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1 Introduction

The concept of a strongly regular graph and that one of a finite commutative groups

are both well known. Let (ν, k, λ, µ) be an ordered quadruple of integer numbers. A

strongly regular graph with parameters (ν, k, λ, µ) is a non-complete, regular graph of

ν nodes with valency k, such that for each pair (a, b) of adjacent nodes, there are λ

nodes adjacent to both a and b, and for each pair (a, b) of not-adjacent nodes, there

are µ nodes adjacent to both a and b, see e.g. the book [9]. Such graph is also called

a (ν, k, λ, µ)-strongly regular graph. Let G be a finite group. A subset S of G is called

symmetric if for each s ∈ S, s−1 ∈ S also holds. Let us consider a symmetric subset S

of G, S not containing the neutral element e. We can build a graph having elements of

G as nodes; and given elements a, b ∈ G are adjacent if ab−1 ∈ S. This graph is known

in literature as Cayley graph, denoted by ΓG(S), see [9].

Strongly regular Cayley graphs are the main subjects of this thesis, and the abbre-

viation SRCG for strongly regular Cayley graph, and SRG for strongly regular graphs,

will be used throughout the text. For instance, it was proved that SRCG’s with so

called Paley parameters over an abelian p-group do exist if and only if the correspond-

ing group is isomorphic to Zpn ⊕ Zpn . Then Y. I. Leifman and M. E. Muzychuk [14]

studied the structure of SRCG’s over the group Zpn⊕Zpn using the Schur ring method,

assuming that p is an odd prime. That study led to a classification of these graphs.

Their paper [14] is the basis of this work.

More precisely, they studied the Schur ring W (G) whose basic quantities consist

of the generators of cyclic subgroups of the group G = Zpn ⊕Zpn . This was previously

proved by Bridges and Mena [3], [4] to be the unique maximal Schur ring over G for

which the irreducible characters of G take rational values on the basic quantities. The

main tools are the Hasse diagrams of cyclic and co-cyclic subgroups of Zpn⊕Zpn , which

turn out to be trees. Given an abelian group G, a co-cyclic subgroup is defined as a

subgroup H of G such that G/H is a cyclic group. The tree of cyclic subgroups is

denoted by the symbol ∆, the tree of co-cyclic groups is denoted by the symbol ∇.

Classes of equivalence are set up among irreducible characters having the same

kernel, and it is proved that kernels are co-cyclic groups. The first massive result is a

precise evaluation of the characters on the nodes of ∆.

For each element F ∈ ∆, those character value are positive if F ⊆ H, negative if
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|F | = p|F ∩H|, and 0 otherwise. This result is crucial to prove many other theorems

and lemmas.

The key property that a subset S of ∆ not containing the trivial subgroup could

have or not is homogeneity. This property regards the evaluation of the cardinality of

the set resulting from the intersection between S and the set of the sons of a generic

element H chosen into an appropriate subset of ∆. In the main theorem Y. I. Leifman

and M. E. Muzychuk characterize all the subsets of ∆ that correspond to strongly

regular graphs in terms of homogeneity, see [14, Theorem 1.6].

There are essentially two aims in this thesis:

1. To create coding tools for calculating SRCG’s over Zpn ⊕ Zpn (characters and

eigenvalues, calculation of cyclic and co-cyclic subgroups in a tree) based on the

results of Y. I. Leifman and M. E. Muzychuk [14].

2. To investigate SRCG’s over the group Z2n ⊕ Z2n .
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2 Strongly regular Cayley graphs

and rational S-rings over finite

abelian groups

In this chapter we will introduce some important and general concepts. Since there

are different topics from algebra and combinatorics involved together in this thesis,

we split this chapter in five sections. In the first one, we will discuss strongly regular

graphs. In the second one, we will define S-rings and S-modules. We will need to

introduce some notations and terminologies about trees, since we will do operations

on trees to manage the rational S-rings over finite commutative groups. Finally, in the

last two sections we will fix some concepts from representation theory and then we will

introduce strongly regular Cayley graphs.

2.1 Strongly regular graphs

Main references: the readers will receive more information on strongly regular graphs

from [9] and [2].

Definition 2.1.1. Let (ν, k, λ, µ) be an ordered quadruple of integer numbers. A

strongly regular graph is a non-complete, regular graph of ν nodes with valency k, such

that for each pair (a, b) of adjacent nodes, there are λ nodes adjacent to both a and

b, and for each pair (a, b) of not-adjacent nodes, there are µ nodes adjacent to both a

and b.

If Γ is a (ν, k, λ, µ)-strongly regular graph, then its complement Γ is also strongly

regular, the parameters of which are (ν, ν − 1− k, ν − 2k − 2 + µ, ν − 2k + λ).

Definition 2.1.2. Let Γ be a (ν, k, λ, µ)-strongly regular graph. Then Γ is said to be

trivial if one between Γ and Γ is not connected.

Lemma 2.1.1. Let Γ be a (ν, k, λ, µ)-strongly regular graph. Then the following

equality holds:

(ν − k − 1)µ = k(k − 1− λ). (2.1)
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Proof. Let (u, v) be an edge of Γ. There are λ vertices adjacent to both u and v, hence

there are k−1−λ vertices adjacent to u but not to v. Then there are exactly k(k−1−λ)

edges in Γ which connects vertices non-adjacent to v with vertices adjacent to v. On

the other hand, if (u, v) is not an edge of Γ, then u, v have µ common neighbours. Then

the numbers of edges connecting vertices non-adjacent to v with vertices adjacent to v

are µ(ν − k − 1).

Lemma 2.1.2. A strongly regular graph Γ is trivial if and only if µ = k or µ = 0.

Moreover, a trivial graph or its complementary graph is isomorphic to a disjoint union

of complete graphs Kn.

Proof. Γ is connected if and only if µ > 0 and its complement is connected if and only

if µ = ν − 2k + λ > 0.

It follows from eq.(2.1) that, if µ = k, then ν − 2k + λ = 0 and the graph Γ is

disconnected. Equation (2.1) implies also that, if µ = 0, then k = 0 (i.e. the set of

edges is the empty set) or λ = k − 1 (i.e. disjoint union of complete graphs Kn). If

µ = k then we reply the proof about the complementary graph.

Proposition 2.1.1. Let Γ be a graph with adjacency matrix A, which is neither

complete nor empty. Then Γ is strongly regular if and only if A2 is a linear combination

of A, I and J .

Proof. The ij-entry of A2 is equal to the number of walks of length 2 from i to j. If Γ

is strongly regular, then this number is k, λ or µ according to the fact whether i and j

are the same vertex, two adjacent vertices or two non-adjacent vertices. Then we can

write:

A2 = k · I + λ · A+ µ · (J − I − A).

The converse is almost the definition of strongly regular graph.

Corollary 2.1.1. Let Γ be a (ν, k, λ, µ)-strongly regular graph. Let ∆ = (λ − µ)2 +

4(k − µ). Then the eigenvalues of the adjacency matrix A are

k,
(λ− µ+

√
∆)

2
,

(λ− µ−
√

∆)

2
.

Definition 2.1.3. Let Fq be the finite field of q elements with q ≡ 1(mod 4). The

Paley graph P (q) is a strongly regular graph with parameters

(q,
q − 1

2
,
q − 5

4
,
q − 1

4
).

The nodes of P (q) are the elements of Fq, and given elements a, b ∈ Fq are adjacent if

and only if their difference a− b is a non-zero square in Fq.
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2.2 S-rings and S-modules

Definition 2.2.1. Let G be a multiplicative group. A group ring R[G] is a free

R-module with basis G and multiplication defined distributively using the given mul-

tiplication in G. In other words:(∑
x∈G

axx

)(∑
y∈G

byy

)
=
∑
x,y∈G

(axby)(xy),

where ax, by ∈ K.

Definition 2.2.2. Let R be a ring with unit 1. If K is a subset of a finite group G,

then the group ring element
∑

g∈K g ∈ R[G] is called a simple quantity and will be

denoted by K.

Definition 2.2.3. An R-submodule of R[G] with a basis {T 1 . . . T k} where T1, . . . , Tk

are mutually disjoint sets whose union is equal to G is called an S-module over G with

standard basis {T 1, . . . , T k}.

Definition 2.2.4. An S-module C over G is called a Schur ring (or S-ring for short)

over G if the following conditions are satisfied:

1. C is a subring of R[G],

2. 1 ∈ C,

3.
∑

g∈G cgg ∈ C =⇒
∑

g∈G cgg
−1 ∈ C.

A subset S of a group G is called symmetric if x ∈ S =⇒ x−1 ∈ S.

Definition 2.2.5. Let G be a group and let S be a symmetric subset of G, not

containing the neutral element of G. The Cayley graph with generating set S over G,

denoted by ΓG(S), is the graph having the elements of G as nodes, and two nodes f, g

are adjacent if and only if fg−1 ∈ S.

The following theorem is well known:

Theorem 2.2.1. The Cayley graph ΓG(S) is a strongly regular graph if and only if

〈1, S,G− S − 1〉 is an S-ring over G.

It is easy to prove that, if either {S}∪ {e} or G \S is a subgroup of G, then ΓG(S)

is a trivial strongly regular graph. We conclude this subsection with the definition of

a primitive S-ring.

Definition 2.2.6. An S-ring C over G is called primitive if K = {e} and K = G are

the only subgroups of G for which K ∈ C holds.
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2.3 Trees

Let us analyse the following rooted tree:

Root

c1

cc2cc1

b1

bb2bb1

a1

aa2aa1

Figure 1: A tree

We fix some general terminology. The length of a node of the tree is the number of

edges in the minimal path between the root and the node. If the node has a label N ,

then we indicate its length as l(N).

Example 2.3.1. Consider the rooted tree shown above. Then we have:

l(Root) = 0,

l(a1) = l(b1) = l(c1) = 1,

l(aa1) = l(aa2) = l(bb1) = l(bb2) = l(cc1) = l(cc2) = 2.

If two nodes S and P of a rooted tree are adjacent and l(S) = l(P ) + 1, then S is

called a son of P and P is called the father of S. This is also written as P = Father(S).

A subset B consisting of all the sons of a common father is said to be a block and

it is denoted by B = Sons(P ) if the common father is P . In this case P is also said to

be the father of the block B and we write P = Father(B).

Example 2.3.2. In the example above, bb1 is son of b1 and cc1 is not son of b1 since it

is not adjacent to b1. Furthermore, {cc1, cc2} = Sons(c1) is a block. But {cc1} is not

a block since this does not consists of all sons of c1. Note that, neither {cc1, bb1} is a

block.

Definition 2.3.1. A block set is a union of blocks.

Example 2.3.3. In the example above, {bb1, bb2} ∪ {a1, b1, c1} is a block set and

{aa1, aa2} ∪ {bb1, bb2} is also a block set.

Definition 2.3.2. Two subsets of a rooted tree are said to be block equivalent if their

symmetric difference is a block set.
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Example 2.3.4. We put bullets next to nodes belonging to two subsets A and B which

are block equivalent.

A:

Root

c1

cc2•cc1•

b1

bb2bb1

a1

aa2•aa1•

B:

Root

c1•

cc2cc1

b1•

bb2bb1

a1•

aa2aa1

Figure 2: Block equivalent sets

Let T be a rooted tree. Then we denote with Ti its subset collecting all the nodes

of T having length less or equal to i.

Example 2.3.5. If T is the one shown in the figure 3, then T1 is the one shown in the

figure 4

Root

c1

cc2,cc1

b1

bb2bb1

a1

aa2aa1

Figure 3: A tree T of length 2

Definition 2.3.3. Let T be a rooted tree and let N be a node of T . We define the

descendents Desj(N) of N inductively as follows:

Des1(N) = Sons(N), and

Desj(N) = {F : Father(F ) ∈ Desj−1(N)} if j > 1.
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Root

c1b1a1

Figure 4: Subset of the previous tree T - nodes of length ≤ 1

Example 2.3.6. The block set {aa1, aa2}∪{bb1, bb2}∪{cc1, cc2} = T2\T1 isDes2(Root).

Definition 2.3.4. Let T be a rooted tree. Then we can build up another tree T j.

Its notes are the sets Desj(N), N ∈ T . Define the relation ⊆j of T j by letting

Desj(N1) ⊆j Desj(N2) if and only if N1 ⊆ N2. This relation is partial order, and the

Hasse diagaram of the induced poset defines the tree T j.

Example 2.3.7. If T is the tree in fig. 5, then the T 1 is the tree in fig. 6.

Root

c1

cc2cc1

b1

bb2bb1

a1

aa2aa1

Figure 5: A Tree with leaves of length 2

{a1, b1, c1}

{cc1, cc2}{bb1, bb2}{aa1, aa2}

Figure 6: T 1 referred to the previous Tree

All the trees we will consider in this work are rooted, and the valency of each node

of T , except the leaves which have valency 1, is p+1, where p is a certain prime number.
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2.4 Representations, characters and abelian groups

Main references: the readers can find more information on these topics from [12].

Definition 2.4.1. Let G be a group. A representation of G over a field F is an

homomorphism

φ : G→ GL(n,F)

for some n. The degree of a representation is the integer n.

Example 2.4.1. The dihedral group D8 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉 has the

following representation:

φ(1) =

(
1 0

0 1

)
, φ(a) =

(
0 1

−1 0

)
, φ(a2) =

(
−1 0

0 −1

)
, φ(a3) =

(
0 −1

1 0

)
,

φ(b) =

(
1 0

0 −1

)
, φ(ab) =

(
0 −1

−1 0

)
, φ(a2b) =

(
−1 0

0 1

)
, φ(a3b) =

(
0 1

1 0

)
.

Definition 2.4.2. A representation φ is faithful if ker(φ) = {1}.

Definition 2.4.3. Two representations φ, ρ are equivalent if they have the same degree

and if there exists an invertible matrix T such that ∀g ∈ G : T−1 · φ(g) · T = ρ(g).

Definition 2.4.4. Given a representation φ, the corresponding character χ is the

function from G to F such that χ(g) = tr(φ(g)) for each g ∈ G.

We now introduce the concept of F[G]-module and we show there is a close connec-

tion between F[G]-modules and representations of G over F.

Definition 2.4.5. Let V be a vector space over F and let G be a group. Then V is an

F[G]-module if a multiplication v · g (v ∈ V, g ∈ G) is defined satisfying the following

conditions for all u, v ∈ V, λ ∈ F, g, h ∈ G:

� v · g ∈ V ,

� (v · g) · h = v · (gh),

� v · 1 = v,

� (λv) · g = λ(v · g),

� (u+ v) · g = u · g + v · g,

We observe that the function f : V → V, v 7→ v · g, g ∈ G is an endomorphism of V .

Definition 2.4.6. Let V be an F[G]-module, and let B be a basis for V . For each

g ∈ G, let [g]B denote the matrix of the endomorphism v → v · g of V , relative to the

basis B.
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The following theorem puts in relationship the concept of a representation and the

one of an F[G]-module.

Theorem 2.4.1. 1. If ρ : G → GL(n,F) is a representation of G over F, then

V = Fn is an F[G]-module whose multiplication v·g is defined by vρ(g). Moreover,

there is a basis B such that ρ(g) = [g]B for all g ∈ G.

2. Assume that V is an F[G]-module and B a basis for V . Then the function

ρ : G→ GL(n,F) defined by ρ(g) = [g]B, g ∈ G is a representation of G over F.

Given an F[G]-module V , an F[G]-submodule of V is a subspace W of V for which

w · g ∈ W for all g ∈ G,w ∈ W .

