Univerza na Primorskem Fakulteta za matematiko, naravoslovje in informacijske tehnologije
SI | EN

ponedeljek, 24. julij 2023 Marina PALDAUF: Decentralised Solutions for Preserving Privacy in Group Recommender Systems

V ponedeljek, 24. julija 2023, bo ob 17.00 uri izvedeno
predavanje v okviru PONEDELJKOVEGA SEMINARJA RAČUNALNIŠTVA IN INFORMATIKE
Oddelkov za Informacijske znanosti in tehnologije UP FAMNIT in UP IAM.

ČAS/PROSTOR: 24. julij 2023 ob 17.00 na daljavo prek ZOOM-a
(https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09)

------------------------------------------------
PREDAVATELJICA: Marina PALDAUF
------------------------------------------------

Marina Paldauf is a PhD student in Computer Science in the fields of recommender systems, machine learning and distributed systems and a teaching assistant at the University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies. She is also a researcher at the HICUP Lab and a Department of Information Sciences and Technologies member.

-------------------------------------------------------------------------------------------------------------------------
NASLOV: Decentralised Solutions for Preserving Privacy in Group Recommender Systems
-------------------------------------------------------------------------------------------------------------------------

POVZETEK:

Group Recommender Systems (GRS) combine large amounts of data from various user behaviour signals (likes, views, purchases) and contextual information to provide groups of users with accurate suggestions (e.g. rating prediction, rankings). To handle those large amounts of data, GRS can be extended to use distributed processing and storage solutions (e.g. MapReduce-like algorithms and NoSQL databases). As such, privacy has always been a core issue since most recommendation algorithms rely on user behaviour signals and contextual information that may contain sensitive information. However, existing work in this domain mostly distributes data processing tasks without addressing privacy, and the solutions that address privacy for GRS (e.g. k-anonymisation and local differential privacy) remain centralised. In this paper, we identify and analyse privacy concerns in GRS and provide guidelines on how decentralised techniques can be used to address them.

Seminar bo potekal v angleškem jeziku, tokrat na daljavo prek Zoom-a s pričetkom ob 17:00 uri
(https://upr-si.zoom.us/j/297328207?pwd=S3Zpdk1VR3pjckNtWkQwKzlvcDR5UT09)

Vabljeni!