
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Master’s thesis

(Magistrsko delo)

Locally 2-arc transitive graphs and quasiprimitive groups: the

twisted wreath product case
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1 INTRODUCTION

1.1 MOTIVATION AND RELATED WORK

The motivation for this thesis came from studies of s-arc transitive graphs, first investi-

gated by Tutte [28,29]. An automorphism of a graph is a permutation of vertices which

preserves adjacency. All combinations via composition of automorphisms of a graph

form a group, called the automorphism group of the graph. It is typically difficult to

work out the whole automorphism group of a graph, but we usually get away with

understanding a subgroup of it.

The analysis of transitivity on paths of length s emanating from a single vertex

is performed via searching for subgroups of certain quasiprimitive type. A transitive

permutation group G on a set Ω is said to be quasiprimitive if every nontrivial normal

subgroup of G acts transitively on Ω. A graph is locally (G, s)-arc transitive if the

stabilizer in G of a vertex v is transitive on the s-arcs emanating from v. Tutte showed

that locally (G, s)-arc transitive graphs of valency three that are also vertex transitive

satisfy s ≤ 5. Later Weiss [31] used the classification of finite simple groups to show

that if the graph is vertex transitive and has valency at least three then s ≤ 7. A

recent remarkable theorem proved by van Bon and Stellmacher [30] showed that in the

vertex intransitive case, s ≤ 9. These results arose by analysing the local structure

and possible stabilizers of two adjacent vertices.

In this thesis we give an overview of the Giudici-Li-Praeger [13] program of global

analysis of locally s-arc-transitive graphs and study their properties. This framework

deals with the case when s ≥ 2 and G acts intransitively on vertices. Such graphs are

bipartite and the two parts of the bipartition are G-orbits. It is shown that if G has

a nontrivial normal subgroup intransitive on both G-orbits, then the graph arises as a

“cover” of a smaller locally s-arc transitive graph. This reduces the problem to finding

all examples where G acts quasiprimitively on at least one of the two orbits.

The O’Nan-Scott Theorem for quasiprimitive groups [20] is used to study the graphs

for which there are no suitable normal quotients, which are referred to as “basic

graphs”. We dedicate a section to this theorem, and describe the classification in

detail. This theorem categorizes every finite quasiprimitive group as a subgroup of the

holomorph of an abelian, simple or compound group, a twisted product group, an al-

most simple group, a simple or compound diagonal group, and a product action group.
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We shorten the notation to HA, HS, HC, TW, AS, SD, CD, and PA, respectively.

Interestingly, the original versions of O’Nan-Scott Theorem [25] for finite primitive

groups incorrectly omitted the twisted wreath product case, which was only pointed

out afterwards by Aschbacher [1]. There are eight types of quasiprimitive groups and

Praeger’s classification provides examples for each of the possible cases. Since the au-

tomorphism group of a graph is not necessarily transitive on the vertices of the graph,

the action of G may be different on each orbit, so we say that G acts of type {X, Y}
if G acts quasiprimitively of type X on one orbit and of type Y on the other one.

One of the main outcomes of the Giudici-Li-Praeger [13] analysis shows that if G acts

faithfully and quasiprimitively on both orbits, then usually G acts quasiprimitively of

the same type HA, TW, AS or PA on both orbits and the only other possibility is

that G is of quasiprimitive type {SD, PA}. If G acts faithfully on both its orbits but

quasiprimitively on only one of them, then the quasiprimitive action is of type HA,

HS, AS, PA or TW.

In the Giuidici-Li-Praeger [13] global analysis we encounter examples of locally

(G, s)-arc transitive graphs with G quasiprimitive of type HA, TW, AS, PA and {SD,

PA} on both orbits. In [21], it was shown that there exist nonbipartite (G, 2)-arc

transitive graphs with G quasiprimitive of type HA, TW, AS and PA on both orbits,

as the only possible types. Hence in the global analysis we can use standard double

covers of those graphs to get locally (G, 2)-arc transitive graphs with G quasiprimitive

of the aforementioned types. For the {SD, PA} case, a family of locally 3-arc transitive

graphs of valencies q and q+ 1 is constructed. A general construction of locally (G, 2)-

arc transitive graphs of {SD, PA} type is given in [15]. In the global analysis, the case

with G acting quasiprimitively on only one orbit is separated into the HA, PA, HS, AS

or TW types. The following five examples are presented:

1. HA stars: a family of locally 3-arc transitive graphs of valencies q and qd−1
q−1

.

2. PA stars: a family of locally 3-arc transitive graphs of valencies k and n.

3. HS stars: a family of locally 3-arc transitive graphs of valencies q and q + 1.

4. AS stars: a family of locally 3-arc transitive graphs of valencies 3 and 8.

5. TW star: a locally 3-arc transitive graph of valencies 6 and 16.

Also, they give G-locally primitive graphs that are not locally (G, 2)-arc transitive

graphs. The possible types are:

1. {CD, PA}, and the graph has valencies n2 and |An−1|2.

2. HS on both orbits, and the graph has valency |T : CT (σ)|.
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3. SD on both orbits, and the graph has valency |T : CT (σ)|.

4. HC on both orbits, and the graph has valency |T : CT (σ)2|.

5. CD on both orbits, and the graph has valency |T : CT (σ)2|.

The case where G acts quasiprimitively on only one orbit has been further inves-

tigated in [14]. In this paper, the case where G is of type HA has been completely

determined with a construction. The case where G is of type HS has been completely

determined by using coset graph constructions. Minor adjustments to the five infinite

families of HS type also led to the construction of five infinite families of locally s-arc

transitive graphs of {SD, PA} type. Finally they gave characterizations for the case

where G is of type AS and for the case where G is of type PA and preserves a product

structure ∆k on ∆1, which denotes one part of the bipartition. There are no known

examples of type PA where G does not preserve a product structure on ∆1. The case

where G is of type TW has not been investigated and the one example known so far is

given in the global analysis, hence the motivation for finding new examples, which are

described at the end of this thesis.

1.2 STRUCTURE OF THE THESIS

In Chapter 2, we introduce the preliminary theory consisting of necessary definitions

regarding groups which are mentioned in this work and we prove a collection of useful

results concerning group actions and products of groups.

As mentioned before, the O’Nan-Scott Theorem for quasiprimitive groups is of great

importance to the study of locally arc transitive graphs and so in Chapter 3 we shall

give an overview and a few examples related to the first seven quasiprimitive types.

In Chapter 4 we consider twisted wreath products and their properties as the last

quasiprimitive type and illustrate a few examples. Our aim is to deliver an in-depth

overview of these groups because they are complex and thus less investigated than the

other quasiprimitive types. We then summarize Chapter 3 and 4 in Table 1.

In Chapter 5 we review notation and definitions concerning graphs and groups

acting on graphs. This allows us to present various constructions of edge transitive

graphs in terms of double covers, coset graphs and normal quotients.

In Chapter 6 we prove Theorem 6.1.1 and Lemma 6.1.2, which give a characteriza-

tion of locally 2-arc transitive graphs that admit a group of automorphisms that acts

quasiprimitively of twisted wreath type on only one orbit. Moreover, we utilize Theo-

rem 6.1.1 and Lemma 6.1.2 to prove that assuming the two results hold, locally 2-arc

transitive graphs with the aforementioned condition exist and their quotients amount

to stars K1,n.
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In Chapter 7 we work out a construction of locally 2-arc transitive graphs that

admit PSL(2, p) twrφ ASL(2, p) as a group of automorphisms. Furthermore, we state a

conjecture for the existence of an infinite family of locally 2-arc transitive graphs with

the aforementioned property and verify it for two cases using GAP [12]. Additionally,

in Lemma 7.1.2 we prove that these graphs are not locally 3-arc transitive with respect

to PSL(2, p) twrφ ASL(2, p).

We conclude the last chapter with a discussion about full automorphism groups

of these graphs and exclude some cases based on their properties and already known

results about arc transitive graphs. We manage to show that the stabilizer of the

bipartition in the full automorphism group is not quasiprimitive on only one orbit of

type HA, HS, AS, or PA and neither quasiprimitive on both orbits of type HA, TW or

{SD, PA}. The remaining cases are left open and thus could be interesting for future

research.
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2 PRELIMINARIES

Groups are a fundamental structure in abstract algebra, which are used to describe

symmetries of an object. We can think of a symmetry as a type of transformation

applied to the object that preserves its structure. A group allows us to model and study

all symmetries of an object, using a few axioms that then lead to many mathematical

applications. A group action, which is an operation of a group on a set, provides a way

to think of any abstract group as a group of symmetries. For the preliminary theory

regarding groups in this chapter, we refer to [4, 11,23,24].

2.1 GROUPS AND GROUP ACTIONS

A group is a non-empty set G with a binary operation G×G→ G such that (g, h)→ gh

satisfies the following laws:

1. (Closure law): g, h ∈ G then gh ∈ G.

2. (Associative law): g(hk) = (gh)k for all g, h, k ∈ G.

3. (Identity law): There exists an element 1 ∈ G such that g1 = 1g = g for all

g ∈ G.

4. (Inverse law): For each g ∈ G, there exists an element g−1 ∈ G such that

gg−1 = g−1g = 1.

A group G is called abelian if the binary operation is commutative, i.e. gh = hg

for all g, h ∈ G. The order of a group G is the number of elements in G, denoted by

|G|. The order of an element g ∈ G is the least positive integer n such that gn = 1. If

no such n exists, then g has infinite order. A subgroup H of a group G is a non-empty

subset of G that forms a group under the same binary operation as G. A subgroup

N of G is said to be normal in G if gng−1 ∈ N for all g ∈ G and n ∈ N . The gng−1

operation is called conjugation, sometimes denoted by ng. A field is a set F with two

binary operations + and ·, called addition and multiplication, respectively, such that

F is a group for both operations, multiplication is distributive and both operations are

commutative.

Example 2.1.1. The set of n×n invertible matrices with entries from a field F , forms

a group with respect to matrix multiplication. It is called the General Linear Group,
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which is denoted by GLn(F ) or GL(n, F ). If F is finite, we sometimes replace F with

its order. Since det(AB) = det(A) det(B) 6= 0 for any two matrices A,B ∈ GL(n, F ),

the set is closed under multiplication. Matrix multiplication is associative, which we

take as a known fact from linear algebra. The identity matrix, denoted In, has 1s in

the diagonal, and 0s elsewhere. Since we have invertible matrices, each matrix has

an inverse. Matrix multiplication is not commutative for n ≥ 2, so this group is not

abelian. An interesting subgroup of GL(n, F ) is the set of n × n invertible matrices

with determinant equal to 1, which is known as the Special Linear Group, denoted by

SL(n, F ).

A permutation of a set Ω is a bijective function π : Ω → Ω. The composition of

permutations π1 and π2 applies π1 first and then π2. The set of all permutations of Ω

with the operation of composition is a group, called the symmetric group on Ω. We

denote it by Sym(Ω), SΩ, or Sn, if Ω = {1, 2, . . . , n}.
Given g ∈ G and H a subgroup of G, a left coset of H in G is a set gH := {gh :

h ∈ H} for g ∈ G. Right cosets are defined similarly. We write [G : H] to denote the

coset space of H, which consists of all left cosets for H in G. The number of all cosets

of H in G is the index of H in G, denoted by |G : H|. Lagrange’s Theorem states that

|G : H| = |G|
|H| , if G is a finite group. A left (right) transversal for a subgroup H in G

is a set of left (right) coset representatives for the cosets of H.

The core of a subgroup H in G, denoted coreG(H), is the largest normal subgroup

of G that is contained in H (or equivalently, the intersection of the conjugates of H in

G, denoted by coreG(H) =
⋂
g∈GH

g). A subgroup H is said to be core-free if its core

is the trivial subgroup. Note that the core of a normal subgroup is the subgroup itself,

because if N EG then N g = N for all g ∈ G, so
⋂
g∈GN

g = N .

Let G be a group. The centralizer of g ∈ G is the set of elements CG(g) such that

every x in CG(g) commutes with g. The normalizer of g ∈ G is the set of elements

NG(g) which fix g under conjugation. These definitions lift up to subgroups, so for

each H ≤ G we have

CG(H) = {g ∈ G : gh = hg for all h ∈ H},

NG(H) = {g ∈ G : gHg−1 = H}.

Let G and H be groups. A map φ : G → H is a homomorphism if φ(gh) = φ(g)φ(h)

for all g, h ∈ G. If the map is also bijective, then it is called an isomorphism and we

say that G and H are isomorphic. In this case, we consider G and H to be essentially

the same. An automorphism is an isomorphism which maps from G to itself. We now

prove a few useful lemmas.

Lemma 2.1.2 (Dedekind’s rule). Let H,K,L be subgroups of G such that K ≤ H.

Then H ∩ (KL) = K(H ∩ L).
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Proof. Let h ∈ H ∩ (KL). Then h = kl for some k ∈ K and l ∈ L. We can rewrite

the equality and get k−1h = l which belongs to both H and L, since K ≤ H. Thus

h ∈ K(H ∩ L). For the other inclusion, note that K(H ∩ L) ⊆ H ∩ (KL) since

K ≤ H.

Lemma 2.1.3. Let G be a group and let H,K ⊆ G such that G = HK. Then

G = KH.

Proof. Let h ∈ H and k ∈ K. Note that kh ∈ KH but also kh = (h−1k−1)−1 is in

HK since HK is a group containing h−1k−1. So KH ⊆ HK. Since HK is a group,

hk is the inverse of some element h′k′. Then hk = (h′k′)−1 = k′−1h′−1 ∈ KH, so

HK ⊆ KH.

Lemma 2.1.4. Let H and K be subgroups of G with gcd(|H|, |K|) = 1. Then H∩K =

{1}.

Proof. The subgroup H ∩ K is subgroup of H so by Lagrange’s Theorem, |H ∩ K|
divides |H|. Similarly, |H ∩K| divides |K|. Now gcd(|H|, |K|) = 1, so |H ∩K| = 1.

Thus H ∩K = {1}.

A generating set of a group G is a subset S of G such that every element in the

group can be expressed as the combination of finitely many elements in S and their

inverses. By 〈S〉 we denote the smallest subgroup generated by S where S ⊆ G. If

G = 〈S〉, then we say that S generates G. A group is cyclic if it is generated by a

single element, called a generator of G.

An action of a group G on a set Ω is a function µ : G× Ω→ Ω with the following

properties:

1. µ(g, µ(h, ω)) = µ(gh, ω) for all g, h ∈ G and ω ∈ Ω.

2. µ(1, ω) = ω for all ω ∈ Ω, where 1 is the identity of G.

We usually write ωg to denote µ(g, ω). We say that G acts on Ω. The action is faithful

if for every g 6= 1 in G there exists ω ∈ Ω such that ωg 6= ω, or simply put, different

elements of G induce different permutations of Ω. The cardinality |Ω| is called the

degree of the action.

The orbit of an element ω in Ω is the set ωG := {ωg : g ∈ G} and the stabilizer of

ω is the set Gω := {g ∈ G : ωg = ω}. We say that the action is transitive if there is

just one orbit, and intransitive otherwise. An action is said to be semiregular if the

stabilizer of every element is trivial. If an action is transitive and semiregular, then

it is called regular. A well-known result about group actions is the Orbit-stabilizer

theorem, which states that given an action of a finite group G on Ω and ω ∈ Ω, we

have |G| = |ωG| · |Gω|.
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Lemma 2.1.5. Let G be a group acting transitively on a set Ω and let H ≤ G. Then

H acts transitively on Ω if and only if G = HGω for some ω ∈ Ω.

Proof. First, let H ≤ G act transitively on Ω. Then there exists h ∈ H such that

ωg = ωh for g ∈ G and ω ∈ Ω. Then ω = ωhg
−1

so hg−1 = k for some k ∈ Gω. Thus

g = k−1h ∈ GωH and by Lemma 2.1.3 g ∈ HGω.

For the other direction let G = GωH. By transitivity of G, for any α ∈ Ω there

exists g ∈ G such that α = ωg. Since G = HGω we can write g = xh for h ∈ H and

x ∈ Gω. Then α = ωg = ωxh = ωh so H acts transitively on Ω.

2.2 PRIMITIVE GROUPS

Let G ≤ SΩ be transitive.

Definition 2.2.1. A block of G is a non-empty subset ∆ ⊆ Ω such that for all g ∈ G,

either ∆g = ∆ or ∆ ∩∆g = ∅.

If ∆ = {α} for some α ∈ Ω or ∆ = Ω, then ∆ is a trivial block. Any other block

is nontrivial. Note that if ∆ is a block, then ∆g is also a block for every g ∈ G,

and is called a conjugate block of ∆. The set of all blocks conjugate to ∆ given by

{∆g : g ∈ G} is a partition of Ω and is called a block system.

Definition 2.2.2. A group G ≤ SΩ is primitive if it admits no nontrivial blocks.

Otherwise, G is imprimitive.

Example 2.2.3. Here are a few examples of primitive groups.

1. Sn and An are primitive.

2. Let G = 〈(1 2), (1 3), (4 5), (4 6), (1 4)(2 5)(3 6)〉 ∼= (S3 × S3) o C2. Then G is

imprimitive with blocks {1, 2, 3} and {4, 5, 6}.

3. Let D2n be the dihedral group of degree n and order 2n. Suppose that k divides

n and let m = n
k
. Then {1, 1 + k, 1 + 2k, . . . , 1 + (m − 1)k} is a block for D2n,

since rotation by k steps fixes this set. In fact, D2n is primitive if and only if n

is a prime.

Lemma 2.2.4. Let G ≤ SΩ, let α ∈ Ω and let Gα ≤ H ≤ G. Then ∆ = αH is a block

and |∆| = |H : Gα|.

Proof. Suppose that there exists g ∈ G such that ∆ ∩ ∆g 6= ∅. Then there exist

h, k ∈ H such that αh = αkg. Then α = αkgh
−1

, so kgh−1 ∈ Gα < H. As k, h−1 ∈ H,

we have that g ∈ H as well. Then ∆g = (αH)g = αH i.e. ∆g = ∆ and ∆ is a

block. Further, by the Orbit-stabilizer theorem |∆| = |H : Hα| and Hα = Gα so

|∆| = |H : H ∩Gα| = |H : Gα|.
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Theorem 2.2.5. Let G ≤ SΩ be transitive and let α ∈ Ω. Then G is primitive if and

only if Gα is a maximal subgroup.

Proof. Suppose that Gα is not maximal, i.e. that there exists a proper subgroup H in

G such that Gα < H < G. Let ∆ = αH . By Lemma 2.2.4, ∆ = αH is a block. Now

we show that ∆ is nontrivial. By Lemma 2.2.4, |∆| = |H : Gα| > 1. If ∆ = Ω then

for any g ∈ G there exists an element h ∈ H such that αg = αh so gh−1 ∈ Gα < H so

g ∈ H and thus H = G, which is not possible. Therefore ∆ is a nontrivial block and

G is not primitive.

For the other direction, suppose for a contradiction that G admits a nontrivial

block system and let ∆ be the block containing α. Let H = G∆. We claim that H acts

transitively on ∆. Let β, γ ∈ ∆. By transitivity of G, there exists g ∈ G such that

β = γg. So β ∈ ∆∩∆g, which implies ∆ = ∆g so g ∈ H. Let g ∈ Gα. Then α = αg so

α ∈ ∆ ∩∆g, implying that ∆ = ∆g and g ∈ H. By Lemma 2.2.4, |∆| = |H : Gα| 6= 1,

we have Gα < H and as |∆| 6= |Ω| we have H < G, so Gα is not maximal, which is a

contradiction.

Let G act on a set Ω. If G acts transitively on {(ω1, ω2) : ω1, ω2 ∈ Ω, ω1 6= ω2},
which is the set of distinct ordered pairs of Ω, then G is 2-transitive.

Theorem 2.2.6. If G is 2-transitive, then G is primitive.

Proof. Let ∆ ⊆ Ω be a nontrivial block. Then there exist α, β ∈ ∆ and there exists

γ ∈ Ω \ ∆. By 2-transitivity, there exists g ∈ G such that (α, β)g = (α, γ). Thus

α = αg, so α ∈ ∆ ∩ ∆g which implies ∆ = ∆g. However, this gives βg = γ ∈ ∆, a

contradiction.

Theorem 2.2.7. If N is a normal subgroup of a primitive group G then either N is

trivial or N is transitive.

Proof. Let α ∈ Ω and let ∆ = αN . We claim that ∆ is a block. Let g ∈ G and n ∈ N .

Then (αn)g = (αg)g
−1ng ∈ (αg)N . Then ∆g is also an N -orbit so either ∆ = ∆g or

∆ ∩∆g = ∅, i.e. ∆ is a block. As G is primitive either |∆| = 1 and αN = {α} for all

α ∈ Ω, so that N is trivial, or ∆ = Ω and N is transitive.

We now present semidirect products, as a generalization of direct products. Then

we write sets of functions as a direct product, by using pointwise multiplication as

the operation. This gives a direct decomposition of sets of functions with natural

projections. Abstract wreath products arise as semidirect products of sets of functions

and other groups, and are characterized by their primitive or imprimitive actions. In

the last section we define minimal normal subgroups and their product called the socle,

which plays a central role in the description of groups.
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2.3 SEMIDIRECT PRODUCTS

Let us first define direct products. Let G1, G2, . . . , Gn be groups. The Cartesian

product G1×G2×· · ·×Gn can be turned into a group via coordinate-wise multiplication

(g1, g2, . . . , gn) · (g′1, g′2, . . . , g′n) = (g1g
′
1, g2g

′
2, . . . , gng

′
n),

for any (g1, g2, . . . , gn), (g′1, g
′
2, . . . , g

′
n) ∈ G1×G2× · · ·×Gn. This is called the external

direct product of G1 × G2 × · · · × Gn. For each i, there exists a natural projection

πi : G→ Gi defined by π(g1, . . . , gn) = gi.

The internal notion arises if we have a given group G which can be written as a

direct product of its certain subgroups. First note that for any two normal subgroups

H,K in G the product HK is a subgroup of G. More generally, if G has normal

subgroups H1, H2, . . . , Hn then H1H2 · · ·Hn is also a subgroup of G. We have the

following theorem that defines G as the internal product of the Hi.

Theorem 2.3.1. Let H1, H2 . . . , Hn E G such that G = H1H2 · · ·Hn and in addition

Hi ∩ (H1 · · ·Hi−1Hi+1 · · ·Hn) is trivial for all i = 1, . . . n. Then G ∼= H1×H2×· · ·×Hn.

Proof. As Hi, Hj E G we have that the commutator hihjh
−1
i h−1

j ∈ Hi ∩Hj. However

the second condition on the Hi implies that Hi∩Hj is trivial, so hihj = hjhi and Hi, Hj

commute for all i 6= j. Finally, define φ : H1×H2×· · ·×Hn → G by φ(h1, h2, . . . , hn) =

h1h2 · · ·hn. Since hihj = hjhi, it follows that φ is an isomorphism.

Next we describe the concept of a semidirect product as a generalization of a direct

product. The direct product is defined via component-wise multiplication which is

intuitive but this is not the only way to combine elements of a Cartesian product. Let

H and K be groups and suppose that we have an action of H on K that preserves the

group structure of K. Let φ : H → Aut(K) be a homomorphism. Let G := {(k, h) :

k ∈ K,h ∈ H} and define a product on G by

(k1, h1)(k2, h2) := (k1k
φ(h−1

1 )
2 , h1h2), (2.1)

for all (k1, h1), (k2, h2) ∈ G.

Proposition 2.3.2. The product defined in Equation 2.1 defines a group structure on

G.

Proof. Let (k1, h1), (k2, h2) ∈ G. Then the product (k1, h1)(k2, h2) is in G since conju-

gation by elements of H preserves the group structure of K and H,K are closed under

multiplication. The element (1, 1) is the identity since conjugating by 1 fixes elements

of K and φ(1) is the identity homomorphism. Finally if we let (k3, h3) ∈ G we have

((k1, h1)(k2, h2))(k3, h3) = (k1k
φ(h−1

1 )
2 , h1h2)(k3, h3)

= (k1k
φ(h−1

1 )
2 k

φ(h−1
2 h−1

1 )
3 , h1h2h3),
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and

(k1, h1)((k2, h2)(k3, h3)) = (k1, h1)(k2k
φ(h−1

2 )
3 , h2h3)

= (k1(k2k
φ(h−1

2 )
3 )φ(h−1

1 ), h1h2h3),

so we have equality by properties of homomorphisms and the product is associative.

It is easy to see thatG contains subgroupsH∗ = {(1, h) : h ∈ H} andK∗ = {(k, 1) : k ∈
K} which are isomorphic to H and K respectively, and G = K∗H∗ with K∗ ∩H∗ = 1.