Definition 2.4.7. an F[G]-module V is said to be irreducible, if the only two F[G]-

submodules of V are {0} and V . Similarly, a representation ρ : G → GL(n,F) is

irreducible if the corresponding F[G]-module V = Fn is irreducible.

Definition 2.4.8. Let V and W be F[G]-modules. A function θ : V → W is an

F[G]-homomorphism if it is a linear trasformation and

θ(v) · g = θ(v · g).

An F[G]-isomorphism is an invertible F[G]-homomorphism.

The following two theorems are two milestones in the theory of representations.

They are the Maschke Theorem and the Schur’s Lemma.

Theorem 2.4.2. (Maschke Theorem) Let G be a finite group, let F = R or C,

and let V be an F[G]-module. If U is an F[G]-submodule of V , then there exists an

F[G]-submodule W such that V = U ⊕W .

Lemma 2.4.1. (Schur’s Lemma) Let V and W be two irreducible C[G]-modules

and let θ : V → W be an CG-homomorphism.

1. Then either θ is a CG-isomorphism or θv = 0 for all v ∈ V .

2. If θ is a CG-isomorphism, then θ is a scalar multiple of the identity endomorphism

1V .

One of the consequences of the Schur’s Lemma is that an irreducible representation

of an abelian group G has degree 1. Indeed, if V is irreducible and G is abelian,

then for v ∈ V and x, g ∈ G, vxg = vgx, and so the mapping f : v 7→ vx is an

C[G]-homomorphism from V to itself. Then, by the Schur’s lemma,

vx = λxv forall v ∈ V.

This implies that every subspace of V is a C[G]-submodule and by the hypotesis of

irreducibility, dim(V ) = 1.
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2.5 Cayley graphs

Main references: The readers can find more information on the topics of this section

from [3], [15], [14], [17].

Let Irr(G) denote the set of all irredicuble caharacters of a group G. A character is

irreducible if its representation is irreducible. We have already defined the concept of

a Cayley graph. It is interesting to find the conditions on G and on S, such that the

Cayley graph ΓG(S) turns out to be a strongly regular graph. A first great hypothesis

on G is if is it abelian or not. In this work, since now, we will consider only finite abelian

groups. Under this hypothesis, we can prove a first result: the following lemma.

Lemma 2.5.1. Let G be an abelian group, let S be a symmetric subset of G not

containing the neutral element. Let A be the adjacency matrix of the Cayley graph

ΓG(S). Then the rows of the character table of G form a complete set of eigenvectors

for A, and the eigenvector belonging to the character ψ has the eigenvalue ψ(S).

An important consequence of this lemma is that, if the Cayley graph is also strongly

regular, for the Corollary 2.1.1 and for the Lemma 2.5.1, the Theorem 5.0.1 is proved.

The following theorem shows the shape of a SRCG (strongly regular Cayley graph)

over a commutative group with non-rational eigenvalues.

Theorem 2.5.1. Let G be an abelian group of order ν and S be a symmetric subset

of G \ {e}. Suppose that there exists an (ν, k, λ, µ)-SRCG ΓG(S) such that δ =

(λ−µ)2+4(k−µ) is not a square. Then ΓG(S) is the Paley graph P (ν) with parameters

(ν, ν−1
2
, ν−5

4
, ν−1

4
) and ν = p2η+1 for some p ≡ 1(mod 4) and integer η.

Definition 2.5.1. Let G be a finite abelian group of exponent m. Let P(G) be the

group of automorphisms of G of the form x → xt where t ranges through all residues

which are relatively prime to m. The orbits of this action are in a bijection with the

cyclic subgroups of G. If H 6 G, then the set OH of generators of H is an orbit of

P(G). Denote the S-module (with C as ring R) with standard basis of simple quantities

OH by W(G).

Theorem 2.5.2. Let G be a finite abelian group. Then the S-module W (G) is an

S-ring over G. Moreover, W (G) is the unique maximal S-ring over G for which the

values of the irreducible characters of G on its standard basis are rational.

Definition 2.5.2. Let G be a finite abelian group. Any S-ring over G contained in

W (G) is called a rational S-ring over G.

Definition 2.5.3. Let λ : G×G→ C∗ satisfy

1. λ(g, h) = λ(h, g),
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2. λ(g, h1h2) = λ(g, h1)λ(g, h2),

3. ∀g ∈ G : λ(g, h) = 1 =⇒ h = e.

Then g 7→ λ(g,−) is called a symmetric isomorphism of G with its character group.

Definition 2.5.4. Let ΓG(S) be an SRCG and λ be a symmetric isomorphism of G

with its character group. Define S+ such that e 6∈ S+ and, for each g ∈ G, g 6= e it

holds that g ∈ S+ if and only if
∑

h∈S λ(g, h) = r, where r is the largest non-principal

eigenvalue of ΓG(S). Then ΓG(S+) is called the dual graph to ΓG(S) with respect to λ.

Theorem 2.5.3. ΓG(S+) is a non-trivial SRCG if and only if ΓG(S) is a non trivial

SRCG and in this case (r − s)(r+ − s+) = |G|, where r+, s+ are the non-principal

eigenvalues of ΓG(S+).
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3 Complex characters of rational

S-rings over finite abelian groups

In this chapter, we will prove some properties of characters of rational S-rings over

finite abelian groups, giving also some examples. The most important result is a direct

calculation of a character of the set of generators of a cyclic subgroup H of G, that

strictly depends on the order of H

We remind that ϕ is the Euler function and that µ is the Möbius function:

µ(n) =


1 if n = p1 · · · pi, iis odd,

0 if ∃pk s.t. pk | n, k 6= 1, pk > 1,

−1 if n = p1 · · · pi, i is even.

We remind also the Möbius inversion formula:

F (n) =
∑
d|n

f(d) =⇒ f(n) =
∑
d|n

µ(
n

d
)F (d) =

∑
d|n

µ(d)F
(n
d

)
(3.1)

We continue with an alternative definition of a character of an abelian group G

(compare with Definition 2.16).

Definition 3.0.1. Let G be an abelian group of order n. A character of G is an

homomorphism from G into the non-zero complex numbers, viewed as a multiplicative

group.

Now, if an element g of G has order n, then it is easy to prove that each character

σ sends that element g to some n-th root of unity. Indeed 1 = σ(e) = σ(gn) = (σ(g))n,

where e is the neutral element of G.

We know that characters are homomorphisms. This implies that there is a binary

operation ◦ on Irr(G) defined by

[χ ◦ ψ](g) = χ(g) · ψ(g), g ∈ G,

where · is the multiplication on complex numbers.

Theorem 3.0.1. The set Irr(G) together with the multiplication ◦ is a group, which

is isomorphic to G.
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In order to show some important properties of characters, we give some examples.

Example 3.0.1. Let H be the following subgroup of Z33 ⊕ Z33 :

H = {(a, a) : a ∈ {0, 1, . . . , 26}},

and let ψ ∈ Irr(H) be the character sending all elements in the form (3a, b), a, b ∈
{0, . . . , 26} to 1, all elements in the form (3a − 1, b) to (

√
3i − 1)/2, and all elements

in the form (3a− 2, b) to −(
√

3i+ 1)/2. Then

ψ(H) = 9 · (1− 1) = 0.

Indeed, it is easy to check that the image ψ(H) = {1, (
√

3i− 1)/2,−(
√

3i+ 1)/2}, and

that each element of this image has correspondence with 9 members of H.

Example 3.0.2. Let us consider now another subgroup K 6 Z33 ⊕ Z33 defined as:

K = {(0, 0), (6, 1), (12, 2), (18, 3), (24, 4), (3, 5), (9, 6), (15, 7), (21, 8), (0, 9)

(6, 10), (12, 11), (18, 12), (24, 13), (3, 14), (9, 15), (15, 16), (21, 17), (0, 18),

(6, 19), (12, 20), (18, 21), (24, 22), (3, 23), (9, 24), (15, 25), (21, 26)}.

If we calculate ψ(K), we get ψ(K) = 27 = |K|. Indeed ψ(K) = {1} and the only

element of the image has correspondence with all elements of K.

Proposition 3.0.1. The set of simple quantities which correspond to cyclic subgroups

of G forms a basis of W (G) called the subgroup basis.

Proof. Let Ci be a cyclic subgroup of G of order i. Then we can write Ci =
∑

k|iOk,

where Ok is the simple quantity corresponding to the cyclic subgroup Ck of Ci. Then

we apply the the Möbius inversion formula on that sum and we get the proof.

Let us consider now the groups and the character ψ we already introduced in the

previous example. If we define the character ρ, having the same kernel as ψ but

sending all elements in the form (3a − 1, b) to −(
√

3i + 1)/2 and all elements in the

form (3a − 2, b) to (
√

3i − 1)/2, we will find that ψ(H) = ρ(H) and ψ(K) = ρ(K).

This is not a random result. Whatever we choose a character ψ, then the following

sentence is true for a any cyclic subgroup H 6 G of order |H| = n and any character

ψ ∈ Irr(H):

∃ m s.t. ∀g ∈ H,ψm(g) = 1→ m | n. (3.2)

Now, if m | n and m 6= 1, then the group H is transformed into a n
m

copies of the

identical set A of m elements, where

A = {e
2aπi
m : a ∈ {1, . . . ,m}}.
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If we sum together all the elements of A we find the complex number e
2πi
m ·(
∑m−1

a=0 e
2πi a

m ).

Now, (
∑m−1

a=0 e
2πi a

m ) = (e2πi−1)

e2πi/m−1
= 0. If m = 1, then all the elements of H are sent to 1

and ψ(H) = |H| = n. We obtain that:

ψ(H) =

|H| if H ⊆ ker(ψ),

0 if H 6⊆ ker(ψ).
(3.3)

This important result is emphasized in the following proposition.

Proposition 3.0.2. Let ρ, σ ∈ Irr(G). Then ρ and σ are equal on W (G) if and only

if ker(ρ) = ker(σ).

Proof. It follows from Proposition 3.0.1 that the subgroup basis is a basis for W (G).

This means that, if we find a property for the subgroup basis, we can extend the

result to W (G). It follows from equation 3.3 that that, if ker(σ) = ker(ρ), then

ρ(H) = σ(H) for each H 6 G. If ker(σ) 6= ker(ρ), then there exists a h ∈ G such that

h ∈ ker(σ) , h 6∈ ker(ρ) or h ∈ ker(ρ)h 6∈ ker(σ). In any case, if H = 〈h〉 will be such

that σ(H) 6= ρ(H). It will be |H| for the character with h in its kernel and 0 for the

other one.

Definition 3.0.2. A subgroup H 6 G is called a co-cyclic subgroup if and only if G/H

is a cyclic group.

The introduction of the Definition 3.0.2 is crucial for the subsequent parts of this

work. Let us consider a character ψH such that H = ker(ψH). Let h ∈ H, g ∈ G and let

f ∈ G \H. Let + be the binary operation of the group G. Then ψH(g + h) = ψH(g),

ψH(f + g) = ψH(f) · ψH(g). Let us consider the coset g + H. Then ψH(g + H) =

ψH(g) · ψH(H). We have to prove the next proposition.

Proposition 3.0.3. There exists a bijection between the set of equivalence classes of

Irr(G), where two characters belong to the same class if and only if they have the same

kernel, and the set of co-cyclic subgroups of G.

Proof. Let H be a subgroup of G and let G/H be the quotient group according to H

(we know it is a group since G is abelian). Two elements of G belong to the same coset

of H if and only if their difference is a member of H.

Then we consider H as the kernel of a character ψ. Then

H + a = H + b ⇐⇒ a− b = h ∈ H, ⇐⇒ ψ(a) = ψ(b) (3.4)

Therefore, we can conclude that the image of ψ is isomorphic to G/H and so G/H is

cyclic since the image of ψ is cyclic. Then H is indeed a co-cyclic group.
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Definition 3.0.3. A proper subgroup H ≤ G is maximal if H 6 K 6 G implies

K = H or K = G.

We give some examples to show the validity of Proposition 3.0.3.

Example 3.0.3. Let K be the following subgroup of Z23 ⊕ Z23 :

K = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (2, 0), (2, 1), (2, 2),

(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),

(4, 6), (4, 7), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7)}.

This subgroup is cocyclic on G. Indeed G/K consists of two elements, let us say a

and b, such that the Cayley table is:

+ a b

a a b

b b a

Table 1: Cayley table of G/K introduced in this Example

where a = K and b = (1, 0)+K. This group is cyclic. Now, we can also define the class

of characters in Irr(G) having the kernel equal to K. We have seen, through equation

3.3, what are the values of the characters applied to the whole cyclic subgroup H 6 G.

We are interested to find the values of the characters applied to the set of generators

of such H.

Example 3.0.4. Let us consider the cyclic group

F = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)}

of G = Z23 ⊕ Z23 . The set of its generators is OF = {(0, 1), (0, 7), (0, 3), (0, 5)}. Then

the set difference F \ OF = {(0, 0), (0, 2), (0, 4), (0, 6)}, that is a maximal subgroup of

F . If we keep K the cocyclic group in the previous example, then we can find that

ψK(OF ) = ψK(F )− ψK(F \OF ) = 8− 4 = 4.

Definition 3.0.4. The intersection of all maximal subgroups of a group G is called

the Frattini subgroup of G and denoted by Φ(G). If G has no maximal subgroups, then

Φ(G) = G by definition.

If G is a cyclic group of order pa1
1 . . . pass then Φ(G) has the index p1 · · · ps.
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Lemma 3.0.1. Let χ ∈ Irr(G), h ∈ G,H = 〈h〉 and F = H ∩ ker(χ). Denote by OH

the set of all generators of H. Then:

χ(OH) = |Φ(H)|µ
(
|H|
|F |

)
ϕ

(
|F |
|Φ(H)|

)
.

In the previous example, Φ(H) = F, |F | = 4, |H| = 8 and if we apply the lemma,

we obtain ψK(OF ) = 4.
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4 The characters of the S-ring

W (Zpn ⊕ Zpn)

In the following chapters G will stand for Zpn⊕Zpn . Let us begin with some examples.

Example 4.0.1. Let us fix p = 3, n = 3. Let us examine the cyclic subgroups of G,

starting from the non trivial ones with the least order. We find that they are:

{(9, 0), (18, 0), (0, 0)}, {(0, 9), (0, 18), (0, 0)},
{(9, 9), (18, 18), (0, 0)} and {(9, 18), (18, 9), (0, 0)}.

The total amount of generators of such sets is 2·4 = 8. A second family of subgroups

of G is the following:

{(3, 0), (6, 0), (9, 0), (12, 0), (15, 0), (18, 0), (21, 0), (24, 0), (0, 0)}
{(3, 9), (6, 18), (9, 0), (12, 9), (15, 18), (18, 0), (21, 9), (24, 18), (0, 0)}
{(3, 18), (6, 9), (9, 0), (12, 18), (15, 9), (18, 0), (21, 18), (24, 9), (0, 0)}.

These three subgroups contains {(9, 0), (18, 0), (0, 0)}. The subgroups 〈(0, 3)〉, 〈(9, 3)〉
and 〈(18, 3)〉 contain {(0, 9), (0, 18), (0, 0)}. The subgroups 〈(3, 3)〉,〈(21, 3)〉 and 〈(3, 21)〉
contain 〈(9, 9)〉, whistle 〈(3, 6)〉, 〈(24, 3)〉, 〈(6, 3)〉 contain {(9, 18), (18, 9), (0, 0)}. The

last set of cyclic subgroup is built up by 36 sets. We list only three of them for lacking

of space: 〈(0, 1)〉, 〈(9, 1)〉, 〈(18, 1)〉 containing 〈(0, 3)〉. Each of the 12 sets of order 9

previously found is included in three different subgroups of order 27. Now, if we rep-

resent the inclusion order of all these subgroups with an Hasse diagram, we will find

that the diagram is a tree.

