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(MUB) problems. In the master thesis we broadly discuss the motivation of the MCRS
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2018). Furthermore, we obtain the following new results: we introduce a polynomially

computable lower bound for the optimal value of the problem, identify two sufficient

conditions for polynomial-time solvability, and perform a detailed study of the MCRS

and MUB problems on several specific families of instances.



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 IV

List of contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Results and structure of the thesis . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

2.1 Graph related definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Other definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Minimum Conflict-free Row Split (MCRS) problem 11

4 A linear-time algorithm for reconstructing a perfect phylogeny 15

4.1 A linear algorithm that tests whether a binary matrix corresponds to a

perfect phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 A linear algorithm for reconstructing a perfect phylogeny . . . . . . . . 17

5 The Minimum Uncovering Branching (MUB) problem 20

6 Complexity and approximation of the MUB problem 26

6.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Known approximation algorithms . . . . . . . . . . . . . . . . . . . . . 28

7 A polynomially computable lower bound on β(M) 31

8 A weighted generalization of Dilworth’s Theorem 34

9 A polynomially computable upper bound on β(M) 40

10 Main results 42

10.1 A lower bound on W (M) . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.2 New efficiently solvable cases . . . . . . . . . . . . . . . . . . . . . . . . 44

10.3 Improving bounds for specific families of instances . . . . . . . . . . . . 49

10.4 Further improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 V

11 Conclusion 58

12 Povzetek dela v slovenskem jeziku 60

13 References 62



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VI

List of Tables

1 An example of bitwise OR operation . . . . . . . . . . . . . . . . . . . 9

2 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VII

List of Figures

1 An example of a graph G and a directed graph D. . . . . . . . . . . . . 7

2 An example of a graph G with χ(G) = 3. . . . . . . . . . . . . . . . . . 7

3 A graph G and its complement. . . . . . . . . . . . . . . . . . . . . . . 7

4 A graph G and one of its vertex covers (shown by vertices in red). . . . 8

5 An example of a perfect phylogeny. The figure is adapted from [20]. . . 11

6 A perfect phylogeny and the corresponding binary matrix M . . . . . . 12

7 An example of a conflict binary matrix M and a conflict-free row split

M ′ of M . The figure is adapted from [18]. . . . . . . . . . . . . . . . . 13

8 A binary matrix M and graphical representation of its column ci viewed

as a binary number having the most significant bit in row 1. . . . . . . 15

9 A sorted binary matrix M̃ and the corresponding perfect phylogeny

obtained using Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . 19

10 An example of a binary matrix M and the corresponding containment

digraph DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

11 An example of a branching B (shown in blue) and six uncovered pairs

(that are underlined) with respect to the branching. . . . . . . . . . . . 21

12 An example showing a binary matrix M , its containment digraph DM ,

a branching B (shown in blue), the underlined elements in vertices of

DM , corresponding to the B-uncovered elements, and the row split MB

of M obtained from branching B. . . . . . . . . . . . . . . . . . . . . . 22

13 An example of a containment digraph DM , a branching B (shown in

blue) and one B-irreducible vertex v5. . . . . . . . . . . . . . . . . . . . 27

14 A containment digraph DM and a linear branching (shown in blue). . . 29

15 A containment digraph DM and two of its principal subgraphs, DM,r3

and DM,r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

16 A containment digraphDM , a maximum antichain (shown in blue squares)

and a minimum chain partition (shown by edges in red). . . . . . . . . 35



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 VIII

17 An example of a binary matrix M and the transitive reduction tr(DM)

of its containment digraph. . . . . . . . . . . . . . . . . . . . . . . . . . 36

18 The transitive reduction tr(DM) of containment digraph DM partitioned

into two chains {C1, C2} . . . . . . . . . . . . . . . . . . . . . . . . . . 36

19 The transitive reduction tr(DM) of containment digraph DM and two

antichains {N1, N2} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

20 A containment digraph DM , introduced as an example attaining strict

inequality in Lemma 10.1. . . . . . . . . . . . . . . . . . . . . . . . . . 44

21 A transitive reduction tr(DM) of a containment digraph DM , corre-

sponding to a binary matrix M with wdt(M) = n, partitioned into n

chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

22 A transitive reduction tr(D′M) of a containment digraph DM ′ corre-

sponding to the binary matrixM ′ having two maximal elementsm1,m2 ∈
PM ′ , an optimal branching B′ of DM ′ (shown in red), a transitive re-

duction tr(DM) of a containment digraph DM corresponding to a bi-

nary matrix M obtained by adding a maximal element m to PM ′ and a

branching B of DM obtained from the branching B′ by adding the edges

in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

23 A transitive reduction tr(DM) of a containment digraph DM ′ corre-

sponding to the binary matrix M ′ having only one maximal element

m′ ∈ PM ′ , an optimal branching B′ of DM ′ (shown in red), a transitive

reduction tr(DM) of a containment DM corresponding to a binary ma-

trix M obtained by adding a maximal element m to PM ′ and a branching

B of DM obtained from B′ by adding the edge shown in blue. . . . . . 48

24 An example construction of the hypergraph H ′ from Theorem 10.12:

the column hypergraph of a binary matrix M derived from the complete

graph K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

25 An example construction of the hypergraph H ′ from Theorem 10.13:

the column hypergraph of a binary matrix M derived from the complete

graph K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

26 A graphical representation of containment digraph MD3,k. . . . . . . . 54

27 A graphical representation of MD3,k and branching B1. . . . . . . . . . 54

28 A graphical representation of MD3,k and branching B2. . . . . . . . . . 54



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 IX

List of Abbreviations

i.e. that is

w.l.o.g. Without loss of generality



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 X

Acknowledgement

I would like to thank a lot my mentor Prof. Martin Milanič for his time, patience,
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1 Introduction

1.1 Motivation

The combinatorial optimization problems investigated in this master thesis are moti-

vated by cancer genomics, a rather new research field that takes advantage of progress

of modern technology to study cancer, which is one of the leading causes of human

deaths all over the world (see [6]). The clonal theory of cancer states that all cells

in a tumor are developed from a single initial cell and cancer arises after a sufficient

number of mutations in a tumor, which is a result of a complex evolutionary process.

During the tumor evolution, each cell passes its mutations to its descendants as it

divides, while the daughter cells accumulate new mutations over time. It is crucial to

understand what mutations lead to an uncontrollable growth of population of abnormal

cells (see, e.g., [26]) for developments in better diagnosis and more targeted therapies

(see [25]).

One could examine tumor samples in the most accurate way by sampling and se-

quencing every single cell contained in the sample, which is impossible with current

biotechnological methods. Today, single-cell analysis has made remarkable progress

with possibility to output high-resolution interpretations from individual cells within

the population (see, e.g., [4]), however, the population of cells may contain various can-

cer cells, which makes understanding of the history of tumor evolution a challenging

process.

A possible solution for overcoming the challenge of reconstructing the evolution-

ary history of mutations is to make use of a computational approach. One of the

possibilities is the following. There exists a widespread belief that all organisms are

derived from a common ancestor and that new species arise by splitting one species

into two, rather that mixing two species into one. Therefore a history of evolution

is ideally displayed by a rooted (directed) tree (see [15]). The view of evolutionary

history as a tree must be modified in each case and there are various types of evo-

lutionary trees representing different types of phenomena. An important approach in

the field of phylogenetics is given by the so-called character-based models, and one

of the most basic character-based model is the so-called perfect phylogeny (which we

formally define in Section 3). Some of its generalizations have been recently applied in
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some important areas of bioinformatics, such as analysis of data from protein domains,

protein networks, genetic markets, etc. (see [5]).

Going back to our discussion regarding the reconstruction of the evolutionary his-

tory of a tumor, we may make use of the perfect phylogeny evolutionary model, since

the tumor progression is assumed to satisfy the following two common properties of a

phylogenetic evolution:

1. All mutations in the parent cells are passed to the descendants.

2. A mutation does not occur twice at the same particular site, which is a so-called

‘infinite sites assumption’.

The problems studied in this master thesis have their origins in the work of Ha-

jirasouliha and Raphael [17], who proposed the following computational approach for

reconstructing the history of somatic mutations. We are given a collection of samples of

the corresponding tumor and the task is to reconstruct the history of the evolutionary

process of the tumor so that the resulting model corresponds to a perfect phylogeny.

We assume that each cell is in one of the following states: 0 = normal; 1 = mutated.

Further, given those samples and information regarding the occurrence of the muta-

tions, we construct a binary matrix M , where rows and columns correspond to the

samples and mutations, respectively. Not surprisingly, the (i, j)-th entry of matrix M

equals 1 if the mutation j occurs in sample i, otherwise the entry equals 0. Given a

binary matrix M , the perfect phylogeny problem asks whether the matrix corresponds

to a perfect phylogeny evolutionary model. The answer to the question is a known re-

sult (see [10,15]), stating that the rows of a binary matrix M corresponds to a perfect

phylogeny if and only if the matrix is conflict-free. For more details see Section 3.

1.2 Related work

Under ideal conditions, each mutation would be identified without errors, and the

samples would not contain reads1 from several leaves of the perfect phylogeny. In

practice, however, each tumor sample is a mixture of reads from several tumor types,

and thus the corresponding binary matrix M does typically not correspond to a per-

fect phylogeny, that is, it is not conflict-free. To tackle the problem, Hajirasouliha

and Raphael proposed in [17] the so-called Minimum Split Row optimization problem,

aimed at explaining each of the rows of the binary conflict matrix M with a set of rows,

1In the field of bioinformatics, in DNA sequencing, the term read refers to a sequence obtained at

the end of the sequencing process and represents a part of the sequence corresponding to the entire

genome.
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in an overall simplest possible way, so that the resulting binary matrix M ′ is conflict-

free and thus corresponds to a perfect phylogeny. In this master thesis we investigate a

variant of the problem, since the formulation has evolved during subsequent works by

Hujdurović et al. first in [19] and then in [18]. We investigate the so-called Minimum

Conflict-free Row Split problem introduced in [19], which informally says the following:

split each row of a given binary matrix M into bitwise OR of a set of rows so that

the resulting matrix corresponds to a perfect phylogeny and has the minimum possible

number of rows among all matrices with this property.

In [17], Hajirasouliha and Raphael showed that the problem is NP-complete. In

addition, they introduced several concepts used in future research papers in this area,

including a polynomially computable lower bound expressed in terms of chromatic

numbers of certain derived graphs, called conflict graphs, corresponding to the binary

matrix M and a row r of M (see Section 7 for the definition). Following the work of Ha-

jirasouliha and Raphael, Hujdurović et al. introduced in [19] the Minimum Conflict-free

Row Split (MCRS) problem, which is equivalent to the Minimum Split Row problem.

Furthermore, Hujdurović et al. showed in [19] that some results and proofs proposed

in [17] are incorrect. For instance, despite the fact that the NP-completeness claim

turns out to be correct, the NP-completeness proof introduced in [17] is incorrect, due

to the wrong assumption stating that every graph is a row-conflict graph (for more

details see [17] and [19]). In the same paper, Hujdurović et al. gave a different NP-

completeness proof by using a reduction from 3-edge-colorability of cubic graphs, which

is known to be NP-complete (see [22]). Moreover, Hujdurović et al. in [19] introduced

the following two results: a polynomial-time algorithm for a particular subset of in-

stances and an efficient (not necessarily optimal) heuristic algorithm for the Minimum

Conflict-free Row Split problem.

Subsequently, Hujdurović et al. in [18], firstly, showed that the MCRS problem

may be equivalently formulated in terms of branchings in the so-called containment di-

graph DM (for the precise definitions, see Section 5), which is a directed acyclic graph

(DAG) derived from the given binary matrix M . Secondly, the NP-completeness re-

sult is strengthened to an APX-hardness result, proved by an L-reduction from the

vertex cover problem in cubic graphs, which is known to be APX-hard (see [3]). Two

approximation algorithms for the MCRS problem are introduced, with approximation

ratios described in terms of the height and the width of the binary matrix M – where

these quantities are defined in terms of parameters of the corresponding containment

digraph DM (for more details and formal definitions see Section 6). Moreover, the

proof of a new min-max result is presented, which improves the heuristic algorithm for

the Minimum Conflict-free Row Split problem introduced in [19] and is used to intro-

duce a polynomial-time algorithm to solve the so-called Minimum Uncovering Linear
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Branching (MULB) problem (see Section 6 for the definition of a linear branching and

Section 9 for the definition of the problem). The min-max result is a strengthening

of Dilworth’s Theorem, a classical result in the theory of partially ordered sets, which

states that in any finite partially ordered set, the minimum number of chains in a

partition of the set equals the maximum size of an antichain [7].

In [20], Husić et al. introduced the Minimum Perfect Unmixed Phylogenies (MIPUP)

method for finding the tumor evolution. This method relies on a relation between per-

fect phylogenies and branchings in directed acyclic graphs established in [18]. The

MIPUP method is based on an Integer Linear Programming (ILP) formulation of the

problem. The method was tested against four well known tools for discovering history

of tumor evolution, more specifically, against CITUP (see [23]), LICHeE (see [27]),

AncesTree (see [9]) and Treeomic (see [29]). The MIPUP method was shown to be

the most accurate, where the accuracy was measured by the number of the origi-

nal ancestor-descendant relations from original tree that were kept also in the recon-

structed tree, as done also in [27] and [9]. In some cases (see [20] for more details)

MIPUP reconstructs more than 92% of all relations. The method is implemented in

Java and uses the CPLEX ILP solver. Apart from the optimal number of rows in

a conflict-free row split M ′ of a binary matrix M , MIPUP also outputs the perfect

phylogeny corersponding to it. The Java implementation, which is freely available at

https://github.com/zhero9/MIPUP, was used in this master thesis for finding an op-

timal solution for various examples to get a better understanding of the new results

introduced in the thesis. We would also like to remark that a phylogenomic approach

based on phylogenetic trees returned by MIPUP is being used to study the evolution

of the SARS-CoV-2 virus (see [28]), which started in 2019 in China (see [11]) and

according to World Health Organization (WHO) is a part of worldwide pandemic.

1.3 Results and structure of the thesis

In the master thesis we provide the preliminary theory, consisting of the definitions

necessary for understanding all the notions mentioned in this work and specify the as-

sumptions made throughout the thesis. We formally define all the concepts mentioned

in the motivation and give an overview of related results. Moreover, we summarize

known results using a unified notation and give detailed proofs of particular results.

We also provide some new results about the MCRS and MUB problems.

More specifically, we first give some preliminary definitions in Section 2. In Sec-

tion 3 we define the concept of a perfect phylogeny and give an overview of the Minimum

Conflict-free Row Split (MCRS) problem along with some concrete examples. In Sec-

tion 4 we give an overview of linear-time algorithms introduced by Dan Gusfield in [16]
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for testing whether a binary matrix M corresponds to a perfect phylogeny evolutionary

model and if this is the case, constructs one. Then we move on to Section 5, where we

present the MUB problem, a problem equivalent to the MCRS problem and defined

in terms of branchings in the so-called containment digraph DM corresponding to the

input binary matrix M of the MCRS problem. In Section 6 we recall known com-

putational complexity results and review known approximation algorithms introduced

in [18]. We discuss the proof ideas and outputs of the algorithms. In Section 7, we give

an overview of known polynomially computable lower bounds and justify the polyno-

mial time complexity. Further, in Section 8, we present a min-max result from [18],

which is a generalization of Dilworth’s theorem. The result is essential for the proof of

polynomial time complexity of an upper bound introduced in Section 9.