Moreover K∗ E G and the action of H∗ on K∗ reflects the action of H on K as

(k, 1)(1,h) = (kφ(h), 1) for all h ∈ H, k ∈ K.

We call G the semidirect product of K by H, denoted by K oH.

Suppose now that G is group with subgroups H,K such that K E G, G = KH

and K ∩H = 1. Then G ∼= K oH where the action of H on K is the conjugation in

G. We call G a split extension of K by H. We sometimes write K.H to denote the

product of K by H, where the extension is not necessarily a split extension.

2.4 SETS OF FUNCTIONS AS A DIRECT PRODUCT

This section follows Praeger and Schneider’s book [22] combined with Dixon and Mor-

timer’s book [5].

Let Γ be a finite nonempty set and let K be a finite group. We define Fun(Γ, K)

to be the set of all functions from Γ to K. We can define pointwise multiplication on

Fun(Γ, K) as follows

(fg)(γ) := f(γ)g(γ) ∈ K for all f, g ∈ Fun(Γ, K) and γ ∈ Γ,

so Fun(Γ, K) acquires a group structure.

For γ ∈ Γ let

Kγ := {f ∈ Fun(Γ, K) : f(γ′) = 1 for all γ′ 6= γ}

and define the map σγ : Fun(Γ, K)→ Kγ by

σγ : f → fγ where fγ(γ
′) =

f(γ) if γ′ = γ

1 if γ′ 6= γ
. (2.2)

Proposition 2.4.1. The set Kγ is a subgroup of Fun(Γ, K) and Kγ
∼= K. Moreover,

the set {Kγ : γ ∈ Γ} is a direct decomposition of Fun(Γ, K) and the σγ are the natural

projections.
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Proof. Consider the set Kγ. If f, g ∈ Fun(Γ, K) and γ ∈ Γ such that f(γ) = g(γ) = 1

then by definition f(γ)g(γ) = (fg)(γ) = 1. So Kγ is closed under multiplication and

hence a subgroup of Fun(Γ, K). Let ψ : K → Kγ be such that ψ(k) = fk where fk

is the function in Fun(Γ, K) such that fk(γ) = k and fk(γ
′) = 1 for all γ′ 6= γ. For

k, h ∈ K, if ψ(k) = ψ(h) then fk(γ) = fh(γ) so k = h and ψ is injective. Let f ∈ Kγ.

Then f(γ′) = 1 for all γ′ 6= γ so f(γ) = x for some x ∈ K. Hence ψ is surjective.

For k, h ∈ K we have ψ(kh) = fkh and ψ(k)ψ(h) = fkfh. As we have pointwise

multiplication fkfh(γ) = fk(γ)fh(γ) = kh and fkfh(γ
′) = fk(γ

′)fh(γ
′) = 1 for γ′ 6= γ.

Also fkh(γ) = kh and fkh(γ
′) = 1 for γ′ 6= γ so ψ is a homomorphism. Thus K ∼= Kγ

for all γ ∈ Γ.

Now let Γ = {γ1, γ2, . . . , γn}. Define φ : Fun(Γ, K) → Kγ1 × · · ·Kγn such that

φ(f) = (fγ1 , . . . , fγn) where fγi ∈ Kγi as in (2.2). If f ∈ Fun(Γ, K) such that φ(f) = 1,

then fγ = 1 for all γ ∈ Γ. Then f(γ) = 1 for all γ ∈ Γ so f = 1 and φ is injective. As

K and Γ are both finite |Fun(Γ, K)| = |Kγ1| · · · |Kγn| = |K|n so φ must be surjective.

Finally let f, g ∈ Fun(Γ, K) and γ ∈ Γ. The function (fg)γ maps γ to fg(γ) which

equals f(γ)g(γ) and maps γ′ 6= γ to 1. Thus (fg)γ = fγgγ and so

φ(fg) = ((fg)γ1 , . . . , (fg)γn) = (fγ1gγ1 , . . . , fγngγn) = φ(f)φ(g)

which implies that φ is a homomorphism, and hence an isomorphism. We conclude

that Fun(Γ, K) ∼= Kγ1 × · · ·Kγn and the maps σγ are the natural projections.

2.5 WREATH PRODUCTS

We may now describe abstract wreath products. Let K and H be groups and suppose

H acts on a nonempty set Γ. Then the wreath product of K by H with respect to

this action is defined to be the semidirect product Fun(Γ, K) o H where H acts on

Fun(Γ, K) via

fx(γ) := f(γx
−1

) for all f ∈ Fun(Γ, K), γ ∈ Γ and x ∈ H.

We denote this group by K oΓ H, and call the subgroup

B := {(f, 1) : f ∈ Fun(Γ, K)} ∼= Fun(Γ, K)

the base group of the wreath product. To check that fx gives an action of H on

Fun(Γ, K) we check that f 1(γ) = f(γ) and fxy(γ) := (fx)y(γ) for all f ∈ Fun(Γ, K), γ ∈
Γ and x, y ∈ H. The first equality holds as the inverse of the identity is the iden-

tity itself. For the second equation, note that fxy(γ) = f(γ(xy)−1
) = f(γy

−1x−1
) and

(fx)y(γ) = fx(γy
−1

) = f((γy
−1

)x
−1

) = f(γy
−1x−1

) so we have equality. Thus it was

necessary to introduce x−1 instead of x into the definition since the group is not nec-

essarily abelian. If Γ = {γ1, . . . , γm} then we can identify the base group B with Km
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as shown in the previous section. The action of H on B corresponds to permuting the

components:

(u1, . . . , um)x
−1

= (u1′ , . . . , um′) where x =

(
1 2 . . . m

1′ 2′ . . . m′

)
,

for all (u1, . . . , um)x
−1 ∈ B and x ∈ H. Clearly, |K oΓ H| = |K|m|H|.

2.5.1 IMPRIMITIVE WREATH PRODUCT

Let G = K oΓ H. If K acts on a set ∆, then there is an action of G on ∆× Γ given by

(δ, γ)(f,u) := (δf(γ), γu), for all (δ, γ) ∈ ∆× Γ,

where (f, u) ∈ G = Fun(Γ, K)oH. This is called the imprimitive action since {(δ, 1) :

δ ∈ ∆} is a block.

2.5.2 PRIMITIVE WREATH PRODUCT

Let H and K be groups acting on sets Γ and ∆, respectively. Then Fun(Γ, K) is

isomorphic to the direct product of |Γ| copies of K and as such acts in a natural way

on the Cartesian product Ω of |Γ| copies of ∆. We also have H acting on Ω in a

natural way by permuting the components. We combine these actions to give a wreath

product. Let Ω := Fun(Γ,∆) and let W := K oΓ H = Fun(Γ, K) o H. We want to

define the action of W on Ω. Let φ ∈ Ω and let (f, x) ∈ W . Define φ(f,x) by

φ(f,x)(γ) := φ(γx
−1

)f(γx
−1

) for all γ ∈ Γ.

Then φ(1,1)(γ) = φ(γ1−1
)1 for all γ ∈ Γ so φ(1,1) = φ. We have (f, x)(g, y) = (fgx

−1
, xy)

in W so to prove we have an action we need to show that φ(f,x)(g,y) = φ(fgx
−1
,xy) for all

φ ∈ Ω and all (f, x)(g, y) ∈ W . We have

φ(f,x)(g,y)(γxy) = φ(f,x)(γx)g(γ
x) = φ(γ)f(γ)g(γx),

φ(fgx
−1
,xy)(γxy) = φ(γ)f(γ)gx

−1
(γx) = φ(γ)f(γ)g(γx),

so replacing γ with γ(xy)−1
gives the required identity. This action of K oΓ H on Ω is

called the product action of the wreath product. The product action of W is faithful

when the given actions of H and K are both faithful. The degree |Ω| of W equals

|∆||Γ|.
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2.6 MINIMAL NORMAL SUBGROUPS

In this section we define the socle of a group G, which is generated by the smallest

possible normal subgroups in G. Its importance is highlighted by the O’Nan-Scott type

theorems, where the classification of primitive and quasiprimitive groups is based on

their socles.

A subgroupH of a groupG is called a characteristic subgroup, denoted byH char G,

if for every automorphism φ ∈ Aut(G), Hφ = H holds. Every characteristic group is

normal, though the converse is not guaranteed. A non-trivial group K is characteris-

tically simple if it has no nontrivial proper characteristic subgroups. A simple group

is characteristically simple, though the converse is not guaranteed.

Example 2.6.1. Let G be a group. The commutator subgroup (or derived subgroup)

G′ = 〈[g, h] : g, h ∈ G〉, where [g, h] = g−1h−1gh, is a characteristic subgroup of G. The

center of the group Z(G) = {z ∈ G : gz = zg for all g ∈ G} is also a characteristic

subgroup.

Definition 2.6.2. A nontrivial subgroup K of a group G is called a minimal normal

subgroup of G if it is normal, and for any normal subgroup H of G such that H ≤ K,

either H = K or H is trivial. The socle of a group G, denoted soc(G), is the subgroup

generated by the minimal normal subgroups of G.

Example 2.6.3. Let G = A5 × A6. Then the normal subgroups of G are the trivial

subgroup, A5, A6 and G since An is simple for n ≥ 5. Then the minimal normal

subgroups of G are A5 and A6.

Lemma 2.6.4. Let K be a minimal normal subgroup in G. Then K is characteristically

simple.

Proof. Suppose that H is a characteristic subgroup of K. For g ∈ G, conjugation by

g induces an automorphism of K so Hg = H for all g ∈ G. So H E G and either

H = {1} or H = K by minimality of K. Hence K is characteristically simple.

Lemma 2.6.5. If K is characteristically simple, then it is the direct product of iso-

morphic simple groups.

Proof. Let T be a minimal normal subgroup of K. If α ∈ Aut(K) then Tα is also a

minimal normal subgroup. As T, Tα are minimal normal subgroups T ∩Tα E K, either

T ∩ Tα = {1} or T = Tα. If T ∩ Tα = {1} then [T, Tα] ≤ T ∩ Tα = {1} then T and

Tα commute and TTα ∼= T × Tα. Consider the set

D = {N E K : N = T1 × T2 × · · · × Tk with each Ti ∼= T}.
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We have an internal direct product such that Ti ∩ T1 · · ·Ti−1Ti+1 · · ·Tk = {1} for each

i and N = T1 · · ·Tk. Since Ti E K, we have Ti E N . Note that D contains T so

it is nonempty. Choose N ∈ D to be the subgroup of largest possible order. We

want to show that N = K. Suppose N 6= K. As K is characteristically simple

N is not characteristic in K so there exists α ∈ Aut(K) that does not fix N . Let

N = T1×T2×· · ·×Tk. Then there exists i such that Tαi 6≤ N . Now N ∩Tαi is a normal

subgroup of K and is properly contained in Tαi . As Tαi is a minimal normal subgroup,

N ∩ Tαi must be trivial. Then [N, Tαi ] ≤ N ∩ Tαi = {1} so [N, Tαi ] is trivial. Then

NTαi
∼= N × Tαi ∼= T1 × T2 × · · · × Tk × Tαi E K. Thus NTαi ∈ D, which contradicts

the maximality of N . Thus K = N = T1 × T2 × · · · × Tk, where each Ti is a minimal

normal subgroup isomorphic to T . We finally check that T is simple. Suppose H E T1.

Then H E T1 × T2 × · · · × Tk = K. As T1 is a minimal normal subgroup of K, either

H is trivial or H = T1 and hence T1 is simple so we are done.
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3 QUASIPRIMITIVE GROUPS

In this chapter, we describe quasiprimitivity, which is a weaker condition than primi-

tivity. We also give an overview of the O’Nan-Scott Theorem for quasiprimitive groups

and describe their structure. The groups are classified into eight types according to

the structure of their minimal normal subgroups.

3.1 DEFINITIONS AND EXAMPLES

Definition 3.1.1. A transitive permutation group G on a set Ω is said to be quasiprim-

itive if every nontrivial normal subgroup of G acts transitively on Ω.

Example 3.1.2. Let G = Sn be the symmetric group on the elements of ∆ =

{1, . . . , n} and let Ω = {(i, j) : i, j ∈ ∆, i 6= j}. Consider the action of Sn on Ω,

given by (i, j)σ = (iσ, jσ) for all σ ∈ Sn. Let G1 be the stabilizer of 1 in G, so that

G1
∼= Sn−1 < G. Now the stabilizer of (1, 2) equals G1 ∩ G2, so G(1,2) < G1 < G.

This shows that the stabilizer of a point in Ω is not maximal in G, so the action is not

primitive. The only normal subgroup of the symmetric group Sn acting on n points

for n > 4 is An, which acts transitively on Ω, so we have a quasiprimitive action for

n > 4. For n = 4, we have the Klein four-group as a normal subgroup in S4 that is not

transitive on Ω. If n = 3, then G(1,2) is trivial and A3 is not transitive so the action is

neither primitive nor quasiprimitive.

Example 3.1.3. Consider the action of S6 on the 3-element subsets of {1, . . . , 6}.
Then {{1, 2, 3}, {4, 5, 6}} is a block for S6, so the action is not primitive. The only

non-trivial normal subgroup of S6 is A6, which is transitive on the subsets, so the

action is quasiprimitive. If n is even, this holds for Sn acting on n
2
-element subsets of

{1, .. . . . , n}, where the set {{1, . . . , n
2
}, {n

2
+ 1, . . . , n}} is a block of imprimitivity.
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3.2 THE O’NAN-SCOTT THEOREM FOR QUASIPRIMI-

TIVE GROUPS

The O’Nan-Scott Theorem is a famous theorem which classifies finite primitive permu-

tation groups. The different cases are typically distinguished by their group theoretical

structure, the nature of the action or the nature of the socle of the group. Praeger [20]

gave an analogue to the O’Nan-Scott Theorem for quasiprimitive groups and showed

that a finite quasiprimitive group is a subgroup of one of eight types:

1. HA (holomorph of an abelian group).

2. HS (holomorph of a simple group).

3. HC (holomorph of a compound group).

4. TW (a twisted wreath product).

5. AS (an almost simple group).

6. SD (a simple diagonal group).

7. CD (a compound diagonal group).

8. PA (a product action group).

The theory involving the twisted wreath product quasiprimitive type is described in

detail in Chapter 4 since such groups are of great interest for this thesis. Throughout,

let T be a finite nonabelian simple group. The first three types of quasiprimitive groups

are subgroups of the holomorph Hol(N) of a certain group N . This is defined as the

semidirect product Hol(N) = N.Aut(N) acting on Ω = N where for all n ∈ N and

σ ∈ Aut(N):

nσ : x→ xσnσ for all x ∈ Ω.

Then N is normal in Hol(N) and acts regularly by right multiplication.

3.3 HOLOMORPH OF AN ABELIAN GROUP

The first quasiprimitive type is HA, which are subgroups of the affine general linear

group AGL(d, p), for some prime p and positive integer d, acting on the points of the

affine space AG(d, p). These are in fact primitive groups and they are characterized by

their unique elementary abelian minimal normal subgroup N ∼= Cd
p , which consists of

all translations in G and G = N : G0 where the stabilizer of the zero vector G0 must

be an irreducible subgroup of GL(d, p). Note that AGL(d, p) = Hol(N).
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3.4 HOLOMORPH OF A SIMPLE GROUP

The second quasiprimitive type is HS, which are subgroups of the holomorph Hol(T ) =

T.Aut(T ), containing T.Inn(T ) and acting on Ω = T . Then this group has two minimal

normal subgroups, each isomorphic to T and each acts regularly on Ω, one by right

multiplication and one by left multiplication. Then the socle, soc(G), of G is T × T =

T.Inn(T ) which acts on Ω by

(t1, t2) : s→ t−1
2 st1 for all s ∈ T.

All such groups are primitive.

3.5 HOLOMORPH OF A COMPOUND GROUP

The third quasiprimitive type is HC, where we take G ≤ Hol(T k) for k ≥ 2 acting on

Ω = T k. This is again the holomorph action and G has two minimal normal subgroups,

both regular and isomorphic to T k. Now Inn(T k) ≤ G1 ≤ Aut(T k) and we require G1

to act transitively on the k simple direct factors of T k.

Remark 3.5.1. The groups of types HS and HC are the only quasiprimitive groups with

two minimal normal subgroups, as the rest have only one.

3.6 ALMOST SIMPLE GROUPS

The next type of quasiprimitive group is AS of the form T ≤ G ≤ Aut(T ) which are

the almost simple groups with transitive socle T . We do not have much information

about the action in this case, so T could act regularly on Ω. We have a primitive action

of G if and only if a point stabilizer is a maximal subgroup of G not containing T .

Example 3.6.1. Let T = An for n ≥ 5. Since T is a nonabelian simple subgroup

of Sn and Aut(T ) = Sn (except when n 6= 6), then Sn is an almost simple group as

T ≤ Sn ≤ Aut(T ). The action of T on Ω = {1, . . . , n} is transitive and primitive, but

not regular since the stabilizer of 1 is not trivial because it contains elements such as

(2 3 4), for example.

3.7 SIMPLE DIAGONAL GROUPS

The next quasiprimitive type is SD. Let N = T k for k ≥ 2. A full diagonal subgroup

of N is a subgroup isomorphic to T whose projection onto every coordinate is also

isomorphic to T . Let N act on the full diagonal subgroup Nα = {(t, t, . . . , t) : t ∈
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T} ≤ K and consider the right coset space Ω = [N : Nα] of Nα in N . Then Ω can be

identified with T k−1. Observe that

N(t1, . . . , tk) = N(t−1
k t, t−1

k t2, . . . , t
−1
k tk−1, 1),

so we can denote an element of Ω by [t1, . . . , tk−1, 1]. Then φ ∈ Aut(T ) acts on Ω via

[t1, . . . , tk−1, 1]φ = [tφ1 , . . . , t
φ
k−1, 1].

Next, N acts on Ω via

[t1, . . . , tk−1, 1](s1,...,sk) = [t1s1, . . . , tk−1sk−1, sk]

= [s−1
k t1s1, s

−1
k t2s2, . . . , s

−1
k tk−1sk−1, 1].

Then the action of Nα ≤ N is the same as those induced by the inner automorphisms

of T . Let W be the normalizer of N in SΩ. Then for each φ ∈ Aut(T ), the permutation

[t1, . . . , tk−1, 1]φ = [tφ1 , . . . , t
φ
k−1, 1] induced by φ is in W . Finally, Sk acts on Ω by an

induced action on the copies of T , so for each σ ∈ Sk, if we let tk = 1 then

[t1, . . . , tk−1, 1]→ [t1σ−1 , . . . , tkσ−1 ] = [t−1
kσ−1t1σ−1 , . . . , t−1

kσ−1t(k−1)σ−1 , 1]

is in W . Then W = 〈N,Aut(T ), Sk〉 ∼= T k.(Out(T ) × Sk), where the extension is not

necessarily a split extension. A quasiprimitive group of type SD is a group G such that

N E G ≤ W and G acts transitively by conjugation on the set of simple direct factors

of N , that is, N is the unique minimal normal subgroup of G. The action is primitive

if and only if G acts primitively on the k simple direct factors of N .

Example 3.7.1. Consider T = A5 and k = 2 so that N = T 2. Now Nα = {(t, t) | t ∈
A5}. Let N act on the set of cosets Ω = [N : Nα] ∼= A5 by [t, 1](s1,s2) = [s−1

2 ts1, 1]. This

is indeed an action, since [t, 1](1,1) = [t, 1] and(
[t, 1](s1,s2)

)(r1,r2)
= [s−1

2 ts1, 1](r1,r2) = [r2s
−1
2 ts1r1, 1] = [t, 1](s1r1,s2r2).

The group Out(A5) is isomorphic to S5/A5 = C2, where the outer automorphism is

conjugation by an odd permutation. We have W ∼= (A5 × A5) o (C2 × C2). The

permutation σ = (1, 1, 1, x) where x ∈ C2 acts on Ω by its induced action on the copies

of T

(t, 1, 1, 1)σ = (1, t, 1, 1)

so W acts transitively by conjugating on the simple direct factors of N and hence it

is a quasiprimitive group of type SD. To see that this is actually a primitive group,

consider the stabilizer of [1, 1]. We have

[1, 1](r1,r1) = [1r1 , 1] = [1, 1],
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[1, 1]σ = [1σ, 1] = [1, 1],

[1, 1](1 2) = [1(1 2), 1] = [1, 1],

so W[1,1] = A5 o (C2 × C2) ∼= S5 × C2 which is maximal in W , and hence the action is

primitive.

3.8 COMPOUND DIAGONAL GROUPS

These groups are built from the SD type. Let H be a quasiprimitive group of type SD

on ∆ with a unique minimal normal subgroup T l. Let k be a positive integer divisible

by l. If G satisfies N = T k ≤ G ≤ H o Sk/l, then G acts on ∆k/l with the product

action of the wreath product by

(δ1, . . . , δk/l)
h = (δh11 , . . . , δ

hk/l
k/l ),

(δ1, . . . , δk/l)
σ = (δ1σ−1 , . . . , δ(k/l)σ−1)

for (δ1, . . . , δk/l) ∈ Ω, h = (h1, . . . , hk/l) and σ ∈ Sk/l. This action is quasiprimitive if

and only if G acts transitively by conjugation on the set of simple direct factors of N ,

and it is primitive if H is primitive. N is the unique minimal normal subgroup of G.

3.9 PRODUCT ACTION GROUPS

The next quasiprimitive type is PA. Here G preserves some partition P (possibly with

parts of size 1) of Ω upon which G acts faithfully preserving a product structure on ∆k.

Further N = T k ≤ G ≤ H o Sk, where H acts quasiprimitively on ∆ of type AS with

nonregular socle T and G acts transitively by conjugation on the set of simple direct

factors of N . The action of G is primitive if and only if P is trivial and the action of

H on ∆ is primitive.

Example 3.9.1. Let G = (A5 ×A5) oC2 = A5 oC2. Then G acts on the set of cosets

of Gω = (A4×A4)oC2. We would like to show that this action is primitive by showing

that Gω is maximal in G. Suppose that Gω < K for some K ≤ G. We would like

to show that K = G. Let g ∈ K \ Gω. Then gh /∈ Gω for all h ∈ Gω, as otherwise

we multiply by h−1 to get g ∈ Gω. We may write g as as g = (g1, g2, g3) where g1

is in the first copy of A4, g2 is in the second copy of A4 and g3 is in C2. Note that

h = (1, 1, g−1
3 ) ∈ Gω since g3 ∈ C2. Then gh = (g1, g2, 1). Clearly, (g1, g2, 1) ∈ A5 × A5

and (g1, g2, 1) /∈ A4×A4, since otherwise g ∈ Gω. This means either g1 is not in the first

copy of A4 or g2 is not in the second copy of A4, so without loss of generality, suppose

g1 is not in the first copy of A4. Then 〈(g1, g2, 1), A4 ×A4〉 ⊆ K. Note that g1 and the

first copy of A4 generate A5 as A4 is maximal in A5. If we take (g1, g2, 1)h = (g2, g1, 1),
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we get another copy of A5 in K. Then 〈A5 × A5, h〉 ⊆ K and 〈A5 × A5, h〉 generates

G, so K = G. Therefore Gω is maximal in G and the action of G on cosets of Gω is

primitive.

We now construct a quasiprimitive action of G. Let Gσ = (A4 × A4) o C2 and let

Gω = (A3 × A3) o C2 ≤ Gσ. Let Ω = [G : Gω] and note that the action of G on Ω

is not primitive since Gω < Gσ < G. Let N E G. Then N ∩ (A5 × A5) is a normal

subgroup of A5 × A5 and G. Note that A5 × A5 is a direct product of the simple

group A5, so a normal subgroup in A5 × A5 is either trivial, all of A5 × A5 or one of

the A5 factors. If N ∩ (A5 × A5) is trivial, then N is a conjugate of C2, which is not

possible. If N ∩ (A5×A5) is one of the A5 factors then C2 does not normalize it which

contradicts its normality in G. So we are left with N ∩ (A5 × A5) = A5 × A5. Note

that (A5 × A5)Gω = G so we have a quasiprimitive action on Ω by Lemma 2.1.5.



4 TWISTED WREATH PRODUCTS

In this chapter, we provide the theory to describe twisted wreath product groups as

the last quasiprimitive type, and give examples which are of quasiprimitive type. They

were first constructed by B.H. Neumann [19] in 1963. In 1982, Suzuki [26] gave a more

elegant description. We closely follow Praeger’s [20] and Baddeley’s [2] notation.

4.1 DEFINITION AND A FEW FACTS

Let T be a finite nonabelian simple group, let P be an arbitrary group and let Q ≤ P

together with a specified homomorphism φ : Q→ Aut(T ). Let T be a left transversal

for Q in P . We can define an action of P on Fun(P, T ) preserving the group pointwise

multiplication via

fp(x) := f(px) for f ∈ Fun(P, T ) and p, x ∈ P.