Proposition 4.0.1. The subgroups {H = 〈pm, apm〉, 0 6 m 6 n− 1, 0 6 a 6 pn−m −
1} ∪ {H = 〈bpm+1, pm〉, 0 6 m 6 n− 1, 0 6 b 6 pn−m−1 − 1} ∪ {(0, 0)} exhaust the set

of cyclic subgroups of G. The set of cyclic subgroups is partially ordered by inclusion.

The Hasse diagram of this poset is a tree, where the trivial subgroup is the root.

Proof. {(0, 0)} is a cyclic subgroup of order 1. All the cyclic subgroups of order p

declared in hypotesis are of the kind:〈(pn−1, pn−1a)〉, 0 6 a 6 p − 1; 〈(0, pn−1)〉. They

are all distinct and the total number of the generators is: (p − 1) · (p + 1) = p2 − 1.

The set of cyclic subgroups of order pm is 〈(pn−m, pn−ma)〉 ∪ 〈(0, pn−m)〉. The total

number of generators is (p2 − 1) · p2(m−1). Then, we sum the number of generators

of 〈(0, 0)〉, that is 1, with the number of generators of subgroups of order p (that
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number is (p2− 1)), with number of all these distinct generators of groups of order pn:

1 + (p2 − 1)
∑n

i=1 p
2(i−1) = p2n = |G|. The lattice of subgroups of a cyclic p-group is a

chain, therefore the Hasse diagram of the poset of cyclic subgroups of a p-group is a

tree.

The Hasse diagram of the poset of cyclic subgroups of Zpn ⊕ Zpn will be denoted

denoted by ∆. Let us do some further examples of such ∆.

Example 4.0.2. Let p = 2 and n = 3. Then we get the following Hasse diagram:

{(0, 0)}

{(0, 0), (4, 4)}

F

F2 F1

E

E2 E1

{(0, 0), (4, 0)}

D

D2 D1

C

C2 C1

{(0, 0), (0, 4)}

B

B2 B1

A

A2 A1

Figure 7: Hasse Diagram of the poset of the cyclic subgroups of Z8 ⊕ Z8

Where:

A = {(0, 0), (0, 2), (0, 4), (0, 6)},
B = {(0, 0), (4, 2), (0, 4), (4, 6)},
C = {(0, 0), (2, 0), (4, 0), (6, 0)},D = {(0, 0), (2, 4), (4, 0), (6, 4)},
E = {(0, 0), (2, 2), (4, 4), (6, 6)},F = {(0, 0), (6, 2), (4, 4), (2, 6)},
A1 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)},
A2 = {(0, 0), (4, 1), (0, 2), (4, 3), (0, 4), (4, 5), (0, 6), (4, 7)},
B1 = {(0, 0), (2, 1), (4, 2), (6, 3), (0, 4), (2, 5), (4, 6), (6, 7)},
B2 = {(0, 0), (6, 1), (4, 2), (2, 3), (0, 4), (6, 5), (4, 6), (2, 7)},
C1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)},
C2 = {(0, 0), (1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)},
D1 = {(0, 0), (1, 2), (2, 4), (3, 6), (4, 0), (5, 2), (6, 4), (7, 6)},
D2 = {(0, 0), (1, 6), (2, 4), (3, 2), (4, 0), (5, 6), (6, 4), (7, 2)},
E1 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)},
E2 = {(0, 0), (1, 5), (2, 2), (3, 7), (4, 4), (5, 1), (6, 6), (7, 3)},
F1 = {(0, 0), (3, 1), (6, 2), (1, 3), (4, 4), (7, 5), (2, 6), (5, 7)},
F2 = {(0, 0), (3, 5), (6, 2), (1, 7), (4, 4), (7, 1), (2, 6), (5, 3)}.
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Let us now find the cocyclic subgroups of G. The trivial cocyclic subgroup is {G}.

Example 4.0.3. To have a clear idea, let us do the calculation of the cocyclic subgroups

of Z23 ⊕Z23 . They shall be collected in the following Hasse diagram (the ordering now

is according to ⊇):

{G}

C

CB

CBBCBA

CA

CABCAA

B

BB

BBBBBA

BA

BABBAA

A

AB

ABBABA

AA

AABAAA

Figure 8: Poset of cocyclic groups on Z8 ⊕ Z8

Where:

A = {(a, b) : a even}
B = {(a, b) : (a+ b) even}
C = {(a, b) : b even}
AA = {(0, 0), (0, 1) . . . (0, 7), (4, 0), (4, 1) . . . (4, 7)}
AB = {(0, 0), (0, 2), (0, 4), (0, 6), (2, 1), (2, 3), (2, 5), (2, 7), (4, 0), (4, 2), (4, 4), (4, 6),

(6, 1), (6, 3), (6, 5), (6, 7)}
BA = {(0, 0), (0, 4), (1, 1), (1, 5), (2, 2), (2, 6), (3, 3), (3, 7), (4, 0), (4, 4), (5, 1), (5, 5),

(6, 2), (6, 6), (7, 3), (7, 7)}
BB = {(0, 0), (0, 4), (1, 3), (1, 7), (2, 2), (2, 6), (3, 1), (3, 5), (4, 0), (4, 4), (5, 3), (5, 7),

(6, 2), (6, 6), (7, 1), (7, 5)}
CA = {(0, 0), (0, 4), (1, 0), (1, 4), (2, 0), (2, 4), (3, 0), (3, 4), (4, 0), (4, 4), (5, 0), (5, 4),

(6, 0), (6, 4), (7, 0), (7, 4)}
CB = {(0, 0), (0, 4), (1, 2), (1, 6), (2, 0), (2, 4), (3, 2), (3, 6), (4, 0), (4, 4), (5, 2), (5, 6),

(6, 0), (6, 4), (7, 2), (7, 6)}
Then AAA, ..., CBB are both cocyclic and cyclic groups, and:

AAA = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)}
AAB = {(0, 0), (4, 1), (0, 2), (4, 3), (0, 4), (4, 5), (0, 6), (4, 7)}
ABA = {(0, 0), (2, 1), (4, 2), (6, 3), (0, 4), (2, 5), (4, 6), (6, 7)}
ABB = {(0, 0), (6, 1), (4, 2), (2, 3), (0, 4), (6, 5), (4, 6), (2, 7)}
BAA = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)}
BAB = {(0, 0), (1, 5), (2, 2), (3, 7), (4, 4), (5, 1), (6, 6), (7, 3)}
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BBA = {(0, 0), (1, 3), (2, 6), (3, 1), (4, 4), (5, 7), (6, 2), (7, 5)}
BBB = {(0, 0), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)}
CAA = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)}
CAB = {(0, 0), (1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)}
CBA = {(0, 0), (1, 2), (2, 4), (3, 6), (4, 0), (5, 2), (6, 4), (7, 6)}
CBB = {(0, 0), (1, 6), (2, 4), (3, 2), (4, 0), (5, 6), (6, 4), (7, 2)}

Let us compute now, for example, G/AA. It is made of four elements: AA, (1, 0) +

AA, (2, 0)+AA, (3, 0)+AA and it is obviously cyclic. If we compute now, for example,

G/BB, we obtain that it is also made of four elements: BB, (0, 1) + BB, (0, 2) +

BB, (0, 3) +BB. Generally talking, the following inferences are true:

K = 〈(b · p, 1), (pm, 0)〉, 1 6 m 6 n, 0 6 b 6 pm−1 − 1 =⇒

G/K = {K, (1, 0) +K, ..., (pm − 1, 0) +K}

G/K ∼= Zpm

K = 〈(1, a), (0, pm)〉, 1 6 m 6 n, 0 6 a 6 pm − 1 =⇒

G/K = {K, (0, 1) +K, ..., (0, pm − 1) +K}

G/K ∼= Zpm

(4.1)

Proposition 4.0.2. The subgroups {K = 〈(b · p, 1), (pm, 0)〉, 1 6 m 6 n, 0 6 b 6

pm−1 − 1} ∪{K = 〈(1, a), (0, pm)〉, 1 6 m 6 n, 0 6 a 6 pm − 1} ∪{G} exhaust the set

of cocyclic subgroups of G.

Proof. G is a trivial cocyclic group. Excluding this case, the element (p, 0) should stay

or should not stay in the cocyclic group. If it does not, then their elements will be

generated by (1, a), (0, c): we can properly say that a ≤ pm−1 and c = pm. If (p, 0) stays

in the cocyclic group, then it cannot stay with (0, p) otherwise the cocyclic group will

be isomorphic to Zpn−1⊕Zpn−1 and the quotient group will not be cyclic (contradiction).

Then the cocyclic group will be generated by (p · b, 0) and by (pm, 0).

Proposition 4.0.3. Let H be a cocyclic subgroup of G = Zpn ⊕ Zpn isomorphic to

Zpn ⊕ Zpm . Define H∆ = {pmh | h ∈ H}. Then the mapping H → H∆ is a bijection

between the set of cocyclic groups of G and the set of cyclic subgroups of G. Moreover,

H1 ⊆ H2 ⇐⇒ H∆
1 ⊇ H∆

2 . The set of cocyclic subgroups is partially ordered by

inclusion. The Hasse diagram of this poset is a tree, where G is the root.

Proof. If we have H = 〈(1, a), (0, pn−m)〉, then the operation pm ·H = 〈(pm, apm)〉 = K

has an inverse: K5 = H. If we have H = 〈(b · p, 1), (pn−m, 0)〉, then the operation
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pm · H = 〈(b · pm+1, pm〉 has an inverse K5 = H. K1 = {〈(1, a1), (0, pm1)〉 ⊇ K2 =

{〈(1, a2), (0, pm2)〉} ⇐⇒ a1 ≡ a2 (mod (pm1) ∧ m1 6 m2 ⇐⇒ K∆
1 ⊆ K∆

2 . This

implies that also the Hasse diagram of cocyclic groups is a tree.

We will denote the Hasse diagram of the poset of cocyclic subgroups of Zpn ⊕ Zpn
by ∇. The operation bringing a cocyclic group H into a cyclic group will be denoted

H∆, its inverse will be denoted H5.

Let us consider again the tree of cyclic subgroups of Z23 ⊕ Z23 . We will denote as

”sons of X” the elements Y of ∆ such that X is a maximal subgroup in Y . In a similar

way, we can define ”sons of X the Y elements of ∇ such that Y is a maximal subgroup

for X. Inductively, we can define j-descendants of X by letting Des1(X) = Sons(X)

and Desj+1(X) = Sons(Desj(X)) if j > 1.

We can build up the ”tree of the sons” of the tree of cyclic subgroups in Z8 ⊕ Z8:

S0

S3

S32 S31

S2

S22 S21

S1

S12 S11

Figure 9: ”Tree of sons” - ∆1 on Z8 ⊕ Z8

Where:

S0 = {〈(4, 0)〉 ∧ 〈(4, 4)〉 ∧ 〈(0, 4)〉}
S1 = {〈(0, 2)〉 ∧ 〈(4, 2)〉}
S2 = {〈(2, 2)〉 ∧ 〈(6, 2)〉}
S3 = {〈(2, 0)〉 ∧ 〈(2, 4)〉}
S11 = {〈(0, 1)〉 ∧ 〈(4, 1)〉}
S12 = {〈(2, 1)〉 ∧ 〈(6, 1)〉}
S21 = {〈(1, 1)〉 ∧ 〈(5, 1)〉}
S22 = {〈(3, 1)〉 ∧ 〈(7, 1)〉}
S31 = {〈(1, 0)〉 ∧ 〈(1, 4)〉}
S32 = {〈(1, 2)〉 ∧ 〈(1, 6)〉}
We have also a ”tree of grand sons”:

We denote the poset of j-descendants by ∆j. To be clear: we have plotted ∆1 and

∆2 of Z8 ⊕ Z8 in sequence. Moreover, we define ∆i, ∆j
i , ∇i, ∇j

i as those subsets of
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{S1, S2, S3}

{S31, S32} {S21, S22} {S11, S12}

Figure 10: ”Tree of grandsons” - ∆2 on Z8 ⊕ Z8

their trees, such that their elements have length l 6 i. If S ⊆ ∆j
i then [S] will denote

the simple quantity of its generators. The notation χH [S] will mean the value of the

character χH with kernel H on [S].

Lemma 4.0.1. Let F ∈ ∆ and H ∈ ∇. Then F ⊆ H ⇐⇒ l(F ) − l(F ∩ H∆) 6

n− l(H∆).

Proof. Let F ⊆ H. If l(H) = l+m, then l(H∆) = l−m. Then our goal is to prove that

l(F )− l(F ∩H∆) 6 m. H∆ = pm ·H ⊇ pmF , but also F ⊇ pmF , then F ∩H∆ ⊇ pmF .

F is cyclic and [F : pmF ] 6 pm. But [F : pmF ] = |F |
|pmF | →

|F |
|F∩H∆| 6 pm. Then

pl(F )−l(F∩H∆) 6 pm → l(F )− l(F ∩H∆) 6 m as desired.

Let l(F ) − l(F ∩ H∆) 6 m. If l(F ) 6 m, then F ⊆ H. If l(F ) 6 m, we know

that F is cyclic and so the inequality [F : F ∩ H∆] 6 pm implies F ∩ H∆ ⊇ pmF .

If H = 〈(1, 0), (0, pn−m)〉, then H∆ = 〈(pm, 0)〉. Let f = (f1, f2) be a generator of

F . Now pmF ⊆ H∆ implies that f2 = 0 mod (pn−m). Therefore f = (f1, f
′
2p
n−m) ∈

〈(1, 0), (0, pn−m) = H

Remark 4.0.1. The following conditions are equivalent:

(a): l(F )− l(F ∩H∆) = n− l(H∆) + 1

(b): Father(F ) ⊆ H ∧ F 6⊆ H.

Indeed, if (a) does hold, then F 6⊆ H by Lemma 4.0.1 and F∩H∆ ⊇ Father(F )∩H∆

implies l(F ∩H∆) > l(Father(F )∩H∆). Moreover, the intersection between two cyclic

subgroups is the common ancestor, in the tree ∆. If this result is properly F , then

l(F )− l(F ) = 0 in contradiction with the hypothesis. Then (a) is the same as:

l(Father(F ))− l(H∆ ∩ Father(F )) = n− l(H∆) =⇒ (b).

Conversely, if (b) does hold, then we can apply Lemma 4.0.1 and we obtain the

proof.

The following corollary is crucial, since it gives the possibility to calculate irreducible

characters in an easy way.

Corollary 4.0.1. Let F ∈ ∆ and H ∈ ∇. Then:
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χH [F ] =



|F |(p−1)
p

if F ⊆ H,

− |F |
p

if l(F )− l(F ∩H∆) = n− l(H∆) + 1,

0 otherwise.

Proof. We use the results of equation (3.3) and use the fact thatOF = {F}\{Father(F )}.
Then χH(OF ) = χH(F )− χH(Father(F )).

In the first case, χH(F ) = |F |, χH(Father(F )) = |F |
p

, and the case is proved. In the

second case, χH(F ) = 0, χH(Father(F )) = |F |
p

, and also this case is proved. In the

third case, χH(F ) = 0, χH(Father(F )) = 0 and also this case is proved.

Proposition 4.0.4. Let X, Y ⊆ ∆j
i , such that (X ∪ Y ) ∩ ∆j

0 = ∅ and for each l,

1 ≤ l ≤ i, either X ∩ (∆j
l \∆j

l−1) = ∅ or Y \ (∆j
l \∆j

l−1) = ∅. Then for each H1, H2 ∈
∇n−j \ ∇n−j−1 it holds that

|(χH1 [X]− χH1 [Y ])− (χH2 [X]− χH2 [Y ])| ≤ (2pi − 1)p2j.