Finally, in Section 10 we bring to light the following results. An important result

introduced in the thesis is a theorem stating that the MCRS problem is polynomial-

time solvable for instances of width 2. Another result shown in this thesis is that

the MCRS problem is polynomially solvable for instances such that the width of the

binary matrix M equals the number of maximal elements in the corresponding poset

PM (for details see Section 10). Then, we introduce a new polynomially computable

lower bound in terms of the maximum weight of an antichain and analyze the quality

of this bound on two specific families of instances generalizing two families of instances

introduced by Hujdurović et al. in [18]. Finally, we define a new family of instances

for analyzing an open problem introduced in Section 7. A positive answer to the open

problem would imply the existence of a constant factor approximation algorithm for

the MCRS problem (formally defined in Section 3). We conclude the thesis by stating

few open questions in this area, which could be interesting for future research.
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2 Preliminaries

In this section we specify the assumptions made throughout this thesis and give an

overview of the definitions crucial for understanding known as well as new results

discussed in the thesis.

From now on, when we talk about a binary matrix M , we assume that there are no

duplicated columns and there are no rows having all zero entries.

2.1 Graph related definitions

A graph G is an ordered pair (V,E), where V is a finite set and E ⊆ {{x, y} | (x, y) ∈
V ×V ∧x 6= y}; elements of V are vertices of G and elements of E are unordered pairs

of vertices called edges. We say that two vertices in a graph are adjacent if there is an

edge between them.

A directed graph (or digraph) D is an ordered pair (V,A), where V is a finite set

and A ⊆ V × V \ {(x, x) | x ∈ V }; elements of V are vertices of D and elements of A

are ordered pairs of vertices called arcs (or (directed) edges). A digraph D = (V,A)

is transitive if any three vertices v1, v2, v3 such that edges (v1, v2), (v2, v3) ∈ A imply

(v1, v3) ∈ A. We say that two vertices in a digraph are adjacent if there is an arc

between them, independently of the direction of the arc. A (v1, vk-)path in a directed

graph D = (V,A) is a sequence of k ≥ 1 distinct vertices v1, . . . , vk such that (vi, vi+1) ∈
A for all i ∈ {1, . . . , k − 1}. Given two vertices u and v in a digraph D, we say that v

is reachable from u if D contains a u, v-path; otherwise, we say that v is unreachable

from u. In a directed graph D = (V,A) we distinguish the outgoing arcs from a vertex

from the incoming arcs. Outgoing arcs from a vertex v are arcs having vertex v as its

first coordinate, that is, arcs in A of the form (v, v′) for some vertex v′ ∈ V . Incoming

arcs to a vertex v are arcs having vertex v as its second coordinate, that is, arcs in A

of the form (v′, v) for some vertex v′ ∈ V .

See Fig. 1 for an example of a graphical representation of a graph G and a directed

graph D.

We say that two graphs G = (V1, E1) and H = (V2, E2) are isomorphic if there

exists a bijective function f : V1 → V2 such that

uv ∈ E1 if and only if f(u)f(v) ∈ E2 for all u, v ∈ V1.
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G D

Figure 1: An example of a graph G and a directed graph D.

Let G = (V,E) be a graph. By χ(G) we denote the chromatic number of G, defined

as the smallest number of colors needed to color the vertices of the graph so that no

two adjacent vertices share the same color. See Fig. 2 for an example.

G

Figure 2: An example of a graph G with χ(G) = 3.

The complement of a graph G = (V,E) is the graph G on the same vertex set V

such that two distinct vertices are adjacent in G if and only if they are not adjacent in

G. See Fig. 3 for an example.

G G
v1 v1

v2 v2v5

v3 v3v4 v4

v5

Figure 3: A graph G and its complement.

A graph is acyclic if it contains no cycles. A tree is a connected acyclic graph. A
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clique in a graph G is a set of pairwise adjacent vertices. A graph G is a perfect graph

if the chromatic number of every induced subgraph equals the size of the largest clique

of that subgraph.

We say that a graph G is cubic if every vertex of G is incident with exactly three

edges, i.e., if for every vertex v ∈ V (G) we denote E(v) = {e ∈ E(G) | v ∈ e}, then

the graph G is cubic if and only if |E(v)| = 3 for all v ∈ V (G).

A vertex cover of a graph G is a subset C ⊆ V (G) such that for all e = {v1, v2} ∈
E(G) either v1 ∈ C or v2 ∈ C. See Fig. 4 for an example.

G

Figure 4: A graph G and one of its vertex covers (shown by vertices in red).

2.2 Other definitions

An optimization problem Π is a 4-tuple (D,S, f, opt) where:

• D is a set of input instances.

• For every x ∈ D, set S(x) is the set of all feasible solutions for instance x.

• f : ∪x∈DS(x)→ R is a function that assigns a value to each solution.

• opt ∈ {min,max}.

A minimization problem Π is an optimization problem (D,S, f, opt) such that opt =

min. Given x ∈ D, the task of a minimization problem Π is to find a solution sol xopt ∈
S(x) such that for all feasible solutions sol ∈ S(x) the following holds

f(sol xopt) ≤ f(sol).

We denote the value f(sol xopt) by optΠ(x).

An approximation algorithm A for an optimization problem Π is a polynomial-

time algorithm such that given an input instance x ∈ D, the algorithm outputs some
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sol ∈ S(x). We denote by A(x) the value f(sol). Furthermore, we say that A has

approximation ratio α if for every instance x ∈ D, A(x) is within a (multiplicative)

factor of α of optΠ(x). (Here α ≥ 1 is a real number the value of which could depend

on x.) Equivalently, we say that A is an α-approximation algorithm.

To understand the definition of the main optimization problem investigated in this

thesis it is crucial to understand what the bitwise OR operation does. Hence, let

us give a formal definition. Bitwise OR is a binary operation that takes two binary

sequences of equal length as input and performs the logical inclusive OR operation on

each pair of corresponding bits. In other words, the resulting sequence has entry 0 if

both corresponding bits are 0, and 1 otherwise. See Table 1 for an example.

Table 1: An example of bitwise OR operation

10100

OR 01101

= 11101

The bitwise OR operation is commutative and associative, and can thus be naturally

extended to any finite number of input binary sequences of the same length.

In computational complexity theory, we refer to NP as the class of decision problems

such that if the answer is ‘yes’, that can be verified by a polynomial-time algorithm if

the input instance is equipped with a suitable “certificate”. As mentioned in Section 6

and shown in [18], the MUB (and consequently MCRS) problem (see Sections 3 and 5

for formal definitions) belongs to the class of APX-hard problems. Hence, it is crucial

to understand what this means. APX is the class of all NP optimization problems that

allow approximation algorithms with a constant approximation ratio. Furthermore,

an optimization problem is APX-hard if there exists some ε > 0 such that it is not

possible to approximate the problem in polynomial time to within a factor of (1 + ε)

unless P = NP.

To demonstrate APX-hardness of an optimization problem, a commonly used tool

is the so-called L-reduction scheme. Let us introduce this concept formally.

Let Π and Π′ be two optimization problems. Recall that for an instance x of Π,

we denote by optΠ(x) the optimal value of Π given x, and similarly for Π′. Problem

Π is said to be L-reducible to Π′ if there exists a polynomial-time transformation f

mapping instances of Π to instances of Π′ and constants a, b ∈ R+, where R+ is the set

of positive real numbers, such that for every instance x of Π, the following holds:

• for every instance x of Π we have optΠ′(f(x)) ≤ a · optΠ(x)

• for every feasible solution y′ of f(x), we can compute in polynomial time a feasible
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solution y for x such that

|optΠ(x)− c1| ≤ b · |optΠ′(f(x))− c2| ,

where c1 and c2 denote the objective function values of y and y′, respectively.

To show APX-hardness of the MUB problem Hujdurović et al. used an L-reduction

from the vertex cover problem in cubic graphs.

In the idea of the proof for Lemma 5.6 explained in Section 5 we used the following

notion. Let f : X → Y be a function. We say that f is one-to-one (or injective) if for

all a, b ∈ X, f(a) = f(b) implies that a = b. In other words, f maps distinct elements

of the domain to distinct elements of the co-domain.

In addition, at the end of Section 5 we refer to the vertices of containment digraph

as to the poset PM . Let us define what we mean by a poset in our case.

A strict partially ordered set is an ordered pair P = (X,<), where X is a set called

the ground set of P and < is a binary relation of X, that is irreflexive, transitive, and

asymmetric. More specifically, for all a, b, c ∈ X:

• a < a does not hold,

• if a < b and b < c then a < c,

• if a < b then b < a does not hold.

Note that the condition that relation < is irreflexive is a consequence of the assump-

tion that the relation is asymmetric. In this thesis we will refer to a strict partially

ordered set as a poset.
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3 The Minimum Conflict-free Row

Split (MCRS) problem

In this section we introduce the perfect phylogeny evolutionary model and give a formal

definition of the MCRS problem.

A rooted tree is a tree with a distinguished vertex, called the root of the tree.

Definition 3.1. A perfect phylogeny is a rooted tree representing the evolutionary

history of a set of m objects such that:

• The m objects bijectively label the leaves of the tree, representing different sam-

ples.

• There are n binary characters, each labeling exactly one edge of the tree, and

representing mutations occurred during the evolution of the tumor.

See Fig. 5 for an example.

root

A B

C D

E

c1

c2

c3

c4

c5c6

Figure 5: An example of a perfect phylogeny. The figure is adapted from [20].
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An m× n matrix is a rectangular array of m rows and n columns in the following

form

M =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


The elements of a matrix can be numbers, symbols, or mathematical expressions. We

denote by {0, 1}m×n the set of all m × n binary matrices, where a matrix is said to

be binary if all its elements belong to the set {0, 1}. A perfect phylogeny naturally

corresponds to an m × n binary matrix having objects as rows and characters as its

columns. See Fig. 6 for an example.

root

A B

C D

E

c1

c2

c3

c4

c5c6

A
B
C
D
E


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 0 0 0



c1 c2 c3 c4 c5 c6

Figure 6: A perfect phylogeny and the corresponding binary matrix M .

However, as mentioned in the motivation, we are interested in the opposite direction.

Given a binary matrix M , whose columns and rows represent mutations and samples,

respectively, we would like to reconstruct a perfect phylogeny to understand the history

of somatic mutations in the corresponding tumor. Firstly, we need to classify matrices

which correspond to the evolutionary model of our interest. To this end, the notion of

a conflict-free binary matrix M will be relevant.

Definition 3.2. Two columns i and j of a binary matrix M are said to be in conflict

if there exist three rows r, r′, r′′ of M such that there exists a 3× 2 submatrix of M of

the following form:

M [(r, r′, r′′), (i, j)] =

1 1

1 0

0 1
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A binary matrix M is conflict-free if no two of its columns are in conflict.

Otherwise, we say that a binary matrix M is a conflict matrix.

It is a known result (see [10], [15]), that the rows of a binary matrix M correspond

to a perfect phylogeny if and only if M is conflict-free. Furthermore, if this is the case,

a corresponding perfect phylogeny can be computed from M in linear time (see [16]

and Section 4).

As mentioned in the introduction, each tumor sample is typically a mixture of reads

from several tumor types, and thus the corresponding matrix M is likely to be a conflict

matrix. Since we are interested in representing the evolutionary history of somatic

mutations by means of the perfect phylogeny model, we would like to explain the

conflict binary matrix M containing the measurements with some conflict-free binary

matrix M ′. To tackle the problem, Hajirasouliha and Raphael (see [17]) introduced so-

called Minimum-Split-Row optimization problem to minimally decompose the subset of

samples (rows), so that they form perfect phylogeny. Minimality is a common criterion

used when modeling real-life problems, and it is one of the simplest assumptions one

can make. In the master thesis we will refer to the Minimum Conflict-free Row Split

problem introduced by Hujdurović et al. in [19], following the work of Hajirasouliha

and Raphael. To formally state the problem, we will need the following definition.

Definition 3.3. Let M ∈ {0, 1}m×n. Let r1, . . . , rm denote the rows of M . We say

that a binary matrix M ′ ∈ {0, 1}m′×n is a row split of M if there exists a partition of

the set of rows of M ′ into m sets R1, . . . , Rm such that for all i ∈ {1, . . . ,m}, ri is the

bitwise OR of the binary vectors in Ri. See Fig. 7 for an example.


0 1 0 1 0
0 0 0 0 1
1 0 1 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 1



c1 c2 c3 c4 c5

R3

{
M ′

R1

{
R2

{
R4

{

M


0 1 0 1 1
1 0 1 0 1
0 0 0 1 0
1 1 0 0 1


c1 c2 c3 c4 c5

r1
r2
r3
r4

Figure 7: An example of a conflict binary matrix M and a conflict-free row split M ′ of

M . The figure is adapted from [18].

Let us denote the minimum number of rows in a conflict-free row split M ′ of M by

γ(M). We introduce the following problem:
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Minimum Conflict-Free Row Split (MCRS):

Input: A binary matrix M .

Task: Compute γ(M).

We remark that a trivial solution to the Minimum Conflict-free Row Split problem

can be obtained by splitting each row r of M into as many rows of the n× n identity

matrix In as the number of ones in r. However in order to obtain a meaningful, in

terms of the motivation, conflict-free row split M ′, we are interested in solving the

MCRS problem.
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4 A linear-time algorithm for

reconstructing a perfect phylogeny

Dan Gusfield introduced in [16] an O(mn) time algorithm for checking whether an

m × n binary matrix M is conflict-free and an algorithm for reconstructing a perfect

phylogeny from a conflict-free binary matrix M . In this section we give an overview of

these two algorithms.

4.1 A linear algorithm that tests whether a binary

matrix corresponds to a perfect phylogeny

Before we give an overview of the algorithm we give several definitions. A binary

number is number expressed in the binary numeral system, that is, a number that uses

symbols 0 and 1. We refer to each digit in a number as a bit. The most significant bit

is the bit position with the greatest value. Let us more explicitly define the notion of

a value. Every non-negative integer can be uniquely represented as a binary number

and vice-versa.

Example 4.1. Let us consider as an example a binary number from Fig. 8.



0 1 1 1 0
1 0 0 0 1
1 1 1 0 1
0 0 0 1 0
1 0 1 0 0
0 1 1 1 1



M

1 0 1 0 1 1

The least
significant bit

The most
significant bit

column i

Figure 8: A binary matrix M and graphical representation of its column ci viewed as

a binary number having the most significant bit in row 1.

1010112 = 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 32 + 8 + 2 + 1 = 4310

Hence, the leftmost bit has the greatest value, equal to 32.
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Before we move on to the algorithm, recall that in the thesis we assume that there

are no duplicated columns in a binary matrix M .

Table 2: Algorithm 1

Algorithm: Testing whether a binary matrix corresponds to perfect phy-

logeny

Input: A binary matrix M ∈ {0, 1}m×n

Output: ‘Yes’ if M is conflict-free / ‘No’ if M is a conflict matrix

1. Columns of a binary matrix M may be viewed as a binary numbers with the most

significant bit in the first row and the least significant bit in the last row. See

Fig. 8 for a graphical representation. Firstly, we sort the numbers into decreasing

order, that is, we place the largest number in column 1 and the smallest in column

n. We denote the sorted matrix by M̃ . See the figure below for an example of a

binary matrix M and sorted binary matrix M̃ .


