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1 INTRODUCTION

1.1 Motivation & Structure of the Paper

Let G be a finite group and s a non-negative integer. Define P (G, s) to be the proba-
bility that a randomly chosen s-tuple from Gs generates G. In [5], Hall finds a finite
ordinary Dirichlet series expression for P (G, s), which may be used to extend the def-
inition of P (G, s) to the complex plane. We present the derivation in the next section
for completeness. The probabilistic zeta function of G is then defined to be the
reciprocal of the complex function P (G, s). The name is motivated by the probabilistic
interpretation of 1/ζ(2), where ζ is the Riemann Zeta function (see Theorem 332 in
[6] for more details). In [2], Brown defined an analogous probability function P (L, s)

for finite lattices in order to show that P (G, s) depends only on the coset lattice of
G. The aim of this project was to study this definition in its own right, that is, in a
lattice-theoretic context.

We begin this paper with a section on preliminaries, including the derivation of
the finite Dirichlet series expression for P (G, s). In the second chapter, we propose a
natural alternative definition of the probability function P (L, s) for finite lattices, which
may be better-suited for non-atomistic lattices. Furthermore, we compute P (L, s) for a
number of examples of finite lattices and point out some connections with well-known
identities. In the third chapter, we define and study some general properties of P (L, s),
partly motivated by certain group theoretic concepts presented in [2]. Finally, in the
fourth chapter, we provide summary of the paper and present possibile directions for
further work on this topic. The fifth chapter contains a translation of the fourth chapter
to Slovene.

1.2 Preliminaries

In this section, we list a number of well-known definitions, propositions and theorems
that we will use throughout the paper.
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1.2.1 The Probabilistic Zeta Function of a Finite Group &

Möbius Inversion

Recall that for a finite group G and a non-negative integer s, we defined P (G, s) to be
the probability that a randomly chosen s-tuple in Gs generates G. Clearly, P (G, s)·|G|s

is the number of s-tuples which generate G. Since any s-tuple in Gs generates some
subgroup H ≤ G, we have

|G|s =
∑
H≤G

P (H, s) · |H|s. (1.1)

It is tempting to use a more general version of Möbius inversion to extract P (G, s) from
(1.1). We may do this via Möbius inversion for an arbitrary finite partially ordered set
(from here on, poset) P with partial order ≤, a technique first introduced by Hall in
[5]. We digress to present a suitable version of it here. Let f, g : P → R be two real
valued functions such that

f(x) =
∑
y≤x

g(y). (1.2)

We would like to find a function µ : P ×P → R which allows us to express g(x)

in terms of f(y) as g(x) =
∑

y≤x µ(y, x)f(y). Let us rewrite the latter expression as
follows by using (1.2).

g(x) =
∑
y≤x

µ(y, x)f(y) =
∑
y≤x

µ(y, x)
∑
z≤y

g(z)

=
∑
z; z≤x

g(z)
∑

y; z≤y≤x

µ(y, x)

= g(x)µ(x, x) +
∑
z; z<x

g(z)
∑

y; z≤y≤x

µ(y, x).

Since the right hand side must be g(x), it is but natural to recursively define µ on
P × P by setting µ(x, x) = 1 for all x ∈ P and

∑
y; z≤y≤x µ(y, x) = 0 so that

µ(z, x) = −
∑

y; z<y≤x µ(y, x) for each z < x. Define µ to be 0 elsewhere (for our
purposes, we only need the value of µ(y, x) when y ≤ x).

Returning to (1.1) and using Möbius inversion on the poset of subgroups of G, as
well as noticing that (1.1) holds for any subgroup H of G since it holds for an arbitrary
group, we obtain

P (G, s) =
∑
H≤G

µ(H,G)

[G : H]s
=
∞∑
n=1

∑
H≤G; [G:H]=n µ(H,G)

ns
. (1.3)

The Dirichlet series on the right hand side of (1.3) is finite, has integer coefficients and
may be used to extend the domain of P (G, s) to the entire complex plane C.
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1.2.2 Lattices

Because we will only be interested in finite lattices, we drop writing the word “finite"
and require a lattice to be a finite one by definition.

Definition 1.1. Let L be a finite non-empty set with two commutative, associative
and idempotent binary operations ∨ : L× L → L (the join) and ∧ : L× L → L (the
meet) such that for all x, y ∈ L, the meet and the join are related in the following
way:

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x.

Then the algebraic structure (L,∨,∧) is said to be a lattice.

The above definition is equivalent to the following one from order theory (see [3,
Chap. I, Sect. 1] for details) and we shall use them interchangeably as deemed appro-
priate.

Proposition 1.2. A lattice L is a poset with order x ≤ y if and only if x ∨ y = y

with the property that any two elements of L have a unique supremum and a unique
infimum, which coincide with the join and the meet of the two elements, respectively.

It can be easily shown that a lattice has unique identities for both of its binary
operations. We will write 0̂ (and call it the bottom element) and 1̂ (the top element)
for the identities of L with respect to ∨ and ∧, respectively. We say an element
x ∈ L \ {0̂} is join irreducible if it cannot be written as a non-trivial join of elements
of L. Equivalently (due to finiteness), an element x is join irreducible if x = a ∨ b
implies that a = x or b = x. Furthermore, given an element x ∈ L \ {0̂}, it is either
join irreducible or else may be expressed as a non-trivial join, say a ∨ b. Repeating
the same argument for a and b and continuing in this manner, due to finiteness, we
obtain a factorization of x as a join of join irreducible elements of L. In this sense, join
irreducible elements serve as building blocks for lattices. The following easy observation
shall be important for us.

Proposition 1.3. Let L be a lattice with distinct identities (so that L does not consist
of a single element). Then, for any x ∈ L\{0̂}, the join of all join irreducible elements
which are at most x is x. In particular, the join of all join irreducible elements in L is
1̂.

Proof. If the specified join was not x, this would imply that x is join irreducible,
meaning it would have been present in the join initially, contradicting that the join is
not x. �
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1.2.3 Results From Number Theory

The theory that follows has intriguing relations to number theory. We shall need the
following theorems.