This is indeed an action since f 1(x) = f(1x) = f(x) for all x ∈ P and for f ∈
Fun(P, T ) and p1, p2, x ∈ P we have

(fp1)p2(x) = fp1(p2x) = f(p1(p2x)) = f((p1p2)x) = fp1p2(x).

Consider the semidirect product Fun(P, T )oP with respect to this action. Now define

Bφ = {f ∈ Fun(P, T ) | f(pq) = f(p)φ(q) for all p ∈ P, q ∈ Q}.

This is called the φ-base group.

Lemma 4.1.1. The set Bφ is a subgroup of Fun(P, T ) which is invariant under the

action of P . Further, the restriction mapping f → f |R is an isomorphism of Bφ onto

Fun(P, T ).

Proof. Let f, g ∈ Bφ. Then

fg−1(pq) = f(pq)g−1(pq) = f(p)φ(q)g−1(p)φ(q)

= (f(p)g−1(p))φ(q) = (fg−1(p))φ(q)

is in Bφ as f, g ∈ Bφ and the condition holds for all p ∈ P and q ∈ Q. Thus Bφ ≤
Fun(P, T ). The action of P on Bφ is given by

fp(x) = f(px) for f, fp ∈ Bφ and p, x ∈ P.

22
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Let p1, p2, q ∈ P and f ∈ Bφ. Then

fp1(q)fp2(q) = f(p1q)f(p2q) = f(p1)φ(q)f(p2)φ(q) = (f(p1)f(p2))φ(q)

= f(p1p2)φ(q) = (fp1(p2))φ(q) = fp1(p2q) = fp1(fp2(q)) = fp1p2(q).

Now, if f, g ∈ Bφ and p, q ∈ P , then (fg)p(q) = fg(pq) is in Bφ because

fpgp(q) = fp(q)gp(q) = f(pq)g(pq),

which equals fg(pq) by definition, so the group operation is preserved. Consider the

restriction mapping f → f |T from Bφ to Fun(T , T ). Each function f : T → T can be

naturally extended to f ∈ Bφ by defining

f(zq) = f(z)φ(q), for all z ∈ T and q ∈ Q.

So the restriction mapping is surjective. Also if f, g ∈ Bφ such that f 6= g then their

restrictions are necessarily distinct because T is a transversal for Q in P so the image

of every element in P is determined by (f(x))x∈Bφ . So the mapping is injective. Now

let f, g ∈ Bφ. We have that |T : fg → (fg)|T which equals f |T g|T since pointwise

multiplication is defined. Thus the restriction mapping is an isomorphism.

It follows that if |T | = |P : Q| = n then Bφ
∼= T n, so we can define the semidirect

product G = Bφ o P which is a subgroup of Fun(P, T ). It is called the twisted wreath

product of T by P with respect to φ, written T twrφ P , and P is called the top group,

Bφ is simply the base group, while φ is called the twisting homomorphism.

Any twisted wreath product G as above has an action on its base group where

the base group acts by right multiplication and the top group by the action described

above. Namely, if f ∈ B then f acts on B via f : g → fg and if p ∈ P then p acts

on B via p : g → gp. We call this action the base group action of the twisted wreath

product.

Lemma 4.1.2. The action of G on its base group is quasiprimitive if and only if

φ−1(Inn(T )) is a core-free subgroup of P .

A proof can be found in [22], and a discussion in [3]. Such groups are said to be

of quasiprimitive type TW and they are the only quasiprimitive groups with a unique

minimal normal subgroup isomorphic to T k for k ≥ 2 which acts regularly. The action is

primitive if and only if φ does not extend to a larger subgroup of P and Inn(T ) ≤ φ(Q)

as shown by Baddeley in [2, Lemma 3.1], which is hard to check.

4.2 EXAMPLES OF TWISTED WREATH PRODUCTS

We consider a few examples of quasiprimitive twisted wreath product groups.
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Example 4.2.1. We consider the smallest possible example for a twisted wreath prod-

uct group. Let T = A5, P = A6 and Q = A5 ≤ P such that φ : Q → Aut(T ) is the

identity map where we identify T with inner automorphisms of T , which are conjuga-

tions. Since |K : L| = 6, we have B ∼= A6
5 so G = B twrφ P ∼= A6

5 twrφ A6. Since Im(φ)

is not a homomorphic image of P , the action is primitive.

Example 4.2.2 ( [20], Remark 2.1). Let T = A5, P = S4 and Q = V4 the Klein

4-subgroup of P . Let φ : Q → Aut(T ) such that φ maps (1 2)(3 4) and (1 3)(2 4)

to automorphisms of T induced by conjugating by (1 2) and (1 2)(3 4), respectively.

Then φ−1(Inn(T )) = 〈(1 2)(3 4)〉 is a core-free subgroup of P , so the action of G is

quasiprimitive of type TW.

Example 4.2.3 ( [20], Remark 2.1). Let T = An for n > k, P = Sk+1 and Q = Sk.

Let φ : Q→ Aut(T ) be an inclusion map from Sk to the stabilizer of n−k points in Sn.

Note that Aut(T ) = Sn ∼= Sk × Sn−k. For n ≥ 4, Z(An) = {1}, and so Inn(T ) = An.

Now φ−1(Inn(T )) = φ−1(An) is core-free in Sk+1, since the only non-trivial normal

subgroup in Sk+1 is Ak+1. So the action of G is quasiprimitive of type TW. Note that

Im(φ) = Sk does not contain Inn(T ) and Inn(T ) ∩ Im(φ) = An ∩ Sk = Ak which is

strictly contained in An. Thus we can extend φ to a larger subgroup of P , so the action

is not primitive.

4.3 SOME USEFUL RESULTS

We now prove a few helpful results about twisted wreath product groups. In the

preliminaries, we have shown that sets of functions can be written as a direct product,

and this theory extends to the base group of twisted wreath product groups.

Lemma 4.3.1. Let T be a finite nonabelian simple group, P a group with a proper

subgroup Q and let φ : Q → T a homomorphism. Let G = T twrφ P . Let T =

{z1, . . . , zn = 1} be a transversal for Q in P , where n = |P : Q|, and define Ti = {f ∈
T n : f(zj) = 1 for all j 6= i}. Then P acts on the set {T1, . . . , Tn}.

Proof. For f ∈ Ti, p ∈ P we have f(zj) = 1 if and only if j 6= i. Then fp(zj) = f(pzj)

and using cosets we can write pzj = zσp(j)q for some q ∈ Q and σp is the permutation

induced by p on T . It follows that

f(zσp(j)q) = f(zσp(j))
φ(q) = 1 if and only if σp(j) 6= i.

Thus T pi = Tσp(i) for i = 1, . . . , n and p ∈ P .

Lemma 4.3.2. Let G be as above. Then Q is the stabilizer of Tn and normalizes

T1 × · · · × Tn−1.
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Proof. Let q ∈ Q and f ∈ Tn so that f(zj) = 1 if and only if j 6= n. Then f q(zj) =

f(qzj) and using cosets again we can write qzj = zkq
′ for some q′ ∈ Q and k 6= n. The

latter holds because if k = n then zn = 1 and q′ ∈ Q so qzj = znq
′ = q′ ∈ Q and zj ∈ Q,

a contradiction. Then f(zkq
′) = f(zk)

φ(q′) = 1 as k 6= n and f ∈ Tn. Hence f q(zj) = 1

for all j 6= n so f q ∈ Tn and Q is the stabilizer of Tn. Let H = T1 × · · · × Tn−1. We

have H E G so Q normalizes H.

Lemma 4.3.3. Let G be as above. Then any f ∈ Bφ is determined by the set of images

of elements of T . Conversely, any f̃ : T → T can be extended to a function in Bφ.

Proof. By definition Bφ = {f ∈ Fun(P, T ) | f(pq) = f(p)φ(q) for all p ∈ P, q ∈ Q}. As

T is a transversal for Q in P , any p ∈ P can be written as zjq for some j ∈ {1, . . . , n}
and q ∈ Q. Thus f(p) = f(zjq) = f(zj)

φ(q) for any f ∈ Bφ and f is determined by the

images of elements in the transversal.

Now let f̃ ∈ Fun(T , T ) and let p ∈ P . As p = zjq for some j ∈ {1, . . . , n} and

q ∈ Q we can define f : P → T such that f(p) = f̃(zj)
φ(q). Then f extends f̃ and

f ∈ Bφ.

Lemma 4.3.4. Let G be as above. Then Ti ∼= T and 〈T1, . . . , Tn〉 ∼= T n.

Proof. Let t ∈ T . For i ∈ {1, . . . , n}, define fi,t : T → T such that

fi,t : zj →

1 if j 6= i

t if j = i
.

Then fi,t is well defined since 1, t ∈ T and fi,t is bijective because T is a transversal

and its elements are well defined. We want to show that {fi,t : t ∈ T} = {f ∈ Bφ :

f(zj) = 1 for all j 6= i} = Ti for each i. By Lemma 4.3.3, fi,t ∈ Bφ. Since fi,t ∈ Bφ

and fi,t(zj) = 1 for all j 6= i, we have {fi,t : t ∈ T} = Ti. Now we want to show that

Ti ∼= T for all i ∈ {1, . . . , n}. Let φ : T → Ti such that φ(t) = fi,t. If t1, t2 ∈ T and

zj ∈ T then

(φ(t1t2))(zj) = fi,t1t2(zj) = t1t2 as j = i,

whereas

(φ(t1)φ(t2))(zj) = fi,t1(zj)fi,t2(zj) = t1t2, as j = i.

Hence φ is a homomorphism from T to Ti and it is bijective since fi,t is defined for

each t ∈ T .

Now we want to show that 〈T1, . . . , Tn〉 ∼= T n. We know each Ti is isomorphic to T

so it remains to show that Ti and Tj commute for all i 6= j. Let i 6= j and let t1, t2 ∈ T .

We want to prove that fi,t1fj,t2 = fj,t2fi,t1 . We have three cases

1. Consider k 6= i 6= j. Then fi,t1fj,t2 : zk → fi,t1(zk)fj,t2(zk) = 1 · 1 = 1. On the

other hand, fj,t2fi,t1 : zk → fj,t2(zk)fi,t1(zk) = 1 · 1 = 1. So we have equality.
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2. Consider zi. Then fi,t1fj,t2 : zi → fi,t1(zi)fj,t2(zi) = t1 · 1 = t1. On the other

hand, fj,t2fi,t1 : zi → fj,t2(zi)fi,t1(zi) = 1 · t1 = t1. So we have equality.

3. Consider zj. Then fi,t1fj,t2 : zj → fi,t1(zj)fj,t2(zj) = t1 · 1 = t1. On the other

hand, fj,t2fi,t1 : zj → fj,t2(zj)fi,t1(zj) = 1 · t1 = t1. So we have equality.

Hence Ti and Tj commute for all j 6= i and 〈T1, . . . , Tn〉 = T1 × · · · × Tn ∼= T n.

Lemma 4.3.5. If t ∈ T, zi ∈ T and p ∈ P then fpi,t = fj,tφ(q), where zj ∈ T and q ∈ Q
and p−1zi = zjq

−1.

Proof. Let t ∈ T, zi ∈ T and p ∈ P . Since T is a transversal for Q in P , pzj = ziq

where zj ∈ T and q ∈ Q are unique. Then p−1zi = zjq
−1. It follows that

fpi,t(zj) = fi,t(pzj) = fi,t(ziq) = fi,t(zi)
φ(q) = tφ(q) = fj,tφ(q)(zj).

Lemma 4.3.6. Let p1, . . . , pn be a left transversal for Q in P such that pk : k → n.

Then p−1
1 , . . . , p−1

n is a right transversal for Q in P .

Proof. Without loss of generality, let pn = 1. Note that p−1
k : n → k. Suppose that

Qp−1
i = Qp−1

j and let g ∈ Qp−1
i . Then g = qp−1

i for some q ∈ Q. So ng = nqp
−1
i =

np
−1
i = i since Q stabilizes n. On the other hand, g = q′p−1

j for some q′ ∈ Q since

Qp−1
i = Qp−1

j . Then ng = nq
′p−1
j = np

−1
j = j. We have a unique mapping p−1

k : n → k

but here the image of n under g is i and j at the same time. Thus i = j and Qp−1
i is

different from Qp−1
j for all 1 ≤ i, j ≤ n. Therefore, p−1

1 , . . . , p−1
n is a right transversal

for Q in P .

We have now concluded the description of all quasiprimitive types, so we summarize

their most important features in Table 1. This also concludes the necessary theory

concerning groups and group actions for this thesis, and we carry on with the theory

related to graphs in the next chapter.
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5 CONSTRUCTING EDGE

TRANSITIVE GRAPHS

In this chapter, we first define graphs and automorphisms of graphs. The latter describe

a form of symmetry on graph by preserving edge-vertex relationships, since there is no

operation defined, unlike in group automorphisms. An important notion of symmetry

in graphs is edge transitivity, which gives a way to permute edges in a graph. Graphs

are typically studied by their automorphism groups, as a way to analyze relationships

between elements in a given set. We follow the convention below for (undirected)

graphs, directed graphs and digraphs:

• A graph (also called an undirected graph) is a pair Γ = (V Γ, EΓ), where V Γ is

a set whose elements are called vertices, and EΓ is a set of two-sets with two

distinct vertices, EΓ ⊆ {{x, y} ∈ V Γ2 and x 6= y}, whose elements are called

edges. Two vertices are said to be adjacent if they form an edge. A multigraph

is a generalization that allows multiple edges to have the same pair of endpoints.

• A directed graph is an ordered pair Γ = (V Γ, EΓ) where V Γ is a set of vertices

and EΓ ⊆ {(x, y) : (x, y) ∈ V Γ2 and x 6= y} ⊆ V Γ×V Γ a set of edges (also called

arcs) which are ordered pairs of vertices. If the edge relation is antisymmetric,

i.e. if (x, y) ∈ EΓ then (y, x) /∈ EΓ then we have a directed graph. Conversely,

if the relation is symmetric we will call it a digraph.

The degree or valency of a vertex is the number of edges that connect that vertex to

other vertices. A vertex is isolated if it has valency equal to 0. A graph is said to be

regular if all its vertices have the same valency. If the vertex set of a graph can be

partitioned into two sets X and Y in such a way that all the vertices in each part do

not share edges, then the graph is called bipartite and X and Y are the parts of the

bipartition. If a graph is bipartite with parts X and Y , such that all vertices in X have

the same degree i and all vertices in Y have the same degree j, then the graph is said

to be biregular or simply regular of valencies i and j.

A graph is connected if there exists a sequence of edges which joins any two vertices

in it. Let Γ be a connected graph with vertex set V Γ, edge set EΓ and adjacency

denoted by ∼. An s-arc in a Γ is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices in Γ such

that vi ∼ vi+1 and vj−1 6= vj+1 for each i = 1, . . . , s and j = 1, . . . , s − 1. A cycle of
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length s in a graph is a non-empty s-arc such that the only repeated vertices are the

first and last vertices.

An automorphism of the graph Γ is a bijection φ : V Γ → V Γ such that u, v ∈ V Γ

form an edge in Γ if and only if their images φ(u), φ(v) ∈ V Γ also form an edge in Γ.

The set of all automorphisms of a graph forms a group with respect to composition. It

is called the automorphism group of Γ and we denote it by Aut(Γ). A graph is vertex

transitive if the automorphism group is transitive on the vertex set. Similarly, a graph

is edge transitive if the automorphismm group is transitive on the edge set.

Let G ≤ Aut(Γ). We say that Γ is locally (G, s)-arc transitive if Γ contains an s-arc

and for any two s-arcs α and β starting at the same vertex v, there exists an element

g ∈ Gv mapping α to β. Let s ≥ 2. Then local 1-transitivity is equivalent to edge

transitivity. We present three methods of constructing G-edge transitive graphs.

1. We build a locally (G, s)-arc transitive graph from a given (G, s)-arc transitive

graph.

2. We construct arbitrary locally (G, s)-arc transitive, G-vertex intransitive graphs

as coset graphs.

3. We characterize locally (G, s)-arc transitive graphs with a vertex of valency at

most three.

5.1 DOUBLE COVERS

Let Γ be a directed or undirected vertex transitive graph with vertex set V Γ and arc

set AΓ. The standard double cover of Γ is the undirected graph Γ with a vertex set

V Γ × {1, 2}, and two vertices (x, 1) and (y, 2) are adjacent if and only if (x, y) ∈ AΓ.

The new graph is bipartite with bipartite halves V Γ× {i} for each i = 1, 2.

If G ≤ Aut(Γ), then G also acts as a group of automorphisms of Γ with the action

g : (x, i) → (xg, i). If G is transitive on V Γ, then G has two orbits on V Γ and the

action of G on each orbit is permutationally isomorphic to the action of G on V Γ.

Furthermore, Gv = G(v,i) for each i = 1, 2. Then if Γ is undirected, the action of Gv on

Γ(v) is the same as the action of G(v,i) on Γ((v, i)). Thus in this case, if Γ is G-locally

primitive, then Γ is also G-locally primitive.

Suppose again that Γ is undirected. Then (x, 1) ∼ (y, 2) if and only if (y, 1) ∼ (x, 2).

If Γ is also connected, then for each x, y ∈ V Γ there exists a path P in Γ between x

and y. This path lifts to a path in Γ between (x, 1) and (y, 1) if P has even length, and

to one between (x, 1) and (y, 2) if P has odd length. There is a path between (y, 1)

and (y, 2) if and only if y is in an odd cycle in Γ. Thus for an undirected connected
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graph Γ, Γ is connected if and only if Γ contains an odd cycle, that is, if and only if Γ

is not bipartite.

Lemma 5.1.1. If Γ is undirected and bipartite then Γ is disconnected, and the two

components of Γ are both isomorphic to Γ.

Proof. Let Γ be bipartite with parts ∆1 and ∆2. Since Γ does not contain odd cycles, we

have two components C1 and C2 in Γ with C1 containing edges {(x, 1) ∼ (y, 2) : (x, y) ∈
EΓ and x ∈ ∆1} and C2 containing edges {(x, 1) ∼ (y, 2) : (x, y) ∈ EΓ and x ∈ ∆2}.
We know that G ≤ Aut(Γ) acts as a group of automorphisms of Γ, with action g :

(x, i) → (xg, i). Note that G preserves both components of Γ. Let ρ : V Γ → V Γ

such that ρ : (x, i) → (x, 3 − i). Since Γ is a graph, ρ is well-defined. Let (x, 1) ∼
(y, 2) ∈ Γ. Then ρ takes (x, 1) to (x, 2) and (y, 2) to (y, 1), and (x, 2) ∼ (y, 1) so ρ is

an automorphism of Γ. Note that ρ maps C1 to C2 since a vertex (x, i) ∈ V C1 is taken

to (x, i + 1) ∈ C2. Since G preserves the components of Γ and ρ interchanges them,

we have 〈G, ρ〉 is transitive on V Γ. Now let φ : Γ → C1 such that φ : z → (z, 1) if

z ∈ ∆1 and φ : z → (z, 2) if z ∈ ∆2. For each z ∈ Γ there exists a unique (z, i) ∈ Ci for

i = 1, 2, so φ is well-defined. Let {a, b} be an edge in Γ such that a ∈ ∆1 and b ∈ ∆2.

Then as a set {a, b}φ = {aφ, bφ} = {(a, 1), (b, 2)} which is an edge in C1 since a ∈ ∆1.

Hence φ is an isomorphism from Γ to C1. Since Cρ1 = C2, we have Γ ∼= C1
∼= C2.

Example 5.1.2. Let Γ1 be the graph with V Γ1 = {a, b, c, d} where a ∼ b ∼ c ∼ a and

c ∼ d. Note that Γ1 contains an odd cycle so Γ1 is connected. Figure 1 shows Γ1 and

its standard double cover.

Let Γ2 be a path of length 3, with starting vertex a, middle vertices b, c, and

ending vertex d. Then Γ2 is bipartite, with ∆1 = {a, c} and ∆2 = {b, d}. Then the

corresponding standard double cover Γ2 contains two copies of Γ2, namely, C1 which

is the path (a, 1) ∼ (b, 2) ∼ (c, 1) ∼ (d, 2) and C2 which is the path (a, 2) ∼ (b, 1) ∼
(c, 2) ∼ (d, 1), as depicted in Figure 2.

Figure 1: Γ1 and its standard double cover Γ1.
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Figure 2: Γ2 and its standard double cover Γ2, with red and green components isomor-

phic to Γ2.

Lemma 5.1.3. Let Γ be an undirected graph. If Γ is (G, s)-arc transitive, then Γ is

locally (G, s)-arc transitive. In particular, there exist quasiprimitive locally (G, 2)-arc

transitive graphs of types HA, TW, AS and PA.

Proof. We have seen that G ≤ Aut(Γ) acts on Γ by g : (x, i) → (xg, i). Suppose Γ

is (G, s)-arc transitive. If ((v, i), (v1, i) . . . , (vs, i)) is an s-arc in Γ, then (v, v1, . . . , vs)

is an s-arc in Γ, so Γ is locally (G, s)-arc transitive. In [21], Prager shows that there

exist nonbipartite (G, 2)-arc transitive graphs where G is quasiprimitive of type HA,

TW, AS and PA. Therefore, by taking the standard double covers of those graphs, we

construct locally (G, 2)-arc transitive graphs with G of quasiprimitive type HA, TW,

AS and PA on both orbits. These graphs are also vertex-transitive since we defined

ρ ∈ Aut(Γ) by ρ : (x, i) → (x, 3 − i) in the proof of Lemma 5.1.1, which interchanges

the parts of the bipartition.

5.2 COSET GRAPHS

Lemma 5.2.1. Let Γ be a G-edge transitive graph without isolated vertices with G ≤
Aut(Γ). If Γ is not vertex transitive, then it is bipartite with two G-orbits as its parts.

Proof. Let {u, v} ∈ EΓ. Let ∆1 = {uϕ : ϕ ∈ G} and let ∆2 = {vϕ : ϕ ∈ G}. As Γ

is vertex intransitive, ∆1 ∩ ∆2 = ∅. Let x be an arbitrary vertex of Γ. Since Γ has
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no isolated vertices, it follows that there exists y ∈ V Γ such that x ∼ y. By edge

transitivity, there exists ϕ ∈ G such that {u, v}ϕ = {x, y}. So x ∈ ∆1 or x ∈ ∆2, that

is, V Γ is the disjoint union of ∆1 and ∆2.

Now we show that ∆i is an independent set for i = 1, 2. Let {u, v} ∈ EΓ. Suppose

that {x, y} ∈ EΓ for x, y ∈ ∆1. Then there exists ϕ ∈ G such that {u, v}ϕ = {x, y}.
Then either vϕ = x or vϕ = y, so that x ∈ ∆2 or y ∈ ∆2, which is impossible as

∆1 ∩∆2 = ∅.

Lemma 5.2.2. Let Γ be a connected locally (G, s)-arc transitive graph such that s ≥ 1

and all vertices have valency at least two. Then G acts transitively on the set of edges

of Γ. Furthermore, if G acts intransitively on V Γ, then Γ is a bipartite graph and the

two parts of the bipartition are G-orbits.

Proof. Local 1-arc transitivity is equivalent to edge transitivity and s ≥ 1, so the result

follows.

Lemma 5.2.3. Let Γ be a connected locally (G, s)-arc transitive graph such that s ≥ 1

and all vertices have valency at least two. Then Γ is locally (G, s− 1)-arc transitive.

Proof. Suppose Γ is locally (G, s)-arc transitive with all vertices of valency at least

two. Let α = (v0, v1, . . . , vs−1) and α′ = (v0, v
′
1, . . . , v

′
s−1) be two (s − 1)-arcs in Γ.

Since every vertex has valency at least two, we can extend the (s− 1)-arcs α and α′ to

s-arcs β and β′ such that β = (v0, v1, . . . , vs) and β′ = (v0, v
′
1, . . . , v

′
s). As Γ is locally

(G, s)-arc transitive, there exists g ∈ G such that βg = β′. Restricting our attention

to the (s − 1)-arcs, we have αg = α′ with g ∈ Gv0 . Thus Γ is locally (G, s − 1)-arc

transitive.

Lemma 5.2.4. Let Γ be a graph such that all vertices have valency at least two. Then

Γ is locally (G, 2)-arc transitive if and only if for every vertex v, Gv acts 2-transitively

on Γ(v).

Proof. Let Γ be a graph such that all vertices have valency at least two and let v ∈ V Γ.

