Mathematical Research Seminar - Archive
2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Povzetek: Superimposed codes represent the main tool for the efficient solution of several problems arising in compressed sensing, cryptography and data security, computational biology, multi-access communication, database theory, pattern matching, distributed colouring, and circuit complexity, among the others.
It has also become apparent that combinatorial structures strictly related to superimposed codes lie at the heart of an even vaster series of problems. E.g., selectors were instrumental to obtain fast broadcasting algorithms in radio networks, (p,k,n)-selectors were the basic tool for the first two-stage group testing algorithm with an information theoretic optimal number of tests, (d,\ell)- disjunct matrices were a crucial building block for the efficiently decodable non-adaptive group testing procedures.
We shall focus on a new combinatorial structure, superselectors, which encompasses and unifies all of the combinatorial structures mentioned above (and more). When appropriately instantiated, superselectors asymptotically match the best known constructions of (p,k,n)-selectors, (d, l)-list-disjunct matrices, monotone encodings and (k, alpha)-FUT families, MUT_k(r)-families for multi-access channel.
S = { (M1,L1), ..., (Mn,Ln) }, which satisfies the following axioms:
1. Mii for all i.
2. (L1\M1) U … U (Ln\Mn) = G\{1}.
3. |L1 : M1| ∙…∙ |Ln: Mn| = |G|.
The covering system S is said to be regular if some Li=G.
In the talk we study the regularity of covering systems of finite abelian groups.
11.10.2010. ob 10:00 Seminarska soba v Galebu
Predavatelj: Alexandru Tomescu (University of Udine, Italy)
Naslov: Mapping Hypersets into Numbers
4.10.2010. ob 10:00 Seminarska soba v Galebu
Predavatelj: dr. Barbara Boldin
Naslov: Biološke invazije v strukturiranih populacijah
Povzetek :Kdaj je invazija nove populacije uspešna? Če dinamiko populacij opišemo kot determinističen proces in privzamemo, da so obstoječe populacije v ravnovesnem stanju, potem na to vprašanje lahko odgovorimo takole: če je osnovno reprodukcijsko razmerje nove populacije R0 večje kot 1, je invazija uspešna, medtem ko je invazija obsojena na neuspeh kadar je R0 0 = 1 pride do transkritične bifurkacije.
Z matematičnega vidika obstaja samo en tip transkritične bifurkacije. Kadar pa dinamični sistem opisuje nek biološki proces, moramo razlikovati dva primera: superkritično bifurkacijo, pri kateri netrivialna veja ravnovesnih stanj obstaja za R0 > 1 in podkritično bifurkacijo, kjer netrivialne ravnovesne točke najdemo le ko je R0
Na predavanju bomo predstavili način izračuna osnovnega repodukcijskega razmerja za strukturirane populacije, izpeljali formulo za določanje smeri bifurkacije in opisali posledice tipa transkritične bifurkacije za biološki proces. Rezultati so uporabni za študij različnih invazij, tako v ekologiji, epidemiologiji kot tudi evoluciji, kar bomo prikazali na primerih.
Predavanje bo povzeto po članku:
“B. Boldin: Introducing a population into a steady community: the critical case, the centre manifold and the direction of bifurcation. SIAM Journal on Applied Mathematics, Volume 66 (2006), Issue 4, pp. 1424-1453”