Theorem 1.4 (The Prime Number Theorem [1]). For a real number x, let π(x) be the
number of prime numbers less than or equal to x. Then,

lim
x→∞

π(x)
x

log x

= 1.

It easily follows that for a given ε > 0,

lim
x→∞

π((1 + ε)x)
x

log x

= (1 + ε) lim
x→∞

π((1 + ε)x)
x(1+ε)

log((1+ε)x)

= 1 + ε,

so that
lim
n→∞

π((1 + ε)n)− π(n)
n

logn

= ε.

Since limn→∞
n

logn
= ∞, we have that for any ε > 0, limn→∞ π((1 + ε)n) − π(n) = ∞

also. This gives that for any ε > 0, there exists an N = N(ε) such that for all n ≥ N ,
π((1 + ε)n)− π(n) ≥ 1, i.e. that there is a prime number between n and (1 + ε)n for
n ≥ N . While the prime number theorem provides a solid foundation for asymptotic
results, Nagura was able to prove the following much more explicit result in [8].

Theorem 1.5 (Nagura’s Theorem [8]). There exists a prime between n and 6n/5 for
any n ≥ 25.

In the context of our remark following the statement of the prime number theorem,
Nagura’s result states that N(ε = 1/5) = 25. Lastly, we recall Legendre’s formula and
a particular case of it, which for a given integer n, gives a formula for largest exponent
of a power of a prime p which divides n!, denoted by vp(n!).

Proposition 1.6 (Legendre’s formula). Let n be a non-negative integer and let p be a
prime number. Then,

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

In particular, if p is such that p2 > n, then vp(n!) = bn/pc.
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2 THE PROBABILISTIC ZETA
FUNCTION OF A FINITE
LATTICE

Let L be a lattice with distinct identities 0̂ and 1̂. Furthermore, let J = J(L) be the set
of join irreducible elements in L (recall that we have excluded 0̂ being join irreducible
by definition). We say an s-tuple (x1, . . . , xs) in Js generates up to x ∈ L \ {0̂}
if
∨s
i=1 xi = x and in this case, xi ≤ x for each i, therefore all components of such

s-tuples come from Jx = {j ∈ J : j ≤ x}. If (x1, . . . , xs) generates up to 1̂, we say
the s-tuple generates L. Let P (L, x, s) be the probability that a randomly chosen
s-tuple from Jsx generates up to x and define P (L, s) = P (L, 1̂, s). Similarly as before,
P (L, x, s)|Jx|s is the number of s-tuples in Jsx which generate up to x. Since every
s-tuple in Jsx generates up to some 0̂ < y ≤ x, we have

|Jx|s =
∑

0̂<y≤x

P (L, y, s)|Jy|s.

Applying Möbius inversion on L \ {0̂} as the underlying poset and plugging in x = 1̂,
we obtain

P (L, s) =
∑

x∈L\{0̂}

µ(x, 1̂)

[J : Jx]s
, (2.1)

where [J : Jx] = |J |/|Jx| (notice that J1̂ = J). As before, the expression on the right
hand side could be used to extend the domain of P (L, s) to the entire complex plane
C. We refer to P (L, s) as the probability function of L, and to 1/P (L, s) as the
probabilistic zeta function of L.

Some important remarks are due here. The definition of P (L, s) found in the last
section of [2] is different from the one we have just given, since Brown sets J to be the
set of minimal elements of L \ {0̂}, namely the atoms of L. However, we may well
be in a situation where the join of all atoms is not 1̂, and consequently where none of
the s-tuples would generate the whole lattice. Any chain of length at least two is an
example of this situation; a more interesting example is the divisibility lattice of any
non-square free integer. As shown by Proposition 1.3, we avoid this degeneracy via our
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definition. Indeed, the two definitions are equivalent for atomistic lattices, namely
lattices where the join irreducible elements are precisely the atoms.

Naturally, one might wonder what is the connection between the probability func-
tion of a finite group and that of a lattice. Brown provided an answer of this in [2] (in
fact, this is the primary reason why Brown introduced the concept of the probability
function for lattices). For a finite group G, let C (G) be the set of all cosets of all sub-
groups of G, together with the empty set. Then, C (G) is a lattice with meet given by
set intersection, and join given by x1H1∨x2H2 = x1H = x2H for H = 〈x−1

1 x2, H1, H2〉.
We shall refer to C (G) as the coset lattice of G. Indeed, an element of C (G) is join
irreducible if and only if it is a coset of the identity group, so J(C (G)) corresponds to
G. Brown proved that

P (C (G), s+ 1) = P (G, s) (2.2)

by noticing that an (s + 1)-tuple (x0, x1, . . . , xs) generates C (G) if and only if the
s-tuple (x−1

0 x1, x
−1
0 x2, . . . , x

−1
0 xs) generates G. Of course, all join irreducible elements

in C (G) are atoms, hence we are justified in claiming that (2.2) holds also for our
definition of the probability function.

2.1 Examples

In this section, we compute the probability function on a number of examples of lattices,
establishing connections with well-known identities.

2.1.1 Divisibility Lattice

Let On = {d ∈ N : d | n} be the set of positive divisors of a positive integer n > 1

with canonical factorization pα1
1 p

α2
2 · · · pαr

r , where p1, . . . , pr are distinct primes and
αi ≥ 1 for all i = 1, 2, . . . , r. Indeed, On is a lattice with join lcm and meet gcd. The
join irreducible elements of On are precisely the prime powers pi, p2

i , . . . , p
αi
i for each

i = 1, 2, . . . , r, that is, there are
∑r

1 αi join irreducible elements in total. For a given
d ∈ On, we may write d = pβ11 p

β2
2 · · · pβrr , where 0 ≤ βi ≤ αi for all i = 1, 2, . . . , r;

thus the number of join irreducible elements less than d is βd =
∑r

1 βi (in particular,
βn =

∑r
1 αi). The Möbius numbers of the divisibility lattice (as a poset) are closely

related to the usual number-theoretic Möbius function. This is the content of the
following lemma, the proof of which can be found in [9, Chap. 3, Sect. 8].