As G acts locally 1-transitively on Γ we can map an arc (v, a) to an arc (v, b), so we

have Gv transitive on Γ(v). Let u ∈ Γ(v). For every w ∈ Γ(v) \ {u} there is a 2-arc

(u, v, w). Since Γ is locally (G, 2)-arc transitive, Guv is transitive on Γ(v) \ {u} so Gv

acts 2-transitively on Γ(v).

Now suppose Gv acts 2-transitively on Γ(v). Let (v, u1, w1) and (v, u2, w2) be two

2-arcs in Γ. Then (v, u1, w1)g = (v, u2, w
′
1) for some g ∈ Gv, w

′
1 ∈ Γ(u2) \ {v} by

transitivity of Gv on Γ(v). Then by 2-transitivity of Gu2 on Γ(u2) we can map w′1

to w2 by some h ∈ Gu2v. Thus (v, u1, w1)gh = (v, u2, w2) and Γ is locally (G, 2)-arc

transitive.
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Example 5.2.5. Let Γ be the cube graph with eight vertices, that is, vertices of Γ

are triples with entries 0, 1 and two vertices are adjacent if and only if they differ in

exactly one coordinate. Let G = Aut(Γ). We would like to show that the cube is locally

(G, 2)-arc transitive but not locally (G, 3)-arc transitive. Then φu : x → u + x is an

automorphism of Γ since vertices are permuted by adding u and two vertices x, y differ

in exactly one coordinate if and only if u+x and u+y differ in exactly one coordinate.

Note that for any two vertices x, y, the map φx−y takes y to x so Γ is vertex transitive.

Fix vertex (0, 0, 0) and consider the arc α = ((0, 0, 0), (0, 0, 1)). We want to show that

G(0,0,0) is transitive on Γ((0, 0, 0)), i.e. we can map α to the other two arcs starting at

(0, 0, 0), namely to β = ((0, 0, 0), (0, 1, 0)) and to γ = ((0, 0, 0), (1, 0, 0)). For g ∈ S3,

define ḡ : V Q3 → V Q3 such that ḡ : (x1, x2, x3) → (x1g , x2g , x3g). Clearly ḡ ∈ G. For

g1 = (23), we have ḡ1 ∈ G(0,0,0) and αg = β and for g2 = (12), we have ḡ2 ∈ G(0,0,0)

and αg = γ. Then Γ is locally (G, 1)-arc transitive. It is obvious that 〈g1, g2〉 acts

2-transitively on G(0,0,0) so by Lemma 5.2.4, Γ is locally (G, 2)-arc transitive. To show

that the cube is not locally (G, 3)-arc transitive, we pick two 3-arcs shown in Figure 3

as follows:

α = ((0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)),

β = ((0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)).

Then clearly no automorphism of G(0,0,0) can map α to β since the ending vertex of

α is not adjacent to the starting vertex, whereas the ending vertex of β is adjacent to

the starting vertex, and we know that automorphisms preserve neighbors.

Figure 3: The cube graph Γ and arcs α and β.

Let Γ be a G-edge transitive graph that is not vertex transitive. As G transitive on

∆1, for v ∈ ∆1, we may write ∆1 as the set [G : Gv] of right cosets of Gv in G so that
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G acts transitively on ∆1 by right multiplication:

∆1 = {Gvx : x ∈ G},

z : Gvx→ Gvxz,∀z ∈ G.

Similarly for w ∈ ∆2,

∆2 = {Gwx : x ∈ G},

z : Gwx→ Gwxz,∀z ∈ G.

So, vertices of Γ may be identified with right cosets of Gv and Gw in G.

Let v ∼ w. Then Gv ∩ Gw = G{v,w}. We have a faithful action, so stabilizers are

core-free. Gv is transitive on Γ(v) so neighbors of v are images of w under Gv, since Γ

is arc transitive. So neighbors of v can be seen as the set {Gwz : z ∈ Gv}. Similarly,

neighbors of w are images of v under Gv, i.e. {Gvz : z ∈ Gw}.
Then the adjacency relation of Γ is given by

Gvx ∼ Gwy ⇐⇒ xy−1 ∈ GvGw or yx−1 ∈ GwGv.

Lemma 5.2.6. Let Γ be a bipartite G-edge transitive graph, with parts ∆1 and ∆2,

where G ≤ Aut(Γ) and G is intransitive on V Γ. Let v ∈ ∆1 and w ∈ ∆2 be adjacent.

Then we may identify ∆1 = [G : Gv] and ∆2 = [G : Gw] such that:

1. Gvx ∼ Gwy ⇐⇒ xy−1 ∈ GvGw or yx−1 ∈ GwGv.

2. Γ(v) = {Gwz : z ∈ Gv} = GwGv and Γ(w) = {Gvz : z ∈ Gw} = GvGw.

3. The valencies are |Γ(v)| = |Gv : Gv ∩Gw| and |Γ(w)| = |Gw : Gv ∩Gw|.

We can thus construct edge transitive graphs from abstract groups.

Definition 5.2.7. Let G be a group and let L,R < G be such that L ∩R is core-free

in G. Let ∆1 = {Lx : x ∈ G} and let ∆2 = {Ry : y ∈ G}. Define the bipartite graph

Γ = Cos(G,L,R) such that V Γ = ∆1 ∪∆2 and Lx ∼ Ry ⇐⇒ xy−1 ∈ LR or yx−1 ∈
RL. We refer to (L,R, L ∩R) as the associated amalgam.

Lemma 5.2.8. The condition Lx ∼ Ry ⇐⇒ xy−1 ∈ LR or yx−1 ∈ RL in the coset

graph Cos(G,L,R) is equivalent to the condition Lx ∼ Ry ⇐⇒ Lx ∩Ry 6= ∅.

Proof. Let Γ = Cos(G,L,R) and let Γ′ be the graph with V Γ′ = V Γ and Lx ∼ Ry ∈
Γ′ ⇐⇒ Lx ∩ Ry 6= ∅. Let Lx ∼ Ry ∈ Γ, that is, xy−1 ∈ LR or yx−1 ∈ RL. Without

loss of generality, suppose xy−1 ∈ LR. Then xy−1 = ab or a−1x = by for some a ∈ L
and b ∈ R. We can write x = aby so that Lx = Laby and as a ∈ L, Laby = Lby

so by ∈ Lx. We can also write y = (ab)−1x = b−1a−1x so that Ry = Rb−1a−1x

and as b ∈ R, Rb−1a−1x = Ra−1x so a−1x ∈ Ry. Combining the two statements we
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have by ∈ Lx and a−1x ∈ Ry and as by = a−1x we conclude that Lx ∩ Ry 6= ∅, i.e.

Lx ∼ Ry ∈ Γ′. Thus any edge in Γ is also an edge in Γ′.

Now let Lx ∼ Ry ∈ Γ′ so that Lx ∩ Ry 6= ∅. Then there exists z ∈ Lx ∩ Ry
such that Lx = Lz and Ry = Rz. Then Lx = Lz ∼ Rz = Ry since zz−1 = 1 ∈ LR
so Lx ∼ Ry ∈ Γ. We conclude that Γ ∼= Γ′ and the conditions in the lemma are

equivalent.

Let v ∈ V Γ and let Γ(v) denote the neighborhood of v in Γ. Note that G acts on

Γ by right multiplication

ĝ : Γ→ Γ with Lx→ Lxg,Ry → Ryg, where g ∈ G.

Since Lx∩Ry 6= ∅ if and only if Lxg∩Ryg 6= ∅, we have that g acts as an automorphism

of Γ so we have a homomorphism φ from G to Aut(Γ), defined by φ(g) = ĝ.

Let g ∈ G. Then for g ∈ G we have Lxg = Lx if and only if Lxgx−1 = L so g ∈ Lx.
A similar argument works for R. This implies that every stabilizer of a vertex of Γ

is a G-conjugate of L or R. Also, G has two orbits on V Γ, namely ∆1 and ∆2, with

representatives L and R, respectively. Next, note that for an edge {Lx,Ry} in Γ there

exists z ∈ Lx ∩ Ry such that Lx = Lz and Ry = Rz. Then the stabilizer of an edge

{Lz,Rz} is Lz ∩ Rz = (L ∩ R)z, a G-conjugate of L ∩ R. The kernel of the action of

G on Γ is the largest normal subgroup of G in L ∩ R, denoted (L ∩ R)G. If K is the

kernel of this action then every element of K fixes all vertices and edges of Γ and since

any normal subgroup of G contained in L ∩R fixes every vertex of Γ, the kernel must

be (L ∩R)G. Since L ∩R is core-free the kernel of φ is trivial so G ≤ Aut(Γ).

Example 5.2.9. ConsiderG = S4 and let L = 〈(1 3), (1 2 3)〉 ≤ S4 andR = 〈(3 4), (2 3 4)〉
as subgroups of S4. We would like to construct Cos(G,L,R). Note that L ∼= R ∼= S3

and L is the stabilizer of 4 in S4 and R is the stabilizer of 1 in S4. Then L ∩ R is the

stabilizer of 1 and 4 in S4, so L ∩R = 〈(2 3)〉.
We need to check that L ∩ R is core-free. The normal subgroups of S4 are the

trivial subgroup, the Klein four-group V4 = {(), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, the

alternating group A4 = 〈(1 2 3), (1 2)(3 4)〉 and S4. Since |L ∩ R| = 2, the largest

normal subgroup it can contain is the trivial group, so L ∩ R is core-free. We now

calculate right cosets for L as follows

L() = {(), (1 3), (1 2), (2 3), (1 3 2), (1 2 3)},

L(1 4) = {(1 4), (1 3 4), (1 2 4), (1 4)(2 3), (1 3 2 4), (1 2 3 4)},

L(1 4 2) = {(1 4 2), (1 3 4 2), (2 4), (1 4 2 3), (1 3)(2 4), (2 3 4)},

L(1 4 3) = {(1 4 3), (3 4), (1 2 4 3), (1 4 3 2), (2 4 3), (1 2)(3 4)}.



Kaja E. Locally 2-arc transitive graphs and quasiprimitive groups: the twisted wreath product case.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 36

Similarly, for R we have

R() = {(), (2 4), (2 3), (3 4), (2 4 3), (2 3 4)},

R(1 4) = {(1 4), (1 4 2), (1 4)(2 3), (1 4 3), (1 4 3 2), (1 4 2 3)},

R(1 2 4) = {(1 2 4), (1 2), (1 2 3 4), (1 2 4 3), (1 2)(3 4), (1 2 3)},

R(1 3 4) = {(1 3 4), (1 3 4 2), (1 3 2 4), (1 3), (1 3 2), (1 3)(2 4)}.

Thus ∆1 = {L(), L(1 4), L(1 4 2), L(1 4 3)} and ∆2 = {R(), R(1 4), R(1 2 4), L(1 3 4)}.
By Lemma 5.2.8, we have an edge Lx ∼ Ry if and only if Lx ∩ Ry 6= ∅, and if we

compare elements in the cosets above, we have that

L() ∩R() = {(), (2 3)}, L() ∩R(1 4) = ∅,

L() ∩R(1 2 4) = {(1 2), (1 2 3)}, L() ∩R(1 3 4) = {(1 3 2), (1 3)},

L(1 4) ∩R() = ∅, L(1 4) ∩R(1 4) = {(1 4), (1 4)(2 3)},

L(1 4) ∩R(1 2 4) = {(1 2 3 4), (1 2 4)}, L(1 4) ∩R(1 3 4) = {(1 3 4), (1 3 2 4)},

L(1 4 2) ∩R() = {(2 3 4), (2 4)}, L(1 4 2) ∩R(1 4) = {(1 4 2)(1 4 2 3)},

L(1 4 2) ∩R(1 2 4) = ∅, L(1 4 2) ∩R(1 3 4) = {(1 3 4 2), (1 3)(2 4)},

L(1 4 3) ∩R() = {(3 4), (2 4 3)}, L(1 4 3) ∩R(1 4) = {(1 4 3 2)(1 4 3)},

L(1 4 3) ∩R(1 2 4) = {(1 2)(3 4), (1 2 4 3)}, L(1 4 3) ∩R(1 3 4) = ∅.

The corresponding coset graph is shown in Figure 4.

Figure 4: The coset graph Cos(S4, 〈(1 3), (1 2 3)〉, 〈(3 4), (2 3 4)〉)

Lemma 5.2.10. For a group G and subgroups L,R < G such that L ∩ R is core-free

in G, the graph Γ = Cos(G,L,R) satisfies the following properties:
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1. Γ is connected if and only if 〈L,R〉 = G;

2. G ≤ Aut(Γ) and Γ is G-edge transitive and G-vertex intransitive;

3. G acts faithfully on both ∆1 and ∆2 if and only if both L and R are core-free.

Conversely, if Γ is G-edge transitive but not G-vertex transitive graph, and v and w

are adjacent vertices, then Γ ∼= Cos(G,Gv, Gw).

Proof. Let G be a group with subgroups L and R such that L ∩ R is core-free in G.

Let Γ = Cos(G,L,R).

1. Let G = 〈L,R〉. Then for any w ∈ G, we can write w = x1y1 · · ·xkyk for some

xi ∈ L and some yi ∈ R such that xi 6= 1 if i 6= 1, and yi 6= 1 if i 6= k. We

can then use the definition of cosets graphs to find a path in Γ from L to Lw by

multiplying with the term factor:

L,Ryk, Lxkyk, . . . , R(y1 · · ·xkyk), L(x1y1 · · ·xkyk) = Lw.

Similarly we can find a path in Γ from L to Rw:

L,R, Lyk, Rxkyk, . . . , L(y1 · · ·xkyk), R(x1y1 · · ·xkyk) = Rw.

Therefore we can find a path for any two vertices in Γ so Γ is connected.

Now suppose Γ is connected, and let g ∈ G. There exists a path from Lg to L, say,

Lg,Rgn, . . . , Rg3, Lg2, Rg1, L. Since Rg1 ∼ L we have g1 ∈ L. Then Lg2 ∼ Rg1

so g2 ∈ Rg1 , which is contained in 〈L,R〉 since g1 ∈ L and 〈L,R〉 is closed under

multiplication. We continue along the path with a similar argument and get to

gn ∈ Lgn−1 where gn−1 ∈ Rgn−2 which is contained in 〈L,R〉, so gn ∈ 〈L,R〉.
Finally, g ∈ Rgn and so g ∈ 〈L,R〉. We started with an arbitrary g ∈ G so

equality follows.

2. Let ∆1 = {Lx : x ∈ G} and ∆2 = {Ry : y ∈ G}. For z ∈ G, let ẑ be the

permutation on V = ∆1 ∪ ∆2 induced by z which is right multiplication by z.

Note that G is intransitive on V since no element of G can map L ∈ ∆1 to

R ∈ ∆2. Let v and w be vertices corresponding to L and R respectively. Then

by definition, the set of neighbors of v is Γ(v) = {Rx : x ∈ L}. For z ∈ L, the

induced permutation ẑ fixes L since Lẑ = Lz = L and ẑ fixes neighbors of v since

Rẑ = Rz ∈ Γ(v). As z runs through L, Rz runs through Γ(v) so L is transitive

on Γ(v). Similarly, R is transitive on Γ(w). Thus Γ is G-edge transitive.

3. G acts faithfully on ∆1 and ∆2 if only the identity fixes all vertices of Γ. Suppose

g is in the kernel of the action of G on ∆1. Then g stabilizes Lh for all h ∈ G.
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The stabilizer of Lh in G is Lh so g ∈ Lh for all h ∈ G. So g ∈
⋂
Lh

h∈G
= coreG(L).

Similarly for R, so both are core-free if and only if G acts faithfully on ∆1 and

∆2.

For the converse, let Γ be any G-edge transitive graph that is not G-vertex transitive

and let v ∼ w. Then Γ ∼= Cos(G,Gv, Gw) follows from Lemma 5.2.6 and the definition

of coset graphs.

Lemma 5.2.11. For a group G and subgroups L,R < G such that L ∩ R is core-free

in G, the graph Γ = Cos(G,L,R) satisfies the following properties:

1. Γ is G-locally primitive if and only if L∩R is a maximal subgroup of both L and

R;

2. Γ is locally (G, 2)-arc transitive if and only if L acts 2-transitively on [L : L∩R]

and R acts 2-transitively on [R : L ∩R];

3. The kernel of the action of L on Γ(L) is coreL(L∩R) and the kernel of the action

of R on Γ(R) is coreR(L ∩R).

Proof. Let G be a group with subgroups L and R such that L ∩ R is core-free in G.

Let Γ = Cos(G,L,R).

1. As Gvw = Gv ∩ Gw = L ∩ R is core-free and hence maximal in Gv and Gw, we

have that Gv and Gw act primitively on Γ(v) and Γ(w) respectively, so that Γ is

G-locally primitive.

2. Note that LR =
⋃
Lx for x ∈ R\R∩L so if x, y ∈ R then Lx = Ly if and only if

xy−1 ∈ L so xy−1 ∈ L∩R and (L∩R)x = (L∩R)y. Then Γ(L) = {Ry : y ∈ L}
is in bijection with [L : L ∩ R]. By edge transitivity, the set of neighbors of Lx

in Γ is the set {Rzx : z ∈ L} and is also in bijection with [L : L ∩ R]. Then the

result follows from Lemma 5.2.4.

3. Let Γ(L) = {R,Rg1, . . . , Rgn} where g1, . . . , gn ∈ L. The kernel of the action of

L on Γ(L) is the intersection of L with the stabilizer of each of its neighbors. We

know that the stabilizer of a vertex Rgi is Rg
i so we have that the kernel equals

(L ∩ R) ∩ (L ∩ Rg1) · · · ∩ (L ∩ Rgn). Since L ∩ Rgi = (L ∩ R)gi we have that the

kernel of L acting on its neighbors is the intersection of (L∩R)gi as gi runs over

L, which equals coreL(L ∩R).
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5.3 LOCALLY ARC TRANSITIVE GRAPHS WITH A VER-

TEX OF VALENCY AT MOST THREE

If Γ is a locally (G, s)-arc transitive graph with valency at least two, Lemma 5.2.3 shows

that Γ is (G, s − 1)-arc transitive and Lemma 5.2.2 shows that if G is intransitive on

V Γ then we have a bipartite graph with two G-orbits. If Γ has a vertex of valency one,

we have the following scenario.

Lemma 5.3.1. Let Γ be a locally (G, s)-arc transitive graph with s ≥ 1 which contains

a vertex of valency one. Then Γ is a tree.

Proof. Let v be a vertex of valency one in Γ. Suppose Γ contains a cycle. As Γ is

connected there exists a shortest path {v = w0, w1, . . . , wt} such that wt is contained

in a cycle C. Since v has valency one then t ≥ 1 and none of w0, . . . , wt−1 lies on a

cycle. There exists an s-arc that starts with (wt−1, wt) and loops around C finishing at

a vertex u ∈ C. Let β be the reverse of this arc, going from u to wt−1 and let α be the

s-arc that agrees with β in its first s vertices but ends in a vertex of C adjacent to wt.

As wt−1 ∈ β and is not contained in a cycle while all vertices in α belong to C, there

is no element of Gu mapping α to β, contradicting the fact that Γ is locally (G, s)-arc

transitive. Hence Γ is a tree.

5.3.1 LOCALLY (G, 2s − 1)-ARC TRANSITIVE GRAPHS

Let Γ be a locally (G, s)-arc transitive graph with valency k ≥ 2. We form a new graph

Γ∗ by placing a vertex at the midpoint of each edge of Γ. As G acts on Γ, G ≤ Aut(Γ∗)

and has two orbits on the vertices: the set ∆1 of vertices of Γ which have valency k

and the set ∆2 of midpoints of edges of Γ which have valency 2. If Γ is a cycle then

Γ∗ is also a cycle. We will show that Γ∗ is locally (G, 2s − 1)-arc transitive and that

every locally (G, 2s− 1)-arc transitive of valency {2, k} for k ≥ 3 arises this way.

We define the distance between two vertices in a graph to be the number of edges

in a shortest path connecting them. For a graph Γ and a vertex v of Γ, we denote by

Γi(v) the set of vertices of Γ at distance equal to i from v. If Γ is a connected graph

then the distance two graph Γ[2] of Γ is the graph with vertex set V Γ such that two

vertices are adjacent if and only if they are at distance two in Γ.

Lemma 5.3.2. If Γ is connected and bipartite then Γ[2] has two connected components.

Proof. Suppose Γ is connected and bipartite with V Γ = ∆1 ∪ ∆2. Let v ∈ ∆1 and

w ∈ ∆2. Then either v is adjacent to w or v and w are at distance at least three

since ∆1 is an independent set and Γ is bipartite. Hence v and w belong to different

components in Γ[2] because they are not at distance two.
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As Γ is connected, for any two vertices vi, vj ∈ ∆1, i < j, there exists a path

vi, wi+1, vi+2, . . . , wj−1, vj and note that wk’s are necessary since Γ is bipartite. Then

each vk is at distance two from vk+2 and so they are adjacent in Γ[2], and we have a

path from vi to vj in Γ[2]. A similar argument works for vertices of ∆2. Therefore ∆1

and ∆2 form two connected components in Γ[2].

Example 5.3.3. Let Γ = Kn,m the complete bipartite graph of n+m vertices. Then

Γ[2] = Kn ∪Km since vertices in the same part of the bipartition are at distance two.

If we form the distance two graph of Γ∗ as described above, the vertices of valency two

form one connected component and the other connected component with vertex set ∆1

is isomorphic to Γ.

Theorem 5.3.4. Let s ≥ 2.

1. Let Γ be a connected locally (G, 2s−1)-arc transitive of valency {2, k} with k ≥ 3

such that Γ 6= K2,k. Let ∆ be a connected component of Γ[2] containing a vertex of

valency k. Then V∆ is the set of all vertices of Γ of valency k and ∆ is (G, s)-arc

transitive of valency k.

2. Let Σ be a connected (G, s)-arc transitive of valency k. Then Σ∗ is a connected

locally (G, 2s − 1)-arc transitive graph. Moreover, Σ∗ 6= K2,k and if Γ = Σ∗, the

graph ∆ from part 1 is equal to Σ.

Proof. 1. Let Γ be a connected locally (G, 2s−1)-arc transitive with V Γ = ∆1∪∆2,

such that ∆1 contains vertices of valency k ≥ 3 and ∆2 contains vertices of valency

two. Let ∆ be a connected component of Γ[2] containing a vertex of valency k.

As Γ is connected, V∆ = ∆1. Let v ∈ ∆1 and let w ∈ Γ(v). As w has valency

two there exists a unique element v(w) in Γ(w) \ {v} so the map w → v(w) is

a 1-1 correspondence between Γ(v) and vertices at distance two from v, denoted

Γ2(v). Then ∆ has valency k. Now G ≤ Aut(∆) and acts transitively on vertices.

Let (v0, v1, . . . , vs) be an s-arc in ∆. Then for each i = 0, . . . , s − 1 there exists

a unique wi such that Γ(wi) = {vi, vi+1}. Then (v0, w0, v1, . . . , vs−1, ws−1) is a

(2s − 1)-arc in Γ. As Γ is locally (G, 2s − 1)-arc transitive, Gv0 is transitive on

the set of all s-arcs emanating from v0 in ∆. Since ∆ is G-vertex transitive, we

have that ∆ is (G, s)-arc transitive of valency k.

2. Let Σ be a connected (G, s)-arc transitive of valency k and form the graph Σ∗ by

placing a new vertex at the midpoint of every edge. In its action on Σ∗, G has

orbits ∆1 of vertices of Σ and ∆2 of vertices that are midpoints. Let v0 ∈ ∆1 and

consider the (2s− 1)-arc (v0, p0, v1, p1, . . . , vs−1, ps−1) in Σ∗, where each pi is the

midpoint of the edge {vi, vi+1}. As Σ is (G, s)-arc transitive, Gv0 acts transitively
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on the set of s-arc in Σ starting at v0. Then Gv0 acts transitively on the set of

(2s − 1)-arc in Σ∗ starting at v0. It remains to show that Gp0 acts transitively

on the set of (2s − 1)-arcs in Σ∗ starting at p0. Let α = (p0, v1, p1, . . . , ps−1, vs)

and α′ = (p0, v
′
1, p
′
1, . . . , p

′
s−1, v

′
s) be two (2s − 1)-arcs in Σ∗. There exist s-arcs

β = (v0, v1, . . . , vs) and β′ = (v′0, v
′
1, . . . , v

′
s) in Σ such that pi is the midpoint of

{vi, vi+1} and p′i is the midpoint of {v′i, v′i+1} for each i ≥ 0. By s-arc transitivity,

there exists g ∈ G such that βg = β′ and so αg = α′. As p0 is the midpoint of both

{v0, v1} and {v′0, v′1} we have {v0, v1} = {v′0, v′1}, and g ∈ G{v0,v1} = Gp0 . Thus

each stabilizer of a vertex x in Σ∗ acts transitively on (2s − 1)-arcs emanating

from x so Σ∗ is locally (G, 2s− 1)-arc transitive. If we let Γ = Σ∗, then ∆ from

part 1 which contains all vertices of valency k is in fact equal to Σ, since the

valency two vertices will form another component.