Proof. We claim that −p2j+1 ≤ χH [X ∩∆j
1 \∆j

0] ≤ (p− 1)p2j and −(pm − pm−1)p2j ≤
χH [X ∩∆j

m \∆j
m−1] ≤ (pm − pm−1)p2j), 2 ≤ m ≤ i.

Case m = 1: For i = 1, if there is a node N of ∆1 \ ∆0 s.t. N = (H∆ ∩ X) for all

the nodes X = Desj(N), then this is the scenario we can have the maximum χH and

the minimum χH . The minimum χH is if we pick all the largest block set X such

thatX ∩H∆ = {(0, 0)} . The cardinality of the largest block set is ppj. Indeed there

are p+ 1 nodes ∈ ∆j
1 \∆j

0, but one of them is out (let us call it P ) of this calculation

since it is the only one such that Desj(P )∩H∆ 6= {(0, 0)}. Therefore, we can conclude

that: χH(X) ≥ ppj(−1/p)p(j+1) = −p(2j+1), X ∈ ∆j
1 \ ∆j

0. Instead, the maximum

χH is reached if we pick all and only the p(j+1) nodes N ∈ Desj(P ). In that case,

χH(N) = p2j · (p − 1). So χH(N) ≤ p2j × (p − 1). This part is represented in the

following tree, where the � stands for the only element in ∆1 \∆0 ancestor of H∆, the

• stands for the nodes in ∆j
1 \∆j

0 having a H∆ ∩X 6= {(0, 0)}, the stars are the nodes

having H∆ ∩X = {(0, 0)} (This is only a scheme):
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{(0, 0)}

◦

. . .

?

. . .

◦

. . .

◦
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?

. . .

◦

. . .

◦

. . .

◦

. . .

?

. . .

◦

. . .

◦

. . .

?

. . .

◦

. . .

◦

. . .

P = �

. . .

•

. . .

◦

. . .

◦

. . .

•

. . .

◦

. . .

◦

. . .

. . .

•

. . .

◦

. . .

◦

. . .

•

. . .

◦

. . .

H∆

. . .

Figure 11: Proof of Proposition 4.0.4

Case m > 1: The scenario is: X ⊆ H (this occurring for all the nodes descending from

only one fixed P , X ∈ Desj(P ), P ∈ ∆m \∆m−1 )

or l(X)− l(H∆ ∩X) = n− l(H) + 1 that means: l(X ⊆ H∆) = m− 1 (this occurring

for X descending from the p− 1 nodes N s.t. Father(N) = Father(P ) ∧N 6= P )

or: χH(X) = 0 (all the remaining nodes in ∆j
m \∆j

m−1). The lower bound is when we

collect into a set S all the pj(p− 1)× pj having negative χH , plus maybe some nodes

with χH = 0. Then: χH [S] = −(p − 1) · pj · p(m+j)/p = −(p − 1) · p(m−1) · p2j. The

upper bound is when we collect into a set S the pj nodes having positive character,

plus maybe some nodes having χH = 0. Then: χH [S] = pj(p − 1)p(j+m)/p and this

is the upper bound. Summarizing the inequalities we claimed and proved valid, we

obtain: −p1+2j 6 χH [X] − χH [Y ] 6 (pi − 1) · p2j if Y ∩ (∆j
1 \∆j

0) = ∅ and −p1+2j 6

χH [X] − χH [Y ] 6 (pi − 1) · p2j+i if (X ∩∆j
1 \∆j

0) = ∅. Writing these inequalities for

H1 and H2 we proved this proposition.
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5 Homogeneous strongly regular

graphs over Zpn ⊕ Zpn

We define what is an homogeneous subset of ∆. According to this property, it is

possible to classify all the Strong Regular Cayley Graphs over Zpn ⊕ Zpn .

Definition 5.0.1. Let (a1, . . . , ai) be an integer vector, 0 ≤ a1 ≤ p+1, 0 ≤ a2, . . . , ai ≤
p−1. We say that S ⊆ ∆j

i is (a1, . . . , ai)-homogeneous if ∆j
0 6⊆ S and for each H ∈ ∆j

i−1

it holds that:

|Sons(H) ∩ S| =

al(H)+1 + 1 ifH ∈ S,

al(H)+1 ifH 6∈ S.

A less general definition of homogeneity is found, if j is set equal to 0. Let us now

illustrate an example of homogeneous graph. The bullet means: ”the node belongs to

S” and the circle means ”the node does not belong to S”.

Example 5.0.1. This is a (2, 1, 0)-homogeneous S (p = 3, n = 3 + j). It is a general

case since this tree could be ∆ or ∆j.

◦

◦

•

◦ ◦ •

◦

◦ ◦ ◦

◦

◦ ◦ ◦

◦

•

◦ ◦ •

◦

◦ ◦ ◦

◦

◦ ◦ ◦

•

◦

◦ ◦ ◦

•

◦ ◦ •

•

◦ ◦ •

•

◦

◦ ◦ ◦

•

◦ ◦ •

•

◦ ◦ •

Figure 12: A (2, 1, 0)-homogeneous S (p = 3, n = 3 + j)

Another important definition is the latin square type strongly regular graph.

Definition 5.0.2. A (ν, k, λ, µ)-SRG is said to be latin square type if ∃q,m such that:

ν = m2, k = q(m− 1), λ = m− 2 + (q− 1)(q− 2), µ = q(q− 1). It is instead said to be

negative latin square type if ν = m2, k = q(m+ 1), λ = −m− 2 + (q + 1)(q + 2), µ =

q(q + 1)

Example 5.0.2. 2K2 is of latin square type with m = 2, q = 1, C4 is latin square type

with m = 2, q = 2.
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Example 5.0.3. A negative latin square type is the complement of the Clebsch graph,

with parameters m = 4 and q = 2. That is, the unique (16, 10, 6, 6)-SRG.

Let us only list some theorems, useful to prove an important property of any not

trivial Strongly Regular Cayley Graph.

Theorem 5.0.1. Let G an abelian group of order ν and S be a subset of G with

e 6∈ S and S−1 = S. Then ΓG(S) is an (ν, k, λ, µ)-SRCG over G if and only if for any

irreducible character χ of G,

χ(S) =

k ifχ principal onG,

(λ− µ±
√
δ)/2 if χNOT principal onG.

where χ(S) =
∑

g∈S χ(g), δ = (λ − µ)2 + 4(k − µ). These values are equal to the

Strongly Regular Cayley Graph’s eigenvalues k, r, s correspondingly.

Proof. It is a consequence of Corollary 2.1.1 and Lemma 2.5.1.

Proposition 5.0.1. Let Γ be a strongly regular graph. If one of its eigenvalues is 0 or

−1, then Γ is a trivial strongly regular graph.

Proposition 5.0.2. An SRCG over G defined by a block set S ⊆ ∆ is trivial. (i.e. it

is a union of complete graphs or a complementer of such graph).

Proof. Let H ∈ ∇ \ ∇n−1. Corollary 4.0.1 and H = H∆ imply that, if a block set

is B = ∆1 \ ∆0 then χH [B] = p−1
p
· p − p2

p
= −1. If instead B is a block set in any

∆i \∆i−1 i 6= 1, then

χH(B) = n ·
(
pi−1p− 1

p
− (p− 1)pj−1 1

p

)
= n · 0 = 0,

where n is the number of blocks in B. The proposition is then a consequence of

Proposition 5.0.1

Example 5.0.4. Let us pick {(2, 2), (6, 6), (6, 2), (6, 6)(4, 2), (4, 6), (0, 2), (0, 6)} from

Z8 ⊕ Z8. This is a trivial graph.

Proposition 5.0.3. If S ⊆ ∆ is not a block set, then there exists m, 1 6 m 6 n, and

H1, H2 ∈ ∇ \ ∇n−1 such that χH1 [S]− χH2 [S] = pm.

Proof. Let m be the maximal number for which, if B ⊆ ∆ is any block in ∆m \∆m−1

such that B ∩ S 6= ∅ ∧ B \ S 6= ∅. Let F1 ∈ B ∩ S and let F2 ∈ B \ S. Then set

H∆
1 ∈ Desn−m(F1) and H∆

2 ∈ Desn−m(F2). Then χH1 [S ∩∆m \∆m−1]− χH2 [S ∩∆m \
∆m−1] = pm. If we pick the level ∆j \∆j−1 j ≤ m−1, the elements X of S laying there,

which are not ancestors of H1, H2, have χH1 [X] = χH2 [X] = 0, whistle the only element

P ancestor of H1,H2 is such that χH1 [P ] = χH2 [P ] = |P |p−1
p

and anyway we obtain:

χH2 [S \ (∆m \∆m−1)]− χH2 [S \ (∆m \∆m−1)] = 0. Then χH1 [S]− χH2 [S] = pm
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This last result is crucial to prove the following proposition:

Proposition 5.0.4. If ΓG(S) is a non trivial Strong Regular Cayley Graph with non

principal eigenvalues r and s, then r − s = pn. Moreover, ΓG(S) is latin square or

negative latin square type, respectively.

Proof. We recall the result of Lemma 2.1.1:

(ν − k − 1)µ = k(k − 1− λ).

As a consequence of Proposition 5.0.3, we have that r − s = pm, with 0 ≤ m ≤ n and

by Theorem 2.5.3, remembering that |G| = p2n we can conclude that r − s = pn.

Then, by Theorem 5.0.1, we have that: λ− µ = r + s and k − µ = −rs. Then we

obtain that:

(ν − k − 1)(k + rs) = k(−1− rs− (r + s))→

k2 − k(ν + (r + s))− rs(ν − 1) = 0→

(k − r)(k − s) = µν = ν(k + rs)

(k − s− pn)(k − s) = p2n(k + s(pn + s)).

Then:

k2 − (p2n + pn + 2s)k + s(s+ pn)(1− p2n) = 0.

This yields to:

k =
p2n + pn + 2s± (p2n + pn(1 + 2s))

2
.

Let us examine now the two solutions k(s, pn). We have k = k′ = s − spn. With this

value, µ = s− spn + s(s+ pn) = s+ s2 = s(1 + s)λ = s2 + 3s+ pn. If we put q = −s
and m = pn we prove that such graph is latin square type. Then we have k = k′′ =

s+spn+pn+p2n. With this value, µ = s+spn+pn+p2n+s(pn+s) = (pn+s)(1+pn+s).

If q = pn + s, then λ = q(q + 1) + 2s + pn = q(q + 1) + 2q − pn = q2 + 3q −m with

m = pn, and that is a negative latin square type.

Let S be now (a1 . . . ak) − homogeneous. Fix F ∈ ∆j
k, F 6∈ S. If l(F ) = 0, then

|Des1(F ) ∩ S| = a1. Let us calculate |Desj(F ) ∩ S|. We claim that |Desj(F ) ∩ S| =

A0,j = a1 +
∑j

i=2 ai(p
i−1 + pi−2). The proof is by induction. For i = 2, it is evident:a1

nodes belonging to S will generate (a2 +1)a1 nodes still belonging to S and (p+1−a1)

nodes will generate (p + 1 − a1)a2 nodes still belonging to S. Then |Des2(F ) ∩ S| =

(a2a1 + a1 + (p + 1)a2 − a1a2) = a1 + (p + 1)a2. Let this claim be valid until j − 1.

Then |Desj(F ) ∩ S| = |Desj−1(F ) ∩ S|(aj + 1) + (pj−2(p+ 1)− |Desj−1(F ) ∩ S|)aj =

|Desj−1(F ) ∩ S| + pj−2(p + 1)aj = a1 +
∑j−1

i=2 ai(p
i−1 + pi−2) + (pj−2 + pj−1)aj →

proof . Similarly, it can be proved that, if l(F ) 6= 0, then |Desm−l(F )(F ) ∩ S| =
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Al(F ),m =
∑m

i=l(F )+1 aip
i−l(F )−1. So, we set:A0,m = a1 +

∑m
i=2 ai(p

i−1 + pi−2), Al,m =∑m
i=l+1 aip

i−l−1 andAm,m = 0. We underline that these numbers depend only on l(F ). If

F ∈ ∆j
k, then |Desm−l(F )F ∩S| = Al(F ),m+1. We can conclude that |Desm−l(F )F ∩S| =

Al(F ),m+ δS(F ) where δS(F ) = 1 if F ∈ S and it is 0 otherwise. Formalize these results

with the following:

Definition 5.0.3. Let S be a (a1, . . . , an)−homogeneous set. Then we define the fol-

lowing functions of the vector a = (a1, . . . an):

A0,m = a1 +
m∑
i=1

ai(p
i−1 + pi−2)

and:

Al,m =
m∑

i=l+1

aip
i−l−1

It turn to be:

|Desm−l(F ) ∩ S| = Al(F ),m + δS(F )

where δS(F ) = 1ifF ∈ S, 0 otherwise

Lemma 5.0.1. Let S be an (a1 . . . an)−homogeneous set. Let H ∈ ∇t \ ∇t − 1, 0 ≤
t ≤ n. Then the following equation holds:

χH [S] =
n−t∑
i=1

A0,i(p
i − pi−1)− A0,n−t+1p

n−t

+
t−1∑
i=1

(Ai,n−t+i − Ai,n−t+i+1)pn−t+i + (At,n + δS(H∆))pn

(5.1)

Proof. The first element on the right side of this equation is χH [S ∩∆n−t]. We know

that all the elements F ∈ S having length less or equal to n−t are such that χH [F ] > 0.

Let us analyse the level ∆n−t+1 \ ∆n−t: at this level, there will be elements giving a

positive or negative contribute (not null, since their parents give a positive contribute).

Let us say that there exists a number x, such that χH [S∩(∆n−t+1\∆n−t)] = x·(pn−t+1−
pn−t)+(A0,n−t+1−x)·(−pn−t). The number x represents the cardinality of the subset of

the largest X0 ⊆ ∆n−t+1 \∆n−t such that χH [X0] > 0. Let us call X0 the set collecting

all these x elements. Let us claim that exists F1 s.t. X0 = Desn−t(F1)∩S, where F1 is

a certain element belonging to ∆1 \∆0. This claim is proved, since F1 is the ancestor

of H∆. Then: x = |Desn−t(F1)∩S| = A1,n−t+1 +δS(F1). Let us now analyse the subset

∆n−t+2\∆n−t+1. Here, we have a setX1 such that χH [X1] > 0. Then we can write, as we

did for X0, tat X1 = Desn−t(F2)∩S, where F2 is some element F2 ∈ ∆2 \∆1, such that

F2 ∈ Sons(F1), F2 ancestor of H∆, and a set Y0 =
⋃
F∈X0

Sons(F )\X1. Then χH [Y0] <
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0. Then |X1| = A2,n−t+2+δS(F2), |Y0| = −(A2,n−t+2+δS(F2)−A1,n−t+1−δS(F1)). Then

χH [S ∩ (∆n−t+2 \∆n−t+1)] = (A2,n−t+2 + δS(F2))pn−t+2− pn−t+1(A1,n−t+1 + δS(F1)). At

each level ∆n−t+i \∆n−t+i−1 we have a subset of that level X = Desn−t(Fi) ∩ S where

Fi ∈ ∆i \ ∆i−1 and Fi ancestor of HDelta, such that χH [X] > 0 and also a subset

Y = Desn−t(Fi−1) ∩ S \X, with Fi ∈ Sons(Fi−1), such that χH [Y ] < 0. Summing up

χH [S ∩∆n−t] +
∑t

i=1 χH [S ∩ (∆n−t+i \∆n−t+i−1] we prove the lemma.