Proposition 2.1. The Möbius numbers µ(d, n) of the divisibility lattice On are given
by µ(d, n) = µ(n/d), where the µ on the right hand side is the usual number-theoretic
Möbius function.
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As an immediate corollary, µ(d, n) is non-zero if and only if n/d is square-free
(sq.f.) and in this case, µ(d, n) = µ(n/d) = (−1)βn−βd and βd ≥

∑r
i=1(α1−1) = βn−r.

Putting everything together, we obtain

P (On, s) =
∑

1<d|n

µ(d, n)

[J : Jd]s
=

∑
1<d|n;
n/d sq.f.

(−1)βn−βd

(βn/βd)s

=
1

βsn

βn∑
k=βn−r

(−1)βn−k
∑

1<d|n;
n/d sq.f.;
βd=k

ks

=
(−1)βn

βsn

βn∑
k=βn−r

(−1)k
(

r

βn − k

)
ks, (2.3)

where the last equality follows as there are precisely
(

r
βn−k

)
divisors d of n such that

n/d is square free and βd = k (from the r primes, we may choose any βn − k of them
to set their power equal to αi − 1).

Let us now consider the special case when βn = r, i.e. when n is square free. The
expression (2.3) simplifies to

P (Op1···pr , s) =
(−1)r

rs

r∑
k=1

(−1)k
(
r

k

)
ks. (2.4)

Firstly, since Op1···pr and the Boolean lattice Br of all subsets of {1, 2, . . . , r} ordered
by inclusion are isomorphic, (2.4) is also the probability function of Br.

Secondly, notice that for positive integer values of s, (2.4) may be rewritten as
r!S(s, r)/rs where S(s, r) is the Stirling number of the second kind (see [9, 1.94a]),
namely the number of ways of partitioning s elements into r non-empty parts. Of
course, an s-tuple generates Op1···pr if and only if it contains all of the primes p1, . . . , pr

and for r given primes, there are precisely r!S(s, r) ways of distributing the positions
1, 2, . . . , s of the s-tuple to the r ordered parts determined by the primes. In other
words, r!S(s, r) is the number of s-tuples in {p1, . . . , pr}s which contain all of p1, . . . , pr.

Returning to (2.3) and noticing that an s-tuple generates On if and only if it
contains all of the r maximal prime powers pα1

1 , . . . , p
αr
r , we get that (2.3) is a possible

generalization of the Stirling numbers of the second kind, in the sense that βsnP (On, s)
is the number of s-tuples over a set with βn elements which contain all elements of a
fixed subset with r elements. Generalizations of the Stirling numbers of the second
kind have been studied in [4, 7].
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2.1.2 Subspace Lattice of a Finite Dimensional Vector Space

Over a Finite Field

Let q be a prime power and consider the set S(Fnq ) of all subspaces of the vector space Fnq
over the field with q elements Fq. Indeed, S(Fnq ) is a lattice with join + (i.e. addition of
vector subspaces) and meet ∩. The join irreducible elements of S(Fnq ) are precisely its
atoms, that is, the 1-dimensional subspaces of Fnq . Thus, the number of join irreducible
elements in S(Fnq ) is (qn − 1)/(q − 1), as each of the qn − 1 non-trivial elements of the
vector space generates a 1-dimensional vector subspace with q−1 non-trivial elements.

Now, let V ≤ Fnq be a vector subspace. Notice that |JV |, the number of join
irreducible elements less than V , that is to say, the number of 1-dimensional vector
subspaces of V , is precisely (qdimV −1)/(q−1), for essentially the same reason as above.
The relevant Möbius numbers were found by Hall; the proof may be found in [5].

Proposition 2.2. The Möbius numbers µ(V,Fnq ) of the subspace lattice S(Fnq ) are given
by µ(V,Fnq ) = (−1)n−dimV q(

n−dimV
2 ).

Thus, we immediately obtain

P (S(Fnq ), s) =
1

(qn − 1)s

∑
06=V≤Fn

q

(−1)n−dimV q(
n−dimV

2 )(qdimV − 1)s

=
1

(qn − 1)s

n∑
k=1

(−1)n−k

[
n

k

]
q

q(
n−k
2 )(qk − 1)s,

where

[
n

k

]
q

is the number of k-dimensional subspaces of Fnq . We recall the explicit

expression (see [9, Chap 1, Sect. 7] for a proof)[
n

k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
,

which is a “q-analog" of the binomial coefficient (see [11]).
The subspace lattice S(Fnq ) is a natural extension of the Boolean lattice Bn, in the

sense that many results about S(Fnq ) degenerate to results about the Boolean lattice
Bn when q → 1. Thus, in many ways Bn plays the role of the subspace lattice of a
n-dimensional vector space over a field with one lement (if one were to exist). The
following proposition concretizes this relationship and lifts it to a “q-analog" relation
between the probability functions.
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Proposition 2.3. If we regard P (S(Fnq ), s) as a continuous function of q with a re-
movable singularity at q = 1, then limq→1 P (S(Fnq ), s) = P (Bn, s).

Proof. This immediately follows by the well-known limit limq→1
qi−1
qj−1

= i
j
which gives

limq→1

[
n

k

]
q

=

(
n

k

)
. Now,

lim
q→1

1

(qn − 1)s

n∑
k=1

(−1)n−k

[
n

k

]
q

q(
n−k
2 )(qk − 1)s =

(−1)n

ns

n∑
k=1

(−1)k
(
n

k

)
ks = P (Bn, s),

as desired. �

2.1.3 Partition Lattice

Let Πn be the set of all partitions of {1, 2, . . . , n}, ordered by refinement. Then, Πn is
a lattice (see [9, Chap. 3, Sect. 10]). The join irreducible elements of Πn are precisely
its atoms, i.e. partitions with only one non-trivial part of size 2. To see this, notice
that any non-trivial partition P ∈ Πn with parts P1, P2, . . . , Pk may be written as a
join of atoms determined by elements in

(
Pi

2

)
(i.e. the set of all 2-element subsets of

Pi) for i = 1, 2 . . . , k. As such, we have |J | =
(
n
2

)
, for atoms bijectively correspond to

2-element subsets of {1, 2, . . . , n}.
Now, let P be as before. By similar reasoning as above, the join irreducible elements

less than P are precisely the partitions corresponding to all possible pairs of elements
in the parts of P , i.e. |JP | = |

⊔k
i=1

(
Pi

2

)
|, meaning that |JP | =

∑k
i=1

(|Pi|
2

)
. The Möbius

number of a partition P with respect to the top partition of Πn is given in the following
proposition; the proof may be found in [9, Chap. 3, Sect. 10].

