranje svojega avtonomnega agenta za igranje igre. Predstavili bomo pravila tekmovanja in razložili kako sodelujete v njem. Pokazali in razložili bomo tudi delovanje spletne aplikacije, ki jo bodo sodelujoči uporabljali ter pokazali osnoven potek oddaje igralca.

------

The faculty programming competition for all students will be presented. The theme of the competition is programming your autonomous agent to play a strategic game. We will present the rules of the competition and explain how you participate in it. We will also show and explain the web application that participants will use for the competition and show the basic steps of the player's submission.

---------------------------------------------------------------------------------------------------

Seminar bo potekal v angleškem jeziku v Zoom "klepetalnici" na naslovu:

https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09

Vabljeni!