Proposition 5.0.5. Let S be an (a1 . . . an)−homogeneous set. Then for all t, 1 ≤ t ≤ n

1. |χH [S]s.t.l(H) = t| 6 2

2. χH1 [S] ≡ χH2 [S](modpn)∀H1, H2 ∈ ∇t \ ∇t−1

3. if (a1 . . . at) 6= (0 . . . 0) ∧ (a1 . . . at) 6= (p + 1, p − 1 . . . p − 1) then ∃X, Y ∈ ∇t \
∇t−1such that χX [S]− χY [S] = pn

4. if (a1 . . . at) = (0 . . . 0)∨(a1 . . . at) = (p+1, p−1 . . . p−1) then ∀X, Y ∈ ∇t \∇t−1

it holds that χX [S] = χY [S]

Proof. 1. According to the equation 5.1, there are only two possibilities for the value

χH [S], depending on the fact if H∆ does or does not belong to S.

2. We can observe that we can write the equation 5.1 as the sum of two parts:

χH [S] = L+pn ·δS[H∆). Then χH2 [S]−χH1 [S] = L−L+(δS(H2)−δS(H1)) ·pn =

δS(H2)− δS(H1)) · pn

3. In that case, there exists a block B ⊆ (∇t\∇t−1)such that B∆∩S 6= ∅,B∆\S 6= ∅.
We set X ∈ B ∩ S∆ and Y ∈ B \ S∆

4. The validity of this point is self evident.

Definition 5.0.4. Let S ⊆ ∆ or S ⊆ ∆j
i . Denote xm[S] = min{χH [S]|H ∈ ∇m \

∇m−1}

The following Proposition is related to the general definition of homogeneous set

(S ∈ ∆j: we consider the tree of j-descendants). The importance of this Proposition

stays on the fact that Sets S s.t. S = homogeneousset∪ blockset have very interesting

properties.

Proposition 5.0.6. Let S ⊆ ∆j
i ∆j

0 ∩ S = ∅. If χH [S] ≡ χH′ [S](mod pi+2j), for every

H,H ′ ∈ ∇n−j \ ∇n−j−1, then:

1. |χH [S]|H ∈ ∇n−j \ ∇n−j−1| ≤ 2
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2. there exists a unique homogeneous set Sh ⊆ ∆j
i which is block equivalent to S

and satisfies xn−j[S] = xn−j[S
h]for all H ∈ ∇n−j \ ∇n−j−1

3. xn−j[S] = −p2j
∑i

l=1 alp
l−1 whenever S is an (a1, a2 . . . an)homogeneous set and

(a1, a2 . . . ai) 6= (p+ 1, p− 1 . . . p− 1)

Proof. 1. it is proved: by Proposition 4.0.4 we have |χH [S]− χH′ [S]| 6 (2pi − 1)p2j

whenever H, H ′ ∈ ∇n−j \ ∇n− j − 1

2. This is by induction on i, fixed j. For i = 1, set S = Sh and this is the only

possible choice, since the complement of S∩(∆j
1\∆

j
0) cannot have the same xn−j,

except the case we have p odd and a1 = p+1
2

, but in that case the complement

is equal to the set. Assume now i > 1, and the proposition holds until i − 1.

Consider the set Si−1 = S ∩∆j
i−1. We know by the corollary 4.0.1 that χH [F ] ≡

0mod(pi+2j) whenever l(F ) = i (length in the sense of ∆j), then we can conclude

that χH [Si−1] ≡ χH [S]mod(p2j+i−1). We know that a block B has character

χH [B] = p2j if B = ∆j
1 \∆j

0 and it has a character χH [B] = 0 if B ⊆ ∆j
i \∆j

i−1,

then Si−1 = Shi−1, χH [Si−1] = χH [Shi−1]. Let F = Desj(F
∗),where F ∗ is the only

forefather of H∆ of length i. Let F ′ = Father(F ) and B = sons(F ′). Then:

χH [S] = χH [Si−1] + χH [S \∆j
i−1] =

xn−j[S
h
i−1] + δSi−1

(F ′)pi−1+2j − |S ∩B|pi−1+2j + pi+2jδS(F ).

Now, the hypothesis χH [S] ≡ χH′ [S](mod pi+2j), for every H,H ′ ∈ ∇n−j \∇n−j−1

implies that

∃ai ∈ [0, p− 1] s.t. − δSi−1
(F ′) + |S ∩B| ≡ aimod(p).

The left hand side is ∈ [−1, p], then or 0 < ai = |S ∩ B| − δSi−1
(F ′) < p − 1 or

ai = 0 or ai = p− 1. In the first case, the homogeneous set is S \∆j
i−1 ∪ (Shi−1).

In the second case, we can obtain Sh from S by removing all the blocks s.t.

|S ∩ B| = p δSi−1
(F ′) = 0. In the third case, we can obtain Sh by adding all the

blocks s.t. |S ∩B| = 0 δSi−1
(F ′) = 1.

3. The equation is a straightforward consequence of corollary 4.0.1

Corollary 5.0.1. If S ⊆ ∆j
i , S ∩ ∆j

0 = ∅ and Sh is an (a1 . . . ai)−homogeneous set,

then:

1. if 0 < al < p− 1, then S ∩ (∆j
l \∆j

l−1) = Sh ∩ (∆j
l \∆j

l−1) for each l, 1 6 l 6 i;
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2. if Sh is neither (0 . . . 0)− or (p + 1, p − 1 . . . p − 1) homogeneous set, then there

exists a B block such that B ∩ S 6= ∅ and B \ S 6= ∅

Corollary 5.0.2. If S ⊆ ∆ defines a non trivial SRCG over G, then there exists a

unique (a1 . . . an)−homogeneous set Sh ⊆ ∆ such that S is block equivalent to Sh.

Proposition 5.0.7. Let S ⊆ ∆ be an (a1 . . . an)−homogeneous set. Then S defines

an SRCG if and only if a2 = . . . = an.

Proof. S defines a strongly regular graph. Let us consider two cases:

� the homogeneous set is a (a1, 0 . . . 0, an) set or its complementary. If S is an

(a1, 0 . . . 0, an) - homogeneous set, then we can write:

k = χG[S] = a1(pn−1 − 1) +
(
a1(an + 1)((p+ 1)pn−2 − a1)an

)
(pn − pn−1)

if the corresponding graph is an SRG, then (pn − 1|k or pn + 1|k) and the only

possibility for that is an = 0.

� the homogeneous set is not (a1, 0 . . . 0, an) set nor its complementary. If the

corresponding graph is an SRG, then there are only three possible values for any

character χH [S]. Since we have two possible values of χH [S] both ifH ∈ ∇n\∇n−1

or if H ∈ ∇n−1 \ ∇n−2, then xn[S] = xn−1[S]. We recall that:A0,1 = a1A0,2 =

a1 + a2pAi,i+1 = ai+1 Ai,i+2 = ai+1 + ai+2p. We apply the equation 5.1 to find

that:

xn[S] = −
n−1∑
i=0

ai+1p
i

xn−1[S] = −a1 − a2p−
n−2∑
i=2

aip
i

Then we have:

a2p+
n−1∑
i=2

aip
i =

n∑
i=2

aip
i−1

and that proves a2 = . . . = an

Conversely, if S is a (a1, a2 . . . , a2) homogeneous set, then, applying the equation 5.1,

all the characters with kernel H ∈ ∇t \ ∇t−1, t > 0 are s = −a1 − a2

∑n
i=2 p

i−1 or

r = s + pn, and χG[S] = k = s(1 − pn). This proves that the corresponding graph is

strongly regular.
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6 Non homogeneous strongly

regular Cayley graphs over Zpn⊕Zpn

Proposition 5.0.7 states the conditions under which a homogeneous set S corresponds to

a strongly regular Cayley graph. Let us give some examples of strongly regular Cayley

graphs over G, say ΓG(S),with S a non homogeneous set. Take G = Z4⊕Z4. The graph

defined by a union of (2, 0)− homogeneous set and the unique blockB ∈ (∆2\∆1)\S is a

(16, 10, 6, 6)−SRCG. Denote the class of such graphs by Γ2. The complementary graph

of a graph belonging to Γ2 is the unique (16, 5, 0, 2)−strongly regular graph, known in

literature as Clebsch graph. We illustrated, in the picture 13, a set S corresponding to

a graph belonging to Γ2.

◦

•

◦ •

◦

• •

•

◦ •

Figure 13: S corresponding to a graph member of Γ2

◦

•

•

• ◦

◦

• •

•

•

• ◦

◦

• •

•

•

• ◦

◦

• •

Figure 14: S corresponding to a graph member of Γ3
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Similarly, take Z8⊕Z8. The graph which is defined by a union of (3, 0, 0)-homogeneous

set S and all the blocks (B ⊆ (∆3 \∆2)\S is an (64, 45, 32, 30)−SRCG and we denote

the class of such graphs Γ3. We illustrated, in the picture 14, a set S corresponding to

a graph belonging to Γ3. We can argue that both the graphs from Γ2 and the graphs

corresponding to their Sh = (2, 0)− homogeneous sets are strongly regular (together

with their complementary graphs Γc2) and, similarly, both graphs from Γ3 (or from the

complementary family Γc3) and the graphs corresponding to their Sh = (3, 0, 0) homo-

geneous sets are strongly regular. The following proposition states that we cannot find,

with the exception of these four families of graphs (Γ2,Γ3 and their complementaries)

other situations in which :

� S 6= Sh,

� ΓG(S), ΓG(Sh) are both non trivial strongly regular graphs.

Proposition 6.0.1. If S and Sh define non trivial strongly regular Cayley graphs,

then S = Sh or ΓG(S) ∈ Γ, with Γ ∈ {Γ2,Γ
c
2,Γ3,Γ

c
3}.

Proof. The Proposition 5.0.7 states that an Sh is homogeneous set if and only if a2 =

. . . = an. If (a2 6= 0 ∧ a1 6= 0) ∨ (a2 6= p − 1 ∧ a1 6= p + 1) then Corollary 5.0.1

implies here that S = Sh. If a1 = a2 = 0 ∨ a1 = a2 = p − 1 then we have Sh

corresponding to a trivial strongly regular graph and then we are out of the hypothesis

of this proposition. The remaining cases are a2 = p−1∧a1 6= a2 or the complementary

case a2 = 0 ∧ a1 6= a2. We examine only the last case. We have χG[S] > χG[Sh] since

|S| > |Sh|. Let B =
⋃
{D block ⊆ ∆|D ∩ Sh = ∅}. Then:

χG[B] =
n∑
i=2

(
pi + pi−1 − A0,i−1p

)
(pi − pi−1) = p2n − p2 + a1(p2 − pn+1).

Moreover, we have:

χG[Sh] = a1(pn − 1)

and s = −a1. The condition χG[S] > χG[Sh] implies χG[S] 6= χG[Sh], hence χG[S] =

k” = s + spn + p2n + pn, with s = −a1 since s(S) = s(Sh). At the end, we can

write: χG[S] − χG[Sh] = −2a1p
n + pn + p2n 6 p2n − p2 + a1p

2 − a1p
n+1 that implies

a1 − 1 > pn−2(a1(p − 2) + 1). Hence n = 2, p = 2, a1 = 2 or n = 3, p = 2, a1 = 3. In

the first case Sh ∪ B defines a graph from Γ2 and in the second case Sh ∪ B defines a

graph from Γ3.

Proposition 6.0.2. Let H ∈ ∇1 \∇0. Denote ΩH = (∆ \∆n−1) \Desn−1(H∆). Then

for each subset S ⊆ ∆ it is fulfilled that χG[S]− χH [S] = pn|ΩH ∩ S|
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Proof. If l(H) = l(H∆) = 1 then by Corollary 4.0.1 each element F ∈ S is such

that χH [F ] > 0 or χH [F ] < 0. Let T be the subset of S such that χH [F ] < 0∀F ∈
T∧χH [F ′] > 0∀F ′ 6∈ T . We prove that T = ΩH∩S. The fact that l(T∩H∆) = 0 implies

that T ⊆ (ΩH ∩ S) and the fact that T is the maximal set containing all the nodes

d : χH [d] < 0 implies that ΩH ∩S ⊆ T . Then χH [ΩH ∩S] = −pn−1|ΩH ∩S| = χG[ΩH ∩
S]−|ΩH∩S|pn. Then χH [S] = χG[S\(ΩH∩S)]+χH [ΩH∩S] = χG[S]−pn|ΩH∩S|.

Proposition 6.0.3. Let ΓG(S) be a non trivial (p2n, k, λ, µ)−strongly regular Cayley

graph over G with k = s+spn+pn+p2n. If p > 2, then S is a (p+1
2
, p−1

2
. . . p−1

2
)- homoge-

neous set which defines an SRCG with Paley parameters. Moreover, (p+1
2
, p−1

2
. . . p−1

2
)

- homogeneous sets exhaust the set of strongly regular Cayley graphs with Paley pa-

rameters over G. If p = 2, then S or its complement satisfy S \ Sn−1 = (Sh \ Sh−1) ∪
(
⋃

(blockD ∈ ∆ \∆n−1|D ∩ Sh = ∅).

Proof. Let H ∈ ∇1 \∇0. Then by Proposition 6.0.3 χG[S]−χH [S] = pn|ΩH ∩S|. Since

the graph is strongly regular, χH [S] ∈ {s, s+ pn}. Then we have:

|ΩH ∩ S| =

s+ pn + 1 ifχH [S] = s

s+ pn ifχH [S] = s+ pn

Let now S∗ = Sn−1 ∪ (Sh \ Shn−1). Then ΩH ∩ S = ΩH ∩ S∗ and |ΩH ∩ S∗| = A0,n −
(A1,n + δSh(H∆)). But A0,n − A1,n = a1 +

∑n
i=2 ai(p

i−1 + pi−2) −
∑n

i=2 aip
i−2 = a1 +∑n

2 aip
i−1 = −s. If 0 < an < p− 1, then S∗ = S, δSh(H∆) = δ{s+ pn}(χH [S]) whence

s+ pn + 1 = −s =⇒ s = − (pn+1)
2

.We can write:

−s =
pn + 1

2
=

n∑
i=1

aip
i−1 = a1 +

n∑
i=2

a2p
i−1 +

∑
ai∈A

(ai − a2)pi−1

where A is the set of aj 6= a2, 1 ≤ j ≤ n. Then we can write: (pn+1)
2

= a1 + a2

p−1
(pn −

p) +
∑

a(i)∈A(a − a2)pi−1 =⇒ a2 = p−1
2
, a1 = p+1

2
, A = ∅. Since a2 = . . . = an <

p− 1∧ 0 < a1 < p+ 1, then Sh is a Strongly regular Cayley graph and S = Sh. Verify

the corresponding graph is a Paley graph. See the proof of the Proposition 5.0.4. In

the case of k = (s + pn)(1 + pn) we have: k = p2n−1
2

, µ = pn−1
2

pn+1
2

= p2n−1
4

, λ =
pn−1

2
pn+1

2
= p2n−5

4
. If S is a Paley graph, then λ − µ = −1 = r + s = 2s + pn and

s = −(p
n+1
2

). Using the same arguments, we conclude that S is a (p+1
2
, p−1

2
. . . p−1

2
) and

that is the only possible Paley graph if 0 < an < p−1. Consider the case of an = 0. Let

B :=
⋃
{block D ∈ ∆|D ⊆ ΩH , D ∩ Sh = ∅} There are (p + 1 − 1)pn−1 = pn elements

in ΩH . Show the following tree:
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(0, 0)

H∆

. . .

◦ . . . ◦

?