Proposition 2.4. For a partition P ∈ Πn, the Möbius number µ(P, 1̂Πn) is given by
(−1)|P |−1(|P | − 1)!, where |P | is the number of parts of P .

So, we may write P (Πn, s) in the following form.

P (Πn, s) =
1(
n
2

)s n∑
k=1

∑
P∈Πn; |P |=k

(−1)k−1(k − 1)!

(
k∑
i=1

(
|Pi(P )|

2

))s

,

where P1(P ), P2(P ), . . . , Pk(P ) are the parts of the partition P , given in some ordering.
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3 PROPERTIES

3.1 Coset-Like Behavior

Notice that in (2.1), the ratio [J : Jx] need not be an integer. Consequently, P (L, s)

need not be an ordinary Dirichlet series. In this regard, the obtained expression is
a finite general Dirichlet series over the integers. Since for a coset xH in the coset
lattice C (G) of a finite group G, the index [J : JxH ] = |G : H| is always an integer (by
Lagrange’s theorem), we call lattices with this property coset-like. More precisely:

Definition 3.1. We say a lattice L is strong coset-like if |Jx| divides |J | for every
x ∈ L \ {0̂}.

In principle, this divisibility condition need not be necessary (although it is suffi-
cient) for P (L, s) to be a finite ordinary Dirichlet series, for the Möbius numbers may
happen to cancel out in just the right way to eliminate problematic non-integer ratios.
Thus:

Definition 3.2. We say a lattice L is weak coset-like if P (L, s) is a finite ordinary
Dirichlet series.

The examples computed in the previous chapter show that the divisibility lattice
On (hence also the Boolean lattice Br) and the subspace lattice S(Fnq ) are typically not
weak coset-like, hence also not strong coset-like. This is not entirely apparent for the
partition lattice Πn. As a first step, it is easy to prove that Πn is typically not strong
coset-like.

Proposition 3.3. The partition lattice Πn is strong coset-like if and only if n ≤ 4.

Proof. It is trivial that Π2,Π3 are strong coset-like, as there are no non-trivial elements
which are not join irreducible, and |JP | = 1 for all of them. For Π4, it suffices to check
that

(
3
2

)
= 3 and

(
2
2

)
+
(

2
2

)
= 2 divide

(
4
2

)
= 6.

Suppose now that n ≥ 5. Consider the partition P0 = {{1}, {2, 3, 4, . . . , n}}. Then,
|JP0| =

(
n−1

2

)
does not divide

(
n
2

)
=
(
n−1

2

)
+n−1, for this is equivalent to

(
n−1

2

)
| n−1,

yet
(
n−1

2

)
> n− 1 for n ≥ 5. �
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The lattices Π2 and Π3 are both isomorphic to coset lattices, namely the coset
lattices of the trivial group and Z3, respectively. However, Π4 is a more interesting
example of a strong coset-like lattice, as it is not isomorphic to the coset lattice of
any group. If Π4

∼= C (G) for some group G, the group would need to have order 6

because C (G) has precisely |G| join irreducible elements and Π4 has 6 join irreducible
elements, meaning that G ∼= Z6 or G ∼= S3. But C (Z6) consists of 13 elements: the
group itself, 2 cosets yielded by the unique subgroup of order 3, 3 cosets yielded by the
unique subgroup of order 2, 6 cosets yielded by the trivial subgroup, together with the
empty set; while C (S3) consists of 19 elements: the group itself, 2 cosets yielded by
the alternating group, 3 · 3 = 9 cosets yielded by each of the three subgroups of order
2, 6 cosets yielded by the trivial subgroup, together with the empty set. In contrast
Π4 has 15 elements, so it is not isomorphic to either.

Figure 1: Hasse diagram of Π4

The following lemma gives a sufficient condition for when we may extend a “not
strong coset-like" result to a “not weak coset-like" one.

Lemma 3.4. Let L be a lattice with distinct identities 0̂, 1̂. If there exists x ∈ L\{0̂, 1̂}
such that

i. |Jx| ≥ |Jy| for all y ∈ L \ {0̂, 1̂}, where the inequality is strict if y is not maximal
in L,

ii. |Jx| does not divide |J | (i.e. the strong coset-like condition for L fails at x),

then L is not weak coset-like.

Proof. Firstly, we show that the conditions of the lemma imply that x is a maximal
element. If x was not maximal, then there would exist y ∈ L with 1̂ > y > x. Then,
|Jy| ≥ |Jx| ≥ |Jy| implies that |Jx| = |Jy| which together with Jx ⊆ Jy gives Jx = Jy.
Proposition 1.3 then gives x =

∨
j∈Jx j =

∨
j∈Jy j = y > x, a contradiction.
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Since x is maximal, µ(x, 1̂) = −1 and because if y ∈ L has |Jx| = |Jy|, then y is
maximal, thus also µ(y, 1̂) = −1, it follows that the term 1/[J : Jx]

s appears in P (L, s)

with a non-zero coefficient, as desired to show that P (L, s) is not an ordinary Dirichlet
series. �

We obtain the full answer regarding coset-like properties of Πn as a corollary.

Proposition 3.5. The partition lattice Πn is weak coset-like if and only if n ≤ 4.

Proof. By Proposition 3.3, it suffices to show that P0 = {{1}, {2, 3, . . . , n}} ∈ Πn

satisfies the conditions of Lemma 3.4 for n ≥ 5. Let P = {P1, P2 . . . , Pk} be any non-
trivial (1 < k < n) partition in Πn, set l = bk/2c and consider P ′ = {P ′1, P ′2}, where
P ′1 = tli=1Pi and P ′2 = tki=l+1Pi. Thus, P ′ is maximal and by reverse subadditivity of
the function x 7→

(
x
2

)
(i.e.