0 1 1 1
1 0 0 1
0 1 0 1
0 0 0 1



M 
1 1 1 0
1 0 0 1
1 1 0 0
1 0 0 0



M̃

2. Let S = {(i, j) | M̃(i, j) = 1, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}. For each (i, j) ∈ S
we define L(i, j) to be the largest k ∈ {1, . . . , n} such that k < j and (i, k) ∈ S.

If there does not exist such a k, set L(i, j) = 0. In addition we define, for all

j ∈ {1, . . . , n}, L(j) to be the largest L(i, j) with (i, j) ∈ S.

3. If L(i, j) = L(j) for all (i, j) ∈ S, then the answer is ‘Yes’. Otherwise ‘No’.

Remark 4.2. The columns can be sorted in time O(nm) by using the so-called radix

sort sorting algorithm. For the details see [2].

Let M be a binary matrix. We will denote a multiset of its columns and rows by CM

and RM , respectively. Given a column cj ∈ CM , the support of cj is the set defined as

follows: {ri ∈ RM : Mi,j = 1}. The set is denoted by suppM(cj). The conflict-freeness

property of a binary matrix M can be defined equivalently in the following way. A

binary matrix M is conflict-free if and only if for every pair of columns ci and cj, either

suppM(cj)∩ suppM(ci) = ∅ or one contains the other. Otherwise, we say that ci and cj

are in conflict. The correctness of the above algorithm is a consequence of the following

results.
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Lemma 4.3. A binary matrix M is conflict-free if and only if the corresponding sorted

binary matrix M̃ is conflict-free.

The above lemma follows from the fact that any permutation of the columns of a

binary matrix M maps any two columns that are in conflict in M to a pair of columns

that are in conflict in the permuted matrix, and similarly for pairs of columns that are

not in conflict.

Theorem 4.4. Matrix M̃ ∈ {0, 1}m×n is conflict-free if and only if L(i, j) = L(j) for

all (i, j) ∈ S.

Proof. Firstly, assume that L(i, j) = L(j) for all (i, j) ∈ S. For every column index

j, if L(j) 6= 0 then suppM(cj) ⊂ suppM(cL(j)) since M̃ is a sorted binary matrix. In

addition, for every column j ∈ CM and for every column k strictly between L(j) and

j, we have that suppM(ck) ∩ suppM(cj) = ∅, since we assumed that L(i, j) = L(j)

for all (i, j) ∈ S. For an arbitrary column index j let L(j) = k > 0 and L(k) =

k′. If k′ > 0, then suppM(cj) ⊂ suppM(ck′) since M̃ is a sorted binary matrix and

suppM(cj) ∩ suppM(cp) = ∅ for any p such that k′ < p < k, since L(i, j) = L(j) for

all (i, j) ∈ S. And finally, if k′ = 0, then we have that suppM(cj) ∩ suppM(cp) = ∅ for

every p from 1 to k−1, again since L(i, j) = L(j) for all (i, j) ∈ S. A similar argument

holds for all columns cj and cp such that p < j. Since j was arbitrary, we conclude

that no pair of columns of M are in conflict.

Assume that matrix M̃ is conflict-free and suppose for a contradiction that there

exists rows r, r′ ∈ {1, . . . ,m} and a column cj with j ∈ {1, . . . , n} such that (r, j) ∈ S,

(r′, j) ∈ S, L(j) = L(r, j) = k, and L(r′, j) = k′ < k. Denote by bk and bj the numbers

representing columns ck and cj, respectively. Since L(r, j) = k = L(j) and L(r′, j) = k′,

we know that M̃(r, k) = M̃(r, j) = 1, M̃(r′, j) = 1 and M̃(r′, k) = 0. Since bk > bj,

there exist a row r′′ ∈ {1, . . . ,m} such that M̃(r′′, k) = 1 and M̃(r′′, j) = 0. Hence,

M [(r, r′′, r′), (k, j)] =

1 1

1 0

0 1

 ,

a contradiction.

4.2 A linear algorithm for reconstructing a perfect

phylogeny

While the algorithm given in Section 4.1 decides that M corresponds to a perfect

phylogeny, the linear-time algorithm presented next constructs one.
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Before we move on to the algorithm, let us intoroduce a relevant notion. Let T be

a rooted tree. A leaf is a vertex v 6= r ∈ V (T ) of degree 1, where r is the root of T . A

leaf edge is an edge of T incident with a leaf.

Table 3: Algorithm 2

Algorithm: Constructing a perfect phylogeny T from a conflict-free, sorted

binary matrix M̃

Input: A binary matrix M̃ ∈ {0, 1}m×n obtained in step 1 of Algorithm 1 in Table 2.

Output: A perfect phylogeny T representing M .

1. Firstly, for every cj ∈ CM̃ create a node nj. Then, create a root r. For all

j ∈ {1, . . . , n} such that L(j) = 0 create an edge (r, nj) and label the edge with

character cj. For all j ∈ {1, . . . , n} such that L(j) > 0 create an edge (nL(j), nj)

and label the edge with character cj.

2. For every ri ∈ RM̃ let mi be the largest index such that (ri,mi) ∈ S, defined in

Algorithm 1 in Table 2. Let e = (ni, nj) be the edge labeled by mi.

(a) If e is a leaf edge, we label the leaf incident to e by ri.

(b) Otherwise, we create an edge connecting vertex nj with a new leaf and label

the leaf by ri.

See Figure 9 for an example of a sorted binary matrix M̃ and the corresponding

perfect phylogeny obtained using Algorithm 2.

Theorem 4.5 (Gusfield). Algorithm 2 correctly builds a perfect phylogeny T for M .

For the proof of the above theorem see [16].
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1 1 1 0 0
1 0 0 1 1
1 1 0 0 0
1 0 0 1 0
1 0 0 0 0



M̃

S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 4), (2, 5),
(3, 1), (3, 2), (4, 1), (4, 4), (5, 1)}

L(1) = 0; L(2) = 1; L(3) = 2; L(4) = 1;
L(5) = 4

r

r1

r2

r3

r4

r5

c1

c4

c5

c2

c3

T

c1 c2 c3 c4 c5

r1
r2
r3
r4
r5

Figure 9: A sorted binary matrix M̃ and the corresponding perfect phylogeny obtained

using Algorithm 2.
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5 The Minimum Uncovering

Branching (MUB) problem

Hujdurović et al. showed in [18] that the MCRS problem can be restated as an opti-

mization problem in terms of branchings in directed acyclic graphs, more specifically

in terms of the so-called containment digraph DM corresponding to the binary matrix

M , which we define in this section. This equivalence led to a strengthening of the

computational complexity results from [19], development of approximation algorithms,

and an improvement of a heuristic for the MCRS problem from [19]. First, we provide

the necessary definitions.

Recall that given a column cj ∈ CM , the support of cj is the set defined as follows:

suppM(cj) = {ri ∈ RM : Mi,j = 1}.

Definition 5.1. Let M ∈ {0, 1}m×n be a binary matrix. The containment digraph

DM = (V,A) corresponding to M has vertex set V = {suppM(c) | c ∈ CM} and an arc

set A = {(vi, vj) | vi, vj ∈ V and vi ⊂ vj}.

See Fig. 10 for an example.


0 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 0 1


r1
r2
r3
r4
r5

c1 c2 c3 c4 c5 c6

v1 = {r2}

v4 = {r1, r2}

v6 = {r3, r4, r5}

v5 = {r3, r4}

v2 = {r3} v3 = {r4}

M

DM

Figure 10: An example of a binary matrix M and the corresponding containment

digraph DM .

Definition 5.2. Let DM = (V,A) be the containment digraph of a binary matrix M .

A branching of DM is a subset B of A containing at most one outgoing arc from each

vertex.
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Let M ∈ {0, 1}m×n and let DM = (V,A) be the containment digraph corresponding

to M . Let B be a branching of DM . For a vertex v ∈ V , we define N−B (v) := {v′ ∈
V | (v′, v) ∈ B}. Let r ∈ RM and let v ∈ V (DM), such that r ∈ v. We say that r

is covered in v with respect to branching B if r ∈ ∪N−B (v). Otherwise, we say that

r is uncovered in v with respect to B. A B-uncovered pair is a pair (r, v) such that

r ∈ RM , v ∈ V (DM), and r is uncovered in V with respect to B. Let us denote by

U(B) the set of all B-uncovered pairs and for r ∈ RM we denote by UB(r) the set of all

B-uncovered pairs with the first coordinate equal to r. See Example 5.3 for a better

understanding of the notions of branching and uncovered pairs.

Example 5.3. The six uncovered pairs with respect to the branching B shown on

Fig. 11 are the following: U(B) = {(r2, v1), (r3, v2), (r4, v3), (r1, v4), (r3, v5), (r5, v6)}.

v1 = {r2}

v4 = {r1, r2}

v6 = {r3, r4, r5}

v5 = {r3, r4}

v2 = {r3} v3 = {r4}

DM

B

Figure 11: An example of a branching B (shown in blue) and six uncovered pairs (that

are underlined) with respect to the branching.

Let us denote the minimum number of uncovered pairs over all branchings B of

DM by β(M). Then, the Minimum Uncovering Branching problem is the following:

Minimum Uncovering Branching (MUB):

Input: A binary matrix M .

Task: Compute β(M).

Next, we describe a process of reconstructing a conflict-free binary matrix M ′ of

M given an optimal branching B with |U(B)| number of uncovered pairs. Let M ∈
{0, 1}m×n be a binary matrix. Let RM = {r1, . . . , rm} and CM = {c1, . . . , cn}. Let DM
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be the corresponding containment digraph and B be an arbitrary branching of DM . Let

U(B) = {u1, . . . , uk}. We define the B-split of M , denoted by MB, as the following

matrix. The rows and columns of the matrix MB are indexed by {u1, . . . , uk} and

{c′1, . . . , c′n}, respectively. Let vj = suppM(cj) for all j ∈ {1, . . . , n} and V = V (DM).

For v ∈ V , denote by B+(v) the set of all vertices in V reachable by a path from v in

(V,B). For all (r, v) ∈ U(B) and all j ∈ {1, . . . , n}, set

MB
(r,v),j =

{
1, if vj ∈ B+(v);

0, otherwise.

See Fig. 12 for an example.


1 0 1 1 1 1
0 0 0 1 1 0
0 1 1 0 1 1
0 0 0 0 0 1
0 0 0 0 1 1



c1 c2 c3 c4 c5 c6

r1
r2
r3
r4
r5

v1 = {r1} v2 = {r3}

v3 = {r1, r3}v4 = {r1, r2}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}



1 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1



c1 c2 c3 c4 c5 c6

U(B)



(r1, v1)
(r1, v4)
(r2, v4)
(r3, v2)
(r3, v3)
(r4, v6)
(r5, v5)
(r5, v6)

M

DMMB

v1 = {r1} v2 = {r3}

v3 = {r1, r3}v4 = {r1, r2}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}
DM

Figure 12: An example showing a binary matrix M , its containment digraph DM , a

branching B (shown in blue), the underlined elements in vertices of DM , corresponding

to the B-uncovered elements, and the row split MB of M obtained from branching B.

The following lemma from [18] shows that the B-split of M is indeed a conflict-free

row split of M .

Lemma 5.4. Let M be a binary matrix and DM its containment digraph. Let B be an

arbitrary branching of DM and MB the B-split of M . Then MB is a conflict-free row

split of M with |U(B)| rows, obtained by splitting each row ri of M into rows of MB

indexed by the elements of UB(ri).

Proof. The proof idea of Lemma 5.4 is the following. The number of rows in MB is,

clearly, |U(B)| by the definition of a B-split. We have to show that the row r is the
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bitwise OR of the rows of MB indexed by UB(r). Since M is a binary matrix, there

are two possible values in each entry of row r. Firstly assume that Mr,j = 1 for some

j. By the definition of the containment digraph, we have r ∈ vj. Now we have to show

that there exist a vertex v ∈ V (DM) such that (r, v) ∈ UB(r) and MB
(r,v),j = 1. If r is

B-uncovered in vj we are done as in this case (r, vj) ∈ UB(r) and MB
(r,vj),j = 1 since

vj ∈ B+(vj). Otherwise, there exist some vk ∈ N−B (vj) such that r ∈ vk, and if r is

covered in vk we repeat the argument with a “covering” in-neighbor of vk. Since |CM |
is finite and (V,B) is acyclic, the process will stop after finitely many steps. Hence we

can assume w.l.o.g. that (r, vk) ∈ UB(r) and MB
(r,vk),j = 1 since vj ∈ B+(vk). If Mr,j = 0

for some j, then clearly MB
(r,v),j = 0 for all v ∈ V (DM) such that (r, v) ∈ UB(r). Hence

MB is a row split of M .

Finally, we have to show that MB is conflict-free and we do this by contradiction.

Assume that MB is a conflict matrix. Then there exist row indices (ri, vi′), (rj, vj′) and

(rk, vk′) and column indices p, q ∈ V (DM) such that MB
(ri,vi′ ),p

= MB
(ri,vi′ ),q

= MB
(rj ,vj′ ),p

=

MB
(rk,vk′ ),q

= 1 and MB
(rj ,vj′ ),q

= MB
(rk,vk′ ),p

= 0. Since MB
(ri,vi′ ),p

= MB
(ri,vi′ ),q

= 1, we have

that vp, vq ∈ B+(vi′). However, since B is a branching and in every branching there

is at most one outgoing edge from each vertex, we must have either vq ∈ B+(vp) or

vp ∈ B+(vq). Assume w.l.o.g. that vq ∈ B+(vp).

Since MB
(rj ,vj′ ),p

= 1, it follows that vp ∈ B+(vj′), which implies that vq ∈ B+(vj′).

Since rj ∈ vj′ and vq ∈ B+(vj′) it follows that rj ∈ vq and MB
(rj ,vj′ ),q

= 1, which is a

contradiction. Hence, MB is conflict free.

The following theorem, again from [18], captures the result showing that the MCRS

and MUB problems are equivalent to each other, with equal optimal values. In the

theorem we denote by ω any real number such that there exists an O(nω) algorithms

for multiplying any two n× n binary matrices (e.g., ω = 2.3728639, see [13]).

Theorem 5.5 (Hujdurović et al., 2018). For every binary matrix M ∈ {0, 1}m×n the

following holds:

1. Any branching B of DM can be transformed in time O(n2m) to a conflict-free

row split M ′ of M with exactly |U(B)| rows.

2. Any conflict-free row split M ′ ∈ {0, 1}m′×n of M can be transformed in time

O(m′n2 + nω) to a branching B of DM such that |U(B)| is at most the number

of rows in M ′.

In particular, γ(M) = β(M).

Theorem 5.5 is proved in [18] in two steps. The proof of the first part of the theorem

relies on Lemma 5.4 and the second part on the following lemma.
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Lemma 5.6. There exists an algorithm that takes as input a binary matrix M and a

conflict-free row split M ′ of M and computes in time O(m′n2 + nω) a branching B of

DM such that MB can be obtained from M ′ by removing some rows.