If s = 1 or Γ = K2,k, the theorem does not hold. A counterexample is a “doubled

3-cycle” given in [14] and a correction to this theorem was also provided. Let us now

illustrate the theorem with an example.

Example 5.3.5. Let Γ be the cube graph as described in Example 5.2.5. First consider

Γ as a bipartite graph with labelling v0 to v7, as shown in Figure 5.

Figure 5: Cube graph drawn in two ways

By Lemma 5.3.2, the distance two graph Γ[2] has two connected components which are

formed by vertices in different parts of the bipartition. We can see this in Figure 6.
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Figure 6: The distance two graph Γ[2] of Γ

Now consider the first drawing of Γ, and let Γ∗ be the graph obtained from Γ by

placing a vertex at the midpoint of every edge. We label the new vertices by pij if pij

is the midpoint of the edge {vi, vj}. We know that Γ is locally (G, 2)-arc transitive so

by Theorem 5.3.4 part 2, Γ∗ is locally (G, 3)-arc transitive and the graph ∆ formed by

vertices of valency 3 in the distance two graph of Γ∗ is equal to Γ. We can see Γ∗ and

the distance two graph of Γ∗, labelled Γ∗[2] in Figure 7. The blue component ∆ of Γ∗[2]

is isomorphic to Γ and the red component is formed by the vertices which lie in the

midpoints of edges of Γ.

Figure 7: Graphs Γ∗ and Γ∗[2]

This also illustrates part 1 of the theorem since taking Γ∗ as a connected locally (G, 3)-

arc transitive graph of valency {2, 3} we get ∆ from Γ∗[2] as a locally (G, 2)-arc transitive

graph of valency 3.
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Corollary 5.3.6. The connected locally (G, 2s − 1)-arc transitive graphs of valency

{2, k}, where k ≥ 3 and which are not complete bipartite, are in 1-1 correspondence

with the connected locally (G, s)-arc transitive graphs of valency k.

Theorem 5.3.7. Let Γ be a connected locally (G, 2s)-arc transitive of valency {2, k},
where k ≥ 3 and s ≥ 1. Then Γ is locally (G, 2s+ 1)-arc transitive.

Proof. Let ∆1 and ∆2 denote the sets of vertices of valency k and 2, respectively.

Let u0 ∈ ∆2 and let (u0, v0, u1, v1, . . . , us, vs+1) and (u0, v
′
0, u
′
1, v
′
1, . . . , u

′
s, v
′
s+1) be two

(2s+1)-arcs starting at u0, where vi, v
′
i ∈ ∆1 and ui, u

′
i ∈ ∆2. As Γ is (2s)-arc transitive,

we can map (u0, v0, . . . , vs, us) to (u0, v
′
0, . . . , v

′
s, u
′
s). Since us and u′s are vertices of ∆2

they have valency two and so they have unique neighbors outside the (2s)-arcs and

hence vs+1 must be mapped to v′s+1.

All vertices in Γ have valency at least two so Γ is locally (G, 2s− 1)-arc transitive

by Lemma 5.2.3. Let ∆ be the connected component of the distance two graph of

Γ with vertex set ∆1. Then by Theorem 5.3.4(1), ∆ is locally (G, s)-arc transitive.

Let (u0, v1, u1, v2, . . . , vs, us) be a (2s)-arc in Γ where each vi ∈ ∆1 and ui ∈ ∆2. As

Γ is locally (G, 2s)-arc transitive, Gu0v1u1...vs acts transitively on Γ(vs) \ {us}. Each

vertex of Γ(vs) \ {us} is adjacent to a unique vertex of Γ2(vs) \ {vs−1}, which are

vertices at distance two from vs. Then Gu0v1u1...vs acts transitively on Γ2(vs) \ {vs−1}.
Since u0 has valency two, there exists a unique v0 ∈ Γ(u0) \ {v1}. Then Gu0v1u1...vs ≤
Gv0 . Furthermore, (v0, v1, . . . , vs) is an s-arc in ∆ and Gv0v1...vs acts transitively on

∆(vs) \ {vs−1} = Γ2(vs) \ {vs−1}. Hence Gv0 acts transitively on the set of (s + 1)-

arcs in ∆ starting at v0, so ∆ is (G, s + 1)-arc transitive. As Γ = ∆∗ it follows from

Theorem 5.3.4(2) that Γ is locally (G, 2s+ 1)-arc transitive.

Lemma 5.3.8. Let Γ be a connected locally (G, s)-arc transitive of valency {2, k},
where k ≥ 3. Then s ≤ 13, and this bound can be attained.

Proof. By Theorem 5.3.7 we may assume that s is odd. Then by Corollary 5.3.6, there

exists a
(
G, s+1

2

)
-arc transitive graph of valency k. By the result of Weiss [31], s+1

2
≤ 7.

Moreover, examples of (G, 7)-arc transitive graphs of valency at least three are given

in [18] and so by Corollary 5.3.6, locally (G, 13)-arc transitive graphs exist.

5.4 NORMAL QUOTIENTS

Definition 5.4.1. A graph Γ is G-locally primitive if for each vertex v, the stabilizer

Gv acts primitively on Γ(v), where Γ(v) is the set of vertices adjacent to v.

Let Γ be a graph and let G be its automorphism group. Suppose G has a normal

subgroup N which acts intransitively on V Γ. We define the quotient graph ΓN to have



Kaja E. Locally 2-arc transitive graphs and quasiprimitive groups: the twisted wreath product case.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 44

vertex set the N -orbits on V Γ, and two N -orbits B1 and B2 are adjacent in ΓN if and

only if there exist v ∈ B1 and w ∈ B2 such that v and w are adjacent in Γ. The original

graph Γ is said to be a cover of ΓN if |Γ(v)∩B2| = 1 for each edge {B1, B2} in ΓN and

v ∈ B1. If Γ is a nonbipartite (G, s)-arc transitive graph, s ≥ 2, then Γ is a cover of

ΓN and ΓN is (G/N, s)-arc transitive as shown by Praeger [21, Theorem 4.1].

Lemma 5.4.2. Let Γ be a connected G-locally primitive bipartite graph with G-orbits

∆1 and ∆2 on V Γ and each |∆i| > 1. Suppose there exists N E G such that N is

intransitive on ∆1 and ∆2. Then

1. Γ is a cover of ΓN .

2. N acts semiregularly on V Γ and GV ΓN ∼= G/N .

3. ΓN is G/N-locally primitive. Furthermore, if Γ is locally (G, s)-arc transitive,

then ΓN is locally (G/N, s)-arc transitive.

Proof. 1. Let v ∈ ∆1 and let B = vN . Choose u ∈ Γ(v) ⊆ ∆2 and set C = uN .

Then C is a block of imprimitivity for the action of G on ∆2 and hence C ∩Γ(v)

is a block of imprimitivity for the action of Gv on Γ(v). As Nv E Gv and Gv acts

primitively on Γ(v), it follows that either Γ(v) ⊆ C or |Γ(v)∩C| = 1. If Γ(v) ⊆ C

then for each vertex w ∈ ∆1, the set Γ(w) is contained in some N -orbit. thus

if B′ is an N -orbit on ∆1 containing a vertex adjacent to a vertex in C, then

Γ(B′) ⊆ C. As Γ is connected V Γ = C ∪ Γ(C), contradicting the intransitivity

of N on ∆2. Thus |Γ(v) ∩ C| = 1.

2. Let K be the kernel of the action of G on the set of N -orbits on V Γ and let

v ∈ V Γ. Now Kv fixes each N -orbit setwise and since distinct vertices of Γ(v) lie

in distinct N -orbits, we have that Kv acts trivially on Γ(v). Since Γ is connected

it follows that Kv fixes all the vertices of Γ and hence Kv = 1. Since this is

true for all v, K acts semiregularly on V Γ and hence so does N . Furthermore,

as N ≤ K and acts transitively on the orbits of K, we see that K = N . Then

GV ΓN ∼= G/N so G/N ≤ Aut(ΓN).

3. For a vertex v in the N -orbit B, the group NGv fixes B, contains Gv and is

transitive on B. Hence GB = NGv. Then as N is the kernel of the action

of G on V ΓN and as each block in ΓN(B) contains exactly one vertex of Γ(v),

we have that G
ΓN (B)
B is permutationally isomorphic to G

Γ(v)
v and so is primitive.

Thus ΓN is (G/N)-locally primitive. Let (B,B1, . . . , Bs) and (B,C1, . . . , Cs) be

s-arcs in ΓN . Choose v ∈ B. Then there exist unique vi ∈ Bi and ui ∈ Ci such

that (v, v1, . . . , vs) and (v, u1, . . . , us) are s-arcs in Γ. If Γ is locally (G, s)-arc

transitive, then there exists g ∈ Gv taking (v, v1, . . . , vs) to (v, u1, . . . , us). As
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the orbits of N form a system of imprimitivity for G, it follows that g ∈ GB and

(B,B1, . . . , Bs)
g = (B,C1, . . . , Cs). Thus ΓN is locally (G/N, s)-arc transitive.

Lemma 5.4.3. Let Γ be a connected G-locally primitive bipartite graph with G-orbits

∆1 and ∆2 on V Γ of sizes n and n′, respectively. Then either Γ ∼= Kn,n′ or G is faithful

on both ∆1 and ∆2.

Proof. If either n or n′ is 1, then Γ = Kn,n′ , so assume that n, n′ ≥ 2. Let Ki be the

kernel of G on ∆i, i = 1, 2. Since G acts faithfully on V Γ, we know K1 ∩ K2 = 1.

Suppose that K1 6= 1 and note that K1 acts faithfully on ∆2. Let B be a nontrivial

orbit of K1 on ∆2 and u a vertex in B. Let v ∈ ∆1 be adjacent to u. Since K1

fixes v, v is adjacent to every vertex in B. As K1 ≤ Gv, the orbits of K1 on Γ(v) are

blocks of imprimitivity for the action of Gv and since the action of G is locally primitive,

Γ(v) = B. This holds for all v adjacent to a vertex in B so as Γ is connected, Γ ∼= Kn,n′ .

The same holds if K2 6= 1.

Lemma 5.4.4. Let Γ be a connected G-edge transitive but not G-vertex transitive graph

such that |Γ(u)| = 1 for some vertex u. Then Γ is a star K1,k, and if G acts faithfully

on both G-orbits on vertices, then k = 1, Γ = K2 and G = 1.

Proof. Let ∆1 and ∆2 be the G-orbits on V Γ. Without loss of generality, we may

assume u ∈ ∆1. Since u has only one neighbor in ∆2 and Γ is connected, Γ is a star

K1,k. If G is faithful on ∆2, then G = 1 and hence |∆1| = 1. Thus Γ = K1,1 = K2.

Lemma 5.4.5. Let Γ be a finite connected graph with G-orbits ∆1 and ∆2 on V Γ such

that G acts faithfully on both orbits. Suppose that every nontrivial normal subgroup N

of G is transitive on at least one of the ∆i. Then G acts quasiprimitively on at least

one of its orbits.

Proof. Suppose that G is not quasiprimitive on either of the ∆i. Then for each i ∈
{1, 2}, there exists Ni E G such that Ni is intransitive on ∆i and transitive on ∆3−i.

Now N1 ∩ N2 E G and so if nontrivial would be transitive on at least one ∆i by

the hypothesis, however, it is a subgroup of both N1 and N2 so both N1 and N2

would be transitive on the same set, a contradiction. So N1 ∩ N2 = 1 and hence

N1 × N2 E G. Since each Ni is transitive on ∆3−i, it follows that CSym(∆3−i)(Ni) is

semiregular (see [5, Theorem 4.2A]). Thus each Ni is semiregular on ∆i. Therefore |N1|
divides |∆1| and |∆2| divides |N1|, so |∆2| divides |∆1|. A similar argument with N2

shows |∆1| divides |∆2| thus |∆1| = |∆2|. Further, |N1| = |∆1| = |N2|, contradicting

N1 being intransitive on ∆1. Hence G must be quasiprimitive on at least one of the

∆i.
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Lemma 5.4.6. Let Γ be a connected G-locally primitive bipartite graph with G-orbits

∆1 and ∆2 on V Γ. Suppose there exists N E G such that N is transitive on ∆1 but

intransitive on ∆2. Then ΓN is a star whose central vertex has valency the number

of orbits of N on ∆2. Furthermore, for each vertex v ∈ ∆1 and N-orbit B in ∆2,

|B ∩ Γ(v)| = 1 and the vertex stabilizer Nv acts trivially on Γ(v).

Proof. Let v ∈ ∆1 and u ∈ ∆2 such that v ∼ u. Let B = uN . For each w ∈ B, we

have that w = ug for some g ∈ N and vg ∈ Γ(ug) = Γ(w), so that each vertex of B is

adjacent to some vertex in ∆1. Conversely, as N acts transitively on ∆1, each vertex

in ∆1 is adjacent to some vertex in B so ΓN is a star whose central vertex has valency

the number of orbits of N on ∆2. The set Γ(v)∩B is an orbit of Nv on Γ(v) and hence

is a block for Gv. If Γ(v) ⊆ B, then Γ(v′) ⊆ B for all v′ ∈ ∆1 since B and ∆1 are

N -orbits, contradicting the connectivity of Γ. Hence |Γ(v) ∩ B| = 1 and so Nv acts

trivially on Γ(v).

Lemma 5.4.7. Let Γ be a locally (G, s)-arc transitive graph such that all vertices have

valency at least two and G has a normal subgroup N which is transitive on ∆1 but has

at least three orbits on ∆2. Then s ≤ 3.

Proof. Let B1 ,B2, B3 be three orbits of N on ∆2. Let v0 ∈ B1 and v1 ∈ Γ(v0). By

Lemma 5.4.6, v1 is adjacent to a unique vertex v2 ∈ B2. Let v3 ∈ Γ(v2) \ {v0}. Then

(v0, v1, v2, v3) is a 3-arc in Γ. By Lemma 5.4.6, there exist u,w ∈ Γ(v3) such that

u ∈ B1 and w ∈ B3. Then (v0, v1, v2, v3, u) and (v0, v1, v2, v3, w) are 4-arcs in Γ that

cannot be mapped to each other, since such a g would fix B1 so it could not map u to

w. Hence s ≤ 3.

We now state an important theorem from Burnside, which characterizes minimal nor-

mal subgroups of finite 2-transitive groups. The theorem and its proof can be found

in [4, Theorem 4.3].

Theorem 5.4.8 (Burnside’s Theorem). Let N be a minimal normal subgroup of a

finite 2-transitive group G. Then N is either elementary abelian and regular, or simple

and primitive.

5.5 QUASIPRIMITIVE ON BOTH ORBITS

We analyze the case where G acts faithfully and quasiprimitively on both of its orbits.

Theorem 5.5.1. Let Γ be a finite connected G-locally primitive graph such that G has

two orbits on vertices and G acts faithfully and quasiprimitively on both orbits with type

{X, Y }. Then either X = Y , or {X, Y } = {SD,PA} or {CD,PA}, and examples

exist in each case. Furthermore , if Γ is locally (G, s)-arc transitive with s ≥ 2, then
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either X = Y ∈ {HA, TW,AS, PA}, or {X, Y } = {SD,PA}, and examples exist in

each case.

We prove the theorem with lemmas and propositions.

Definition 5.5.2. A graph Γ is G-locally quasiprimitive if G
Γ(v)
v is a quasiprimitive

permutation group for every v ∈ V Γ.

Lemma 5.5.3. Let Γ be a connected G-locally quasiprimitive graph. Suppose that Γ is

bipartite and the orbits of G are the bipartite halves ∆1 and ∆2. Suppose also that G

acts faithfully and quasiprimitively on both orbits. If N E G, then N∆1 is regular if

and only if N∆2 is regular.

Proof. If there exists a vertex of valency one, then by Lemma 5.4.4, Γ = K2 and

the result is trivially true. So assume that each vertex has valency at least two. Let

N E G and note that since G is quasiprimitive and faithful on ∆2, N is transitive on

∆2. Suppose that N∆1 is regular and N∆2 is not regular. Then for all v ∈ ∆1 we have

Nv = 1, and there exists u ∈ ∆2 such that Nu 6= 1. Then Nu acts nontrivially on Γ(u)

so

1 6= NΓ(u)
u E GΓ(u)

u .

Since N
Γ(u)
u is normal and G

Γ(u)
u is a quasiprimitive permutation group, Nu acts tran-

sitively on Γ(u). As N is transitive on ∆2, Nw is transitive on Γ(w) for all w ∈ ∆2.

Now N is transitive on the edges of Γ which implies Nv acts transitively on Γ(v),

contradicting Nv = 1 as v has at least two neighbors.

Lemma 5.5.4. Let Γ and G be as in Lemma 5.5.3 and let N E G. If N is not regular

on ∆1, then N
Γ(v)
v is transitive for all v ∈ V Γ.

Proof. If there exists a vertex of valency one, then by Lemma 5.4.4, Γ = K2 and

G = 1 so no such N exists. So assume that each vertex has valency at least two. By

Lemma 5.5.3, N is not regular on ∆2 either and so for all v ∈ V Γ we have Nv 6= 1.

Suppose that there exists v ∈ V Γ such that N
Γ(v)
v = 1. Then as Γ is connected and

G acts faithfully on V Γ, there exists a path (v = v0, v1, . . . , vr) such that N fixes

v0, . . . , vr−1 but not vr. Now Nv ≤ Nvr−1 and Nv moves vr ∈ Γ(vr−1) so

1 6= NΓ(vr−1)
vr−1

E GΓ(vr−1)
vr−1

.

Since N
Γ(vr−1)
vr−1 is normal and G

Γ(vr−1)
vr−1 is quasiprimitive, N

Γ(vr−1)
vr−1 is transitive. N is

transitive on each orbit and vr−1 is in one of them, so N is transitive on the edges of

Γ. This contradicts N
Γ(v)
v = 1 as v has at least two neighbors. Hence N

Γ(v)
v 6= 1 and

N
Γ(v)
v is transitive for all v ∈ V Γ.
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Proposition 5.5.5. Let Γ be a finite connected G-locally primitive graph such that G

has two orbits on vertices and G acts faithfully and quasiprimitively on both orbits with

type {X, Y }. Then either X = Y , or {X, Y } ={SD, PA} or {CD, PA}.

Proof. Let ∆1 and ∆2 be the G-orbits on V Γ. Note that G∆
1
∼= G∆

2
∼= G. If G is of

type HA, AS, HC or HS on one of the G-orbits, then G must have the same type on

the other G-orbit due to the abstract structure and the number of minimal normal

subgroups of G.

If G is of type TW on one G-orbit then G has a unique minimal normal subgroup

N isomorphic to T k for some finite nonabelian simple group T and N is regular on

that orbit. By Lemma 5.5.3, N is regular on the other G-orbit so we have type TW

on both orbits.

Now assume {X, Y } ⊆ {SD, CD, PA}. It remains to show that {X, Y } 6= {SD,CD}.
Suppose for a contradiction and without loss of generality that G is of quasiprimitive

type SD on ∆1 and quasiprimitive type CD on ∆2. Let N be the unique minimal normal

subgroup of G so that N ∼= T k for some finite nonabelian simple group T . Since G

acts faithfully on ∆1, by the structure of the group, we may assume that N < G <

N.(Out(T )×Sk) < Aut(T ) oSk and for some v ∈ ∆q we have Nv = {(t, . . . , t) : t ∈ T}.
A typical element of G is of the form

(t1, . . . , tk)(σ, . . . , σ)π, where ti ∈ T, σ ∈ Aut(T ) and π ∈ Sk.

Now let w ∈ Γ(v). As G is quasiprimitive of type CD on ∆2 we have Nw = D1×· · ·×Dl,

where each Di is a full diagonal subgroup of Tm where k = ml and l ≥ 2. Thus we can

write

D1 = {(t, tφ12 , . . . , tφ1m ) : t ∈ T},

where φ12 , . . . , φ1m ∈ Aut(T ) and the other Di are conjugates of D1 under elements

of Gw. Hence we may assume that Di = {(t, tφi2 , . . . , tφim ) : t ∈ T} where φij ∈ Aut(T )

and G ≤ T k.(Out(T ) × (Sm o Sl)), since N ∼= T k and k = ml. Note that Nv ∩ Nw =

{(t, . . . , t) : t ∈ C} E Gv ∩Gw where C is the centralizer of all φij . If all the φij = 1,

then Nv ≤ Nw and because G
Γ(v)
v is primitive we have N

Γ(v)
v = 1. Then by Lemma 5.5.4,

Nv = 1 which contradicts |Nv| = |T |. So we may assume that at least one of the φij is

nontrivial and C 6= T .

We would like to show that Gw is not primitive on Γ(w) which contradicts the G-

local primitivity of Γ. Let g ∈ Gv∩Gw. Then g = (σ, . . . , σ)τ where σ normalizes C. So

g normalizes the subgroup A = C1×· · ·×Ck where each Ci = {(c, . . . , c) : c ∈ C} < Di.

Let H = 〈Gv ∩ Gw, A〉. Then H = A(Gv ∩ Gw) and H ∩ Nw = A 6= Nv ∩ Nw. Thus

Gv ∩Gw < H < Gw, contradicting Gv ∩Gw being maximal in Gw. Hence Γ cannot be

of type {SD,CD}.
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We proved the part of Theorem 5.5.1 for the quasiprimitive action types and now we

prove two stronger statements for locally s-arc transitive graphs.

Lemma 5.5.6. There are no connected locally (G, s)-arc transitive with s ≥ 2 such

that G acts faithfully and quasiprimitively on both orbits and of type HC or CD on one.

Proof. Suppose such a graph Γ exists and G is of type HC or CD on ∆1. Then G has

socle N = T1 × · · · × Tk ∼= T k for some finite nonabelian simple group T and k ≥ 2.

Let v ∈ ∆1. Then there exists an integer l ≥ 2 dividing k such that Nv = D1×· · ·×Dl

where each Di is a full diagonal subgroup of Tk(i−1)/l+1×· · ·×Tki/l. If G is type HC then

l = k/2 and for either HC or CD type, Gv permutes the Di transitively by conjugation.

As N is not regular on ∆1, Lemma 5.5.4 implies that

1 6= NΓ(v)
v E GΓ(v)

v .

By Burnside’s Theorem 5.4.8 we see that N
Γ(v)
v
∼= T . Let K denote the kernel of

the action of Nv on Γ(v). Then K ∼= T l−1. Since K E Nv then K is a product of

l − 1 of the Di. As Gv acts on the Di by conjugation and Gv normalizes K, this is a

contradiction.

Lemma 5.5.7. There are no connected locally (G, s)-arc transitive with s ≥ 2 such

that G acts faithfully and quasiprimitively on both orbits of type HS or SD.

Proof. Suppose such a graph Γ exists. Then G has socle N ∼= T k for some finite

nonabelian simple group T and k ≥ 2. We can identify ∆1 and ∆2 with the elements

of T k−1 such that the action of N on T k−1 is given by

(t1, . . . , tk) : (a1, . . . , ak−1)→ (t−1
k a1t1, . . . , t

−1
k ak−1tk−1).

Now T ∼= Nv E Gv. By Lemma 5.5.4, N
Γ(v)
v 6= 1 and so N

Γ(v)
v
∼= T . Since Gv acts

2-transitively on Γ(v) by Burnside’s Theorem 5.4.8 the action of Nv on Γ(v) is primitive.

Let v = (1T , . . . , 1T ) ∈ ∆1. Then Nv = {(t, . . . , t) : t ∈ T}. For w ∈ Γ(v), we

have Nw = {t, tφ2 , . . . , tφk : t ∈ T} with φi ∈ Aut(T ). Then Nv,w = {(t, . . . , t) : t ∈
CT (φi) for all i}. As Nv 6= Nv,w, at least one of the φi is nontrivial and as Nv,w is

maximal in Nv, we have that Nv,w
∼= CT (φi). However Gv is a 2-transitive almost

simple group on Γ(v) and no such group exists where the point stabilizer of the socle

is a centralizer of a (possibly outer) automorphism by [4, Section 7.4], hence no such

Γ exists.

The final step to complete the proof of the theorem is to provide examples of G-locally

primitive graphs which are not possible for locally (G, s)-arc transitive graphs, namely

the types {CD, PA}, and the types X = Y ∈ {HS, SD, HC}.