. . .

◦ . . . ◦

?

. . .

◦ . . . ◦

?

. . .

◦ . . . ◦

•

. . .

◦ . . . ◦

•

. . .

◦ . . . ◦

Figure 15: Proof of Proposition 6.0.3

where the star stands for an element of ∆1 \∆0 not belonging to Sh and a bullet

stands for an element of ∆1 \ ∆0 belonging to Sh. We do not assign a bullet or

a star to H∆ since we use δSh(H∆). Since an = 0, then for each block K whose

intersection with Shn \ Shn−1 is not the empty set, we can write |K ∩ (Sh)| = 1. To

obtain |B|, we must subtract pn −
∑

K:K∈Shn\Shn−1
p. It follows that,to obtain |B|, we

have to subtract p|?|·|Desn−1(?)∩Sh| = (p−a1+δShH
∆)pA1,n and p|•|·|Desn−1•∩Sh| =

(a1 − δSh(H∆))p(A1,n + 1). We get: |B| = pn − p(a1 − δShH∆ + pA1,n). We can write

the following inequality:

0 = |ΩH ∩ S| − |ΩH ∩ S∗| − |B ∩ S| > |ΩH ∩ S| − |ΩH ∩ S∗| − |B| =

s+ pn + 1− δ{s+pn}(χH [S]) + s+ δSh(H∆)− p(pn−1 − A1,np) + a1p− δSh(H∆)p =

(p− 2)
n∑
i=1

aip
i−1 + 1− δ{s+pn}(χH [S])− (p− 1)δSh(H∆)

(6.1)

If p 6= 2 then we have a contradiction. Indeed if there exists aj 6= 0, 1 ≤ j ≤ n − 1,

then the quantity in the right hand of the inequality (6.1) is strictly positive, but the

inequality states it must be null or negative. If all the parameters of Sh are 0, then

by Proposition 6.0.1 S = Sh and k = s− spn. Since s− spn = s+ spn + pn + p2n this

implies s = −pn+1
2

and this contradicts with an = 0. If instead an = 0 and p = 2, the

inequality (6.1) is:

1− δ{s+pn}(χH [S])− δSh(H∆) 6 0.

This last inequality turns to be an equality: both |B ∩ S| and |B| are divisible by p.

We remind that:

0 = |ΩH ∩S| − |ΩH ∩S∗| − |B ∩S| = 2s+ 2n + 1− (δ{s+pn}χH [S] + δSh(H∆))− |B ∩S|.

Now: 2s+2n−|B∩S| is an even number. It means that the number 1−(δ{s+pn}χH [S]+

δSh(H∆)) must be even (0 is the only even value it can assume) as well. Therefore

(δ{s+pn}χH [S]+δSh(H∆)) = 1 and B∩S = B. Since ∆\∆n−1 =
⋃
H∈∇1\∇0

ΩH , it holds
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that
⋃
{block D ∈ ∆ \∆n−1|D ∩ Sh = ∅} ⊆ S. If ΓG(S) is an SRCG with the valency

s + spn + pn + p2n then its complement has the valency of the same type. Then the

case an = p− 1 is complement to the case an = 0.

Remark 6.0.1. If p = 2 we cannot have any SRCG with Paley parameters over G.

Indeed, to have Paley parameters, s = pn+1
2

, but s is an integer. This agrees with the

results of [15], who proved that a SRCG over a finite abelian group of rank 2 exists if

and only if G is isomorphic to Zpn ⊕ Zpn , p odd prime.

Proposition 6.0.4. Let S define a non-trivial SRCG over G. If k = s − spn then

S \ Sn−1 = Sh \ Shn−1

Proof. Let H ∈ ∇1 \ ∇0. Let S∗ = Sn−1 ∪ (Sh \ Shn−1). Then

χG[S∗] = χG[Sn−1] + A0,n(pn − pn−1)

and

χH [S∗] = χG[Sn−1] + (A1,n + δH∆(Sh))pn − A0,np
n−1.

Therefore by Proposition 6.0.3:

|ΩH ∩ S∗| = A0,n − A1,n − δHδ(Sh) = −s− δHδ(Sh).

Again by Proposition 6.0.3 and by k = s−spn we have |ΩH ∩S| = −s−δ{s+pn}(χH [S]).

By construction of Sh either S∗ ⊆ S orS ⊆ S∗. From which it follows that |ΩH ∩
S ÷ ΩH ∩ S∗| = ||ΩH ∩ S| − |ΩH ∩ S∗|| ∈ {0, 1}, where ÷ denotes the symmetric

difference. Since ΩH ∩ S and ΩH ∩ S∗ are block equivalent, the cardinality of their

symmetric difference is divisible by p. It follows that |ΩH ∩ S| = |ΩH ∩ S∗| and

ΩH ∩ S = ΩH ∩ S∗.Since ∆ \ ∆n−1 =
⋃
H∈∇1\∇0

ΩH , we obtain (∆ \ ∆n−1) ∩ S =

(∆ \∆n−1) ∩ S∗ =⇒ S \ Sn−1 = Sh \ Shn−1

Proposition 6.0.5. Let S define a non-trivial SRCG over G, p > 2. Then either S is

an

(a1, a2 . . . a2)-homogeneous set or Sh is an (a1, . . . , an)−homogeneous set with an−1 = 0

or an−1 = p− 1

Proof. Now we can assume that n > 3. According to Corollary 5.0.2there exists a block

set U such that S = Sh÷U. Denote R = Sh∩U , T = U \Sh. Let F ∈ ∇n−1\∇n−2.Then

χF [S] = χF [Sh]+χF [T ]−χF [R]. We have that, by Proposition 5.0.5 |{residue of χF [Sh]

mod pn|l(F ) = n−1}| = 1. Furthermore, |{residue of χF [S]mod pn|l(F ) = n−1}| = 1.

By Proposition 6.0.4 S \ Sn−1 = Sh \ Shn−1. Then T 1 ⊆ ∆1
n−2, R

1 ⊆ ∆1
n−2. Denote

R =
⋃
{m|am=p−1,26m6n−1}(∆m \ ∆m−1) \ R. Since χF [∆m \ ∆m−1] = −p2δ2(m) for

n > m > 2, it follows that χF [R] = −p2δ{m|am=p−1}(2) − χF [R]. Denote Q = T ∪ R
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and ρ = δ{m|am=p−1}(2). By Proposition 5.0.6, Q1 is block equivalent to the unique

{b1, b2, . . . , b2}− homogeneous set Q1h ⊆ ∆1
n−2 with Q1h ∩∆1

1 = Q1 ∩∆1
1. Therefore

χF [Q] = χF [Q1h] = xn−1[Q] + δQ1h(Sons(Father(F∆)))pn.

If Q1h is not a (p+ 1, p− 1, . . . , p− 1)-homogeneous set:

χF [S] = s+ δ{s+pn}(χF [S])pn =

χF [Sh] + χF [T ]− χF [R] = χF [Sh] + χF [Q] + ρp2 =

xn−1[Sh] + δSh(F∆)pn + xn−1[Q] + δQ1h(Sons(Father(F∆)))pn + ρp2.

(6.2)

IfQ1h is a (p+1, p−1, . . . , p−1)- homogeneous set, then χF [Q1h] = χF [S] = x{n−1}[S
h]+

δSh(F∆)pn − p2 + ρp2. Consider the cases when Q1h is a (0, . . . , 0)−homogeneous set

and ρ = 0 or Q1his a (p+ 1, p− 1, . . . p− 1) - homogeneous set and ρ = 1. If an−1 = 0

or an−1 = p− 1 there is nothing to prove. If an−1 6= 0∧ an−1 6= p− 1 then χF [S] = s+

δSh(F∆), s = xn−1[S] and this implies that S is (a1, a2, . . . , a2) - homogeneous. Then by

Proposition 6.0.1 S = Sh. If Q1h is a (p+1, p−1, . . . , p−1)−homogeneous set and ρ = 0

then (let us remember that ρ = 0 ⇐⇒ a2 6= p−1∧ρ = 1 ⇐⇒ a2 = p−1) a−2 6= p−1.

Let us recall the definition of R =
⋃
{m|am=p−1,26m6n−1}(∆m\∆m−1)\R. It follows that,

if ρ = 0, (∆2\∆1)∩R = ∅. Then Q = T ∪R =⇒ Q∩(∆2\∆1∩Q = (∆2\∆1)∩T . This

clearly implies that a1 = 0: (∆2\∆1)∩T is a block set. But a2 = 0 as well ( by Corollary

5.0.1). Now recall the Equation (5.1). In this case, t = n− 1, A0,1 = A0,2 = 0, Ai,i+1 =

ai+1, Ai,i+2 = ai+1 + ai+2p. Thus, xn−1[S] = −
∑n−3

i=1 ai+2p
i+2 =

∑n−1
i=3 (−aipi). The

equality s = xn−1[S]− p2 implies that: s = −
∑n

i=3 aip
i−1 = −

∑n−1
i=3 aip

i − p2, that is

equivalent to:
∑n−1

i=3 (p− 1)aip
i−1 = anp

n−1 − p2. We can adjust the right-hand part of

the equality in this way: anp
n−1−p2 = anp

2(pn−3−1)+anp
2−p2 = anp

2
∑n−3

i=1 p
i−1(p−

1) + p2(an − 1) = an
∑n−1

i=3 p
i−1(p− 1) + p2(an − 1). Then we can write:

n−1∑
i=3

(p− 1)aip
i−1 = an

n−1∑
i=3

pi−1(p− 1) + p2(an − 1).

This implies that ai = 1∀3 ≤ i ≤ n or that Sh is a (0, 0, 1, . . . , 1)−homogeneous

set and S = Sh ∪ (∆2 \ ∆1). The equality k = s(1 − pn) = χG[Sh] + χG[∆2 \ ∆1]

implies n = 4. We obtain a contradiction, since in that case x2[S] 6= s and the

graph cannot be strongly regular. We should do similar passages to examine the case

Q1h is (0, . . . , 0) − homogeneous withρ = 1 to get a similar contradiction. Last sub-

hypothesis: Q1 block equivalent to a homogeneous set that is nor (0, . . . , 0)− nor

(p + 1, p − 1, . . . , p − 1)− homogeneous. In this case an−1 = 0 or an−1 = p − 1 as a

consequence of Corollary 5.0.1.

Lemma 6.0.1. Let S define a non-trivial SRCG over G, p > 2. Then either S is

an (a1, a2, . . . , a2)− homogeneous set or one of the sets Sh or (∆ \ ∆0) \ Sh is an

(a1, 0, . . . , 0, an)−homogeneous set.
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Theorem 6.0.1. Let p be a prime number. Every strongly regular Cayley graph

over Zpn ⊕ Zpn is defined by a subset of ∆. Let p > 2 and let ϕ : Zpn ⊕ Zpn →
Zpn ⊕ Zpn/〈(pn−1, 0), (0, pn−1)〉 be the canonical homomorphism, S ⊆ ∆ and S 6=
∅, S 6= ∆ \ {e}. S defines a non-trivial strongly regular Cayley graph over Zpn ⊕Zpn if

and only if one of the following conditions is true:

1. S is an (a1, a2, . . . , a2)−homogeneous set and S is not a (1, 0, . . . 0) or a (p, p −
1, . . . , p− 1)− homogeneous set;

2. if n > 3, then Sh is an (a1, 0, . . . , 0, an)− homogeneous set with an > 0, Sh ⊆ S

and Q = ϕ(S \ Sh) defines a non trivial strongly regular Cayley graph over

ϕ(p(Zpn ⊕Zpn) for which Qh is a (0, . . . , 0, an)− or a(p, p− 1, . . . , p− 1, an− 1)−
homogeneous set. If n = 3, then Sh is an (a1, 0, a3)−homogeneous set with

a3 > 0, Sh ⊆ S and Q = ϕ(S \ Sh) is an (a3)−homogeneous set which defines a

strongly regular Cayley graph over ϕ(p(Zp3 ⊕ Zp3) ∼= Zp ⊕ Zp;

3. S is a complement of the mentioned in the previous item.

Proof. If S 6= Sh and it is corresponding to an SRCG, then by Proposition 6.0.1 and by

Lemma 6.0.1 Sh, does not correspond to an SRCG and it is an (a1, 0, . . . , an)- homoge-

neous set, or (∆\∆0)\Sh is an (a1, 0, . . . , 0, an)- homogeneous set. By Proposition 6.0.3

the valency k of the SRCG associated to S is k = s(1 − pn) and by Proposition6.0.4

(S \ Sh) ∩ (∆n \ ∆n−1) = ∅. Let us consider the case Sh = (a1, 0, . . . , 0, an)− ho-

mogeneous set. In this case, according to the equation (5.1), xn[Sh] = −a1 − anpn−1

and, for each 2 ≤ t ≤ n − 1, xn−1[Sh] = −a1. By this and, again, by Proposition

6.0.4, Q = ϕ(S \ Sh) corresponds to an SRCG over ϕ(pG) with s = −anpn−3 and

r = s + pn−2 (Theorem 5.0.1). If n > 3, 0,−1 are not eigenvalues of Q. Then Qh is a

(0, . . . , an)−homogeneous set or a (p, p−1, . . . , p−1, an−1)-homogeneous set. If an = 3,

then Q is an (a3)− homogeneous set. If a3 > 1, then an a3−homogeneous set defines

a non trivial SRCG over Zp ⊕ Zp. For Proposition 6.0.3, x0[Q] = −anpn−3(1 − pn−2).

In addition, x0[S \ Sh] = x1[S \ Sh] = p2x0[Q] = −anpn−1 + anp
2n−3 and x1[Sh] =

−a1−anp2n−3. Then x1[S] = x1[S\Sh]+x1[Sh] = −a1−anpn−1 = xi[S],∀ i : 1 ≤ i ≤ n.

Then all the graphs cited in this Theorem are strongly regular.
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7 Strongly regular Cayley graphs

over Z2n ⊕ Z2n

In this chapter we show some numerical results. They are interesting, since we cannot

apply the Theorem 6.0.1. We will analyse the following cases: p = 2 and n = 2, n =

3n = 4. A numerical research, held by [17] gave some very important results. M.E.

Malandro and K. W. Smith split the SRCG over Z2n ⊕ Z2n in three categories:

1. Partial congruent partitions;

2. Reversible Hadamard partial difference sets (of type A or of type B);

3. A remaining category, they called ”sporadic”.

Definition 7.0.1. Suppose that a group of order m2 has t subgroups H1, . . . , Ht, each

of order m, such that each pair meets only in the identity. Then the set S consisting

of the union of these subgroups, less the identity, gives a strongly regular Cayley

graph. These classes of graphs are said to be partial congruent partitions and labeled

as PCP(t).

In particular, [17] fixed the attention to PCP(2) and PCP(3).

Definition 7.0.2. Let G be a group of order 4m2. A Hadamard difference set (HDS) in

G is a subset D ⊆ G such that the multiset {g1g
−1
2 , g1∧ g2 ∈ D} has exact λ = m2−m

occurrences for every non identity member g ∈ G. A Hadamard difference set is said

to be reversible if D = D−1 the set of its inverses.

Remark 7.0.1. if the identity is in D, then D is a reversible HDS if and only if Dc is

a symmetric subgroup of G with degree 2m2 +m. If the identity is not in D, then it is

a reversible HDS if and only if D is a symmetric subgroups of G with degree 2m2−m.