(
x
2

)
+
(
y
2

)
<
(
x+y

2

)
and induction), we get

|JP | =
l∑

i=1

(
|Pi|
2

)
+

k∑
i=l+1

(
|Pi|
2

)
≤
(
|P ′1|

2

)
+

(
|P ′2|

2

)
≤
(
n− 1

2

)
= |JP0|.

The last inequality follows by the fact that the function x 7→
(
x
2

)
+
(
n−x

2

)
is symmetric

with respect to x = n/2, strictly decreasing on [1, n/2] and strictly increasing on
[n/2, n− 1], so that its maximum on [1, n− 1] is attained at the boundary point x = 1.
Furthermore, the inequality |JP | ≤

(
n−1

2

)
is strict when P is not maximal, since reverse

subadditivity is strict unless k = 2. �

3.1.1 d-Divisible Partition Lattice

Now, we turn our attention to the d-divisible partition lattice Πd
dn, namely the set of all

partitions of {1, 2, . . . , dn} with the property that each part is of cardinality divisible
by d, together with the empty set, ordered by refinement. There was initially more
hope for positive results regarding coset-like behavior of Πd

dn, motivated by EL-labeling
considerations in [12]. Although we unexpectedly obtained negative results, they are
certainly more interesting than the previous results for Πn.

The join irreducible elements of Πd
dn are precisely its atoms, i.e. partitions where

all parts are of cardinality exactly equal to d. To see this, notice that a part of any
partition P ∈ Πd

dn may be partitioned further into parts with cardinalities precisely
equal to d, thus the same is true for P . In order to find the number of all join irreducible
elements, notice that the dn elements in {1, 2, . . . , dn} may first be permuted in (dn)!

ways and for a given permutation, we create a partition with n parts, each of size d, by
taking the first part to consist of the first d elements, the second part of the second d
elements, and so on. Of course, the order of the elements in each part does not matter
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and nor does the order of the parts, hence we are counting the same partition precisely
(d!)nn! times, giving that |J | = (dn)!/((d!)nn!).

Now, let P be as before and set pi = |Pi|/d for i = 1, 2, . . . , k. By similar reasoning
as above, the join irreducible elements less than P are all the possible partitions with
n parts, each of size d, obtained by partitioning parts of P . Notice that a part Pi may
be partitioned further into pi parts of size d in precisely as many ways as there are join
irreducible elements in Πd

dpi
. So, the number of ways P could be partitioned further

into n parts of size d, is the product |JP | =
∏k

i=1(dpi)!/((d!)pipi!), where
∑k

i=1 pi = n.
So, whether Πd

dn is a strong coset-like lattice reduces to the following number theoretic
question:

Let n be a positive integer and let k ∈ {1, 2, . . . , n}. Is it true that for any positive
integers p1, p2 . . . , pk such that

∑k
i=1 pi = n, the divisibility relation

k∏
i=1

(dpi)!/pi! | (dn)!/n!

holds?

Notice that the multinomial (
∑
xi)!/

∏
xi! being an integer implies both that the

numerator of the product divides (dn)! as well as that the denominator of the product
divides n!, and this is inconvenient for us. Indeed, taking d = 2 and n = 4 (so that
we consider the 2-divisible partition lattice over 8 elements Π2

8; we will later show that
this is in fact the minimal counterexample for 2-divisible partition lattices), then the
partition P = {{1, 2, 3, 4}, {5, 6, 7, 8}} has |J |/|JP | = 8!/4!/(4!/2!)2 = 35/3, which is
not an integer.

In order to show that Π2
2·2m is not strong coset-like for any m ≥ 2, it suffices to

follow the same strategy as for Π2
8 and show that the partition

P = {{1, 2 . . . , 2m}, {2m+ 1, 2m+ 2, . . . , 4m}}

is always problematic. That is, we would like to show that ((2m)!/m!)2 does not divide
(4m)!/(2m)! and this is equivalent to the condition that

(
2m
m

)
does not divide

(
4m
2m

)
for

any m ≥ 2. Although it was certainly expected, we were not able to find the proof of
this anywhere in the literature.

Lemma 3.6. Let m ≥ 2 be an integer. Then,
(

2m
m

)
does not divide

(
4m
2m

)
.

Proof. Notice that(
4m
2m

)(
2m
m

) =
(4m− 1)(4m− 3) · · · (2m+ 1)

(2m− 1)(2m− 3) · · · 1
=

(4m− 1)!!

(2m− 1)!!2
.
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The identity (2n−1)!! = (2n−1)!/(2n−1(n−1)!) allows us to calculate vp((2n−1)!!) for
p > 2 as vp((2n− 1)!)− vp((n− 1)!). For m ≥ 16, Theorem 1.5 (taking 6n/5 = 2m− 1)
guarantees the existence of a prime pm on the interval [5

6
(2m − 1), 2m − 1]. Then,

p2
m > 4m− 1 and so the particular case of Legendre’s formula (Proposition 1.6) gives

vpm

(
(4m− 1)!!

(2m− 1)!!2

)
=

⌊
4m− 1

pm

⌋
− 3

⌊
2m− 1

pm

⌋

≤
⌊

4m− 1
5
6
(2m− 1)

⌋
− 3

⌊
2m− 1

2m− 1

⌋
= 2− 3 · 1 = −1,

as desired to show that
(

4m
2m

)
/
(

2m
m

)
is not an integer for m ≥ 16. The remaining cases

(2 ≤ m ≤ 15) follow by a computer check on https://www.wolframalpha.com/. �

Proposition 3.7. Π2
2n is strong coset-like if and only if n < 4 or n = 5.