Kaja E. Locally 2-arc transitive graphs and quasiprimitive groups: the twisted wreath product case.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 50

Example 5.5.8. Type {CD, PA} of valencies n2 and |An−1|2. Let T = An for n ≥ 6

and let G = T 4 : (S2 o S2). The action of G on the set of right cosets of the subgroup

Gv = {(t, t, s, s) : t, s ∈ T} : (S2 o S2)

is primitive of type CD. The group G also acts on the set of right cosets of Gw = A4
n−1 :

(S2 o S2) with a primitive action of type PA. Consider the graph Γ = Cos(G,Gv, Gw).

Then G acts primitively on its two orbits on vertices of type {CD, PA}. Now

Gv ∩Gw = {(t, t, s, s) : t, s ∈ An−1} : (S2 o S2)

is a maximal subgroup of both Gv and Gw. Actually Gv is primitive on Γ(v) of type PA

whereas Gw is primitive on Γ(w) of type CD. Thus Γ is a G-locally primitive connected

graph which is biregular with valencies n2 and |An−1|2.

Example 5.5.9. Type HS and SD of valency |T : CT (σ)|. Let T be a finite nonabelian

simple group with automorphism σ such that CT (σ) is a maximal subgroup of T . For

example, let T = An and let σ be the automorphism induced by conjugation by (1 2).

Let G = T × T , Gv = {(t, t) : t ∈ T} and Gw = {(t, tσ) : t ∈ T}. Consider the

graph Γ = Cos(G,Gv, Gw). The actions of G on ∆1 = [G : Gv] and ∆2 = [G : Gw]

are primitive of type HS. Note that 〈Gv, Gw〉 = G so Γ is connected. Also Gv ∩Gw =

{(t, t) : t ∈ CT (σ)} which is maximal in both Gv and Gw. Thus Γ is G-locally primitive

with G of type HS and of valency |T : CT (σ)|. For type SD, let σ be of order two

and let G = G : S2. Then Gw also contains (tσ, t) for t ∈ T since σ2 = 1. We have

G ≤ Aut(Γ) and acts primitively on both ∆1 and ∆2 with type SD. Furthermore, Γ is

also G-locally primitive.

Example 5.5.10. Type HS and SD of valency |T : CT (σ)|2. Let T be a finite non-

abelian simple group with automorphism σ of order two such that CT (σ) is a maximal

subgroup of T . Let G = (T 2 × T 2) : S2 where S2 is induced by the permutation

(1 2)(3 4) on the set {T1, T2, T3, T4}. Then G has two minimal normal subgroups each

isomorphic to T 2. Let

Gv = {(t, t, s, s) : t, s ∈ T} : S2 and Gw = {(t, s, tσ, sσ) : t, s ∈ T} : S2.

Consider the graph Γ = Cos(G,Gv, Gw). The actions of G on ∆1 = [G : Gv] and

∆2 = [G : Gw] are quasiprimitive of type HC. As 〈Gv, Gw〉 = G, Γ is connected. Now

Gv ∩Gw = {(t, s, t, s) : t, s ∈ CT (σ)} : S2

is maximal in Gv and Gw and both Gv and Gw are primitive permutation groups of

type PA. Then Γ is a G-locally primitive graph of valency |T : CT (σ)|2.

For type CD, let G = (T 2 × T 2) : (S2 o S2) where S2 o S2 preserves the partition

{{1, 3}, {2, 4}}. Then G ≤ Aut(Γ) and G acts quasiprimitively of type CD on both ∆1

and ∆2 of quasiprimitive type CD. Furthermore, Γ is a G-locally primitive graph.
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5.6 QUASIPRIMITIVE ON ONLY ONE ORBIT

We analyze the case where Γ is locally (G, s)-arc transitive and G acts faithfully on

both orbits, but quasiprimitively on only one of them.

Theorem 5.6.1. Let Γ be a finite locally (G, s)-arc transitive graph with s ≥ 2 such

that G acts faithfully on both of its orbits ∆1 and ∆2 but only acts quasiprimitively on

∆1. Then the quasiprimitive action of G on ∆1 is of type HA, HS, AS, PA or TW and

examples exist in each case.

We prove a lemma first before proving the theorem.

Lemma 5.6.2. Let Γ be a G-edge transitive connected graph such that G acts faithfully

on its two orbits ∆1 and ∆2 on vertices. Suppose that G has a nontrivial normal

subgroup N such that N
Γ(v)
v = 1 for all v ∈ ∆1. If there exists w ∈ ∆2 such that

N
Γ(w)
w = 1, then N acts semiregularly on V Γ.

Proof. As G is transitive on ∆2, N
Γ(w)
w = 1 for all w ∈ ∆2. As Γ is connected, Nv

fixes every element of ∆1 and ∆2. Since G acts faithfully on ∆1, Nv = 1 so N acts

semiregularly on ∆1. For w ∼ v, the stabilizer Nw is contained in Nv = 1, so Nw = 1

and N acts semiregularly on ∆2.

We can now prove Theorem 5.6.1.

Proof. Let Γ be a finite locally (G, s)-arc transitive graph with s ≥ 2 such that G

acts faithfully on both of its orbits ∆1 and ∆2 but only acts quasiprimitively on ∆1.

Suppose first that G is quasiprimitive of type HC, SD or CD. Let X = soc(G). For

v ∈ ∆1, Xv is a subdirect subgroup of X and as T is a nonabelian finite simple group

we have Xv
∼= T r for some r ≥ 1. Suppose that X

Γ(v)
v = 1. As X does not act regularly

on ∆1, Lemma 5.6.2 implies that X
Γ(w)
w 6= 1 for all w ∈ ∆2. Let w ∈ Γ(v) such that

Xw moves v, so Xw 6= Xv. Since X
Γ(v)
v = 1 it follows that Xv < Xw and Xw is also a

subdirect subgroup of X. Thus Xw
∼= T l for some l > r; otherwise, Xw = Xv. Since

X
Γ(w)
w is a nontrivial normal subgroup of the 2-transitive group G

Γ(w)
w , by Burnside’s

Theorem 5.4.8, we have X
Γ(w)
w = T and X

Γ(w)
w is a primitive group. Thus Xw

∼= T r+1

and (Xw)v = Xv
∼= T r. Since the kernel of the action of Xw on Γ(w) is contained

in (Xw)v, it follows that (Xw)v is equal to the kernel which implies X
Γ(w)
w is regular.

This contradicts the primitivity of X
Γ(w)
w , and we deduce that X

Γ(v)
v 6= 1. As G is

quasiprimitive on ∆1, X is transitive on ∆1. Since X
Γ(v)
v 6= 1, Lemma 5.4.6 implies

that X is transitive on ∆2. Since G is not quasiprimitive on ∆2, then X = soc(G) is

not a minimal normal subgroup of G and hence G has type HC. Since Xv
∼= T r we

have X ∼= T 2r with r ≥ 2. As X
Γ(v)
v is a subgroup of the 2-transitive group G

Γ(v)
v ,

by Burnside’s Theorem 5.4.8, we have X
Γ(v)
v
∼= T . But X

Γ(v)
v is a minimal normal
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subgroup of Gv and since it acts nontrivially on Γ(v), it acts faithfully on Γ(v). Thus

T r ∼= Xv
∼= X

Γ(v)
v which is a contradiction since r ≥ 2 and we assumed r ≥ 1. Thus

G is of type HA, HS, AS, PA or TW, and examples for these types exist and can be

found in [13, Section 4].
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6 TWISTED WREATH PRODUCT

EXAMPLES

In this chapter, we describe a construction of locally 2-arc transitive stars that admit

a quasiprimitive automorphism group of TW type on one orbit. We present the con-

struction of the smallest such graph with automorphism group A5 twrφ A6. Next, we

prove that this is the only possible locally 2-arc transitive graph coming out of this

group by characterizing the stabilizer of an arc.

Using the construction, we also give a conjecture for the existence of an infinite

family of graphs that admit PSL(2, p) twrφ ASL(2, p) as an automorphism group. Com-

puter calculations in GAP [12] prove that the conjecture holds for p equal to 5 and p

equal to 7.

6.1 CHARACTERIZING EXAMPLES

Theorem 6.1.1. Let T be a finite nonabelian simple group. Let P be a group and set

Q = Pn such that there exists φ : Q → Aut(T ). Let G = T twrφ P . Let |P : Q| = n

and for i = 1, . . . , n − 1, define Qi = NQ(Ti). Suppose that there exists a normal

elementary abelian subgroup Vi in Qi. Define Ri = {f ∈ Ti : f(zi) ∈ Vi}. Then

M = R1 ×R2 × . . .×Rn−1 is normalized by Q.

Proof. Let T be a transversal for Q in P such that zi : i → n as in the proof of

Lemma 4.3.6 and define Ti as in Lemma 4.3.1. By previous lemmas in Chapter 4, we

have that the φ-base group Bφ has order |T |n and each Ti ∼= T . We know that P acts

on the set {T1, . . . , Tn} and Q is the stabilizer of Tn. The action is conjugation so the

stabilizer of Tn is the set {g ∈ G : T g = T} which equals {g ∈ G : gT = Tg} = NP (T ),

so normalizers and stabilizers coincide and we have defined Q correctly.

The subgroup Q also normalizes T1 × · · · × Tn−1. For i = 1, . . . , n − 1 let Qi

be the stabilizer in Q of Ti and let Vi E Qi be an elementary abelian group. Let

Ri = {f ∈ Ti : f(zi) ∈ Vi}. We claim that for every q ∈ Q we have Rq
i = Riq . Let

x ∈ Vi and let p ∈ Q. Then by Lemma 4.3.5 fpi,x = fj,xq where p−1zi = zjq
−1 for a

unique q ∈ Q and zj ∈ T . Now

iq = iz
−1
i pzj = npzj = nzj = j,

so zj = ziq .
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We know that x fixes i since x ∈ Vi E Qi and Qi fixes Ti. Thus xq fixes iq. Since x is

in Vi, which is the derived subgroup of the stabilizer of i, then x is conjugated by q into

the derived subgroup of the stabilizer of iq, which is Viq . Hence xq ∈ Viq , and so, fj,xq =

fiq ,xq and xq ∈ Viq , thus fj,xq ∈ Riq . This shows that Rq
i = Riq and p permutes the Ri.

Thus Q normalizes M = R1 × · · · ×Rn−1. Note that R1 × · · · ×Rn−1 = 〈R1, . . . Rn−1〉
since the Ri commute as they are subgroups of the Ti, and we have already shown that

the Ti commute in the proof of Lemma 4.3.4.

Lemma 6.1.2. Let G and P as above and let soc(G) = N . If R ≤ G such that Q ≤ R

in G such that R acts 2-transitively on [R : Q] and NR 6= G, then R is of the form

Nv oQ, where Nv = N ∩R.

Proof. Note that NQ ≤ NR since Q ≤ R. The action of R on cosets of Q is 2-transitive

and hence primitive, so Q is maximal in R. Now NQ/N ∼= Q is maximal in G/N ∼= P ,

and NQ ≤ NR so NR = NQ. Since R ≤ NQ, by Dedekind’s rule 2.1.2, we can write

R = Q(N ∩ R). As R 6= Q, Nv = N ∩ R is non-trivial. Thus R = Q(N ∩ R) = QNv

and finally the equality with Nv oQ follows since Nv E R.

Corollary 6.1.3. If there exists a subgroup V in M such that V is normalized by Q, Q

acts irreducibly on V and Q acts transitively on the non-zero vectors of V , then there

exists a locally 2-arc transitive graph Γ admitting G as a group of automorphisms.

Proof. Suppose V is a subgroup of M satisfying the above properties. Let L = P and

let R = V oQ. The action of L on [L : L∩R] is chosen to be 2-transitive and the action

ofR on [R : L∩R] is 2-transitive by Lemma 6.1.2 and the fact thatQ acts transitively on

the non-zero vectors of V (see discussion about 2-transitive affine groups in Cameron’s

book [4, Page 110]). Then Γ = Cos(G,L,R) is locally 2-arc transitive by Part 2 of

Lemma 5.2.11. The quotient graph ΓN is the star K1,n since N acts transitively on

∆1 = [G : L], but it has n orbits on ∆2 = [G : R], as T n o (M ×Q) = T n oQ so the

orbits of N on ∆2 are in bijection with cosets of Q in P .

6.2 A TWISTED WREATH STAR

Let us present a locally 2-arc transitive graph of valency {6, 16} with amalgam (A6, C
4
2 :

A5, A5), which admits an automorphism group of twisted wreath type.

Construction. Let

1. T = A5 (a finite nonabelian simple group),

2. P = A6,

3. Q = A5 ≤ P the stabilizer of point 6 in the natural action,
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4. φ : Q→ InnT (an isomorphism),

5. G = T twrφ P ∼= A6
5 o A6.

Then G has a normal subgroup N ∼= T 6 = A6
5. The action of G on the set of cosets of

L = P is primitive of type TW because φ does not extend to a larger subgroup of P

and InnT ≤ φ(Q). We now apply Theorem 6.1.1, where Vi equals the Klein 4-group

of Qi
∼= A4, since we know that Vi E Qi. Our computer calculations in GAP [12]

show that there exists V in M of order 42 which is normalized by Q and Q acts

irreducibly on V . By Corollary 6.1.3, the graph Γ = Cos(G,L,R) where L = P and

R = V oQ ∼= ASL(2, 4) is locally (G, 2)-arc transitive with valencies 6 and 16. This is

because the action of L on [L : L∩R] is equivalent to the action of A6 on 6 points and

the action of R on [R : L∩R] is equivalent to the 2-transitive action of ASL(2, 4) on the

24 points of the affine plane AG(2, 4). Note that Γ is not locally (G, 3)-arc transitive

as given v = L ∈ ∆1, w = R ∈ ∆2 and w′ ∈ Γ(v) \ {w}, we have Gw′vw = A4 and there

are 15 vertices in Γ(w) \ {v} so the stabilizer A4 of order 12 cannot act transitively on

15 points.

6.3 CONSTRUCTION FEATURES

We now explore the features of the graph constructed in Section 6.2. We constructed a

locally 2-arc transitive graph with a group of automorphisms that is quasiprimitive on

only one orbit of TW type. The construction relies on the definition of the coset graphs

Cos(G,Gu, Gv) with G = 〈Gu, Gv〉 such that Gu acts 2-transitively on [Gu : Guv] and

Gv acts 2-transitively on [Gv : Guv]. Given G = A6
5 o A6, in the example we have

Gu = P = A6. We may now try to find the possibilities for Guv. Since Gu acts 2-

transitively on [Gu : Guv], there are only few possibilities. We refer to the classification

of finite 2-transitive groups in [4] and conclude that Guv = A5 or |Guv| = 36. Then

knowing Guv, we use Lemma 6.1.2 to calculate Gv. Since Gv must be 2-transitive on

[Gv : Guv], the lemma shows that Gv = Nv oGuv, where Nv = N ∩Gv.

As Nv is a regular minimal normal subgroup of the finite 2-transitive group Gv,

Burnside’s Theorem 5.4.8 shows that Nv is elementary abelian and regular, and not

simple and primitive since Gv is primitive on [Gv : Guv]. Thus |Nv| = pd for some

prime p and d ∈ N. Note that Guv must act irreducibly on Nv, because otherwise it

contradicts the minimality of Nv. Since 2-transitivity of a group of HA type requires

transitivity on non-zero vectors, pd − 1 has to divide |Guv|. The example above has

Guv = A5 with pd = 24. Suppose that |Guv| = 36. We have |Nv| ∈ {2, 22, 5, 7, 13, 19}.
Given Nv of order q = pd, we have that Gv/K ∼= CqoCq−1 for some K E Guv since

q − 1 divides |Guv|. The group Guv of order 36 is isomorphic to (S3 o S2) ∩ A6 which

has only four normal subgroups, of orders 1, 9, 18 and 36, respectively.
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1. If q = 4, then Gv/K ∼= C4 oC3 which means that Guv has a normal subgroup K

of order 12, thus this case is impossible.

2. If q = 7, then Gv/K ∼= C7 oC6 which means that Guv has a normal subgroup K

of order 3, thus this case is impossible.

3. If q = 13, then Gv/K ∼= C13 oC12 which means that Guv has a normal subgroup

K of order 3, thus this case is impossible.

4. If q = 19, then Gv/K ∼= C19 oC18 which means that Guv has a normal subgroup

K of order 2, thus this case is impossible.

This leaves cases q = 5 with K of order 9 and q = 2 with K of order 36, since normal

subgroups of order 9 and 36 exist in Guv. By Lemma 2.1.4, Nv ∩ K = {1} in both

cases. As K,Nv E Gv we have 〈Nv, K〉 = Nv × K and Nv and K commute. Then

Nv ≤ CN(K).

If |K| = 9, then K ∼= C3 × C3, which is an abelian group, so Z(K) = K and

calculations in GAP [12] show that |CN(K)| = 9. As Nv ≤ CN(K), the order of Nv

divides the order of CN(K), but 5 does not divide 9, so no subgroup Nv of order 5

exists in CN(K).

If |K| = 36, then our calculations in GAP [12] show that CN(K) = {1}, hence

no subgroup Nv of order 2 exists in CN(K) so this case is not possible either. This

shows that Cos(A5 twrφ A6, A6, C
4
2 : A5) is the only possible example of a locally 2-arc

transitive graph with a group of automorphisms equal to A5 twrφ A6 of quasiprimitive

type TW on only one orbit.
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7 NEW EXAMPLES

We describe a construction for locally 2-arc transitive graphs of valency p2 with amal-

gam (ASL(2, p),ASL(2, p), SL(2, p)).

7.1 CONSTRUCTION

Let us consider the following ingredients

1. T = PSL(2, p) (a finite nonabelian simple group),

2. P = ASL(2, p) ∼= Cp2 o SL(2, p),

3. Q = SL(2, p) ≤ P ,

4. φ : Q→ Q/Z(Q) ≤ AutT ,

5. G = T twrφ P ∼= T p
2 o ASL(2, p).

Define Ti as in Lemma 4.3.1. By previous lemmas we have that the φ-base group has

order |PSL(2, p)|p2 and each Ti ∼= T . We know that P acts on the set {T1, . . . , Tp2} and

Q is the stabilizer of Tp2 . The subgroup Q also normalizes T1 × · · · × Tp2−1.

For i = 1, 2, . . . , p2 − 1 let Qi be the stabilizer in Q of Ti. Since Q = SL(2, p), then

Qi is the stabilizer of a vector. Since stabilizers are conjugate, we may calculate the

stabilizer of an arbitrary vector. Let v =
[
1 0

]T
. Then A = (aij) ∈ GL(2, p) stabilizes

v if and only if Av = v which means[
a11 a12

a21 a22

][
1

0

]
=

[
1

0

]
or

[
a11

a21

]
=

[
1

0

]
. (7.1)

Since A is invertible and A ∈ SL(2, p), a22 = 1, so the stabilizer of v in SL(2, p) is the

subgroup

〈[
1 a

0 1

]〉
, where a ∈ GF(p). Then Qi

∼= Cp for each i. Since Qi is a cyclic

group of prime order, it does not contain any proper nontrivial normal subgroups. We

thus consider M = Q1×· · ·×Qp2−1
∼= Cp2

p which is normalized by Q by Theorem 6.1.1.

Suppose there exists X in M of order p2 which is normalized by Q. Then we utilize

Corollary 6.1.3, with R = X : Q ∼= Cp2 o SL(2, p) ∼= P .

Since Q ≤ P and Q ≤ R, we have that Q ≤ P ∩R and P ∩R is contained in P and

in R. Now Q is maximal in P since the action is 2-transitive and hence primitive, so
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P ∩R equals P or Q. If P ∩R = P , then P = R since they have the same order. Then

as R = Nv ×Q, we have Nv ≤ P which is non-trivial, as N is non-trivial. However, P

is a complement to N in G, so N ∩ P is trivial. Therefore, L ∩R = P ∩R = Q.

The group ASL(2, p) acts 2-transitively on the p2 points of [ASL(2, p) : SL(2, p)],

so Γ = Cos(G,L,R) is locally (G, 2)-arc transitive and regular of valency p2.

Conjecture 7.1.1. For every prime p, with p ≥ 5, there exists X in M of order p2

which is normalized by Q.

If p equals 5 or 7, our calculations in GAP in the appendices show that the subgroup

V exists, and we expect that it exists for all primes p ≥ 5. The proof of this result

requires a significant amount of representation theory, so we delay it to a future project.

Assuming that the conjecture is true, the described construction provides an infinite

family of locally 2-arc transitive graphs that admit a quasiprimitive group of TW type

as an automorphism group.

Algorithm 1: Pseudocode of the construction

Data: a prime p

Result: a locally 2-arc transitive graph with a quasiprimitive group of

automorphisms of TW type on only one orbit

1 initialization;

2 T = PSL(2, p);

3 P = ASL(2, p);

4 G = T twrφ P = (T1 × T2 × · · · × Tp2) o P ;

5 Q = NP (Tp2);

6 Qi = NQ(Ti), for i = 1, . . . , p2 − 1;

7 Ri ≤ Ti such that Ri
∼= Qi and Rq

i = Riq , for q ∈ Q and i = 1, . . . , p2 − 1;

8 M = 〈R1, R2, . . . , Rp2−1〉 ∼= Cp2−1
p E 〈M,Q〉;

9 if V ≤M of order p2 such that V E 〈M,Q〉 then

10 construct R = V oQ;

11 construct the coset graph Γ = Cos(G,L,R) with amalgam (L,R,Q)
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Lemma 7.1.2. The constructed graph Γ = Cos(G,L,R) is locally 2-arc transitive and

not locally 3-arc transitive.

Proof. By construction, Γ is a coset graph which is locally 2-arc transitive. By Lemma 5.4.7,

s ≤ 3 since N has at least three orbits on ∆2. By definition of cost graphs, P is a point

stabilizer in G. So let u = L ∈ Γ, and let v ∼ u. The stabilizer of a vector in SL(2, p)

is isomorphic to Cp as calculated in Equation 7.1.

In GL(2, p) the determinant need not be equal to 1 but it still has to be non-zero,

so we have p− 1 choices for a22 (exluding 0) and p choices for a12 in Equation 7.1. So,

the stabilizer of the vector v =
[
1 0

]T
in GL(2, p) is of the form〈[

1 a12

0 a22

]
: a12, a22 ∈ GF(p), a22 6= 0

〉
, (7.2)

and has order p(p − 1) in GL(2, p). Let w ∼ v and let us find the stabilizer of w.

Suppose w =
[
x y

]T
, with x, y ∈ GF(p). Then[
1 a12

0 a22

][
x

y

]
=

[
x

y

]
or

[
x+ a12y

a22y

]
=

[
x

y

]
. (7.3)

The second equation yields a22 = 1 since 1 is the unique multiplicative identity in

GF(p). The first equation yields a12y = 0, and GF(p) is a field so it has no divisors

of zero. This shows that either a12 = 0 or y = 0. If y = 0, then w is in the vector

subspace spanned by x, and the stabilizer of this subspace is given in Equation 7.2

since we must fix all vectors of the form
[
x 0

]T
. If a12 = 0, then we have the identity

matrix. In either case, the stabilizer is of order at most p2 − p. There are p2 − 3

vertices in Γ(w) \ {v}, so the stabilizer of a 2-arc in Γ cannot be transitive on the set

of neighbors of w.
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7.2 THE AUTOMORPHISMGROUPS OF THENEWGRAPHS

Let us summarize some information about the construction in Chapter 7.

Theorem 7.2.1. The graph Γ = Cos(G,L,R) constructed in Chapter 7 has the fol-

lowing properties:

1. Γ is bipartite with ∆1 = [G : L] and ∆2 = [G : R].

2. |V Γ| = 2|∆1| = 2|T |p2 = 2pp
2
(
p2−1

2

)p2
.

3. Γ is regular of valency p2.

4. Γ is locally (G, 2)-arc transitive but not locally (G, 3)-arc transitive where G =

PSL(2, p) twrφ ASL(2, p).

Proof. The first three properties follow from the coset graph construction as shown in

Lemma 5.2.11 and the last property is proved in Lemma 7.1.2.

Let A = Aut(Γ). We know that G ≤ A. Define A+ to be the stabilizer of ∆1 in A.

Since A+ stabilizes ∆1, it stabilizes ∆2 as well. As G is vertex intransitive, we have

G ≤ A+, and G is locally 2-arc transitive, so A+ is locally s-arc transitive for some

s ≥ 2. We would like to answer the following questions:

1. Is A+ quasiprimitive on ∆1, on ∆2, on neither or on both?

2. Are A+ and G equal?

If A+ is quasiprimitive on at least one orbit, then since s ≥ 2, these are all the possible

cases for the action of A+:

1. By Theorem 5.6.1, A+ acts quasiprimitively only on one orbit. The quasiprimitive

type is HA, HS, AS, PA or TW.

2. By Theorem 5.5.1 and adopting notation, A+ acts quasiprimitively on both orbits

of type X = Y , where X is of type HA, TW, AS or PA, or {X, Y } ={SD, PA}.