Proof. The proof idea of Lemma 5.6 is the following. Assume that we are given a

binary matrix M and a conflict-free row split M ′ of M . Let us introduce some notation.

Denote the columns and the rows of M by c1, . . . , cn and r1, . . . , rm, respectively. Let

Ri be the set of rows splitting ri, and denote the set of columns of M ′ by c′1, . . . , c
′
n,

where column c′i of M ′ corresponds to column ci of M . Denote by DM the containment

digraph corresponding to M and by DM ′ the containment digraph corresponding to

M ′. For i ∈ {1, . . . , n}, let vi = suppM(ci) and v′i = suppM ′(c′i). We say that an arc

(v′i, v
′
j) of DM ′ is elementary if it is not a consequence of transitivity, that is, there

exists no k ∈ {1, . . . , n} such that both (v′i, v
′
k) and (v′k, v

′
j) are arcs in D′M .

Define a subset B of the arc set of DM as follows: (vi, vj) ∈ B if and only if

v′i 6= ∅ and (v′i, v
′
j) is an elementary arc of DM ′ . We claim that B is a branching of

DM . Initially, it has to be shown that the branching is well defined, that is, that

an arc (v′i, v
′
j) ∈ A(DM ′) implies the existence of an arc (vi, vj) ∈ A(DM) for all

i, j ∈ {1, . . . , n}. Assume, by contradiction, that there exist an arc such that (v′i, v
′
j) ∈

A(DM ′) and (vi, vj) /∈ A(DM). By definition of the containment digraph, this implies

that v′i ⊂ v′j and vi 6⊂ vj. Let rk ∈ vi\vj. Then M ′
r′,i = 1 for some r′ ∈ Rk. This implies

that M ′
r′,j = 1, since by assumption v′i ⊂ v′j, a contradiction, since rk /∈ vj. Further, we

have to show that B is a branching, that is, the out-degree of each vertex is at most

one with respect to the branching. Assume for a contradiction that (vi, vj) ∈ B and

(vi, vk) ∈ B for some vertex vi and j 6= k. Then (v′i, v
′
j), (v

′
i, v
′
k) are elementary arcs in

DM ′ , which implies that v′i ⊂ v′k and v′i ⊂ v′j. Since M ′ is conflict-free, we have either

v′j ∩v′k = ∅, v′j ⊂ v′k, or v′k ⊂ v′j. Since v′i ⊂ v′k∩v′j and v′i 6= ∅, either v′j ⊂ v′k or v′k ⊂ v′j.

By the definition of elementary arcs, we obtain that v′j = v′k. However, since vj 6= vk,

we can assume w.l.o.g. that exist some rp ∈ vj \vk. Then there exist some r′ ∈ Rp such

that r′ ∈ v′j, which implies that r′ ∈ Rp ∩ v′j. Since rp /∈ vk, we have that Rp ∩ v′k = ∅.
Since, v′k = v′j, we infer that r′ ∈ Rp ∩ v′j = Rp ∩ v′k, a contradiction.

Next, it has to be shown that MB can be obtained from M ′ by removing some rows,

or equivalently there exists a one-to-one mapping that maps each row r of MB to an

identical row r′ of M ′, where we say that two rows are identical if the corresponding

binary row vectors are the same. We define the one-to-one mapping as follows. We

map a row of a B-split MB indexed by (ri, vk) ∈ UB(ri) ⊆ U(B) to the row indexed

by (ri, vk) of M ′. It can be easily verified that the mapping is one-to-one (see [18] for

more details). However, it has to be shown that such a mapping is well defined, that

is, there exists an identical row in M ′, more specifically there exists a row r′ ∈ R(M ′)

such that r′ equals to the row of MB indexed by (ri, vk). We show this as follows.
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Let (ri, vk) be a row of MB. Then by the definition of an uncovered pair, ri ∈ vk.

By the definition of a row split M ′, there exist a row r′ ∈ Ri such that M ′
r′,k = 1.

Assume that M ′
r′,j = 1. Since M ′

r′,k = 1 and M ′ is conflict-free, it follows that either

v′j ⊂ v′k or v′k ⊂ v′j. If v′k ⊂ v′j, then we are done. If v′j ⊂ v′k, then there exist a path

P ′ in DM ′ consisting only of elementary arcs of DM ′ , hence path P ′ corresponds to a

nontrivial (nontrivial, because v′j is non-empty) vj, vk-path P in B. Hence vk ∈ B+(vj),

a contradiction. Hence, M ′
r′,j = 1 if and only if vj ∈ B+(vk).

It only remains to estimate the time complexity. The containment digraph DM ′ of

M ′ can be computed in time O(m′n2), then the set of elementary arcs in time O(nω)

using the algorithm of Aho et al. introduced in [1]. And finally, branching B can be

computed in time O(n2).

Theorem 5.5 uses Lemmas 5.4 and 5.6 to prove the equivalence. It suffices to show

that the time complexity of computing the B-split of M equals O(n2m). For more

details and a formal proof of Theorem 5.5 and Lemmas 5.4 and 5.6 see [18].

Note that the equivalence improves on the time complexity of a direct brute-force

approach that follows immediately from the definitions. Let us consider the time

complexity of the approach based on generating all possible row-splits of M . Let us

consider a row r ∈ RM . Assume it has exactly k entries equal to 1. Then there are at

least as many splits of row r as there are partitions of a k-element set, which equals the

Bell number Bk, which is bounded by 2k from below. Hence, in general, for a matrix

M with m rows and n columns, having at least ki ones in each row, we get that the

total number of row splits is at least 2
∑

i ki .

On the other hand, the complexity of the approach that considers all the possible

branchings of the containment digraph DM and choosing the one with least number of

uncovered pairs is of the order, that can be expressed as a function of n only. More

specifically, the time complexity of the approach is of the order O(nn).

We would like to conclude this section by noting that the vertices of the containment

digraph DM correspond to the family of support sets of the columns of M , and arcs

correspond to the relation of proper inclusion of those sets. Hence, essentially, we may

refer to the containment digraph as a strict partially ordered set PM = (V (DM),⊂).

We will refer to the poset PM later on, in Section 10.
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6 Complexity and approximation

of the MUB problem

In this section we give an overview of complexity results and known approximation

algorithms introduced by Hujdurović et al. in [18]. More specifically, as mentioned in

Section 1, the MUB problem is known to be APX-hard and there exist approximation

algorithms with approximation ratios bounded by the width and the height of the input

matrix, respectively.

6.1 Computational complexity

To introduce the theorem that captures the result that MUB problem is APX-hard,

we initially introduce the notion of the height of the containment digraph DM .

Definition 6.1. Let M be a binary matrix and DM its containment digraph. A chain

in DM is the vertex set of a path in D. The height of M is the maximum cardinality

of a chain in DM . Notation: h(M).

The following theorem shows that the problem cannot be approximated arbitrarily

well already for restricted input instances.

Theorem 6.2 (Hujdurović et al. 2018). The MUB problem (and consequently the

MCRS problem) is APX-hard, even for instances of height 2.

The above theorem is proved by showing that the vertex cover problem in cubic

graphs, which is know to be APX-hard, as mentioned in Section 1, is L-reducible to

the MUB problem. The construction introduced in Theorem 10.12 on p. 50 serves as

the main ingredient in the construction of an L-reduction. And consequently, since the

MUB and MCRS problems are equivalent to each other, the MCRS problem is APX-

hard as well. For a formal definition of L-reduction see Section 2 and for a detailed

proof of Theorem 6.2 see [18].

The result of the Theorem 6.2 gives rise to the question whether the MUB (and

consequently the MCRS) problem admits a constant factor approximation. Note that

Hujdurović et al. in [18] consider a variant of the MCRS problem, an optimization
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problem called the Minimum Distinct Conflict-free Row Split (MDCRS) problem. The

MDCRS problem was initially considered by Hajirasouliha an Raphael in [17] and it

minimizes the number of distinct rows in a conflict-free row split M ′ of M . Let us

denote by η(M) the minimum number of distinct rows in a conflict-free row split M ′

of M .

Let us formally define another problem on branchings, the Minimum Irreducible

Branching (MIB) problem. Let M be a binary matrix and DM the corresponding

containment digraph. For a branching B of DM , we say that a vertex v ∈ V (DM) is

B-irreducible if there exists some element r ∈ v that is uncovered in v with respect to

B. Denote the set of all B-irreducible vertices by I(B). As an example, on Fig. 12,

we have I(B) = V (DM), however on Fig. 13, we have I(B) = V (DM) \ {v5}. Let us

denote the minimum number of irreducible vertices over all branchings B of DM by

ζ(M).

v1 = {r2}

v4 = {r1, r2}

v6 = {r3, r4, r5}

v5 = {r3, r4}

v2 = {r3} v3 = {r4}

DM

B

Figure 13: An example of a containment digraph DM , a branching B (shown in blue)

and one B-irreducible vertex v5.

Then the corresponding optimization problem is the following:

Minimum Irreducible Branching (MIB):

Input: A binary matrix M .

Task: Compute ζ(M).

The following theorem shows that the MDCRS problem is equivalent to the MIB

problem, moreover, the optimal values are equal.
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Theorem 6.3 (Hujdurović et al. 2018). For every binary matrix M ∈ {0, 1}m×n the

following holds:

1. Any branching B of DM can be transformed in polynomial time to a conflict-free

row split M ′ of M with exactly |I(B)| distinct rows.

2. Any conflict-free row split M ′ ∈ {0, 1}m′×n of M can be transformed in polynomial

time to a branching B of DM such that |I(B)| is at most the number of distinct

rows in M ′.

In particular, η(M) = ζ(M).

It was shown by Hujdurović et al. in [18] that the MIB (and consequently the

MCDRS) problem is APX-hard even on instances of height 2 by an L-reduction from

vertex cover problem in cubic graphs. The construction from Theorem 10.13 on p. 52

serves as a main ingredient in a construction of an L-reduction.

Going back to our discussion regarding the existence of a constant factor approxi-

mation for the MUB problem, the corresponding problem has been solved for the MIB

problem. It was shown by Hujdurović et al. in [18] that there exist a simple 2-factor

approximation algorithm for the MIB problem. On the other hand, while it remains

an open question whether the MCRS (and consequently the MUB) problem admits a

constant factor approximation for general input instances, it is shown that the MUB

problem admits a constant factor approximation on instances of bounded height and

width. We present these results next.

6.2 Known approximation algorithms

In this subsection we give an overview of the known approximation algorithms for

the MUB problem, give proof ideas and specify what branchings are output by the

algorithms. Let us initially define several notions.

Definition 6.4. An antichain in DM is a set of pairwise non-adjacent vertices. The

width of DM , which is a transitive DAG, is the maximum number of vertices in an

antichain. Notation: wdt(M).

A linear branching of M is a subset of A with at most one outgoing and incoming

arc from each vertex. See Fig. 14 for an example.

We say that a linear branching B consists of k paths if B is the union of edge sets

of k paths not sharing any vertices.

Theorem 6.5 (Hujdurović et al. [18]). Any algorithm that, given a binary matrix

M , computes a linear branching B of DM consisting of wdt(M) paths and returns
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v1 = {r2}

v4 = {r1, r2}

v6 = {r3, r4, r5}

v5 = {r3, r4}

v2 = {r3} v3 = {r4}

DM

Figure 14: A containment digraph DM and a linear branching (shown in blue).

the corresponding B-split of M is a wdt(M)-approximation algorithm for the MCRS

problem.

The corresponding approximation algorithm for the MUB problem outputs any

branching arising from an optimal chain partition of DM (see Section 8 for a formal

definiton of a chain partition), which is polynomially computable using Dilworth’s

Theorem [7] (see Theorem 8.1 in Section 8).

The idea of the proof of Theorem 6.5 is the following. Let M be a binary matrix

and DM its containment digraph and let w = wdt(M). Then by Theorem 8.1 we

can compute a chain partition of DM consisting of w chains in polynomial time. Fix

a branching corresponding to such a chain partition. We consider an arbitrary row

r ∈ RM and the main idea of the proof is that each chain of the partition contains at

most one vertex v such that the pair (r, v) is uncovered with respect to the branching.

Hence, in total r appears uncovered at most w times in the branching. From this fact,

the following inequality can be derived:

|U(B)| ≤ w|RM | ≤ wβ(M) = wγ(M) ,

where the second inequality follows from the assumption that no row of M has all zero

entries.

As the next result shows, an h(M)-approximation can be obtained by the B-split

corresponding to any branching in DM . Before we move on to formally stating the

theorem, let us define the height of a branching.

Let B be a branching. The height of B is the maximum number of vertices in a

path contained in (V,B).

Theorem 6.6 (Hujdurović et al. [18]). Let M be a binary matrix and let B be an

arbitrary branching of DM . Then, the number of rows in the B-split of M is at most

h(M) · γ(M).
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The idea of the proof of Theorem 6.6, expressed again in terms of the MUB problem,

is the following. Let M be an binary matrix and let h = h(M). Then, the height of

an optimal branching is at most h. Fix an optimal branching Bopt . Let (r, v) be an

uncovered pair in U(Bopt). Then at most h pairs of the form (r, v′) can be reached

in Bopt from (r, v) (since it is impossible to reach more vertices than the maximum

number of vertices in a directed path). Hence the inequality |U(B)| ≤ hβ(M) holds

for any branching B.

Note that the output of the algorithm can be any branching, since there are no

restriction in Theorem 6.6. Hence, B = ∅ would work as well.

For more details regarding the analysis of the two approximation algorithms men-

tioned above see [18].
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7 A polynomially computable

lower bound on β(M)

In this section we give an overview of a known polynomially computable lower bound

and a detailed proof of certain results from previous research papers related to the

problem investigated in the master thesis.

Hajirasouliha and Raphael proved in [17] the following lower bound.

Definition 7.1. Let M be an arbitrary binary matrix and r be a row of the matrix.

The conflict graph GM,r is a graph corresponding to matrix M and row r with the

following vertex set. We associate a vertex in GM,r with each entry 1 in r, and two

vertices in GM,r are connected by an edge if and only if the corresponding columns in

GM,r are in conflict.

Lemma 7.2. For every binary matrix M , we have β(M) ≥
∑

r χ(GM,r).

Before we move on to the proof of the above Lemma, let us introduce several notions.

Definition 7.3. Let M be a binary matrix and r a row of M . Let DM be the cor-

responding containment digraph. The principal subgraph of DM corresponding to r is

denoted by DM,r and defined as the subgraph of DM induced by the set of vertices

v ∈ V (DM) such that r ∈ v. A principal subgraph of DM is any subgraph of the form

DM,r. See Fig. 15 for an example.

As the next lemma shows, the maximum size of an antichain in the principal sub-

graph DM,r equals to the chromatic number of the conflict graph GM,r. Recall that an

antichain in DM,r is a set of pairwise non-adjacent vertices.

Lemma 7.4. The maximum size of an antichain in the principal subgraph DM,r equals

the chromatic number of the conflict graph GM,r.