Proof. It is straightforward to check by hand that Π2
2n is strong coset-like if n < 4 or

n = 5.
If n ≥ 4 and n is even, the previous lemma gives that Π2

2n is not strong coset-like.
Assume now that n > 5 is odd and write it as n = 2m + 1 for some m ≥ 3. Consider
the partition P = {{1, 2, . . . , 2m}, {2m + 1, 2m + 2, . . . , 4m + 2}} ∈ Π2

2·(2m+1). Then,
|JP | | |J | reads (2m)!/m! · (2m+ 2)!/(m+ 1)! | (4m+ 2)!/(2m+ 1)! or equivalently,

(2m+ 1)

(
2m

m

)
| (4m+ 1)

(
4m

2m

)
. (3.1)

As in the proof of the previous lemma, we consider the ratio of the two terms in (3.1)
and for m ≥ 16, we fix a prime pm ∈ [5

6
(2m− 1), 2m− 1]. Then,

vpm

(
(4m+ 1)

(
4m
2m

)
(2m+ 1)

(
2m
m

)) = vpm

((
4m
2m

)(
2m
m

))+ vpm(4m+ 1)− vpm(2m+ 1) < 0,

where the inequality follows by vpm(2m + 1) ≥ 0 and the previous lemma. Note that
the choice of pm also guarantees that vpm(4m + 1) = 0, since pm lies strictly between
(4m+ 1)/3 and (4m+ 1)/2. The remaining cases (3 ≤ m ≤ 15) follow by a computer
check on https://www.wolframalpha.com/. �

For d > 2, we focus on obtaining an asymptotic result, for which we shall utilize
the prime number theorem.

Theorem 3.8. For any even value of d ≥ 2, there exists N = N(d) such that Πd
dn is

not strong coset-like for any n ≥ N .

Proof. For d = 2, we may take N = 4 (this is the content of the previous proposition).
Now, assume that d > 2 and firstly, let n = 2m for some m. Consider the partition

P = {{1, 2, . . . , dm}, {dm+ 1, dm+ 2, . . . , 2dm}} ∈ Πd
2dm.
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The divisibility condition |JP | | |J | is equivalent to(
(dm)!

m!

)2

| (2dm)!

(2m)!
.

We consider the ratio and choose N1 large enough so that primes p > m

satisfy p2 > 2dm. That is to say, for 2m = n ≥ N1, the particular case of Legen-
dre’s formula gives

vp

(
(2dm)!m!2

(2m)!(dm)!2

)
=

⌊
2dm

p

⌋
−
⌊

2m

p

⌋
− 2

⌊
dm

p

⌋
.

Fix ε = 1
d+2

and let N = max{N(ε), N1}, where N(ε) is obtained by the remark
following the statement of the prime number theorem. Then, for all n = 2m ≥ N ,
there exists a prime pm in the interval [(1 − ε)2m, 2m). So, for even values of d, we
obtain

vpm

(
(2dm)!m!2

(2m)!(dm)!2

)
≤

⌊
2dm

(1− ε)2m

⌋
−
⌊

2m

2m

⌋
− 2

⌊
dm

2m

⌋

=

⌊
d

1− 1
d+2

⌋
− 1− 2

⌊
d

2

⌋

=

⌊
d(d+ 1) + d

d+ 1

⌋
− 1− d = −1,

as desired to show that |JP | | |J | fails.
Next, suppose that n = 2m+ 1. Consider the partition

P = {{1, 2, . . . , dm}, {dm+ 1, dm+ 2, . . . , 2dm+ d}} ∈ Πd
2dm+d.

The divisibility relation |JP | | |J | is equivalent to

(dm+ d− 1) · · · (dm+ 1) · (dm)!2

m!2
| (2dm+ d− 1) · · · (2dm+ 1) · (2dm)!

(2m)!
.

By the first part of the proof, it suffices to show that a prime pm ∈ [(1 − ε)2m, 2m)

does not divide any s ∈ {2dm + 1, . . . , 2dm + d − 1}. If this was the case, we would
have

d <
2dm+ 1

2m
≤ s

pm
≤ (2dm+ d− 1)(d+ 2)

2(d+ 1)m
,

but
lim
m→∞

(2dm+ d− 1)(d+ 2)

2(d+ 1)m
=
d(d+ 2)

d+ 1
< d+ 1,

giving that s/pm ∈ (d, d+ 1) for large enough values of m, an absurdity. �

In the second part of the above proof, we have shown that also for odd values of d,
proving that Πd

dn is not strong coset-like for even n suffices to also show the same for
odd n. However, the argument in the first part of the proof fails for odd d, for bd/2c
is too large. We believe that the same result holds also for odd values of d, but we do
not prove it in this paper.
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3.2 Products

We recall that two groups G and H are coprime if no proper subgroup of G × H

surjects onto both factors. In [2], Brown proved that for coprime finite groups G and
H, the relation P (G × H, s) = P (G, s)P (H, s) holds. On the level of lattices, the
identity reads P (C (G × H), s) = P (C (G), s)P (C (H), s). Thus, we are naturally led
to the problem of finding an appropriate product ? on lattices for which we would be
able to prove P (L ? K, s) = P (L, s)P (K, s).

The first place to look at is, of course, the Cartesian product. For two lattices L,K,
the Cartesian product L×K with both the meet and the join defined component-wise,
is a lattice (see [3, Chap. I, Sect. 3]). The following multiplicativity statement about
the Möbius numbers is easy to prove (see [9, Chap. 3, Sect. 8]).

Proposition 3.9. Let P and Q be posets and let µP , µQ and µP×Q be the Möbius
functions of P,Q and P ×Q, respectively. Then, for any (x, y), (z, w) ∈ P ×Q,

µP×Q((x, y), (z, w)) = µP (x, z)µQ(y, w).

In particular, if P,Q are lattices, then

µP×Q((x, y), (1̂, 1̂)) = µP (x, 1̂)µQ(y, 1̂).

It is therefore natural to ask that the same happens for the number of join irreducible
elements less than a given element (x, y) in L × K, i.e. that |J(x,y)| = |Jx| · |Jy|.
However, it is immediate that P (L, s) does not behave well with Cartesian products,
for the probability function of a chain of length 1 is identically equal to 1, but this is
not true for the Cartesian product of two chains of length 1. The reason for this is that
in general, for two lattices L and K, the element (x, y) need not be join irreducible if
x, y are, for (x, y) = (x, 0̂) ∨ (0̂, y).