We now explore and rule out some possibilities for A+, which follow from properties

of the graph.

Consider first the case where A+ acts quasiprimitively only on one orbit. In [14],

Giudici, Li and Praeger further characterize locally s-arc transitive graphs with a star

normal quotient, namely, the ones where we have a quasiprimitive action only on one

orbit.
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1. The HS case is fully determined in [14, Construction 3.2] and suitable choices

for the construction are shown in [14, Table 1.1]. There are five infinite families

that come out of this construction with possible valencies q2 + 1 and q for q = 2l

and l ≥ 3 odd, q3 + 1 and q for q = 3l and l ≥ 3 odd, q3 + 1 and q for q ≥ 3,

(qd− 1)/(q− 1) and qd−1, q+ 1 and q for q ≥ 4. It is clear that valencies for each

part of the bipartition are different, so this case is impossible.

2. The HA case is also completely determined by [14, Construction 4.1], where the

order of ∆1 equals the order of a d-dimensional vector space over GF(q), while

the order of ∆2 equals the number of m-dimensional vector spaces of V which are

permuted by the complement to the vector space in the group. It follows that

∆1 and ∆2 have different orders, so this case cannot happen either.

3. The AS case is described in [14, Theorem 1.3] and [14, Table 1.2], where it is shown

that the socle T is PSL(n, q), n ≥ 3, PSU(n, q), n ≥ 3, PΩ+(8, q), PΩ+(8, q) with

q odd, E6(pf ) or 2E6(pf ). The number of orbits on ∆2 is denoted by k. The table

shows that k is either an odd prime, equal to 3, equal to 4, divides gcd(n, q − 1)

or divides gcd(n, q + 1). In our examples, k equals p2 so k never satisfies these

criteria, and we rule out the AS case.

4. The PA case is described in [14, Example 5.1] which is also discussed in the global

analysis [13, Example 4.3]. It constructs a family of locally 3-arc transitive graphs

of valencies k and n with amalgam

(Sn−1 o Sk, Sn × (Sn−1 o Sk−1, S
k
n−1 : Sk−1).

The vertex set consists of all k-tuples from a set Ω of size n. Since we have

constructed regular graphs, we would have k = n and the number of vertices

equals nn. Since T = PSL(2, p), we have |T | = pp
2−1
2

.

Let (m)q denote the highest power of q that divides m. We have (|T |p2)p = p2,

since p does not divide p2 − 1. Also, (nn)p = (n)p · n. If (n)p = a then n = par

where gcd(p, r) = 1. Then

p2 = (|T |p2)p = (nn)p = a · pa · r,

which implies that r = 1 since otherwise r would divide p2. However, if r = 1,

then n = pa which is a contradiction because gcd(p2 − 1, n) > 1. Hence this case

is also not possible.

5. Except Example 6.2, no other examples of locally 2-arc transitive graphs that

admit a quasiprimitive action of TW type on only one orbit are presented in

the available literature. If A+ acts in such a way, the best case scenario is that

A+ = G and our construction is new, so we do not attempt to rule this case out.
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We have ruled out all but one case where A+ acts quasiprimitively on only one

orbit, so we now consider the case where A+ acts quasiprimitively on both orbits. Let

us first examine the possible type {SD, PA}.
In [15], Giudici, Li and Praeger give a complete classification of locally s-arc tran-

sitive graphs where the action of the automorphism group is quasiprimitive of type

{SD, PA}. More precisely, [15, Theorem 1.1] describes the general construction. Parts

(4) and (5) of this theorem state that v ∈ ∆1 has (qn − 1)/(q − 1), q3 + 1, q3 + 1 or

q2 + 1 neighbors, depending on T , while w ∈ ∆2 has qd neighbors. The two valencies

are different, so this case is impossible since our constructed graph is regular.

If A+ acts quasiprimitively of the same type on each orbit, we have the four possi-

bilities HA, AS, TW or PA.

The HA case can also be ruled out immediately since the size of the vertex set of

the graph must be a prime power [16].

The AS case with s = 2 where the group is of Ree type has been completely

classified in [7] via three infinite families of locally 2-arc transitive graphs. It is shown

in [7, Theorem 1.1] that all vertex-intransitive locally 2-arc transitive graphs admitting

a Ree simple group G = Ree(q) where q = 32n+1 ≥ 27 either belong to these families

(which are described in [7, Table 1]) or they arise as standard double covers of connected

(G, 2)-arc transitive graphs classified in [8]. The possible valencies for standard double

covers given in [7, Theorem 1.1] are 4, 8, 3e with e ≥ 1 and e divides 2n+ 1 or 3e > 3,

which clearly do not match the valencies of our constructed graphs. Further, [7, Table

1] lists valencies 4, 7, and 8 for the infinite families, so we can rule out these possibilities.

In [8, Theorem 1.1], for q = 32n+1, n ≥ 1, all connected (G, 2)-arc transitive graphs

admitting a Ree simple group are classified and the possible valencies are 3, 4, 8 or 3l

with l | (2n+ 1), which again can be ruled out.

The AS case for locally s-arc transitive graphs with s ≥ 2 that admit a group

of Suzuki type has been worked out in [27]. The classification is summarized in [27,

Theorem 1.2], where it is shown that any such graph is either vertex transitive and

classified in [6], it is the standard double cover of a graph in [6], or the graph is bipartite

and various conditions are given for the valencies in each part. The possible valencies

are either different or odd primes, which is not the case with our construction. Also,

in [6] the valency is shown to be an odd prime or a power of 2, thus we can dismiss

this case entirely.

In [17], the AS case where the group is one of 14 sporadic simple groups has been

determined, and can be ruled out via valencies that are pointed out in [17, Tables 4-5].

Actually, we can prove more for our construction. Since p ≥ 5, p ≡ 1 or −1 (mod 3).

Then p2 − 1 ≡ 0 (mod 3), which shows that 3 divides the order of |T | and thus 3p
2

divides the order of G. Hence, we refer to the orders of sporadic groups available

in [32, 33], and we conclude that G does not fit into any of the sporadic groups, so we
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can rule them out completely.

Baddeley [3] gave a characterization of 2-arc transitive graphs that admit a quasiprim-

itive group of twisted wreath type. The construction is done in terms of admissible

maps and Cayley graphs [3, Construction 4.1]. The vertex set of the graph is identified

with the base group, so it has size |S|k for some simple group k and k > 1, the vertex

set of our graph would need to have size |T |p2 . By Theorem 7.2.1 we know that this is

not the case for the group G, but if A+ satisfies this condition, then

2|T |p2 = |S|k, (7.4)

for some k > 1 and S a simple group. Here k > 1 because the quasiprimitive action

is of twisted wreath type. Since p is a prime at least 5, we have p ≡ 1 (mod 4) or

p ≡ 3 (mod 4), so p2−1
2

is even and we can write it as 2mn for some natural numbers

m and n with gcd(2, n) = 1 and m ≥ 1. By rearranging Equation 7.4, we have

2mp
2+1pp

2

np
2

= |S|k.

Note that p2 − 1 = 2m+1n so p cannot divide n for p ≥ 5. Since S is a finite

nonabelian simple group, its order is even by the Feit-Thompson Theorem [9, 10], so

(|S|)2 = 2a for some natural number a. Then 2ak = (|S|k)2 = 2mp
2+1. Therefore,

alongside the fact that p is a prime, k must equal p or p2 but neither p nor p2 divide

mp2 + 1, so this case is impossible.

The rest of the AS cases, the TW and PA cases have not been characterized any

further in available literature so we do not have sufficient information to rule them

out. Our twisted wreath product group embedded in a bigger twisted wreath product

group or almost simple group which acts on the same graph seems infeasible and thus

leads us to believe that the construction is new.

We cannot compute the full automorphism group of these graphs yet, thus this

problem remains open. We summarize this discussion as follows.

Theorem 7.2.2. Let Γ be the graph Cos(G,L,R) constructed in Chapter 7. Then one

of the following holds:

1. Γ is a vertex transitive graph, and hence (Aut(Γ), 2)-transitive.

2. Γ is a standard double cover of a graph from Part 1.

3. Aut(Γ) is not quasiprimitive on either orbit of Γ.

4. Aut(Γ) is quasiprimitive on only one orbit of Γ of twisted wreath type.

5. Aut(Γ) is quasiprimitive on both orbits of Γ of almost simple type (excluding

groups of Ree type Ree(q), where q = 32n+1 for n ≥ 1, groups of Suzuki type and

sporadic groups), or product action type.
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8 CONCLUSION

In this thesis we thoroughly described locally s-arc transitive graphs which admit

automorphism groups of quasiprimitive type. Since the graphs are edge-transitive but

vertex-intransitive, the vertex set is split into two orbits, called the bipartition parts.

If any two arcs of length s emanating from a single vertex v can be mapped to each

other by some automorphism which fixes v, then the graph is said to be locally s-arc

transitive.

If the group acting on a graph has a nontrivial normal subgroup that is intransitive

on both bipartition parts, then the graph arises as a cover of a smaller locally s-

arc transitive graph. This means that we can only consider the case where G acts

quasiprimitively on at least one of the parts of the bipartition, thus we gave a detailed

description of the classification of quasiprimitive groups by following Praeger’s [21]

O’Nan-Scott type theorem.

Giudici, Li and Praeger [13] initiated a global analysis of these graphs and their

properties. We gave an overview of this analysis and proved Theorem 5.5.1 and Theo-

rem 5.6.1 which classify possible quasiprimitive actions on locally arc transitive graphs.

If the action is quasiprimitive on both orbits, then the possible types are HA, TW, AS

or PA, or {SD, PA}. If the action is quasiprimitive on only one orbit, then the possible

types are HA, HS, AS, PA or TW.

We then focused on the twisted wreath case. We described a construction and

stated a conjecture for the existence of an infinite family of locally 2-arc transitive

graphs which admit a group of automorphisms that acts quasiprimitively of twisted

wreath type on only one orbit. The groups of automorphisms that the graphs admit

are PSL(2, p) twrφ ASL(2, p), where p is a prime and p ≥ 5. The conjecture was verified

for p = 5 and p = 7 using GAP calculations, which can be found in the appendices.

We finally discussed possible automorphism groups of these graphs. We examined

the stabilizer of the bipartition and posed a few questions which are useful to character-

ize the automorphism group. Many cases were ruled out but the problem of calculating

the full automorphism group of these graphs remains open for future research.
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9 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

V magistrski nalogi natančno opǐsemo s-ločno tranzitivne grafe, ki imajo kvaziprimi-

tivno grupo avtomorfizmov. Ker ti grafi niso vozlǐsčno tranzitivni, vendar so povezavno

tranzitivni, je njihova množica vozlǐsč razdeljena na dve orbiti. Za graf pravimo, da

je lokalno s-ločno tranzitiven, če za poljubna loka dolžine s, ki izhajata iz vozlǐsča v

obstaja avtomorfizem, ki loka med seboj preslika in fiksira vozlǐsče v. Giudici, Li in

Praeger [13] v svojem delu začnejo z globalno analizo teh grafov in njihovih lastnosti.

V magistrski nalogi predstavimo analizo teh grafov in se nato osredotočimo na primer

zasukanega venčnega tipa.

V 2. poglavju podamo osnovne definicije iz teorije grup, predstavimo razne pro-

dukte grup in definiramo podstavek (angl. socle), ki je koristno orodje v O’Nan-

Scottovem izreku (glej O’Nana, Scotta [25] in Aschbacherja [1]), ki klasificira primitivne

grupe in v izreku o O’Nan-Scottovem tipu (glej Praeger [21]), ki klasificira kvaziprim-

itivne grupe.

Če ima grupa, ki deluje na graf, netrivialno normalno podgrupo, ki je netranzitivna

na obeh orbitah vozlǐsč, je graf pokritje manǰsega lokalno s-ločno tranzitivnega grafa,

zato obravnavamo samo primer, ko G deluje kvaziprimitivno na vsaj enega od obeh

delov. V 3. poglavju podrobno opǐsemo klasifikacijo kvaziprimitivnih grup, ki sledi

Praegerjevi obravnavi. Ti tipi so sestavljeni iz podgrup holomorfov Abelovih preprostih

(angl. holomorph of an abelian group) ali sestavljenih grup (angl. holomorph of a

simple group), podgrup zasukanega venčnega produkta, skoraj preprostih grup (angl.

almost simple group), preprostih in sestavljenih diagonalnih grup in grup produktov

delovanj(angl. product action group).

V 4. poglavju podamo natančen oris primera zasukanega venčnega tipa, kjer tudi

dokažemo nekaj rezultatov, ki jih uporabljamo skozi celotno nalogo. Naš cilje je podati

poglobljen pregled teh grup, saj so le te zapletene ter zato manj raziskane kot druge

kvaziprimitivne grupe. Informacije o kvaziprimitivnih grupah povzamemo v tabeli 1.

V 5. poglavju navedemo nekaj osnovnih definicij iz področja teorije grafov in

opǐsemo postopek konstrukcije povezavno tranzitivnih grafov. Glavne konstrukcije

vključujejo standardna dvojna pokritja in kosetne grafe. Karakteriziramo lokalno ločno

tranzitivne grafe s stopnjo vozlǐsč največ tri in ponazorimo nekaj primerov v zvezi z

dvo-razdaljnimi grafi in z grafi pridobljenimi iz predhodnih, tako da na sredino vsake
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povezave dodamo dodatno vozlǐsče. Nato opǐsemo postopek pridobivanja kvocientinh

grafov glede na normalno podgrupo grupe avtoorfizmov, ki deluje netranzitivno na

množico vozlǐsč. Ta metoda se uporablja za analizo primerov, ko grupa avtorfizmov

grafa deluje kvazimprimitivno na vsaj eni orbiti vozlǐsč grafa. Izreka 5.5.1 in 5.6.1

povzemata možne vrste kvaziprimitivnih delovanj, odvisno od tega, ali grupa deluje na

obe orbiti ali samo na eno. Če je delovanje kvaziprimitivno na obeh orbitah, so možne

vrste HA, TW, AS ali PA ali {SD, PA}. Če je delovanje kvaziprimitivno samo na eni

orbiti, so možne vrste HA, HS, AS, PA ali TW.

V 6. poglavju podamo konstrukcijo lokalno 2 -ločno tranzitivnih grafov, ki pre-

morejo grupo avtomorfizmov, ki kvaziprimitivno deluje le na eno orbito zasukanega

venčnega tipa. Za natančno predstavitev konstrukcije najprej dokažemo izrek 6.1.1 in

lemo 6.1.2. V izreku 6.1.1 dokažemo, da če je G = T twrφ P = (T1 × · · ·Tn) o P in če

obstaja normalna elementarna Abelova podgrupa Vi v normalizatorju vsake grupe Ti

znotraj normalizatorja Tn, potem Q normalizira R1×· · ·×Rn−1, kjer je Ri podgrupa Ti,

izomorfna Vi. V lemi 6.1.2 karakteriziramo podgrupe R od G, ki delujejo 2-tranzitivno

na [R : Q]. Z uporabo izreka 6.1.1 in leme 6.1.2 dokažemo posledico 6.1.3, ki pred-

stavlja konstrukcijo lokalno 2-ločno tranzitivnega grafa, čigar grupa avtomorfizmov je

G.

V 7. poglavju podamo domnevo o obstoju neskončne družine takih grafov in jo pre-

verimo za dva primera, z uporabo računskega programa v jeziku GAP, ki je priložen v

prilogah. Domneve ne dokažemo, saj se opira na teorijo predstavitev (angl. representa-

tion theory). Tako domneva ostaja odprta za prihodnja raziskovanja. Grafi predstavl-

jeni v tem poglavju premorejo PSL(2, p) twrφ ASL(2, p) kot grupo avtorfizmov in so

p2-regularni. Postopek pridobivanja grafov je prikazan v algoritmu 1. Dokažemo tudi,

da ti grafi niso lokalno 3-ločno tranzitivni (glej lemo 7.1.2). V razdelku 7.1 razpravl-

jamo o možnih podgrupah avtomorfizmof teh grafov. Študiramo stabilizator dvodelne

množice vozlǐsč in postavimo nekaj vprašanj, ki so koristna za karakterizacijo grupe

avtoorfizmov. Številni primere lahko izključimo, vendar je problem izračuna celotne

grupe avtorfizmov teh grafov odprt za prihodnje raziskave.
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Appendices



APPENDIX A GAP code

A.1 Guv = (S3 o S2) ∩ A6 ≤ A5 twrφA6

g:= AlternatingGroup (6);;

h:= Stabiliser(g,1);;

hom1:= FactorCosetAction(g,h);;

k:= Stabiliser(h,2);;

hom2:= FactorCosetAction(h,k);;

p:=Group(KuKGenerators(g,hom1 ,hom2));

A5 := AlternatingGroup (5);;

A6 := AlternatingGroup (6);;

W := WreathProduct(A5,A6);;

P := AsSubgroup(W, p);; # P inside A_5^6 wr A_6

G := WreathProduct(SymmetricGroup (3), SymmetricGroup (2));;

Guv := Intersection(G, AlternatingGroup (6));;

# now we try to find Guv inside P

L:=[];;

for subp in AllSubgroups(P) do

if IsIsomorphicGroup(Guv , subp) then Add(L,subp); fi; od; # all

Guv_i in P

for g in L do

Display(Size(Centralizer(Socle(W), g))); od; # centralizer of Guv_i

in socW -> trivial

L2 := [];;

for group in L do

for subgp in AllSubgroups(group) do

if Size(subgp) = 9 and IsNormal(group , subgp) then Add(L2 , subgp);

fi; od; od;

for g in L2 do

Display(Size(Centralizer(Socle(W), g))); od; # centralizer of K in

Guv_i in socW -> order 9



A.2 G = A5 twrφA6

A5 := AlternatingGroup (5);;

A6 := AlternatingGroup (6);;

W := WreathProduct(A5,A6);; # wreath product

g:= AlternatingGroup (6);;

h:= Stabiliser(g,1);;

hom1:= FactorCosetAction(g,h);;

k:= Stabiliser(h,2);;

hom2:= FactorCosetAction(h,k);;

p:=Group(KuKGenerators(g,hom1 ,hom2)); # p as P in the twisted wreath

P := AsSubgroup(W, p);; # P inside A_5^6 wr A_6

J := [];;

for k in [1..30] do

if k mod 5 = 1 then Add(J,k); fi; od;

Ti := [];; # T_i is the group in position i, each isomorphic to A_5

for i in J do

g1 := (i, i + 1, i + 2);

g2 := (i, i + 1, i + 2, i + 3, i + 4);

Add(Ti , Group(g1 , g2));

od;

Q := Normalizer(P, Ti[6]);;

Size(Q); # 60 = |A_5|

Qi := [];;

for t in Ti {[1..5]} do

Add(Qi , Normalizer(Q, t)); od; # each Qi is isomorphic to A_4

# define Ri as the subgp of Ti iso to Vi, normalized by Qi

Ri := [];; # Ri=Qi in Ti

for i in [1..5] do

for subgp in AllSubgroups(Ti[i]) do

if (IsNormal(Qi[i], subgp) and Size(subgp)=4) then

Add(Ri , subgp); fi; od; od;

gens_of_ri := [];;

for r in Ri do

gen:= GeneratorsOfGroup(r);

Add(gens_of_ri , gen [1]);



Add(gens_of_ri , gen [2]);

od; # list with all gens of Ri

M := Group(gens_of_ri);;

MQ := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(M)))

;;

# in Magma , asked for NormalSubgroups

MQ := PermutationGroup <30 | (1,5)(2,3) ,(1,3)(2,5) ,(6, 9)(8,10) ,(6, 8)

(9,10) ,(11,15) (12 ,14) ,(11,12) (14 ,15) ,(16,19) (17 ,18) ,(16,17) (18 ,19)

,(22,24) (23 ,25) ,(22,25) (23 ,24) ,(2,5,3)(6,24,11)(7,21,13)(8,22,14)

(9,25,12) (10 ,23 ,15) (16 ,19 ,17) (26 ,27 ,28) ,(1,2,5)(6,24,18)(7,21,20)

(8,25,19)(9,23,17) (10 ,22 ,16) (12 ,14 ,15) (27 ,28 ,29) ,(1,6,17)(2,10,18)

(3,8,19)(4,7,20)(5,9,16)(11 ,12 ,15) (22 ,23 ,24) (27 ,29 ,30) >;

#NormalSubgroups(MQ);

# R0 of order 16:

R0 := Group( (1, 2)(3, 5)(11, 15)(12, 14)(16, 19)(17, 18)(22, 25)(23,

24) ,(1, 5)(2, 3)(6, 9)(8, 10)(11, 14)(12, 15)(22, 25)(23, 24) ,(6,

8)(9, 10)(11, 12)(14, 15)(16, 18)(17, 19)(22, 25)(23, 24), (6, 9)

(8, 10)(11, 15)(12, 14)(16, 17)(18, 19)(22, 24)(23, 25));;

IsNormal(Q,R0); #true

QR := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(R0))

);;

phiQRtoQ := FactorCosetAction(QR,Q);

Transitivity(Image(phiQRtoQ)); # returns 2



A.3 G = A5 twrφASL(2, 5)

LoadPackage("SONATA");; # to check isomorphism of groups

g1 := (2, 3, 5, 4)(6, 16, 21, 11)(7, 18, 25, 14)(8, 20, 24, 12)(9, 17,

23, 15)(10, 19, 22, 13);;

g2 := (2, 10, 21)(3, 14, 16)(4, 18, 11)(5, 22, 6)(7, 9, 17)(8, 13, 12)

(15, 25, 23)(19, 20, 24);;

g3 := (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18,

19, 20)(21, 22, 23, 24, 25);;

K := Group(g1,g2,g3);; # isomorphic to ASL(2,5)

T := AlternatingGroup (5);; # A_5

W := WreathProduct(T, K);; # W = T twr K

h1 := (1, 4)(2, 3)(6, 11, 21, 16)(7, 12, 22, 17)(8, 13, 23, 18)(9, 14,

24, 19)(10, 15, 25, 20)(26, 80, 101, 52)(27, 76, 102, 55)(28, 77,

103, 54)(29, 78, 104, 51)(30, 79, 105, 53)(31, 90, 121, 70)(32,

86, 122, 66)(33, 87, 123, 67)(34, 88, 124, 68)(35, 89, 125, 69)

(36, 100, 116, 60)(37, 96, 117, 56)(38, 97, 118, 57)(39, 98, 119,

58)(40, 99, 120, 59)(41, 82, 115, 72)(42, 85, 113, 75)(43, 83,

111, 73)(44, 84, 112, 74)(45, 81, 114, 71)(46, 95, 106, 65)(47,

91, 107, 61)(48, 92, 108, 62)(49, 93, 109, 63)(50, 94, 110, 64);;

h2 := (3, 4, 5)(6, 46, 101)(7, 47, 102)(8, 48, 103)(9, 49, 104)(10,

50, 105)(11, 66, 76)(12, 67, 77)(13, 68, 78)(14, 69, 79)(15, 70,

80)(16, 86, 55)(17, 87, 54)(18, 88, 51)(19, 89, 53)(20, 90, 52)

(21, 106, 26)(22, 107, 27)(23, 108, 28)(24, 109, 29)(25, 110, 30)

(31, 42, 81)(32, 45, 82)(33, 41, 83)(34, 43, 84)(35, 44, 85)(36,

61, 56)(37, 62, 57)(38, 63, 58)(39, 64, 59)(40, 65, 60)(71, 121,

113)(72, 122, 114)(73, 123, 115)(74, 124, 111)(75, 125, 112)(91,

96, 116)(92, 97, 117)(93, 98, 118)(94, 99, 119)(95, 100, 120);;

h3 := (1, 6, 14, 19, 21)(2, 7, 13, 18, 22)(3, 8, 12, 17, 23)(4, 9, 11,

16, 24)(5, 10, 15, 20, 25)(26, 33, 37, 41, 46)(27, 31, 39, 42,

47)(28, 32, 36, 44, 49)(29, 34, 40, 45, 50)(30, 35, 38, 43, 48)

(51, 59, 64, 68, 71)(52, 56, 65, 67, 72)(53, 57, 62, 69, 73)(54,

60, 63, 66, 74)(55, 58, 61, 70, 75)(76, 85, 90, 91, 98)(77, 84,

86, 93, 100)(78, 81, 88, 94, 99)(79, 83, 89, 92, 97)(80, 82, 87,

95, 96)(101, 106, 115, 117, 123) (102, 107, 113, 119, 121) (103,

109, 112, 116, 122) (104, 110, 114, 120, 124) (105, 108, 111, 118,

125);;

P := AsSubgroup(W, Group(h1, h2, h3));; # P \cong K inside TW

J := [];;

for k in [1..125] do

if k mod 5 = 1 then Add(J,k); fi; od;