Proof. Let M be a binary matrix and r ∈ RM an arbitrary row. Let DM,r = (V1, E1)

and GM,r = (V2, E2). Then V1 = V2, since the vertices of DM,r and GM,r are the

vertices v of DM such that r ∈ v. Let G′M,r be the undirected underlying graph

of DM,r obtained by replacing each directed edge with the corresponding undirected

edge. Then, an antichain of DM,r is an independent set in G′M,r and vice versa. By the
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v1 = {r1} v2 = {r3}

v3 = {r1, r3}v4 = {r1, r2}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}
DM

v2 = {r3} v3 = {r1, r3}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}
DM,r3

v1 = {r1}

v3 = {r1, r3}v4 = {r1, r2}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}
DM,r1

Figure 15: A containment digraph DM and two of its principal subgraphs, DM,r3 and

DM,r1 .

definition of the conflict graph and the principal subgraph, we have that G′M,r = GM,r.

Then the maximum size of an independent set in G′M,r becomes the maximum size of

a clique in GM,r. Since GM,r is a perfect graph (see [19]) the maximum size of a clique

equals its chromatic number.

Hence Lemma 7.2 has the following equivalent formulation, for which we provide a

direct proof.

Lemma 7.5. For every binary matrix M , we have β(M) ≥
∑

r wdt(DM,r).

Proof. Fix an optimal branching Bopt of DM . Let us consider |U(Bopt)|. Let r ∈
RM = {1, . . . ,m} and DM,r be a principal subgraph. Let wdt(DM,r) = w. Then,

the maximum size of an antichain in DM,r equals w. Denote such an antichain as

follows: N = {v1, . . . , vw}. For every two distinct vertices, say vi and vj, in antichain

N , we have that vi 6⊂ vj and vj 6⊂ vi. For each i ∈ {1, . . . , w}, we will define a vertex

v′i ∈ V (DM,r) such that (r, v′i) is uncovered with respect to Bopt . If (r, vi) is uncovered

with respect to Bopt , then we set v′i = vi. Otherwise, there exists an edge (v′, vi) ∈ Bopt

such that r ∈ v′. If (r, v′) /∈ U(Bopt) we repeat the argument with v′ replaced with a

“covering” in-neighbor. The procedure will stop after finitely many steps since DM,r
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is finite. It remains to show that the mapping i 7→ v′i is one-to-one. If this is not the

case, say v′i = v′j for some i 6= j with i, j ∈ {1, . . . , w}, then using the fact that vertices

vi and vj are unreachable from each other in DM,r, we infer that the union of the two

paths from v′i to vi and from v′j = v′i to vj consisting only of edges of Bopt contains a

vertex with two outgoing edges in Bopt , a contradiction. Therefore, there are at least

w uncovered pairs with first coordinate equal to r. Since this holds for all r ∈ RM , we

obtain β(M) = |U(Bopt)| ≥
∑

r wdt(DM,r), as claimed.

Given a binary matrix M , we denote W (M) =
∑

r wdt(DM,r), where DM,r is the

principal subgraph of the containment digraph DM corresponding to r. Lemma 7.5

states that β(M) ≥ W (M) for every binary matrix M . Please note that this lower

bound is polynomially computable by the approach of Fulkerson [12]. Hence, it would

be interesting to consider the following question.

Open problem 1. Does there exist a constant c such that β(M) ≤ c ·W (M) for all

binary matrices M?

An affirmative answer to the Open Problem 1 would lead to a constant factor

approximation algorithm for the MUB (and consequently to the MCRS) problem. In

Section 10.4 we will show that if the answer to the question is affirmative, then any

constant c with the above property has to satisfy the inequality c ≥ 7/6.
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8 A weighted generalization of

Dilworth’s Theorem

In this section we give an overview of a known result introduced by Hujdurović et

al. in [18], which implies the existence of a polynomial-time algorithm for computing

an upper bound for the optimal value to the MUB problem discussed in Section 9.

The corresponding result introduced in [18] is a min-max relation, which is a gener-

alization of Dilworth’s Theorem applicable to an arbitrary DAG D. However, we will

consider only the application of the theorem to the problem investigated in the master

thesis, that is, we will consider the containment digraphs DM instead of an arbitrary

DAGs.

In order to state Dilworth’s Theorem for general (not necessarily transitive) di-

graphs, the concepts of chains and antichains have to be redefined in this more general

context as follows. A chain is a set of vertices that are pairwise reachable from each

other. Similarly, an antichain is a set of vertices that are pairwise unreachable from

each other. A chain partition in a digraph D is a family of vertex disjoint chains

P = {C1, . . . , Cp} such that every vertex of D is contained in exactly one chain of P .

Dilworth’s Theorem states that the maximum size of an antichain equals to the

minimum number of chains in a chain partition of D, where D is any DAG (see [7]).

By applying the approach of Fulkerson [12], a minimum chain partition of D can

be computed by solving a maximum matching problem in a derived bipartite graph

having 2n vertices, which in turn can be done in time Õ(nω) using the algorithm of

Ibarra and Moran [21], where n = |V (D)| and ω is any real number such that there

exists an O(nω) algorithm for multiplying two n × n binary matrices. These results

are summarized in the following theorem.

Theorem 8.1 (Dilworth’s Theorem). Every DAG D admits a chain partition of size

wdt(D). Such a chain partition can be computed in time Õ(|V (DM)|ω).

See Fig. 16 for an example of an antichain and chain partition of size wdt(DM).

Let us move on to defining an optimization problem that will be used for deriving

a min-max theorem. Let us denote the set of non-negative integers by Z+. Let DM =

(V,A) be the containment digraph corresponding to a binary matrix M and let f :

V → Z+ be a weight function on the vertices of DM . We say that the weight function
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v1 = {r1} v2 = {r3}

v4 = {r1, r2}

v5 = {r1, r2, r3, r5} v6 = {r1, r3, r4, r5}
DM

v3 = {r1, r3}

Figure 16: A containment digraph DM , a maximum antichain (shown in blue squares)

and a minimum chain partition (shown by edges in red).

is monotone if fu ≤ fv for every two vertices u, v ∈ V such that (u, v) ∈ A. Given a

chain C in DM , define the price of chain C as follows: Π(C) = maxv∈C fv. Given a

chain partition P of M, we define the price of P as follows: Π(P ) =
∑p

i=1 Π(Ci).

Remark 8.2. Please note the following. Let C be any chain and N be any antichain

of the containment graph DM . Then |C ∩ N | ≤ 1, since if at least two vertices of C

(which is a path in DM) contained in N , that would contradict the definition of an

antichain.

Let us introduce the following optimization problem:

Minimum Price Chain Partition

Input: A binary matrix M , its containment digraph DM = (V,A) and a monotone

weight function f : V → Z+ of DM .

Task: Compute a chain partition P of DM with minimum price.

A tower of antichains of DM is a sequence of antichains T = {N1, . . . , Nwdt(DM )}
with |Ni| = i for all i. Let us define the value of an antichain as val(N) = minv∈N fv

and the value of a tower of antichains as: val(T ) =
∑wdt(DM )

i=1 val(Ni).

Before we move on to the examples, let us introduce one more definition. Let DM =

(V,A) be a containment digraph. Denote by At the set of arcs of DM that follow from

transitivity. The transitive reduction of DM is the directed graph tr(DM) = (V,A\At).

Example 8.3. Let us consider the following binary matrix M and the transitive re-
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duction tr(DM) of its containment digraph.



1 0 1 0 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


{r1} {r2}

{r1, r2, r3} {r2, r4}

{r1, r2, r3, r5} {r1, r2, r3, r4, r6}

{r1, r2, r3, r4, r5, r7} {r1, r2, r3, r4, r6, r8}

r1
r2
r3
r4
r5
r6
r7
r8

c1 c2 c3 c4 c5 c6 c7 c8

M

tr(DM)

Figure 17: An example of a binary matrix M and the transitive reduction tr(DM) of

its containment digraph.

Define a monotone weight function f : V (DM) → Z+ as follows, fv = |v| for

all v ∈ V (DM). Let us partition the vertices of DM in the following two chains,

P = {C1, C2}:

{r1} {r2}

{r1, r2, r3} {r2, r4}

{r1, r2, r3, r5} {r1, r2, r3, r4, r6}

{r1, r2, r3, r4, r5, r7} {r1, r2, r3, r4, r6, r8}

tr(DM)

C1 C2

fv1 = 1 fv2 = 1

fv3 = 3 fv4 = 2

fv6 = 5fv5 = 4

fv7 = 6 fv8 = 6

Figure 18: The transitive reduction tr(DM) of containment digraph DM partitioned

into two chains {C1, C2}

Then Π(C1) = maxv∈C1 fv = |v7| = 6 and Π(C2) = maxv∈C2 fv = |v8| = 6, thus

Π(P ) = Π(C1) + Π(C2) = 12. Further, let us consider the tower of antichains T =

{N1, N2}, graphically represented on Fig. 19.

Then val(N1) = minv∈N1 fv = |v2| = 1 and val(N2) = minv∈N2 fv = 4, thus val(T ) =

val(N1) + val(N2) = 4 + 1 = 5.
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{r1} {r2}

{r1, r2, r3} {r2, r4}

{r1, r2, r3, r5} {r1, r2, r3, r4, r6}

{r1, r2, r3, r4, r5, r7} {r1, r2, r3, r4, r6, r8}

tr(DM)

fv1 = 1 fv2 = 1

fv3 = 3 fv4 = 2

fv6 = 5fv5 = 4

fv7 = 6 fv8 = 6

N1

N2

Figure 19: The transitive reduction tr(DM) of containment digraph DM and two an-

tichains {N1, N2}

Let us now move on to the main results of the section. First, we introduce the

following lemma.

Lemma 8.4 (Hujdurović et al. [18]). Let M be a binary matrix and DM its containment

digraph. Let P = {C1, . . . , Cp} be a chain partition of DM , let T = {N1, . . . , Nwdt(DM )}
be a tower of antichains in DM . Then, Π(P ) ≥ val(T ), for any f : V → Z+.

Proof idea. The key facts of the proof of Lemma 8.4 are the following. Firstly for every

chain C and antichain N we have that |C ∩ N | ≤ 1. Secondly, if C is a chain, N an

antichain, and C ∩N = {z} for some z ∈ V (DM), then the following inequality holds:

Π(C) = max
v∈C

fv ≥ fz ≥ min
v∈N

fv = val(N).

Furthermore, let P = {C1, . . . , Cp} be an arbitrary chain partition of DM and let

T = {N1, . . . , Nwdt(DM )} be a tower of antichains in DM . Then |P | ≥ wdt(DM). We

rename chains in the chain partition P as follows. Let C ′1, . . . , C
′
p be the elements

of P such that for all i = 1, . . . ,wdt(DM), chain C ′i intersects antichain Ni, that is,

|C ′i ∩Ni| = 1 for all i. Then the following holds:

Π(P ) =

p∑
i=1

Π(Ci) =

p∑
i=1

Π(C ′i) ≥
wdt(DM )∑
i=1

Π(C ′i) ≥
wdt(DM )∑
i=1

val(Ni) = val(T ).

For a monotone function f : V → Z+, the following generalization of Dilworth’s

Theorem holds.
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Theorem 8.5 (Hujdurović et al. [18]). Let M be a binary matrix and DM its con-

tainment digraph. Let f be a monotone weight function on the vertices of DM . Then

DM admits a chain partition P = {C1, . . . Cwdt(DM )} and a tower of antichains T =

{N1, . . . Nwdt(DM )} such that Π(P ) = val(T ). Such a pair (P, T ) can be computed in

time Õ(|V (DM)|ω+1).

Proof idea. The proof is by induction on number of vertices of DM . Let n = |DM |.
For n = 1 the statement, clearly, holds. For the induction step we consider a vertex

v ∈ V (DM) such that v does not have any incoming arcs and consider a containment

digraph D′ defined as D′ = DM − v (that is, D′ is the subgraph of DM induced by

V (DM) \ {v}). Note, that the digraph D′ is the containment digraph of some binary

matrix M ′. We assume that the theorem statement holds for D′, that is, there exist a

chain partition P = {C1, . . . , Cwdt(D′)} and a tower of antichains T = {N1, . . . , Nwdt(D′)}
of D′ with Π(P ′) = val(T ′).

Let us consider DM . There are two possible cases. Firstly, assume that wdt(DM) >

wdt(D′). Consider the chain partition P of DM obtained from P ′ by adding a chain

consisting of vertex v, and a tower T of antichains obtained from T ′ by adding an

antichain Nwdt(DM ) such that |Nwdt(DM )| = wdt(DM). Hence Π(P ) = Π(P ′) + fv =

val(T ′) + fv = val(T ). Secondly, we consider the case when wdt(DM) = wdt(D′). We

pick an antichain T = {t1, . . . , t|T |} of D′ such that |T | = wdt(DM). We define T̂ to

be the set of vertices of DM such that there exists a path from the vertices of T̂ to

some vertex from T . Let us consider the directed acyclic graph DM − T , which is the

subgraph of DM induced by V (DM) \ T . Since wdt(DM − T ) = |T | = wdt(D′), by

the induction hypothesis there exist a chain partition P T = {CT
1 , . . . , C

T
wdt(D′)} with

Π(P T ) ≤ Π(P ′) = val(T ′). Moreover, the subgraph DM [T ∪ T̂ ] has width equal to

|T |, which by Dilworth’s Theorem implies the existence of a chain partition P T̂ =

{C T̂
1 , . . . , C

T̂
wdt(D′)} covering all its vertices. Further we construct the chain partition

of DM as follows. We rename, if necessary, the elements of the chains P T and P T̂ so

that CT
i ∩ T = {ti} and C T̂

i ∩ T = {ti} for every i ∈ {1, . . . |T |}. We define the chain

as follows: C̃i = C T̂
i ∪ CT

i . Let P̃ = {C̃1, . . . C̃wdt(DM )}. We get Π(P̃ ) ≤ val(T ′), and

combining this with Lemma 8.4 we get that the chain partition P̃ is what we want.

The proof is algorithmic and an optimal chain partition P and a tower of antichains T

can be computed in the stated time.

Remark 8.6. To see that Theorem 8.5 is a generalization of Dilworth’s Theorem, we

simply let the monotone weight function f be constantly equal to one. Then, the price

of any chain equals its cardinality and the value of any tower of antichains equals to

the width of the containment digraph DM .
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Lemma 8.4 and Theorem 8.5 imply the following result.

Corollary 8.7. The Minimum Price Chain Partition problem can be optimally solved

in time Õ(|V (DM)|ω+1). More precisely, a minimum price chain partition P of DM

can be found in time Õ(|V (DM)|ω+1) with the additional property that |P | = wdt(DM).

For more details regarding the results introduced in this section see [18].
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9 A polynomially computable

upper bound on β(M)

Hujdurović et al. in [18] showed that Corollary 8.7 leads to a polynomially computable

upper bound on an optimal value of uncovered pairs over all branchings B of DM .

The main idea is to restrict ourselves to the subfamily of linear branchings instead

of the family of all branchings. Let M be a binary matrix and DM = (V,A) be its

corresponding containment digraph. A linear branching of M is a subset of A with at

most one outgoing and incoming arc from each vertex. Clearly, each linear branching

corresponds to a disjoint union of directed paths in DM , and vice versa. We also remark

that such branchings correspond bijectively to the chain partitions of DM .

Recall that we denote the set of uncovered pairs with respect to a branching B by

U(B). Given a binary matrix M , we denote by β`(M) the minimum number of elements

in U(B) over all linear branchings B of DM . The upper bound for β(M) is based on

the Minimum Uncovering Linear Branching problem, an optimization problem defined

formally as follows:

Minimum Uncovering Linear Branching (MULB):

Input: A binary matrix M .