Definition 7.0.3. A reversible Hadamard partial difference set of type A (RHPDSA) is

a Hadamard Difference set of degree 2m2−m. A reversible Hadamard partial difference

set of type B (RHPDSB) is a complementary of a Hadamard difference set, with a

degree 2m2 +m.
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Helped by an intense numerical research, Malandro and Smith formulated the fol-

lowing conjecture:

Conjecture 1.2 [17]: The total number of reversible Hadamard partial difference sets

in Gn = Z2n ⊕ Z2n of:

� type A: (22n−2)(2n − 1)

� type B: (22n−2)(2n + 1)

7.1 p=2, n=2

All the homogeneous sets correspond to strongly regular graphs. There are two families

of ΓG(S) which are strongly regular graphs and such that S is a non homogeneous set:

they are Γ2 and Γc2. The following tables collects all those homogeneous sets:

Sh s k

(0, 1) −2 6

(1, 1) −3 9

(2, 0) −2 6

(3, 0) −3 9

Table 2: Homogeneous sets corresponding to Z4 ⊕ Z4

We did not list (0, 0)−Sh,(1, 0)−Sh, (2, 1)−Sh and (3, 3)−Sh since they correspond

to trivial strongly regular graphs.

7.2 p=2, n=3

All the homogeneous sets such that ΓG(S) is a non trivial SRCG are of the type (a1, 0, 0)

or (a1, 1, 1), with 0 ≤ a1 ≤ p+ 1. Now we proceed to list all the non-homogeneous sets

corresponding to a non trivial SRCG. Read the table in the following way: Sh stands

for the array identifying the homogeneous set block equivalent to S. To identify S, add

the number blocks in ∆2 \∆1 and in ∆3 \∆2 indicated in the table ( if that number

is negative, it means you have to subtract blocks belonging to Sh to obtain S).

Remark 7.2.1. The graphs corresponding to the (0, 1, 0)−homogeneous sets and to

the (3, 0, 1)− homogeneous sets are not strongly regular and, in addition, there does

not exist any S block equivalent to one of them such that ΓG(S) is an SRCG.
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Sh blocks ∈ ∆2 \∆1 blocks ∈ ∆3 \∆2 s k

(0, 0, 1) 1 − −4 28

(0, 0, 1) 3 − −4 36

(0, 1, 1) − −3 −6 18

(1, 0, 1) 1 − −5 35

(1, 0, 1) 1 −1 −5 27

(1, 1, 0) −1 − −3 21

(2, 0, 1) 1 − −6 42

(2, 1, 0) −1 − −4 28

(2, 1, 0) −1 1 −4 36

(3, 0, 0) − 3 −3 45

(3, 1, 0) −1 − −5 35

(3, 1, 0) −3 − −5 27

Table 3: Non homogeneous sets corresponding to Z8 ⊕ Z8

7.3 p=2, n=4

We performed a numerical analysis of the S sets which are block equivalent to an Sh

s.t. a1 . . . , an ∈ {0, 1}. This is not a loss of generality, since a graph is strongly regulr

if and only if its complementary graph is strongly regular. We arranged all the homo-

geneous sets block equivalent to a set S s.t ΓG(S) is strongly regular. We can exclude

from that table the following Sh sets:

� (0, 0, 0, 0)− Sh,(1, 0, 0, 0)− Sh: their corresponding graphs are trivial;

� (0, 0, 1, 0)− Sh: k = 72. All the blocks forming ∆2 \∆1 do not belong to Sh.But

15 does not divide 72, 76, 80, 84. In addition, there are 6 blocks from ∆4 \ ∆3

totally out of Sh. But 17 does not divide 168, 172, 176, 180;

� (0, 1, 0, 0)− Sh:k = 42. Three blocks from ∆3 \∆2 are totally out of Sh. But 15

does not divide 42, 50, 58, 66. In addition, there are 9 blocks from ∆4 \∆3 totally

out of Sh. But 17 does not divide 138, 146, 154, 162;

� (0, 1, 0, 1) − Sh:k = 138. There are three blocks from ∆3 \∆2 out of Sh.But 15

does not divide 138, 146, 154, 162. In addition, there are three blocks from ∆4\∆3

belonging to Sh. But 17 does not divide 90, 98, 106, 114;

� (1, 0, 1, 0) − Sh:k = 87. There is a block in ∆3 \ ∆2 belonging to Sh and there

are two blocks from ∆2 \ ∆1 not belonging to Sh. But 15 does not divide
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79, 83, 87, 91, 95. In addition, there are 5 blocks from ∆4 \∆3 out of Sh. But 17

does not divide 159, 163, 167, 171, 175;

� (1, 0, 1, 1) − Sh:k = 183. There is a block in ∆3 \ ∆2 belonging to Sh and

there are two blocks from ∆2 \ ∆1 not belonging to Sh. But 15 does not di-

vide 175, 179, 183, 187, 191. In addition, there are 7 blocks blocks from ∆4 \ ∆3

belonging to Sh. But 17 does not divide 63, 67, 71, 75, 79;

� (1, 1, 0, 0) − Sh:k = 57. There is one block from ∆2 \ ∆1 belonging to Sh and

there are two blocks from ∆3 \∆1 not belonging to Sh. But 15 does not divide

53, 57, 61, 65, 69, 73. In addition, there are 8 blocks from ∆4 \∆3 not belonging

to Sh, but 17 does not divide 181, 185, 189, 194, 198, 202.

The remaining sets are arranged in the following table.

Sh blocks ∈ ∆2 \∆1 blocks ∈ ∆3 \∆2 blocks∈ ∆4 \∆3 s k

(0, 0, 0, 1) − B1 ∈ Des2(〈(0, 8)〉) ∪B2 ∈ Des2(〈(8, 8)〉) ∪B3 ∈ Des2(〈(8, 0)〉) − −8 120

(0, 0, 0, 1) C1, C2 B1B2 s.t Father(B1) ∈ C1 Father(B2) ∈ C2 − −8 120

(0, 0, 0, 1) C1, C2 B1B2 s.t Father(B1) ∈ C1 Father(B2) ∈ C2, B3, B4 : Father(B3) = Father(B4)∧ 6= (Father(B1) ∨ Father(B2)) − −8 136

(0, 0, 1, 1) add all blocks − − −12 180

(0, 1, 1, 0) − remove all blocks − −6 90

(0, 1, 1, 1) − − − −14 210

(1, 0, 0, 1) − A,B,C s.t.A ∩B = A ∩ C = B ∩ C = 〈(0, 0)〉 − −9 135

(1, 0, 0, 1) C1, C2 B1B2 s.t Father(B1) ∈ C1 Father(B2) ∈ C2 − −9 135

(1, 0, 0, 1) − A,B,C s.t.A ∩B = A ∩ C = B ∩ C = 〈(0, 0)〉 remove block −9 119

(1, 0, 0, 1) C1, C2 B1B2 s.t Father(B1) ∈ C1 Father(B2) ∈ C2 remove block −9 119

(1, 1, 0, 1) remove block add all blocks − −11 165

(1, 1, 1, 0) − remove A,B,C s.t.A ∩B = A ∩ C = B ∩ C = 〈(0, 0)〉 − −7 105

(1, 1, 1, 1) − − − −15 225

Table 4: Non homogeneous sets corresponding to SRCG over Z16 ⊕ Z16 and Sh with

ai ∈ {0, 1}

Remark 7.3.1. A classification of SRCGs on G−Z2n ⊕Z2n is quite difficult, since we

have homogeneous sets of the form (a1, . . . 1, . . . 0, . . . an)−Sh or (a1, . . . 0, . . . 1, . . . an)−
Sh which are block equivalent to a set S such that ΓG(S) is a SRCG. We listed two of

them in the previous table: (1, 1, 0, 1)− Sh, (0, 0, 1, 1)− Sh.
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8 Octave subroutines

We show the subroutines we accomplished in order to inquiry on the SRCG over Zpn⊕
Zpn .

8.1 Adjacency matrices and eigenvalues of an SRCG

We arranged a subroutine which turned to be very useful to check the correctness

of the calculation of the characters of a SRCG. We called it ”Cayley Matrix.m”.

The great efficiency of the function ”eig.m”, together with the same efficiency of the

function ”ismember.m”, subroutines both defined in the Matlab/Octave environment,

allowed us to manage matrices of a not pretty small size. The subroutine was tested

for Adjacency matrices 256× 256 sized, giving the response in a pair of minutes. This

subroutine takes a matrix S, a prime p and a positive integer as inputs. Each cell (a, b)

of the Adjacency matrix is defined as ismember((a − b) mod pn, S, ”rows”), so that

the boolean value ”1” is assigned, if (a− b) mod pn does belong to the rows of S, the

boolean ”0” is assigned otherwise. After the conversion from boolean type to double

type, the list of eigenvalues of the Adjacency matrix is calculated by eig.m.

Example 8.1.1. We want to calculate the eigenvalues of ΓG(S) with G = Z22 ⊕ Z22

and S = {(2, 2), (1, 0), (3, 0), (1, 1), (3, 3), (1, 3), (3, 1), (0, 1), (0, 3)}. We arrange S into

an array, defined (according to the syntax of Matlab, a semicolon defines a new row

and a comma a new column), in the following way:

[[2, 2]; [1, 0]; [3, 0]; [1, 1]; [3, 3]; [1, 3]; [3, 1]; [0, 1]; [0, 3]]. We obtain the expected result:

λ1 = −3, λ2 = 1, λ3 = 9.

8.2 Construction of ∆ tree

The first subroutine is ”cyclic.m”. This file accepts three inputs: generator, p and n.

Its aim is to calculate the cyclic group generated by generator, an element of Zpn⊕Zpn .

The output is: subgroup, a structure array containing all the elements of the cyclic

group. This file works with a built-in function of Octave, which is rem. That function

accepts an ordered couple of integers x, y and returns the reminder of the division x
y
.

Another built-in function used in the file is ”norm”. The control is when the neutral
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element is generated: at that moment, we know all the elements of the cycle are stored

in the output structure array (in Octave or Matlab environment, that data structure

is known as cell).

Example 8.2.1. Let us try to use the array [4, 4] corresponding to the couple (4, 4)

as generator, p = 2, n = 4. The output is the following structure array:

{[1, 1] = 4 4, [1, 2] = 8 8, [1, 3] = 12 12, [1, 4] = 0 0} corresponding to the subgroup:

{(0, 0), (4, 4), (8, 8), (12, 12)}

The second subroutine is ”cyclic gen.m”. This function calls the previous one,and

it accepts p,m and n as inputs in order to calculate all the members of ∆n−m \∆m−n−1.

Example 8.2.2. We want to calculate ∆2\∆1 of ∆ on Z8⊕Z8. We give the inputs: p =

2, n = 3,m = 1 and we obtain the structure array as output of ”cyclic gen”:{[1, 1] =

{[1, 1] = 2 0[1, 2] = 4 0, [1, 3] = 6 0, [1, 4] = 0 0}[1, 2] = {[1, 1] = 2 2, [1, 2] = 4 4, [1, 3] =

6 6[1, 4] = 0 0}[1, 3] = {[1, 1] = 2 4, [1, 2] = 4 0[1, 3] = 6 4[1, 4] = 0 0}, [1, 4] = {[1, 1] =

2 6[1, 2] = 4 4, [1, 3] = 6 2, [1, 4] = 0 0}[1, 5] = {[1, 1] = 0 2, [1, 2] = 0 4, [1, 3] =

0 6, [1, 4] = 0 0}[1, 6] = {[1, 1] = 4 2, [1, 2] = 0 4, [1, 3] = 4 6[1, 4] = 0 0}}

The output of ”cyclic gen” is the whole block set ∆n−m \ ∆m−n−1. The problem

of the cell generated as output is that there is no partition in blocks. To get the

output more readable, other two subroutines are accomplished. One of them is ”in-

tersection.m”. It accepts as input two cells, and it returns the elements present in

both of them. This function uses a function defined in Octave environment, which is

”intersect”.

Example 8.2.3. Let x be x = {[1, 1] = [4, 4], [1, 2] = [8, 8], [1, 3] = [12, 12], [1, 4] =

[0, 0]} and let y be y = {[1, 1] = [8, 8], [1, 2] = [0, 0]}. Then z = intersection(x, y)

turns to be z = y.

A function accomplished to find the Father of each node of the block set ∆n−m \
∆m−n−1 is blocks.m. It intersects ∆n−m \ ∆m−n−1 with ∆n−m−1 \ ∆m−n−2 and stores

the Father of each set, element of ∆n−m \ ∆m−n−1 into a Matlab cell. It is easier to

illustrate the output by an example.

Example 8.2.4. p = 2,m = 1, n = 3. The output of cyclic gen is: {[1, 1] =

{[1, 1] = [2, 0], [1, 2] = [4, 0], [1, 3] = [6, 0], [1, 4] = [0, 0]}[1, 2] = {[1, 1] = [2, 2], [1, 2] =

[4, 4], [1, 3] = [6, 6], [1, 4] = [0, 0]}[1, 3] = {[1, 1] = [2, 4], [1, 2] = [4, 0], [1, 3] = [6, 4], [1, 4] =

[0, 0]}[1, 4] = {[1, 1] = [2, 6], [1, 2] = [4, 4], [1, 3] = [6, 2], [1, 4] = [0, 0]}, [1, 5] = {[1, 1] =

[0, 2], [1, 2] = [0, 4], [1, 3] = [0, 6], [1, 4] = [0, 0]}[1, 6] = {[1, 1] = [4, 2], [1, 2] = [0, 4], [1, 3] =

[4, 6], [1, 4] = [0, 0]}}, the output of blocks is: {[1, 1] = {[1, 1] = [4, 0], [1, 2] = [0, 0]}[1, 2] =

{[1, 1] = [4, 4], [1, 2] = [0, 0]}[1, 3] = {[1, 1] = [4, 0], [1, 2] = [0, 0]}[1, 4] = {[1, 1] =
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[4, 4], [1, 2] = [0, 0]}[1, 5] = {[1, 1] = [0, 4], [1, 2] = [0, 0]}[1, 6] = {[1, 1] = [0, 4], [1, 2] =

[0, 0]}}

8.3 Construction of ∇ tree

The subroutine two generated.m calculates the subgroup 〈v1, v2〉 of Zpn ⊕ Zpn . The

subroutine cocyclic gen.m calculates the cocyclic groups belonging to a fixed level

∆m \∆m−1. This subroutine is built up but not widely used.

8.4 Characters of homogeneous sets

In this subsection we introduce three subroutines: characters.m, A.m and character-

shomo.m. The first one selects a level ∆i \∆i−1, the H∆ corresponding to a co-cyclic

group H and calculates χH [S] for each element S ∈ ∆i \∆i−1.

Example 8.4.1. We define H∆ = 〈(1, 0)〉, p = 3,m = 2,n = 3. In other words, we

are searching the characters of the members of the first level of ∆ corresponding to

H = 〈(1, 0)〉. As we expect, the response is that χ = 2 for only one member (the only

one being subset of H) and χ = −1 for the other three.

The subroutine A.m calculates the coefficients Al,m of a given homogeneous set.

The only difficulty is a little matter of indices: Matlab and Octave do not accept

arrays with a position indexed by 0. In other words, A(0) is a mistake, if A is an array.

Therefore, Al,m is stored into the l + 1,m cell of a matrix.

Example 8.4.2. We ask the coefficients of (1, 1, 0)− Sh, with p = 3. The output is a

matrix:

 1 5 5

0 1 1

0 0 0

.

The side i in the first row is A0,i, the side i in the second row is A1,i, the side i in the

third row is A2,i.