Ti := [];; # T_i is the group in position i, each isomorphic to A_5

for i in J do

g1 := (i, i + 1, i + 2);

g2 := (i, i + 1, i + 2, i + 3, i + 4);

Add(Ti , Group(g1 , g2));

od;

Q := Normalizer(P, Ti[25]) ;;

Size(Q); # 120 = |SL(2,5)|

Qi := [];;

for t in Ti {[1..24]} do

Add(Qi , Normalizer(Q, t)); od; # each Qi is cyclic of order 5

Ri := [];; # Ri=Qi in Ti

for i in [1..24] do

for subgp in AllSubgroups(Ti[i]) do

if (IsNormal(Qi[i], subgp) and Size(subgp)=5) then

Add(Ri , subgp); fi; od; od;

# create group S:= group <R1, ..., R24 >

gens_of_ri := [];;

for r in Ri do

gen:= GeneratorsOfGroup(r);

Add(gens_of_ri , gen [1]); od; # list with all gens of Ri

S := Group(gens_of_ri);;

M := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(S)))

;;

# we move on to Magma to find generators of M



# from Magma

M:= PermutationGroup <125|(1 ,2 ,3 ,5 ,4) (6 ,39 ,70 ,100 ,105) (7 ,40 ,66 ,96 ,101)

(8 ,36 ,67 ,97 ,102) (9 ,37 ,68 ,98 ,103)(10,38,69,99, 104)

(11 ,73 ,107 ,45 ,77) (12 ,74 ,108 ,41 ,78) (13 ,75 ,109 ,43 ,79)

(14 ,71 ,110 ,44 ,80) (15 ,72 ,106 ,42 ,76) (16 ,83 ,47 ,114 ,54)

(17 ,84 ,48 ,115 ,51) (18 ,85 ,49 ,111 ,53) (19 ,81 ,50 ,112 ,52)

(20 ,82 ,46 ,113 ,55) (21 ,119 ,90 ,60 ,30) (22 ,120 ,86 ,56 ,26)

(23 ,116 ,87 ,57 ,27) (24 ,117 ,88 ,58 ,28) (25 ,118 ,89 ,59 ,29)

(31 ,34 ,32 ,35 ,33) (61 ,63 ,65 ,62 ,64) (91 ,93 ,95 ,92 ,94)

(121 ,124 ,122 ,125 ,123), (1 ,6 ,101 ,92 ,89 ,117) (2 ,8 ,105 ,94 ,90 ,118)

(3 ,9 ,102 ,91 ,87 ,119) (4 ,7 ,104 ,95 ,88 ,120) (5 ,10 ,103 ,93 ,86 ,116)

(11 ,99 ,58 ,82 ,22 ,40) (12 ,96 ,59 ,85 ,24 ,39) (13 ,98 ,56 ,81 ,23 ,38)

(14 ,97 ,57 ,83 ,21 ,37) (15 ,100 ,60 ,84 ,25 ,36) (16 ,68 ,50 ,80 ,27 ,75)

(17 ,67 ,47 ,76 ,30 ,71) (18 ,70 ,48 ,78 ,29 ,72) (19 ,69 ,46 ,79 ,26 ,73)

(20 ,66 ,49 ,77 ,28 ,74) (31 ,45 ,108 ,64 ,55 ,111) (32 ,44 ,109 ,63 ,54 ,112)

(33 ,41 ,106 ,62 ,53 ,115) (34 ,43 ,107 ,61 ,52 ,113) (35 ,42 ,110 ,65 ,51 ,114)

(121 ,124 ,125), (1,3,4,2,5), (6,9,7,8,10), (11 ,14 ,12 ,13 ,15),

(16 ,18 ,19 ,17 ,20), (21 ,24 ,23 ,25 ,22), (26 ,29 ,27 ,28 ,30),

(31 ,32 ,33 ,34 ,35), (36 ,38 ,39 ,37 ,40), (41 ,44 ,45 ,42 ,43),

(46 ,47 ,49 ,50 ,48), (51 ,52 ,53 ,54 ,55), (56 ,59 ,57 ,58 ,60),

(61 ,62 ,63 ,64 ,65), (66 ,67 ,69 ,70 ,68), (71 ,74 ,75 ,72 ,73),

(76 ,79 ,78 ,80 ,77), (81 ,84 ,82 ,83 ,85), (86 ,89 ,87 ,88 ,90),

(91 ,92 ,93 ,94 ,95), (96 ,97 ,99 ,100 ,98), (101 ,102 ,104 ,105 ,103),

(106 ,109 ,108 ,110 ,107), (111 ,114 ,113 ,115 ,112),

(116 ,117 ,119 ,120 ,118) >;

N:= NormalSubgroups(M : OrderEqual :=25);

X:=N[1]‘ subgroup;

X.1;

X.2;

# back to GAP

X:=Group ((1, 2, 3, 5, 4)(6, 10, 8, 7, 9)(16, 20, 17, 19, 18)(21, 25,

24, 22, 23)(31, 35, 34, 33, 32)(36, 39, 40, 38, 37)(41, 42, 44,

43, 45)(46, 47, 49, 50, 48)(51, 53, 55, 52, 54)(56, 58, 59, 60,

57)(61, 65, 64, 63, 62)(71, 73, 72, 75, 74)(76, 77, 80, 78, 79)

(86, 89, 87, 88, 90)(91, 94, 92, 95, 93)(96, 100, 97, 98, 99)(101,

102, 104, 105, 103) (106, 108, 107, 109, 110) (111, 115, 114, 112,

113) (116, 118, 120, 119, 117), (1, 5, 2, 4, 3)(11, 15, 13, 12, 14)

(16, 17, 18, 20, 19)(21, 23, 22, 24, 25)(26, 27, 30, 29, 28)(31,

33, 35, 32, 34)(36, 40, 37, 39, 38)(46, 48, 50, 49, 47)(56, 59,

57, 58, 60)(61, 63, 65, 62, 64)(66, 70, 67, 68, 69)(71, 74, 75,

72, 73)(76, 80, 79, 77, 78)(81, 84, 82, 83, 85)(91, 95, 94, 93,

92)(96, 99, 98, 97, 100) (101, 102, 104, 105, 103) (106, 108, 107,

109, 110) (111, 115, 114, 112, 113) (116, 118, 120, 119, 117));; # X

is of order 25

# <X,Q> as a subgroup of W



X_Q := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(X))

);;

IsSubgroup(W, X_Q);

phiXQtoQ := FactorCosetAction(X_Q ,Q);

Transitivity(Image(phiXQtoQ)); # returns 2

Intersection(P, X_Q) = Q; # true

PQ := Group(Concatenation(GeneratorsOfGroup(X_Q), GeneratorsOfGroup(P)

));;

W = PQ; # true so the graph is connected



A.4 G = PSL(2, 7) twrφASL(2, 7)

g1 := (2, 4, 3, 7, 5, 6)(8, 36, 29, 43, 15, 22)(9, 39, 31, 49, 19, 27)

(10, 42, 33, 48, 16, 25)(11, 38, 35, 47, 20, 23)(12, 41, 30, 46,

17, 28)(13, 37, 32, 45, 21, 26)(14, 40, 34, 44, 18, 24);;

g2 := (2, 14, 43)(3, 20, 36)(4, 26, 29)(5, 32, 22)(6, 38, 15)(7, 44,

8)(9, 13 ,37)(10, 19, 30)(11, 25, 23)(12, 31, 16)(17, 18, 24)(21,

49, 45)(27, 42,46)(28, 48, 39)(33, 35, 47)(34, 41, 40);;

g3 := (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)(15, 16, 17, 18,

19, 20, 21)(22, 23, 24, 25, 26, 27, 28)(29, 30, 31, 32, 33, 34,

35)(36, 37, 38, 39, 40, 41, 42)(43, 44, 45, 46, 47, 48, 49);;

A := Group(g1,g2,g3);;

T := Group( [ (3,5,4)(6,8,7), (1,8,2)(5,7,6) ] );; #PSL(2,7)

W:= WreathProduct(T,A);;

g:=A;;

h:= Stabiliser(g,1);;

hom1:= FactorCosetAction(g,h);;

k:= Normaliser(h,SylowSubgroup(h,7));;

hom2:= FactorCosetAction(h,k);;

p:=Group(KuKGenerators(g,hom1 ,hom2));; # ASL(2,7) as the point

stabilizer in TW

Q:= Subgroup(p,[p.1,p.2]); # build Q using ASL(2,7)

Orbits(Q);

A8:= AsSubgroup(SymmetricGroup (392),AlternatingGroup (8));

IsNormal(Q, A8);

for subgp in ConjugateSubgroups(A8 , T) do

if IsNormal(Q, subgp) then Display(subgp); fi; od; # try to find T

in A8

T := Group( [ (3,5,4)(6,8,7), (1,8,2)(5,7,6) ] )

WW := Group(Concatenation(GeneratorsOfGroup(T), GeneratorsOfGroup(p)))

;; ## we build WW as the group T wr p because p does not sit

inside W when using KuK Generators function

n:= NormalClosure(WW, T); # the smallest normal subgroup of WW

containing n

Size(Intersection(n, p));

Ti := ConjugateSubgroups(WW , T);;

T2 := Ti[2];;

Q2:= Normalizer(Q,T2);;

for subgp in AllSubgroups(T2) do

if (IsNormal(Q2 , subgp) and Size(subgp)=7) then R2 := subgp;

fi;od;



Ri:= ConjugateSubgroups(Q, R2);;

gens_of_ri := [];;

for r in Ri do

gen:= GeneratorsOfGroup(r);

Add(gens_of_ri , gen [1]); od; # list with all gens of Ri

S:=Group(gens_of_ri);;

M := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(S)))

;;

Size(M);

GeneratorsOfGroup(M);

# Magma

M := PermutationGroup <392 |( 3, 5, 4)( 6, 8, 7)( 9, 89, 33, 57,

41, 17)( 10, 90, 34, 58, 42, 18)( 11, 93, 37, 61, 45, 19)( 12,

91, 35, 59, 43, 20)( 13, 92, 36, 60, 44, 21)( 14, 96, 40, 64, 48,

22) ( 15, 94, 38, 62, 46, 23)( 16, 95, 39, 63, 47, 24)( 25,

49,111,130, 98, 71)( 26, 50,108,131, 99, 68)( 27, 51,105,129, 97,

65)( 28, 52,112,133 ,101 , 72)( 29, 53,109,134 ,102 , 69)( 30,

54,106,132 ,100 , 66)( 31, 55,110,135 ,103 , 70)( 32, 56,107,136 ,104 ,

67)( 73,305,163, 83 ,291 ,155)( 74,306,166, 81 ,289 ,153)( 75,307,162,

82 ,290 ,154)( 76,308,165, 86 ,294 ,158)( 77,309,168, 84 ,292 ,156)(

78,310,161, 85 ,293 ,157)( 79,311,164, 87 ,295 ,159)

(80 ,312 ,167 ,88 ,296 ,160) (113 ,313 ,337 ,177 ,205 ,213)

(114 ,314 ,338 ,178 ,202 ,210) (115 ,315 ,339 ,181 ,203 ,211)

(116 ,316 ,340 ,179 ,207 ,215) (117 ,317 ,341 ,180 ,206 ,214)

(118 ,318 ,342 ,184 ,201 ,209) (119 ,319 ,343 ,182 ,208 ,216)

(120 ,320 ,344 ,183 ,204 ,212) (121 ,300 ,377 ,385 ,353 ,227)

(122 ,303 ,383 ,390 ,358 ,229) (123 ,302 ,384 ,391 ,359 ,231)

(124 ,298 ,380 ,387 ,355 ,226) (125 ,299 ,378 ,386 ,354 ,225)

(126 ,304 ,379 ,389 ,357 ,228) (127 ,297 ,381 ,388 ,356 ,230)

(128 ,301 ,382 ,392 ,360 ,232) (137 ,345 ,189 ,193 ,169 ,257)

(138 ,346 ,186 ,194 ,170 ,258) (139 ,347 ,190 ,195 ,171 ,259)

(140 ,348 ,187 ,196 ,172 ,260) (141 ,349 ,191 ,197 ,173 ,261)

(142 ,350 ,188 ,198 ,174 ,262) (143 ,351 ,185 ,199 ,175 ,263)

(144 ,352 ,192 ,200 ,176 ,264) (145 ,329 ,246 ,370 ,362 ,276)

(146 ,330 ,242 ,372 ,364 ,275) (147 ,331 ,241 ,375 ,367 ,274)

(148 ,332 ,243 ,369 ,361 ,273) (149 ,333 ,248 ,371 ,363 ,280)

(150 ,334 ,247 ,374 ,366 ,279) (151 ,335 ,245 ,373 ,365 ,278)

(152 ,336 ,244 ,376 ,368 ,277) (217 ,236 ,323 ,283 ,265 ,249)

(218 ,235 ,321 ,281 ,271 ,250) (219 ,234 ,322 ,282 ,268 ,251)

(220 ,233 ,326 ,286 ,266 ,252) (221 ,240 ,



(222 ,239 ,325 ,285 ,269 ,254)

(223 ,238 ,327 ,287 ,270 ,255) (224 ,237 ,328 ,288 ,267 ,256) ,( 1, 3, 2)( 4,

6, 5)( 9, 74, 27)( 10, 75, 25)( 11, 78, 28)( 12, 73, 26)( 13,

77, 30)( 14, 80, 32)( 15, 76, 29)( 16, 79, 31)

( 17,113, 51)( 18,114, 53)( 19,115, 50)( 20,116, 49)( 21,117, 55)(

22,118, 54)( 23,119, 56)( 24,120, 52)( 33,177, 97)( 34 ,178 ,102)(

35,179, 98)( 36 ,180 ,103)( 37,181, 99)( 38 ,182 ,104)

( 39 ,183 ,101)( 40 ,184 ,100)( 41 ,193 ,105)( 42 ,194 ,106)( 43 ,195 ,107)(

44 ,196 ,108)( 45 ,197 ,109)( 46 ,198 ,110)( 47 ,199 ,111)( 48 ,200 ,112)(

57, 81 ,129)( 58, 82 ,130)( 59, 83 ,131)( 60, 84 ,132)

( 61, 85 ,133)( 62, 86 ,134)( 63, 87 ,135)( 64, 88 ,136)( 65, 89 ,137)( 66,

90 ,138)( 67, 91 ,139)( 68, 92 ,140)( 69, 93 ,141)( 70, 94 ,142)( 71,

95 ,143)( 72, 96 ,144) (121 ,364 ,233) (122 ,361 ,234)

(123 ,362 ,235) (124 ,367 ,236) (125 ,365 ,237) (126 ,363 ,238) (127 ,368 ,239)

(128 ,366 ,240) (145 ,377 ,282) (146 ,378 ,283) (147 ,379 ,281) (148 ,380 ,285)

(149 ,381 ,286) (150 ,382 ,284) (151 ,383 ,287) (152 ,384 ,288)

(153 ,247 ,289) (154 ,245 ,291) (155 ,242 ,293) (156 ,248 ,296) (157 ,246 ,295)

(158 ,243 ,290) (159 ,244 ,292) (160 ,241 ,294) (161 ,276 ,311) (162 ,278 ,305)

(163 ,275 ,310) (164 ,277 ,309) (165 ,273 ,307) (166 ,279 ,306)

(167 ,274 ,308) (168 ,280 ,312) (169 ,257 ,324) (170 ,263 ,323) (171 ,260 ,322)

(172 ,258 ,321) (173 ,264 ,328) (174 ,261 ,327) (175 ,262 ,326) (176 ,259 ,325)

(185 ,249 ,346) (186 ,250 ,348) (187 ,251 ,347) (188 ,252 ,351)

(189 ,253 ,345) (190 ,254 ,352) (191 ,255 ,350) (192 ,256 ,349) (201 ,212 ,303)

(202 ,209 ,300) (203 ,210 ,297) (204 ,215 ,304) (205 ,213 ,301) (206 ,211 ,298)

(207 ,216 ,302) (208 ,214 ,299) (217 ,372 ,225) (218 ,375 ,228)

(219 ,370 ,227) (220 ,371 ,230) (221 ,374 ,232) (222 ,369 ,226) (223 ,373 ,229)

(224 ,376 ,231) (265 ,387 ,331) (266 ,385 ,330) (267 ,386 ,335) (268 ,390 ,332)

(269 ,388 ,336) (270 ,389 ,333) (271 ,391 ,329) (272 ,392 ,334)

(313 ,337 ,360) (314 ,342 ,353) (315 ,338 ,356) (316 ,343 ,359) (317 ,339 ,355)

(318 ,344 ,358) (319 ,341 ,354) (320 ,340 ,357) ,(58,59,61,63,60,64,62)

,(10,12,11,16,13,14,15) ,(34,35,37,39,36,40,38),

(18 ,20 ,19 ,24 ,21 ,22 ,23) ,(90,91,93,95,92,96,94) ,(42,43,45,47,44,48,46)

,(305 ,310 ,311 ,309 ,312 ,308 ,307) ,(290 ,291 ,293 ,295 ,292 ,296 ,294)

,(314 ,316 ,315 ,320 ,317 ,318 ,319) ,(201 ,208 ,202 ,207 ,203 ,204 ,206),

(170 ,171 ,173 ,175 ,172 ,176 ,174) ,(346 ,347 ,349 ,351 ,348 ,352 ,350)

,(130 ,131 ,133 ,135 ,132 ,136 ,134) ,(25,26,28,31,30,32,29) ,( 98,

99 ,101 ,103 ,100 ,104 ,102) ,(49,50,52,55,54,56,53)

,(66,67,69,71,68,72,70),

(106 ,107 ,109 ,111 ,108 ,112 ,110) ,(273 ,278 ,275 ,276 ,277 ,280 ,274)

,(241 ,243 ,245 ,242 ,246 ,244 ,248) ,(353 ,359 ,356 ,357 ,355 ,358 ,354)

,(297 ,304 ,298 ,303 ,299 ,300 ,302) ,(321 ,325 ,327 ,323 ,322 ,328 ,326),

(249 ,251 ,256 ,252 ,250 ,254 ,255) ,(82,83,85,87,84,88,86)

,(73,78,79,77,80,76,75) ,(178 ,179 ,181 ,183 ,180 ,184 ,182)

,(114 ,116 ,115 ,120 ,117 ,118 ,119) ,(138 ,139 ,141 ,143 ,140 ,144 ,142)

,(194 ,195 ,197 ,199 ,196 ,

200 ,198) ,(161 ,164 ,168 ,167 ,165 ,162 ,163) ,(154 ,155 ,157 ,159 ,156 ,160 ,158)



,(338 ,340 ,339 ,344 ,341 ,342 ,343) ,(209 ,216 ,210 ,215 ,211 ,212 ,214)

,(258 ,259 ,261 ,263 ,260 ,264 ,262) ,(185 ,187 ,192 ,188 ,186 ,190 ,191

) ,(121 ,123 ,127 ,126 ,124 ,122 ,125) ,(385 ,391 ,388 ,389 ,387 ,390 ,386)

,(265 ,268 ,267 ,266 ,271 ,269 ,270) ,(233 ,235 ,239 ,238 ,236 ,234 ,237)

,(361 ,365 ,364 ,362 ,368 ,363 ,367) ,(329 ,336 ,333 ,331 ,332 ,335 ,330),

(217 ,219 ,224 ,220 ,218 ,222 ,223) ,(281 ,285 ,287 ,283 ,282 ,288 ,286)

,(145 ,152 ,149 ,147 ,148 ,151 ,146) ,(369 ,373 ,372 ,370 ,376 ,371 ,375)

,(225 ,227 ,231 ,230 ,228 ,226 ,229) ,(377 ,384 ,381 ,379 ,380 ,383 ,378) >;

N:= NormalSubgroups(M : OrderEqual :=49);

X:=N[1]‘ subgroup;

X.1;

X.2;

n1 := (25, 29, 32, 30, 31, 28, 26)(49, 52, 54, 53, 50, 55, 56)(66, 68,

67, 72, 69, 70,71)(73, 78, 79, 77, 80, 76, 75)(82, 86, 88, 84,

87, 85, 83)(98, 104, 103, 99, 102, 100, 101) (106, 111, 110, 109,

112, 107, 108) (114, 118, 120, 116,119, 117, 115) (121, 127, 124,

125, 123, 126, 122) (130, 131, 133, 135, 132, 136, 134) (138, 143,

142, 141, 144, 139, 140) (145, 148, 152, 151, 149, 146 ,147) (154,

159, 158, 157, 160, 155, 156) (161, 165, 164, 162, 168, 163, 167)

(170, 174, 176, 172, 175, 173, 171) (178, 181, 180, 182, 179, 183,

184) (185, 190, 188, 187, 191, 186, 192) (194, 196, 195, 200, 197,

198, 199) (201, 207, 206, 202, 204, 208, 203) (209, 216, 210, 215,

211, 212 ,214) (217, 222, 220, 219, 223, 218, 224) (225, 229, 226,

228, 230, 231 ,227) (233, 236, 235, 234, 239, 237, 238) (241, 245,

246, 248, 243, 242 ,244) (249, 251, 256, 252, 250, 254, 255) (258,

261, 260, 262, 259, 263 ,264) (265, 266, 270, 267, 269, 268, 271)

(273, 280, 276, 278, 274, 277 ,275) (281, 287, 282, 286, 285, 283,

288) (290, 293, 292, 294, 291, 295 ,296) (297, 303, 302, 298, 300,

304, 299) (305, 308, 309, 310, 307, 312 ,311) (314, 317, 316, 318,

315, 319, 320) (321, 326, 328, 322, 323, 327, 325) (329, 330, 335,

332, 331, 333, 336) (338, 343, 342, 341, 344, 339, 340) (346, 347,

349, 351, 348, 352, 350) (353, 355, 359, 358, 356, 354 ,357) (361,

365, 364, 362, 368, 363, 367) (369, 370, 375, 372, 371, 373 ,376)

(377, 384, 381, 379, 380, 383, 378) (385, 390, 389, 391, 386, 387,

388);;

n2 := (10, 13, 12, 14, 11, 15, 16)(18, 23, 22, 21, 24, 19, 20)(25, 26,

28, 31, 30, 32,29)(34, 35, 37, 39, 36, 40, 38)(42, 45, 44, 46,

43, 47, 48)(49, 56, 55, 50,53, 54, 52)(58, 63, 62, 61, 64, 59, 60)

(66, 71, 70, 69, 72, 67, 68)(73, 79,80, 75, 78, 77, 76)(82, 88,

87, 83, 86, 84, 85)(90, 96, 95, 91, 94, 92,93)(98, 101, 100, 102,

99, 103, 104) (106, 108, 107, 112, 109, 110, 111) (114 ,120, 119,

115, 118, 116, 117) (121, 127, 124, 125, 123, 126, 122) (130,

134,136, 132, 135, 133, 131) (138, 142, 144, 140, 143, 141, 139)



(154, 160, 159,155, 158, 156, 157) (161, 168, 165, 163, 164, 167,

162) (170, 173, 172, 174,171, 175, 176) (178, 180, 179, 184, 181,

182, 183) (185, 191, 190, 186, 188,192, 187) (194, 195, 197, 199,

196, 200, 198) (201, 208, 202, 207, 203, 204 ,206) (209, 211, 216,

212, 210, 214, 215) (233, 236, 235, 234, 239, 237 ,238) (241, 248,

244, 246, 242, 245, 243) (249, 252, 255, 256, 254, 251 ,250) (258,

259, 261, 263, 260, 264, 262) (265, 266, 270, 267, 269, 268 ,271)

(273, 278, 275, 276, 277, 280, 274) (290, 295, 294, 293, 296,

291 ,292) (297, 298, 299, 302, 304, 303, 300) (305, 312, 310, 308,

311, 307 ,309) (314, 319, 318, 317, 320, 315, 316) (321, 322, 325,

328, 327, 326 ,323) (329, 330, 335, 332, 331, 333, 336) (338, 344,

343, 339, 342, 340 ,341) (346, 352, 351, 347, 350, 348, 349) (353,

358, 357, 359, 354, 355 ,356) (361, 365, 364, 362, 368, 363, 367)

(385, 390, 389, 391, 386, 387, 388);;

N:= Group( n1, n2 );;

N_Q := Group(Concatenation(GeneratorsOfGroup(Q), GeneratorsOfGroup(N))

);;

IsSubgroup(WW, N_Q);

phiNQtoQ := FactorCosetAction(N_Q ,Q);

Transitivity(Image(phiNQtoQ)); # returns 2

Intersection(p, N_Q) = Q; #true

PQ := Group(Concatenation(GeneratorsOfGroup(N_Q), GeneratorsOfGroup(p)

));;

WW = PQ;