Task: Compute β`(M).

As shown by the next theorem, an optimal linear branching can be computed in

polynomial time.

Theorem 9.1 (Hujdurović et al. 2018 [18]). The Minimum Uncovering Linear Branch-

ing problem is solvable in time O(|V (DM)|ω+1), where ω is any real number such that

there exists an O(nω) algorithm for multiplying any two n× n binary matrices.

Proof idea. Let M be a binary matrix and DM = (V,A) its containment digraph. Let

us define a monotone weight function f : V → Z+ with f(v) = |v|. It is easy to see

that f is indeed a monotone weight function, since by the definition of DM , whenever

(u, v) ∈ A we have that u ⊂ v. It is also easy to see that for a linear branching B` and a
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chain partition P corresponding to it, we have that Π(P ) = |U(B`)|. We noted above

that the linear branchings correspond bijectively to the chain partitions, hence the

MULB problem is a special case of the Minimum Price Chain Partition problem, with

f defined as above. Thus, the claimed time complexity follows from Corollary 8.7.

Lemma 9.2. Let M be a binary matrix. Then

β(M) ≤ β`(M).

We omit the proof of Lemma 9.2, since the above inequality follows immediately

from the definitions.

Remark 9.3. Concerning the motivation, please note that the output of the MULB

problem corresponds to the simplest possible reconstruction of the mutational history,

since in this case we restrict ourselves to the space of rooted trees, where the root of

the tree is the only node (vertex) allowed to have more than one non-leaf child (or

more simply, only one outgoing edge which does not lead to a leaf).
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10 Main results

Having in mind all the theory and known results from previous research on the Min-

imum Conflict-Free Row Split and Minimum Uncovering Branching problems, let us

now move on to the main results of the thesis. Section 10 will be divided into four

subsections. Firstly, we introduce a polynomially computable lower bound in terms of

the maximum weight of an antichain in the corresponding containment digraph. Based

on that, we identify some efficiently solvable cases of the MUB problem in Section 10.2.

Recall that in Section 7 we introduced Open Problem 1, asking whether there exist

a constant c such that β(M) ≤ c · W (M). In Section 10.3 we give an affirmative

answer to this problem for specific families of instances introduced in [18]. Finally, in

Section 10.4 we introduce a new type of construction of specific families for further

analysis of Open Problem 1.

10.1 A lower bound on W (M)

We first introduce several notations and definitions. Then we introduce a polynomially

computable lower bound on W (M) (and hence also on β(M)) and justify the time

complexity of computing the quantity. The lower bound introduced in this subsection

is further used in Section 10.2 for identifying the efficiently solvable cases.

Let M be a binary matrix and DM the corresponding containment digraph. Let us

define the weight of a vertex v ∈ V (DM) simply as the cardinality of the vertex. (Recall

that each vertex of DM is a subset of the set of rows of M .) Notation: w(v) = |v|.
Recall also that an antichain in DM is a set of vertices inducing no arcs. We define

the weight of an antichain X in DM as follows: w(X) =
∑

v∈X w(v). We denote

αw(M) := max{w(X) | X is an antichain in DM}.

Lemma 10.1. For every binary matrix M , we have αw(M) ≤ W (M).

Proof. Let M be an arbitrary binary matrix and DM its containment digraph. Let

X = {v1, . . . , vq} be an antichain of maximum weight in DM . Recall that we assumed

in Section 2 that a binary matrix M does not contain a row of all zeros and that all

the columns are pairwise distinct. This implies that all vertices vi for i ∈ {1, . . . , q} are

non-empty subsets of the set of rows of M . By renaming the rows if necessary, we may

thus assume that there exists a positive integer p such that v1 ∪ . . .∪ vq = {r1, . . . , rp}.
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Let us consider an arbitrary row ri for i ∈ {1, . . . , p}. Assume that ri appears ki

times in an antichain X. Let DM,ri be the principal subgraph corresponding to ri. Let

wi = wdt(DM,ri) for i ∈ {1, . . . , p}. Then ki ≤ wi for all i, since the set X ∩ V (DM,ri)

is an antichain of DM,ri of cardinality ki.

Hence, it follows that

αw(M) =

q∑
j=1

|vj| =
p∑
i=1

ki ≤
p∑
i=1

wi =

p∑
i=1

wdt(DM,ri) ≤
∑
r

wdt(DM,r) = W (M).

To justify the polynomial time complexity for computing the lower bound intro-

duced above, let us firstly introduce a definition. A comparability graph is a graph that

admits a transitive orientation, that is, an assignment of directions to the edges of the

graph such that the resulting directed graph is transitive.

The lower bound defined in terms of the maximum weight of an antichain in our case

is indeed polynomially computable, since the problem of computing αw(M) is a special

case of the maximum weight independent set problem in the class of comparability

graphs. The polynomial-time solvability of this latter problem follows from two facts:

1) that the class of comparability graphs is a subclass of the class of perfect graphs,

and 2) that the maximum weight independent set problem is polynomially solvable in

the class of perfect graphs, as shown by Grötschel et al. (see [14]).

The fact that every comparability graph is a perfect graph can be seen as follows.

Suppose that G is a comparability graph. Let D be a transitive orientation of G.

Then, a set X ⊆ V (G) is an independent set in G if and only if X is an antichain in D.

Furthermore, X is a clique in G if and only if X is a chain in D. Thus to show that G is

perfect it suffices to show that the maximum size of a chain in D equals the minimum

number of antichains partitioning V (D). This equality was shown by Mirsky [24].

As the next example shows, the inequality from 10.1 can be strict.

Example 10.2. Let M be a binary matrix corresponding to the containment digraph

DM given on Fig. 20.

We have that wdt(DM,r2) = wdt(DM,r3) = wdt(DM,r4) = 1 and wdt(DM,r1) = 2,

hence W (M) = 5. There are four non-empty antichains with the following weights:

w({v1}) = 2, w({v2}) = 2, w({v1, v2}) = 4 and w({v3}) = 4. Hence αw(M) = 4.

Since the inequality from Lemma 10.1 can be strict, it would be interesting to

answer the following question.

Open problem 2. Is there a function f such that for every binary matrix M , we have

W (M) ≤ f(αw(M))?
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v1 = {r1, r2} v2 = {r1, r3}

v3 = {r1, r2, r3, r4}

DM

Figure 20: A containment digraph DM , introduced as an example attaining strict

inequality in Lemma 10.1.

Lemmas 7.5, 9.2, and 10.1 yield the following chain of inequalities valid for every

binary matrix M .

Corollary 10.3. For every binary matrix M , we have

αw(M) ≤ W (M) ≤ β(M) ≤ β`(M).

A similar question as in Open Problem 2 could also be asked for other pairs of

quantities involved in the above chain of inequalities. For example:

Open problem 3. Is there a function g such that for every binary matrix M , we have

β(M) ≤ g(W (M))?

Open problem 4. Is there a function h such that for every binary matrix M , we have

β`(M) ≤ h(β(M))?

In Section 10.2 the chain of inequalities from Corollary 10.3 will be used to prove

optimality of algorithms for computing β(M) for particular inputs.

10.2 New efficiently solvable cases

We move on to identifying some polynomially solvable cases. For understanding the

results introduced in this subsection we define several notions.

Let M be a binary matrix and DM its containment digraph. We say that two

vertices v1, v2 ∈ V (DM) are comparable if either v1 ⊂ v2 or v2 ⊂ v1, otherwise we

say that v1 and v2 are incomparable. Furthermore, for the poset PM = (V (DM),⊂)

corresponding to the containment digraph DM , an element m ∈ PM is maximal if there

is no element of PM properly containing m. (Formally, there is no s ∈ PM such that

m ⊂ s.)

Since the family of maximal elements of PM forms an antichain, the value of wdt(M)

is bounded from below by the number of maximal elements of PM . As the next result
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shows, the case when this inequality is satisfied with equality has interesting conse-

quences for our problems of interest.

Theorem 10.4. Let M be a binary matrix such that the corresponding poset PM has

exactly n maximal elements, where n = wdt(M). Then αw(M) = β`(M).

Proof. Let DM be the containment digraph corresponding to M . Since wdt(M) = n,

by Dilworth’s Theorem there exists a chain partition of DM into n chains. Let P =

{C1, . . . , Cn} be such a chain partition. Label the vertices of Ci by {vi1, . . . , viki}, where

ki is the number of vertices contained in the chain and vi1 ⊂ . . . ⊂ viki , as in Fig. 21.

tr(DM)

C1

C2

Cn−1

Cn

v11

v12

v1k1

v21

v22

v2k2

vn1

vnkn

vn2

vn−1
kn−1

vn−1
kn−2

vn−1
1

Figure 21: A transitive reduction tr(DM) of a containment digraph DM , corresponding

to a binary matrix M with wdt(M) = n, partitioned into n chains.

Since, by assumption, there are n maximal elements in PM , and no two maximal

elements can belong to a common chain, the maximal elements of PM are precisely

the vertices v1
k1
, . . . , vnkn . In particular, this implies that these vertices are pairwise

incomparable; in fact, it is easy to see that they form an antichain of maximal weight.

Denote the weights of vertices vi1, . . . , v
i
ki

in Ci by wi1, . . . , w
i
ki

, respectively. Then,

αw(M) = w1
k1

+ . . .+ wnkn .

Let us now consider the number of uncovered pairs in the linear branching B of

DM corresponding to P . We will consider the number of uncovered pairs in each chain

separately. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}, there are exactly |vij \ vij−1| =
wij − wij−1 uncovered pairs with second coordinate equal to vertex vij ∈ Ci (where

wi0 = 0). Hence, the total number of uncovered pairs having second coordinate from



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 46

chain Ci equals
∑ki

j=1(wij − wij−1) = wiki . This holds for every chain in P , and thus,

since P is a chain partition, we infer that |U(B`)| = w1
k1

+ . . . wnkn = αw(M).

The claimed equality holds due to the following chain of inequalities:

β`(M) ≤ |U(B`)| = w1
k1

+ . . . wnkn = αw(M) ≤ β`(M) ,

where the first inequality holds by definition of β`(M) and the last one by Corol-

lary 10.3.

Theorem 10.4 shows that, whenever the width of a binary matrix M equals the

number of maximal elements in the corresponding poset PM , all the four quantities

involved in the chain of inequalities αw(M) ≤ W (M) ≤ β(M) ≤ β`(M) given by

Corollary 10.3 are equal. In particular, since all the quantities in the above chain

of inequalities except β(M) are known to be polynomial-time computable on general

input instances, this implies the existence of a polynomial-time algorithm for comput-

ing β(M) for binary matrices M for which the antichain of maximal elements in the

corresponding poset is a maximum antichain. Furthermore, it follows from the proof

of Theorem 10.4 that for such matrices, the number of uncovered pairs over all linear

branchings corresponding to optimal chain partitions is constantly equal to αw(M).

Note that if M is a binary matrix of width 1, then M is conflict-free, the condition

from Theorem 10.4 is satisfied, and the quantities αw(M) = W (M) = β(M) = β`(M)

are all equal to the number of rows of M . The next result shows that the case of

width 2 is also well understood.

Theorem 10.5. For every binary matrix M with wdt(M) = 2, we have β(M) =

W (M).

Proof. The proof is by induction on Γ(M) = |V (DM)|, where DM is the correspond-

ing containment digraph. Base case: Γ(M) = 2. In this case, PM consists of two

incomparable vertices u and v. Then

W (M) =
∑
r

wdt(DM,r) = 2|u∩ v|+ (|u| − |u∩ v|) + (|v| − |u∩ v|) = |u|+ |v| = β(M) .

Induction hypothesis: Assume that the theorem holds for all binary matrices M ′

such that wdt(M ′) = 2 and Γ(M ′) = n for some n ≥ 2.

Induction step: Let M be a binary matrix such that wdt(M) = 2 and Γ(M) = n+1.

If there are two maximal elements in PM , we are done by applying Theorem 10.4.

Assume that there is one maximal element in PM . As for the inductive step, consider

the column c ∈ CM corresponding to the maximal element m ∈ PM . Let M ′ be the

binary matrix obtained from M by first deleting from it column c and then removing



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 47

any rows containing only zeros. Then DM ′ = DM − m and hence wdt(M ′) = 2. By

the induction hypothesis, we obtain β(M ′) = W (M ′). Since W (M) ≤ β(M) holds for

all M by Corollary 7.5, it is sufficient to show that β(M) ≤ W (M). Since we did not

make any assumption about the number of maximal elements in PM ′ , this poset may

have either one or two maximal elements. Let us examine the two cases individually.

Assume first that there are two maximal elements in PM ′ , say m1, m2, and let B′

be an optimal branching of M ′. Let B be a branching of DM obtained from B′ by

including the two edges (m1,m), (m2,m). See Fig. 22.

m1 m2

tr(DM ′)

mtr(DM)

B \B′

B ⊂ B′

Figure 22: A transitive reduction tr(D′M) of a containment digraph DM ′ corresponding

to the binary matrix M ′ having two maximal elements m1,m2 ∈ PM ′ , an optimal

branching B′ of DM ′ (shown in red), a transitive reduction tr(DM) of a containment

digraphDM corresponding to a binary matrixM obtained by adding a maximal element

m to PM ′ and a branching B of DM obtained from the branching B′ by adding the

edges in blue.

Let b = |U(B)| and let s = |m \ (m1 ∪m2)|. Then, b = β(M ′) + s. Further, let us

consider the value of W (M) =
∑

r wdt(DM,r). For all r ∈ m such that r ∈ m1 ∪m2 we

have that wdt(DM ′,r) = wdt(DM,r) for all r ∈ DM ′ , since m is a maximal element and

it is comparable with all x ∈ V (DM) \ {m}. For all r ∈ m such that r /∈ m1 ∪m2, we

have wdt(DM,r) = 1. Hence
∑

r wdt(DM,r) =
∑

r wdt(DM ′,r) + s. It follows that

β(M) ≤ |U(B)| = |U(B′)|+ s = β(M ′) + s = W (M ′) + s

=
∑
r

wdt(DM ′,r) + s =
∑
r

wdt(DM,r) = W (M) .

Together with the inequality W (M) ≤ β(M), which holds for all binary matrices (see

Corollary 10.3), we obtain the desired equality β(M) = W (M).
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Finally, assume that there is only one maximal element in M ′, say m′. Let B′ be an

optimal branching of M ′. Let B be a branching of DM obtained from B′ by including

the edge (m′,m). See Fig. 23.

tr(DM ′)

mtr(DM)

m′

B ⊂ B′

B \B′

Figure 23: A transitive reduction tr(DM) of a containment digraph DM ′ corresponding

to the binary matrix M ′ having only one maximal element m′ ∈ PM ′ , an optimal

branching B′ of DM ′ (shown in red), a transitive reduction tr(DM) of a containment

DM corresponding to a binary matrix M obtained by adding a maximal element m to

PM ′ and a branching B of DM obtained from B′ by adding the edge shown in blue.

Let b denote the number of uncovered pairs with respect to branching B and let

s = |m\m′|. Then b = β(M ′) + s and W (M) =
∑

r wdt(DM,r) =
∑

r wdt(DM ′,r) + s =

W (M ′) + s. To conclude, we obtain

β(M) ≤ b = β(M ′) + s = W (M ′) + s = W (M) ≤ β(M) .