3.2.1 Lower Reduced Products

One possible remedy is to consider the lower reduced product ? of lattices, defined as
L ? K = (L \ {0̂}) × (K \ {0̂}) ∪ {0̂}, with component-wise meet and join. This is a
natural product to consider, because for groups G,H for which all subgroups of G×H
may be factored as S × T for some S ≤ G and some T ≤ H, the coset lattices satisfy
C (G×H) = C (G) ? C (H). This happens, for example, when G and H have coprime
orders (see [10, Chap. 2, Sect. 4]). It is worth noting that in [2], Brown made a more
general related observation involving homotopy equivalence.
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Nonetheless, further assumptions must be made. If x is join irreducible in L and y
is join irreducible in K, then for

(x, y) = (a, b) ∨ (c, d) = (a ∨ c, b ∨ d),

neither (a, b) nor (c, d) need be (x, y) if x, y are not atoms. This is because we may
write

(x, y) = (x, y′) ∨ (x′, y)

if x′, y′ are such that 0̂ < x′ < x and 0̂ < y′ < y. On the other hand, if x is an atom,
then by join irreducibility of x, without loss of generality, we may take a = x. If c = 0̂,
this forces d = 0̂ due to the definition of ?, so b = y, i.e. (a, b) = (x, y). So, assume that
c = x also. If b 6= y, join irreducibility of y implies that d = y, so that (c, d) = (x, y), as
desired to show that (x, y) is join irreducible. Thus, if we assume that L is atomistic,
then P (L ? K, s) factors through the lower reduced product.

Proposition 3.10. Let L and K be lattices, where L is an atomistic lattice. Then,

P (L ? K, s) = P (L, s)P (K, s).

Proof. By Proposition 3.9, the Möbius function remains multiplicative over the lower
reduced product. That is, µ((x, y), (1̂, 1̂)) = µ(x, 1̂)µ(y, 1̂), as in P (L?K, s), the Möbius
numbers are taken over the poset (L ? K) \ {0̂} = (L \ {0̂}) × (K \ {0̂}), a Cartesian
product of posets.

Furthermore, if (x, y) ∈ L ? K is join irreducible, then for x = a ∨ c and y = b ∨ d,
we have (x, y) = (a, b)∨ (c, d), meaning that (a, b) = (x, y) or (c, d) = (x, y), as desired
to show that both x, y are join irreducible.

By the remark preceding the statement of this proposition, we conclude that (x, y)

is join irreducible in L ? K if and only if x and y are join irreducible in L and K,
respectively, i.e. |J(x,y)| = |Jx| · |Jy|. We finish the proof with a simple computation.

P (L ? K, s) =
∑

0̂<(x,y)∈L?K

µ((x, y), (1̂, 1̂))

[J(L ? K) : J(x,y)]s

=
∑

0̂<x∈L

∑
0̂<y∈K

µ(x, 1̂) · µ(y, 1̂)

[J(L) : Jx]s · [J(K) : Jy]s

=

 ∑
0̂<x∈L

µ(x, 1̂)

[J(L) : Jx]s

 ∑
0̂<y∈K

µ(y, 1̂)

[J(K) : Jy]s


= P (L, s)P (K, s),

as we desired to show. �
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4 CONCLUSION

In this final project paper, we considered the probabilistic zeta function of a finite
lattice defined by Brown in [2], and proposed a natural extension to non-atomistic
lattices. In an entirely similar fashion as in [2], we obtained a finite general Dirichlet
series expression for the probability function (the reciprocal of the probabilistic zeta
function), by using the technique of Möbius inversion on partially ordered sets, firstly
introduced by Hall in [5]. We then computed the probability function on a number of
standard examples of finite lattices and obtained the following results.

i. Divisibility Lattice: For the divisibility lattice of a square-free integer (namely
the Boolean lattice), we obtained a probability function closely related to the
Stirling numbers of the second kind. Then, the probabilistic interpretation of
the probability function for the general divisibility lattice provides a possible
generalization of the Stirling numbers of the second kind in a counting s-tuples
setting (which is perhaps unusual for the Stirling numbers).

ii. Subspace Lattice of a Finite Dimensional Vector Space Over a Finite Field: This
lattice is a natural extension of the Boolean lattice, for the latter would be the
subspace lattice of a finite dimensional vector space over a one-element field, if one
were to exist. We concretized this relationship by showing that the probabilistic
zeta function of the Boolean lattice is a limit of that of the subspace lattice.

iii. Partition Lattice: Using previously known results on the Möbius numbers of the
partition lattice as well as elementary counting arguments, we wrote down the
probabilistic zeta function of the partition lattice. However, the expression is not
as explicit as for the previous examples, thus requiring further analysis.

For the coset lattice of a group, the probability function always turns out to be an
ordinary Dirichlet series. This motivated us to define coset-like lattices, namely strong
coset-like and weak coset-like lattices, where as semantically suggested, strong implies
weak. Because the expression for the probability function of the partition lattice is not
so explicit, we investigated coset-like properties of this lattice in more detail, ultimately
showing that it typically fails to be weak coset-like. To do this, we first showed that
the partition lattice fails to be strong coset-like and then formulated, proved and used
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a lemma to translate strong to weak. Interestingly, however, a small partition lattice
provided us with an example of a strong coset-like lattice which is not the coset lattice
of any group. We were not able to find any examples of weak coset-like lattices which
are not strong coset-like. It might be true that the two definitions are in fact equivalent
and this would certainly be interesting to prove.

After the partition lattice, we turned our attention to the d-divisible partition
lattice, where there was initially more hope for positive coset-like behavior. However,
we again obtained negative results. On the bright side, the problems that arose were
quite a bit more interesting compared to the partition lattice. During the process,
we showed that the divisibility relation

(
2m
m

)
|
(

4m
2m

)
of central binomial coefficients

fails for m ≥ 2. It was surprising that we were not able to find this result explicitly
stated anywhere in the literature. For the general case when d is even, we obtained
an asymptotic result by using the prime number theorem. We believe that the same
asymptotic result holds for odd values of d, although we were not able to show this as
part of this project paper.

Lastly, we considered products of lattices, showing that Cartesian products do
not behave well with respect to the probabilistic zeta function. The right product
to consider turned out to be the lower reduced product, even though an additional
assumption of having at least one atomistic lattice in the product was unavoidable.