The subroutine charactershomo.m takes as input A(a, p), δ (its value is 1 if H∆ ∈
Sh,0 otherwise), the level t and n, and calculates the characters of an homogeneous

group according to the equation (5.1).
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9 Conclusion

We examined, using the Schur’s method, the classification of the strongly regular ΓG(S)

Cayley graphs. The tree-structure of S∆ and the same corresponding arrangement ∇,

the Hasse diagram of the co-cyclic groups forming the kernel of the characters ∈ Irr(G),

led us to inquiry on the homogeneous S subsets of ∆. We found some very interesting

results. We proved that, for each H, ∈ ∇t \∇t− 1, t ≥ 1, the corresponding character

χH [S] has only two possible values, say u and v = pn + u, according to the fact if

H∆ 6∈ S or H∆ ∈ S. We proved that a Strongly regular Cayley graph could be a

latin square type or a negative latin square type. We proved that, if S corresponds

to an SRCG, then there exists a block set which is the symmetric difference of an

homogeneous set Sh and the S set. We reported the proof that, if S is homogeneous,

then it corresponds to a Strongly Regular Graph if and only if its defining array is of

the form (a1, 0, . . . , 0) or of the form (a1, p− 1, . . . , p− 1). We went through the case

p = 2, n = 2 and p = 2, n = 3 and we defined the classes of SRCG Γ2 and Γ3. We

proved that if S correspond to an SRCG and the corresponding homogeneous set Sh

(S ÷ Sh = blockset)corresponds to an SRCG as well, then or S = Sh, or ΓG(S) ∈ Γ2,

or ΓG(S) ∈ Γ3. We examined the occurrence when S corresponds to a Paley graph and

finally, collecting all the previous results, we came to the proof of the theorem 6.0.1

which classifies SRCG when p is odd. Then we led a numerical inquiry on the cases p

is 2 and we reported some results obtained by [17] in those cases.
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10 Povzetek naloge v slovenskem

jeziku

To delo je študija krepkih regularnih Cayleyjevih grafov nad abelskah grupah Zpn⊕Zpn .
Dejansko je pokazalo v literaturi, da lahko dobimo krepko regularne grafe na grupah

Zpk ⊕ Zph in samo, če je k = h. atančneje, preučili smo Schurove kolobarje W (G),

katerih osnovne količine sestavljajo generatorji cikličnih podgrup grupe G = Zpn⊕Zpn .

To sta pred tem dokazala Bridges in Mena [3], [4] kot edinstven maksimum Schurovi

kolobar nad G, nerazcepni karakteri od grupe G prevzamejo racionalne vrednosti na

osnovnih količinah. Glavna orodja so Hassejevi diagrami cikličnih in kocikličnih pod-

grup od Zpn ⊕ Zpn , ki se izkažejo za drevesa. Glede na abelovo grupo G je kociklična

podgrupa opredeljena kot podgrupa H v G, tako da je G/H ciklična grupa. Drevo

cikličnih podgrup je označeno s simbolom ∆, drevo kocikličnih grup pa s simbolom ∇.

Razredi enakovrednosti so postavljeni med nezdružljiv, ki imajo isto jedro, in dokazu-

jejo, da so jedra kociklične grupe. Prvi množični rezultat je natančna ocena znakov

na vozlǐsčih ∆. Za vsak element F ∈ ∆ so te vrednosti karakterjev pozitivne, če je

F ⊆ H, negativne, če |F | = p|F ∩ H| in 0 drugače.Ta rezultat je ključnega pom-

ena za dokazovanje številnih drugih izrek in lem. Ključna lastnost, ki jo lahko ima

podmnožica S v ∆, ki ne vsebuje trivialne podgrupe, ali ne, homogenost. Ta lastnost

se nanaša velikost množice, ki izhaja iz presečǐsča med S in množico sinov generičnega

elementa H, izbranega v ustrezno podgrupoo ∆. V glavnem izreku Y. I. Leifman in

M. E. Muzychuk opisujeta vse podvrsti ∆, ki glede na homogenost ustrezajo krepko

reularnim grafom, glej [14, Teorem 1.6]. Z Schurjevo metodo smo preučili klasi-

fikacijo krepko regularnega grafaΓG(S). Drevesna struktura S ∈ ∆ in enaka ustrezna

razporeditev cikličnih grup, ki tvorijo jedro karakterjev ∈ Irr(G), so nas privedle do

poizvedovanja o homogenih podmnožicah S v ∆. Našli smo nekaj zelo zanimivih rezul-

tatov. Videli smo, da ima za vsak H, ∈ ∇t \∇t−1, t ≥ 1 ustrezen karakter χH [S] le dve

možni vrednosti, recimo u in v = pn + u, glede na dejstvo, da je H∆ 6∈ S ali H∆ ∈ S.

Dokazali smo, da je krepko regularen Cayleyjev graf lahko biti latinski kvadratni tip

ali negativen latinski kvadratni tip. Dokazali smo, da če S ustreza SRCG, potem je S

simetrična razlika homogene množiceSh in blokovske množice. Poročali smo o dokazu,

da če je S homogen, potem ustreza krepko regularnem grafu, če in samo, če je njegova
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definirajoča množica oblike (a1, 0, . . . , 0) ali oblike (a1, p− 1, . . . , p− 1). Šli smo skozi

primer p = 2, n = 2 in p = 2, n = 3 in smo opredelili razrede SRCG Γ2 in Γ3. Dokazali

smo, da če S ustrezata SRCG in ustrezna homogena množica Sh (S divSh = blok) us-

trezata tudi SRCG, potem ali S = Sh, ali ΓG(S) ∈ Γ2 ali ΓG(S) ∈ Γ3. Pregledali smo

pojav, ko S ustreza grafu Paleyja in na koncu zbrali vse preǰsnje rezultate ter prǐsli

do dokaza izrek 6.0.1, ki razvrsti SRCG, kadar je p odd. Nato smo vodili številčno

poizvedovanje o primerih p je 2 in poročali smo o nekaterih rezultatih, ki jih je za iste

primere pridobil [17].
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Appendix A: Octave subroutines

In this section, we write attach the sheets of the Octave subroutines we have built.

There are some subroutines (functions, in Matlab/Octave environment), which are

internal to the environment and are called by the subroutines (functions) we built up.

In particular:

ismember.m receives two arrays and checks if elements in the first array are in the

second one. The result is a logical 1 or a logical 0. This function is very useful to

build the adjacency matrices. eig.m is a function calculating the eigenvalues of a

matrix. It is a very powerful and smart function, capable of a quick computation of

large sized matrices. rem.m calculates the reminder of a division between integers.

factor.m factorizes integers. length.m and size.m return the size of a vector or a

matrix. zeros.m, ones.m and eye.m define the 0,J,I matrices.
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1   function [G,A_matr,lambdas]=Cayley_Matrix(p,n,S)
2   G=[0,0];
3   for i=0:p^n-1
4   for j=0:p^n-1
5   if (norm([i,j])>=10^-5)
6   G=[G;[i,j]];
7   endif
8   endfor
9   endfor

10   s=size(G);
11   for c1=1:s(1)
12   for c2=1:s(1)
13   x1=G(c1,:);
14   x2=[p^n,p^n]-G(c2,:);
15   x=x1+x2;
16   x(1)=rem(x(1),p^n);
17   x(2)=rem(x(2),p^n);function [G,A_matr,lambdas]=Cayley_Matrix(p,n,S)
18   G=[0,0];
19   for i=0:p^n-1
20   for j=0:p^n-1
21   if (norm([i,j])>=10^-5)
22   G=[G;[i,j]];
23   endif
24   endfor
25   endfor
26   s=size(G);
27   for c1=1:s(1)
28   for c2=1:s(1)
29   x1=G(c1,:);
30   x2=[p^n,p^n]-G(c2,:);
31   x=x1+x2;
32   x(1)=rem(x(1),p^n);
33   x(2)=rem(x(2),p^n);
34   A_matr(c1,c2)=ismember(x,S,"rows");
35   endfor
36   endfor
37   A_matr=double(A_matr);
38   lambdas=eig(A_matr);
39   endfunction
40   
41   A_matr(c1,c2)=ismember(x,S,"rows");
42   endfor
43   endfor
44   A_matr=double(A_matr);
45   lambdas=eig(A_matr);
46   endfunction
47   
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1   function subgroup =cyclic(generator, p,n)
2   
3   % this subroutine calculates the cyclic group generated by "generator"
4   %in Zpn + Zpn
5   % cfr. "Strongly regular Cayley graphs over the group Zpn + Zpn 
6   % by Ye?m I. Leifman, Mikhail E. Muzychuk - 
7   % Elzevier Discrete Mathematics 305 (2005) 219–239 
8   
9   control = 0;

10   s=generator;
11   c1=1;
12   subgroup{1}=generator;
13   while control ==0
14   c1=c1+1;
15   s=generator+s;
16   s(1)=rem(s(1),p^n);
17   s(2)=rem(s(2),p^n);
18   subgroup{c1}=s;
19   if norm(s)<=10^-6
20   control=1;
21   endif
22   ##    if c1>10000
23   ##      control=1;
24   ##    endif
25   endwhile
26   endfunction
27   
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1   function level_tree = cyclic_gen(p,m,n)
2   %this subroutine calculates the level "n-m" of the cyclic tree (delta)
3   %if m =n then the output is {[0,0]}
4   % cfr. "Strongly regular Cayley graphs over the group Zpn + Zpn 
5   % by Ye?m I. Leifman, Mikhail E. Muzychuk - 
6   % Elzevier Discrete Mathematics 305 (2005) 219–239
7   
8   
9   if m<0

10   'error'
11   error
12   end
13   if m>n
14   'error'
15   error
16   end
17   
18   
19   
20   for c1=1:p^(n-m)
21   generator=p^(m)*[1,c1-1];
22   level_tree{c1}=cyclic(generator,p,n);
23   end
24   
25   for c1=p^(n-m)+1:p^(n-m)+p^(n-m-1)
26   b=c1-p^(n-m)-1;
27   generator=p^m*[b*p,1];
28   level_tree{c1}=cyclic(generator,p,n);
29   end
30   
31   if m==n
32   level_tree={[0,0]};
33   end
34   
35   endfunction
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1   function subgroup = two_generated(v1,v2,p,n)
2   %This subroutine calculates the subgroup of Zpn +Zpn generated by
3   % v1 and v2 
4   % cfr. "Strongly regular Cayley graphs over the group Zpn + Zpn 
5   % by Ye?m I. Leifman, Mikhail E. Muzychuk - 
6   % Elzevier Discrete Mathematics 305 (2005) 219–239
7   s1=cyclic(v1,p,n);
8   s2=cyclic(v2,p,n);
9   l1=length(s1);

10   l2=length(s2);
11   c=0;
12   for c1=1:l1
13   for c2=1:l2
14   c=c+1;
15   s3=s1{c1}+s2{c2};
16   s3(1)=rem(s3(1),p^n);
17   s3(2)=rem(s3(2),p^n);
18   subgroup{c}=s3;
19   end
20   end
21   
22   
23   endfunction
24   
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1   function level= cocyclic_gen(p,m,n)
2   %this subroutine calculates the m-level of reverse-delta tree
3   %cocyclic groups in Zpn+Zpn 
4   % cfr. "Strongly regular Cayley graphs over the group Zpn + Zpn 
5   % by Ye?m I. Leifman, Mikhail E. Muzychuk - 
6   % Elzevier Discrete Mathematics 305 (2005) 219–239
7   if m!=n
8   v1=[p^m,0];
9   v3=[0,p^m];

10   for c1=1:p^m
11   a=c1-1;
12   v2=[1,a];
13   level{c1}=two_generated(v2,v3,p,n);
14   endfor
15   for c1=p^(m)+1:p^m + p^(m-1)
16   b=c1-p^m-1;
17   v4=[b*p,1];
18   level{c1}=two_generated(v1,v4,p,n);
19   endfor
20   end
21   %I split these two cases because otherwise members of the base were 
22   %calculated twice
23   if m==n
24   level=cyclic_gen(p,0,n);
25   endif
26   if n<m
27   'error'
28   error
29   endif
30   if m<0
31   'error'
32   error
33   endif
34   endfunction
35   
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1   function result = intersection(A,B)
2   A1=[];
3   B1=[];
4   result={};
5   for i=1:length(A)
6   K=A{i};
7   A1=[A1;K];
8   end
9   

10   for i=1:length(B)
11   B1=[B1;B{i}];
12   end
13   result1=intersect(A1,B1, "rows");
14   for i=1:length(result1(:,1))
15   result{i}=result1(i,:);
16   endfor
17   endfunction
18   
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1   function Father = blocks(p,m,n)
2   level_tree = cyclic_gen(p,m,n);
3   if m !=n-1
4   level_parent=cyclic_gen(p,m+1,n);
5   
6   
7   
8   for i=1:length(level_parent)
9   for j=1:length(level_tree)

10   A=intersection(level_parent{i},level_tree{j});
11   B=level_parent{i};
12   if length(A)==length(B)
13   Father{j}=level_parent{i};
14   endif
15   endfor
16   endfor
17   end
18   if m==n-1
19   Father={[0,0]};
20   endif
21   endfunction
22   
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1   function chi=characters(p,n,m,delta_A)
2   
3   lA=length(factor(length(delta_A)));
4   
5   level_tree = cyclic_gen(p,m,n);
6   
7   % levels
8   for k2=1:length(level_tree) %groups
9   F=level_tree{k2};

10   result=intersection(F,delta_A);
11   if length(result)==1
12   l=0;
13   else
14   l =length(factor(length(result)));
15   end
16   
17   lF=length(factor(length(F)));
18   
19   if(lF-l<=n-lA)
20   chi{k2}= length(F)*(p-1)/p;
21   end
22   if lF==l+n-lA+1
23   chi{k2} = -length(F)/p;
24   end
25   if lF>l+n-lA+1
26   chi{k2} = 0;
27   end
28   
29   end
30   
31   
32   
33   
34   
35   
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1   function coeff = A(a,p)
2   
3   n=length(a);
4   coeff=zeros(n,n);
5   if length(factor(p))>1
6   error
7   end
8   if a(1)<0||a(1)>p+1
9   error

10   endif
11   for i=2:n
12   if a(i)<0||a(i)>p-1
13   error
14   endif
15   endfor
16   coeff(1,1)=a(1);
17   for j=2:n
18   coeff(1,j)=a(1);
19   for k=2:j
20   coeff(1,j)=coeff(1,j)+a(k)*(p^(k-1)+p^(k-2));
21   endfor
22   endfor
23   for i=2:n
24   for j=i:n
25   
26   for k=i:j
27   coeff(i,j)=coeff(i,j)+a(k)*p^(k-i);
28   endfor
29   
30   endfor
31   endfor
32   endfunction
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1   function chi = charactershomo(p,n,delta,coeff,t)
2   
3   if t<n && t>=1
4   sum_1=0;
5   sum_2=0;
6   for i=1:n-t
7   sum_1=sum_1+coeff(1,i)*(p^i-p^(i-1));
8   endfor
9   for i=1:t-1

10   sum_2=sum_2+(coeff(i+1,(n-t+i))-coeff(i+1,n+i-t+1))*p^(n-t+i);
11   endfor
12   chi=sum_1-coeff(1,n-t+1)*p^(n-t)+sum_2+(coeff(t+1,n)+delta)*p^n;
13   endif
14   if t==n
15   sum_1=0;
16   for i=1:n-1
17   sum_1=sum_1+(coeff(i+1,i)-coeff(i+1,i+1))*p^(i);
18   endfor
19   chi=sum_1+delta*p^n-coeff(1,1);
20   endif
21   if t==0
22   sum_1=0;
23   for i=1:n
24   sum_1=sum_1+coeff(1,i)*(p^i-p^(i-1));
25   endfor
26   chi=sum_1;
27   endif
28   
29   if t<0||t>n
30   error
31   endif
32   endfunction
33   