Hence, β(M) = W (M).

Theorem 10.5 and the fact that W (M) is polynomially computable (see Section 7)

imply the following.

Corollary 10.6. Let M ∈ {0, 1}m×n such that wdt(M) = 2. Then β(M) is polynomial-

time computable.

Remark 10.7. In fact, the proof of Theorem 10.5 is constructive and leads to a polynomial-

time algorithm for computing an optimal branching for a given matrix of width 2.

Note that the result of Theorem 10.5 is a sense best possible. There exist binary

matrices M of width 3 such that W (M) < β(M) (see Example 10.14).
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10.3 Improving bounds for specific families of in-

stances

In this subsection we give an affirmative answer to Open Problem 1 for two specific

families of instances introduced by Hujdurović et al. in [18]. Let us, firstly, introduce

the following definitions.

Definition 10.8. A hypergraph is a pair H = (V,E), where V = V (H) is a set and

E = E(H) is a subset of the power set P(V ). The elements of V (H) are the vertices

of H and elements of E(H) are the hyperedges of H.

Definition 10.9. A hypergraph is Sperner if no hyperedge contains another one.

We only consider hypergraphs H in which every vertex is contained in a hyperedge.

Definition 10.10. The column hypergraph HM of a binary matrix M is the hy-

pergraph having the rows of M as vertices and the support sets of the columns of

M as hyperedges. Formally, HM has vertex set V (HM) = RM and hyperedge set

E(HM) = {suppM(c) | c ∈ CM}.

Remark 10.11. Note that the set of hyperedges of the column hypergraph of M equals

the vertex set of the containment digraph DM .

We now generalize a construction from [18], used to prove APX-hardness of the

MUB (and consequently MCRS) problem, from graphs to Sperner hypergraphs. Let

H be a Sperner hypergraph. Let us now construct the following hypergraph. Let

x, y be two new vertices not in V (H). Let H ′ be the hypergraph with vertex set

V (H ′) = V (H) ∪ {x, y} and hyperedge set

E(H ′) = {V (H) ∪ {x}} ∪ {e ∪ {x} | e ∈ E(H)} ∪ {e ∪ {y} | e ∈ E(H)}

∪ {e ∪ {x, y} | e ∈ E(H)} .

The hypergraph H ′ is the containment hypergraph of a binary matrix derived from

hypergraph H. See Fig. 24 for an example construction, representing the containment

digraph DM of the binary matrix derived from the complete graph K3. A special case

of the construction above was introduced by Hujdurović et al. in [18] in the proof of

Theorem 6.2. In fact, the construction was initially introduced as a main tool for

establishing an L-reduction from the vertex cover problem in cubic graphs to the MUB

problem, hence this type of construction was performed for cubic graphs G (which

would correspond to the hypergraphs with vertex set E(G) and having all sets of edges

incident with a fixed vertex of G as hyperedges). See Section 2 for the definition of

cubic graphs.



Baghirova N. Reconstructing perfect phylogenies: a new lower bound and efficiently solvable cases.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2020 50

{v1, v2, v3, x} {v1, v3, x, y} {v1, v2, x, y} {v2, v3, x, y}

{v1, v3, x} {v1, v2, x} {v2, v3, x} {v1, v3, y} {v1, v2, y} {v2, v3, y}

DM
v1

v2v3

e1

e2

e3

H

Figure 24: An example construction of the hypergraph H ′ from Theorem 10.12: the

column hypergraph of a binary matrix M derived from the complete graph K3.

Theorem 10.12. Let H be a Sperner hypergraph, let H ′ be the hypergraph with vertex

set V (H ′) = V (H) ∪ {x, y} and hyperedge set

E(H ′) = {V (H) ∪ {x}} ∪ {e ∪ {x} | e ∈ E(H)} ∪ {e ∪ {y} | e ∈ E(H)}

∪ {e ∪ {x, y} | e ∈ E(H)} ,

and let M be a binary matrix such that its column hypergraph is H ′. Then β(M) ≤
2W (M).

Proof. Let H be a Sperner hypergraph and let n = |V (H)| and let m = |E(H)|.
Denote the vertices and hyperedges of H by v1, . . . , vn and e1, . . . , em, respectively. For

simplicity let us divide the hyperedges of H ′ into 4 types:

1. V (H) ∪ {x} = {v1, . . . , vn, x},

2. {e ∪ {x} | e ∈ E(H)} = {e1 ∪ {x}, . . . , em ∪ {x}},

3. {e ∪ {y} | e ∈ E(H)} = {e1 ∪ {y}, . . . , em ∪ {y}},

4. {e ∪ {x, y} | e ∈ E(H)} = {e1 ∪ {x, y}, . . . , em ∪ {x, y}}.

As mentioned earlier in this section, the set of hyperedges of H ′ is equal to the vertex

set of the containment digraph DM . Hence we can refer to the hyperedges of the

hypergraph H ′ as the vertices of containment digraph DM . Vertex V (H) ∪ {x} has

m incoming edges of the form (ei ∪ {x}, V (H) ∪ {x}), for all i ∈ {1, . . . ,m}. For all

i ∈ {1, . . . ,m}, vertex ei∪{x, y} has two incoming edges, namely (ei∪{x}, ei∪{x, y})
and (ei ∪ {y}, ei ∪ {x, y}).

Firstly, let us analyze the sum
∑

r wdt(DM,r). Let us consider an antichain N

formed by all vertices of type 2 and 3. Each vi for i ∈ {1, . . . , n} will appear in vertices

of type 2 as many times as its degree dH(vi), defined as the number of hyperedges of H

containing vi. Similar argument applies for vertices of type 3. Hence, in total each vi

will appear 2dH(vi) times in an antichain N . Let us consider the width of the principal
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subgraph DM,vi corresponding to vi. From the argument above, we conclude that

wdt(DM,vi) ≥ 2dH(vi) for all i ∈ {1, . . . , n}. Further, let us consider DM,x and DM,y.

Character x appears in all vertices of type 2 or 4, and in vertex V (H)∪{x}. Hence, it

is easy to see that an antichain Z in DM,x formed by the vertices of type 4 and vertex

V (H) ∪ {x} form an antichain with |Z| = m + 1, which implies wdt(DM,x) ≥ m + 1.

Similarly, wdt(DM,y) ≥ m, since each vertex of the form ei ∪ {x, y} will have one

incoming edge of the form ei ∪{y} for i ∈ {1, . . . ,m} and we get two antichains of size

m. Hence,
∑

r wdt(DM,r) ≥
∑

i 2dH(vi) + 2m+ 1.

Next, let us examine the number of uncovered pairs with respect to the empty

branching. We claim that |U(∅)| ≤ 2 (
∑

i 2dH(vi) + 2m+ 1). Let us count the number

of times a character vi, for i ∈ {1, . . . , n}, appears as the first coordinate of an uncovered

pair with respect to the empty branching, or, equivalently, the number of times vi

appears as an element of a hyperedge of H ′. Character vi will appear in the vertices

of DM of type 2, 3, 4 as many times as the degree of vi in H, as well as in vertex

V (H) ∪ {x}. Secondly, character x appears in all the vertices of type 2 or 4, and in

addition in vertex V (H) ∪ {x}. Finally, character y will appear in all vertices of type

3 or 4. Hence in total we have

|U(∅)| =
n∑
i=1

(3dH(vi) + 1) + 4m+ 1 .

Hence to show that |U(∅)| ≤ 2 (2
∑n

i=1 dH(vi) + 2m+ 1) ≤ 2 ·W (M) it suffices to show

the following inequality:

2

(
2

n∑
i=1

dH(vi) + 2m+ 1

)
−

(
n∑
i=1

(3dH(vi) + 1) + 4m+ 1

)
≥ 0 .

To justify this inequality, note that

4
n∑
i=1

dH(vi) + 4m+ 2− 3
n∑
i=1

dH(vi)− n− 4m− 1 =
n∑
i=1

dH(vi)− n+ 1 ≥ 0

since by the assumption dH(vi) ≥ 1 for all i ∈ {1, . . . , n}. We conclude that β(M) ≤
|U(∅)| ≤ 2W (M).

Now we consider another construction that generalizes a different construction

from [18], used to prove APX-hardness of the MIB (and consequently MCDRS) prob-

lem, from graphs to Sperner hypergraphs. Let H be a Sperner hypergraph. Let us now

construct a hypergraph, H ′ = (V (H), {{v} | v ∈ V (H)} ∪ E(H)). Again, H ′ can be

represented with a binary matrix M . See Fig. 25 for an example construction, repre-

senting the containment digraph DM of the binary matrix derived from the complete

graph K3. The construction was initially introduced as a main tool for establishing
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an L-reduction from the vertex cover in cubic graphs to the MIB problem, hence this

type of construction was performed for cubic graphs G. (Again, the corresponding

hypergraphs would have vertex set E(G) and all sets of edges of G incident with a

fixed vertex as hyperedges.)

DM {v1, v2}{v1, v3} {v2, v3}

{v1} {v2} {v3}

v1

v2v3

e1

e2

e3

H

Figure 25: An example construction of the hypergraph H ′ from Theorem 10.13: the

column hypergraph of a binary matrix M derived from the complete graph K3.

Theorem 10.13. Let H be a Sperner hypergraph, let H ′ be the hypergraph with vertex

set V (H ′) = V (H) and hyperedge set

E(H ′) = {{v} | v ∈ V (H)} ∪ E(H) ,

and let M be a binary matrix such that its column hypergraph is H ′. Then β(M) ≤
2W (M).

Proof. Let H be a Sperner hypergraph and let n = |V (H)| and m = |E(H)|. De-

note the vertices and hyperedges of H by v1, . . . , vn and e1, . . . , em, respectively. For

simplicity let us divide the hyperedges of H ′ into two types:

1. {{v} : v ∈ V (H)} ,

2. {e | e ∈ E(H)} = {e1, . . . , em} .

Again, we can refer to the hyperedges of H ′ as the vertices of containment digraph

DM . Let us analyze the edges of the containment digraph DM . There are directed

edges from vertices {vi} to vertices of the form ej that contain vi for all i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}, and there are no other edges.

Let us consider the value of
∑

r wdt(DM,r). Fix i ∈ {1, . . . , } and let k = dH(vi) be

the number of hyperedges of H containing vi. Then, DM,vi contains k vertices of type 2

and vertex {vi}. There are k directed edges of the form ({vi}, ej) for all j ∈ {1, . . . ,m}
such that hyperedge ej contain vi. Hence the maximum size of an antichain in DM,vi

is at least k. It follows that
∑

r wdt(DM,r) ≥
∑n

i=1 dH(vi). Let us count the number of
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times a character vi for i ∈ {1, . . . , n}, appears as the first coordinate of an uncovered

pair with respect to the empty branching, or equivalently, the number of times vi

appears as an element of a hyperedge of H ′. For each i ∈ {1, . . . , n}, character vi

appears dH(vi)+1 many times in the vertices of DM . Hence, |U(∅)| =
∑n

i=1(dH(vi)+1).

To show that |U(∅)| ≤ 2 · (
∑n

i=1 dH(vi)) ≤ 2 ·W (M) it sufficies to show that

2

(
n∑
i=1

dH(vi)

)
−

n∑
i=1

(dH(vi) + 1) =

(
n∑
i=1

dH(vi)

)
− n ≥ 0 .

Since, dH(vi) ≥ 1 for all i, the inequality above holds. We conclude that β(M) ≤
|U(∅)| ≤ 2W (M), as claimed.

10.4 Further improvements

In this subsection we present some improvements in the direction of Open Question 1

introduced in Section 7, asking whether there exists a constant c such that β(M) ≤
cW (M) for all binary matrices M . More specifically, we show that if such a constant

c exists, then c ≥ 7
6
. In symbols, we show that supM

{
β(M)
W (M)

}
≥ 7

6
.

Let us introduce the following construction of particular containment digraphs. For

positive integers n and k with n ≥ 2, we define a two-parametric family of containment

digraphs MDn,k = (V,A) in the following way. Let A1, . . . , An be pairwise disjoint sets

such that |A1| = . . . = |An| = k. Let Z = A1∪ . . .∪An and let x1, . . . , xn−1 be pairwise

distinct elements such that xi /∈ Z for i = 1, . . . , n− 1. The vertex set of MDn,k is

V = {Z ∪ {xi} | i ∈ {1, . . . , n− 1}} ∪ {Z \ Ai | i ∈ {1, . . . , n}} ,

and there is an arc (u, v) ∈ A if and only if u ⊂ v. Furthermore, let Mn,k denote any

binary matrix such that its containment digraph is MDn,k.

Example 10.14. Let M = M3,k be a binary matrix such that its containment digraph

is MD3,k, graphically represented on Fig. 26.

Let us compute W (M). For all i ∈ {1, 2, 3} and all r ∈ Ai, we have wdt(DM,r) = 2,

and for j ∈ {1, 2}, we have wdt(DM,xj) = 1. Hence W (M) = 2 · 3k + 2 = 6k + 2.

Next, let us compute β(M), that is, the minimal number of elements in U(B) over

all branchings B of MD3,k. By symmetry, it suffices to analyze two edge-maximal

branchings B1 and B2, depicted in Fig. 27 and 28, respectively.

We have |U(B1)| = 9k + 2 and |U(B2)| = 7k + 2. We conclude that

β(M) = min{|U(B1)|, |U(B2)|} = min{9k + 2, 7k + 2} = 7k + 2 .

Since W (M) = 6k + 2 and

lim
k→∞

7k + 2

6k + 2
=

7

6
,
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A1 ∪A2 ∪A3 ∪ {x1} A1 ∪A2 ∪A3 ∪ {x2}

A1 ∪A2 A1 ∪A3 A2 ∪A3

Figure 26: A graphical representation of containment digraph MD3,k.

A1 ∪A2 ∪A3 ∪ {x1} A1 ∪A2 ∪A3 ∪ {x2}

A1 ∪A2 A1 ∪A3 A2 ∪A3

B1

Figure 27: A graphical representation of MD3,k and branching B1.

A1 ∪A2 ∪A3 ∪ {x1} A1 ∪A2 ∪A3 ∪ {x2}

A1 ∪A2 A1 ∪A3 A2 ∪A3

B2

Figure 28: A graphical representation of MD3,k and branching B2.

the ratio of β(M) vs. W (M) can be as close to 7/6 as desired.

The above example shows that supM

{
β(M)
W (M)

}
≥ 7

6
.

Let us now consider the general case. Let N = {Z \Ai | i ∈ {1, . . . , n}}. Then N is

an antichain of MDn,k of maximum size. Note that |N | = n and hence wdt(MDn,k) = n.

By Dilworth’s Theorem there exist a chain partition P of MDn,k consisting of n chains.

Since |V (MDn,k)| = 2n−1, every chain partition P = {C1, . . . , Cn} of size n consists of

n− 1 pairwise disjoint chains corresponding to edges of MDn,k and a chain consisting

of a single vertex vi of the form Z \ Ai for some i ∈ {1, . . . , n}. Let us say that a

branching of MDn,k is canonical if it consists of the edges of such a chain partition P

and an edge of the form (vi, Z∪{xj}) for some j ∈ {1, . . . , n−1}. Note that branching
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B2, depicted in Fig. 28, is a canonical branching in MD3,k, while branching B1 depicted

in Fig. 27, is not.