To conclude, we list a few possible directions for further research in this topic, some
of which we unfortunately did not pursue due to time restrictions.

i. Extend the definition of the probabilistic zeta function to infinite lattices in a
sensible way;

ii. Investigate possibilities of factoring the probabilistic zeta function by considering
a relative version involving quotient lattices (and/or join homomorphisms);

iii. Write down P (Πd
dn, s) in a sensible way and investigate weak coset-like behavior;

iv. Prove or disprove that the definitions of weak coset-like and strong coset-like are
equivalent;

v. Obtain a purely lattice theoretic characterization of strong and/or weak coset-like
lattices.
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5 POVZETEK NALOGE V
SLOVENSKEM JEZIKU

Pri temu zaključnemu projektnemu delu smo preučevali verjetnostno funkcijo zeta na
končnih mrežah, kar je uvedel Brown v svojem članku [2]. Brown je nadalje predlagal
naravno alternativno definicijo, ki je morda primernejša za neatomarne mreže. Na
povsem podoben način kot v [2] smo z uporabo Möbiusove inverzije na delno urejenih
množicah, ki jo je prvi predstavil Hall v članku [5], dobili končen razvoj v splošno
Dirichletovo vrsto za verjetnostno funkcijo (inverz k verjetnostni funkciji zeta). Nato
smo izračunali verjetnostno funkcijo na številnih standardnih primerih končnih mrež
in dobili naslednje rezultate.

i. Mreža deljivosti: Za mrežo deljivosti celega števila brez kvadratov (to je Boolovo
mrežo) smo dobili verjetnostno funkcijo, ki je tesno povezana s Stirlingovimi
števili druge vrste. Verjetnostna interpretacija verjetnostne funkcije za mrežo
deljivosti v splošnem primeru omogoča možno posplošitev Stirlingovih števil
druge vrste s pomočjo štetja s-teric (kar je za Stirlingova števila morda ne-
navadno).

ii. Mreža podprostorov končno-dimenzionalnega vektorskega prostora nad končnim
poljem: Ta mreža predstavlja naravno razširitev Boolove mreže, saj bi bila sled-
nja pravzaprav mreža podprostorov končno-dimenzionalnega vektorskega pros-
tora nad poljem z enim elementom, če bi le-to obstajalo. To razmerje smo
konkretizirali tako, da smo pokazali, da je verjetnostna funkcija zeta Boolove
mreže limita funkcij na mreži podprostorov.

iii. Mreža particij: Z uporabo znanih rezultatov o Möbius številih za mreže par-
ticij in tudi z osnovnimi tehnikami preštevanja smo uspeli zapisati verjetnostno
funkcijo zeta za mrežo particij. Ker ta ni izražena tako eksplicitno, kot v prejšnjih
primerih, je potrebna nadaljnja analiza.

Za mrežo odsekov grupe se izkaže, da je verjetnostno funkcijo vedno mogoče razviti
v običajno Dirichletovo vrsto. To nas je spodbudilo, da smo definirali odsekovne mreže
in sicer krepko in šibko odsekovno mrežo, kjer, kot sugerira že samo ime, krepka im-
plicira šibko. Ker izraz za verjetnostno funkcijo mreže particij ni tako ekspliciten, smo
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podrobneje raziskali odsekovne lastnosti te mreže in pokazali, da običajno ni šibka
odsekovna mreža (zanimivo pa je, da smo našli primer majhne mreže particij, ki nam
je dala primer krepke odsekovne mreže, ki pa ni mreža odsekov nobene grupe). To smo
naredili tako, da smo najprej pokazali, da mreža particij ni krepka odsekovna mreža.
Nato smo formulirali, dokazali in uporabili lemo, ki prevede krepko v šibko. Nismo
uspeli najti noben primer šibke odsekovne mreže, ki ne bi bila tudi krepka odsekovna
mreža. Vsi poskusi konstruiranja primerov so spodleteli. Morda celo drži, da sta obe
definiciji ekvivalentni. Vsekakor bi to bilo zanimivo dokazati.

Za mrežami particij smo se posvetili študiju d-deljivostne mreže particij, kjer je
bilo sprva več upanja, da bi se mreža obnašala tako kot odsekovna mreža. Vendar smo
spet dobili negativne rezultate. Kljub temu so bili problemi, ki so se pojavili, precej
zanimivejši v primerjavi s tistimi pri mrežah particij. Obenem smo pokazali tudi, da
razmerje deljivosti centralnih binomskih koeficientov

(
2m
m

)
|
(

4m
2m

)
ne drži za m ≥ 2

(presenetljivo je, da tega rezultata nismo zasledili v literaturi). V splošnem primeru,
ko je d sodo število, smo z uporabo izreka o praštevilih dobili asimptotični rezultat.
Verjamemo, da enak asimptotični rezultat velja za lihe vrednosti d, čeprav tega nismo
uspeli dokazati.

Nazadnje smo obravnavali še produkte mrež. Pokazali smo, da se kartezični pro-
dukti ne obnašajo lepo za verjetnostno funkcijo zeta. Izkazalo se je, da je najbolje
uporabiti spodnji reducirani produkt, čeprav se dodatni predpostavki, da imamo v
produktu vsaj eno atomarno mrežo, ni bilo mogoče izogniti.

Za konec naštejemo nekaj možnih smeri za nadaljnje raziskave na tem področju, ki
jih žal nismo uspeli podrobneje raziskati, predvsem zaradi časovnih omejitev.

i. Razširitev definicije verjetnostne funkcije zeta na neskončne mreže na smiselen
način;

ii. Preučiti možnosti faktorizacije verjetnostne funkcije zeta z upoštevanjem rela-
tivne različice, ki vključuje kvocientne mrež (in/ali pridružitvene homomorfizme);

iii. Zapisati P (Πd
dn, s) na smiselen način in raziskati šibko odsekovno vedenje;

iv. Dokazati ali ovreči, da sta definiciji šibke odsekovne mreže in krepke odsekovne
mreže ekvivalentni;

v. Določiti karakterizacijo krepkih in šibkih odsekovnih mrež v jeziku teoorije mrež.
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