Lemma 10.15. Every optimal branching B of MDn,k is a canonical branching and

satisfies |U(B)| = k(n2 − 2) + n− 1. Consequently, β(Mn,k) = k(n2 − 2) + n− 1.

Before we move to the proof of the lemma, let us introduce the following notation.

We denote by d−B(v) the in-degree of a vertex v with respect to a branching B.

Proof. Firstly, for simplicity, let us divide the vertices of MDn,k into two types:

1. {Z ∪ {xi} | i ∈ {1, . . . , n− 1}} ,

2. {Z \ Ai | i ∈ {1, . . . , n}} .

For i ∈ {1, . . . , n− 1} let vi = Z ∪ {xi} and for i ∈ {1, . . . , n} let v′i = Z \ Ai.
Note that pairs (xi, vi) for i ∈ {1, . . . , n − 1} are uncovered with respect to any

branching B of MDn,k. Furthermore, all the pairs with second coordinate equal to

a vertex v′i of type 2 are uncovered, since d−MDn,k
(v′i) = 0 for all i. Hence, there are

n vertices of type 2 each giving rise to k(n − 1) uncovered pairs and |U(Bopt)| ≥
k(n2 − n) + (n− 1).

Suppose that B is a canonical branching consisting of the edges of a chain partition

P = {C1, . . . , Cn} and an edge of the form (vi, Z ∪ {xj}) for some i ∈ {1, . . . , n}
and j ∈ {1, . . . , n − 1}. Then all pairs with second coordinate equal to Z ∪ {xj}
are covered with respect to B, while for all j′ 6= j, there exists some i′ ∈ {1, . . . , n}
such that each pair of the form (x, Z ∪ {xj′}) with x ∈ Ai′ is uncovered with respect

to B. There are no other uncovered pairs with respect to B, we obtain |U(B)| =

k(n2 − n) + (n− 1) + (n− 2)k = k(n2 − 2) + n− 1.

Suppose for a contradiction that there exists an optimal branching Bopt that is not

canonical. Since Bopt is optimal, we have |U(Bopt)| ≤ k(n2−2)+n−1. Let us analyze

this optimal branching. Firstly, since Bopt is a branching, there is at most one outgoing

arc from each vertex. We can assume w.l.o.g. that Bopt is a maximal branching with

respect to its edge set, that is, that |E(Bopt)| = n.

If d−Bopt (vi) = 0 for some i, then there are kn+ 1 uncovered pairs in vi with respect

to branching Bopt and |U(Bopt)| ≥ kn2 +n−1 > k(n2−2)+n−1. Hence, we conclude

that d−Bopt (vi) ≥ 1 for all i.

Since, as mentioned at the beginning of the proof, |E(Bopt)| = n, we have that

d−Bopt (v1)+ . . .+d−Bopt (vn−1) = n with d−Bopt (vi) ≥ 1 for all i ∈ {1, . . . n−1}. This implies

that there exists some j ∈ {1, . . . n−1} such that d−Bopt (vi) = 1 for i ∈ {1, . . . , n−1}\{j}
and d−Bopt (vj) = 2. Hence, Bopt is a canonical branching, a contradiction.
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Theorem 10.16. We have that

sup

{
β(Mn,k)

W (Mn,k)

∣∣∣ n ≥ 2, k ≥ 0

}
=

7

6
.

Proof. By Lemma 10.15, β(Mn,k) = k(n2 − 2) + n − 1 for any positive integers n

and k with n ≥ 2. Let us now consider the value of W (MDn,k). Firstly, note that

wdt(DMn,k,xi) = 1 for all i ∈ {1, . . . , n− 1}. Furthermore, since the sets A1, . . . , An are

pairwise disjoint and of size k, we can write Z = {r1, . . . , rp} where p = nk. For each

such element rj, we have wdt(DMn,k,rj) = n−1. Hence, W (Mn,k) = nk(n−1)+n−1 =

(nk + 1)(n− 1).

Firstly, note that the fraction can be equivalently written as follows.

β(Mn,k)

W (Mn,k)
=

k(n2 − 2) + n− 1

nk(n− 1) + n− 1
=

n2k − 2k + n− 1

nk(n− 1) + n− 1
=
n2k − nk + nk − k − k + n− 1

nk(n− 1) + n− 1

=
nk(n− 1) + k(n− 1)− k + n− 1

nk(n− 1) + n− 1
=
nk + k + 1− k

n−1

nk + 1
=
n+ 1 + 1

k
+ 1

n−1

n+ 1
k

= 1 +
1− 1

n−1

n+ 1
k

.

Clearly, for every fixed n ≥ 2 the above ratio is a strictly increasing function of k

and

lim
k→∞

(
1 +

1− 1
n−1

n+ 1
k

)
= 1 +

1− 1
n−1

n
,

as limk→∞
1
k

= 0. We now express the above ratio equivalently as follows:

1 +
1− 1

n−1

n
= 1 +

n− 2

n− 1
· 1

n
= 1 +

n− 2

n(n− 1)
= 1 +

2(n− 1)− n
n(n− 1)

= 1 +
2

n
− 1

n− 1
.

Let us analyze the function f : [2,∞)→ R defined by the rule f(x) = 1 + 2
x
− 1

x−1

for all x ∈ [2,∞). Note that

f ′(x) = −x
2 − 4x+ 2

(x− 1)2x2
= 0

at x∗ = 2 +
√

2 ≈ 3.414. It is easy to check that f is a strictly increasing function

on the interval [2, x∗) and then strictly decreasing limiting to 1 as x → ∞. Hence,

function f has a unique maximum attained at x∗, and if we consider the values f(n)

for integers n ≥ 2, then maximum can be attained at either n = 3 or n = 4. Let us

consider the two cases.

1. For n = 3 we obtain the following value:

f(3) = 1 +
2

3
− 1

2
=

7

6
.
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2. For n = 4 we obtain the following value:

f(4) = 1 +
2

4
− 1

3
=

7

6
.

Hence, we conclude that supn,k

{
β(Mn,k)

W (Mn,k)

}
= 7

6
.

Corollary 10.17. If there exists a real number c such that β(M) ≤ cW (M) for all

binary matrices M , then c ≥ 7/6.
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11 Conclusion

Evolutionary processes allow us to understand and study different phenomena in field

of Molecular Biology [8]. It is crucial to understand the evolution of the molecular

structure of the cancer cells in a tumor, in order to discover what mutations lead

to out-of-control increase of the anomalous cells. As mentioned in Section 1, there

has been a remarkable progress in single-cell analysis, however the input may still

consist of different cancer cells, which gives rise to the challenge of understanding

the cause of out-of-control growth of those cells. A common way of representing an

evolutionary history is by means of a phylogeny [5]. It is known that tumor mutations

satisfy the so-called infinite sites assumption (see [15]), which makes us refer to the

perfect phylogeny evolutionary model. In the master thesis we relied on an approach

introduced by Hajirasouliha and Raphael [17], who were among the first to propose

the use of the perfect phylogeny evolutionary model to study the evolutionary history

of tumor mutations.

We started the thesis by mentioning the motivation for the MUB (and consequently

MCRS) problem, then we gave an overview of related recent research in the area, and

provided the preliminary theory necessary for understanding the key known and new

results. In Section 3, we gave an overview of the Minimum Conflict-free Row Split

(MCRS) problem introduced by Hujdurović et al. in [18], following the work of Haji-

rasouliha and Raphael. Further, we introduced an equivalent problem, the so-called

Minimum Uncovering Branching (MUB) problem formulated in terms of branchings in

directed acyclic graphs, introduced in the same paper. We illustrated the key concepts

with several concrete examples. Further, we presented the known results regarding the

computational complexity of the MUB (and consequently MCRS) problem and two

known approximation algorithms with approximation ratios expressed in terms of the

width, resp. the height of the corresponding containment digraph. We summarized the

main proof ideas from paper [18].

We reviewed a polynomially computable lower bound from [17] presented in terms

of chromatic numbers of derived conflict graphs. We expressed the lower bound in an

equivalent way, more specifically, in terms of widths of the principal subgraphs of the

containment digraph and gave a detailed proof of the result. In addition, in Section 10

we introduced a new polynomially computable lower bound in terms of maximum
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weight of an antichain and justified the polynomial time complexity of computing

the bound. We also gave an overview of a min-max result that is a generalization

of Dilworth’s Theorem, introduced by Hujdurović et al. in [18]. The result implies

the existence of a polynomial-time algorithm for computing an upper bound on the

optimal value of the MUB problem, which relies on a variant of the problem, restricted

to looking for an optimal solution only among the so-called linear branchings.

In the master thesis we introduced a couple of new results. Firstly, we identified two

new polynomially solvable cases of the MUB problem. Secondly, as mentioned before,

we introduced a new polynomially computable lower bound and investigated the open

problem asking whether there exist a constant c such that β ≤ c ·
∑

r wdt(DM,r) for all

binary matrices M on some specific families of instances.

To conclude, this area of research is rather new and many open questions remain.

For instance, the following three:

• Does there exist a constant c such that β ≤ c ·
∑

r wdt(DM,r) for all binary

matrices M? That would imply the existence of a c-approximation algorithm for

the minimum conflict-free row-split problem.

• More generally, does there exist a constant factor approximation algorithm for

the MUB problem?

• What is the complexity of the MUB problem when restricted to instances of

width at most 3? Or, more generally, for instances of bounded width?
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12 Povzetek dela v slovenskem

jeziku

Optimizacijski problem, preučevan v magistrskem delu, je motiviran z genomiko raka.

Predstavlja zelo pomembno področje raziskav, saj je rak eden vodilnih vzrokov smrti po

vsem svetu (glej [6]). Klonalna teorija raka pravi, da rak nastane po zadostnem številu

mutacij v tumorju, kar pomeni, da je ključnega pomena razumeti, katere mutacije

sprožijo nekontrolirano rast abnormalnih celic. Čeprav se sodobne klinične tehnologije

soočajo z izjemnim napredkom, je nemogoče natančno preučiti zgodovine mutacij tu-

morjev. Ena izmed možnosti je uporaba računskih modelov. Predpostavimo, da imamo

m vzorcev tumorja in seznam n mutacij, do katerih je prǐslo v vsakem od vzorcev. Haji-

rasouliha in Raphael v [17] predlagata uporabo naslednje metode. Uporabimo binarno

matriko M velikosti m × n, ki ima vzorce tumorja v vrsticah in mutacije v stolpcih.

Element M(i, j) ima vrednost 1, če v vzorcu i pride do mutacije j in 0 sicer. Matriko

M želimo predstaviti z uporabo evolucijskega modela popolne filogenije, ki je eden

najpogosteje uporabljenih znakovnih modelov za prikaz evolucijske zgodovine. V [10]

in [15] je bilo dokazano, da binarna matrika M ustreza popolni filogeniji, če in samo

če je M brezkonfliktna. Pravimo, da je matrika brezkonfliktna, če ne premore podma-

trike velikosti 3×2 na poljubnih treh vrsticah r, r′, r′′ M in dveh stolpcih i, j, naslednje

oblike

M [(r, r′, r′′), (i, j)] =

1 1

1 0

0 1

 .

V praksi je vsak vzorec tumorja mešanica odčitkov različnih tumorjev, zato bina-

rna matrika M ni konfliktna. Za reševanje tega problema Hujdurović idr. v članku [19]

sledijo delu Hajirasoulihe in Raphaela ter uvedejo problem najmanǰsega brezkonflik-

tnega razcepa vrstic (Minimum Conflict-free Row Split (MCRS)). Dana je binarna

konfliktna matrika M . Vsako vrstico matrike M želimo zapisati kot rezultat logične

operacije ALI na množici vrstic, tako da zamenjava vsake vrstice z argumenti operacije

ALI vodi do brezkonfliktne matrike, ki ima najmanǰse možno število vrstic.

Na kratko orǐsimo potek magistrskega dela. V poglavju 1 razložimo motivacijo,

razpravljamo o sorodnem gradivu na tem področju in podamo oris strukture prispevka

ter navedemo glavne rezultate, predstavljene v magistrskem delu. Nato preidemo na
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poglavje 2, kjer povzamemo osnovne definicije, potrebne za razumevanje glavnih rezul-

tatov magistrskega dela. V poglavju 3 formalno definiramo popolno filogenijo in prob-

lem najmanǰsega brezkonfliktnega razcepa vrstic (MCRS). Koncepte ilustriramo na

številnih primerih, podanih v grafični obliki. V poglavju 4 predstavimo dva algo-

ritma, ki tečeta v linearnem času, ki ju je uvedel Dan Gusfield v [16]. Prvi algoritem

pove, ali binarna matrika M ustreza popolni filogeniji, drugi pa tako popolno flogenijo

konstruira, če je matrika brezkonfliktna. Nato predstavimo problem, ki je enakovre-

den problemu MCRS. Problem se imenuje problem vejitve najmanǰsega nepokritja

(Minimum Uncovering Branching (MUB)) in je opisan v jeziku vejitev v usmerjenih

acikličnih grafih. V tem poglavju predstavimo ideje dokazov glavnih rezultatov v zvezi

s tem problemom. Nato preidemo na rezultate računske zahtevnosti problema MCRS.

Natančneje, problema MUB in posledično MCRS sta APX-težka. V istem poglavju

naredimo pregled znanih aproksimacijskih algoritmov. Aproksimacijska faktorja algo-

ritmov sta izražena prek dveh količin, imenovani širina in vǐsina. To sta invarianti

digrafa vsebovanosti DM , ki ustreza matriki M (podrobnosti in formalne definicije so

navedene v poglavju 5). Poleg tega za vse rezultate iz poglavja 6 predstavimo ideje

dokazov.

Predstavimo tudi znane, polinomsko izračunljive spodnje in zgornje meje za op-

timalno vrednost problemov MCRS in MUB. V poglavju 7 podamo definicijo znane

spodnje meje, enakovredno definicijo in podroben dokaz. Nato v poglavju 8 uvedemo

znan min-max rezultat, ki je posplošitev Dilworthovega izreka (glej [7]). Ta rezultat

implicira polinomsko časovno zahtevnost izračuna zgornje meje, ki je predstavljena

v poglavju 9. Nato v poglavju 10 predstavimo glavne rezultate magistrskega dela.

Najprej uvedemo novo polinomsko izračunljivo spodnjo mejo, nato pa dokažemo izrek,

ki pravi, da je problem MUB (in posledično MCRS) polinomsko rešljiv za vhodne po-

datke, podane z matriko širine 2. Poleg tega predstavimo dokaz izreka, ki pravi, da

je problem MUB (in posledično MCRS) polinomsko rešljiv v primerih, kjer je širina

enaka številu maksimalnih elementov v pripadajoči delno urejeni množici PM bina-

rne matrike M . Nadaljujemo z analizo kvalitete spodnje meje za določene posploštive

posebnih družin primerov, ki so jih uvedli Hujdurović idr. v [18]. Na koncu poglavja

predstavimo novo konstrukcijo vhodnih podatkov, na kateri podrobno preučimo odprto

vprašanje o razmerju med optimalno vrednostjo problemov MCRS in MUB in polinom-

sko izračunljivo spodnjo mejo, podano v [17]. S poglavjem 11 zaključimo magistrsko

delo in omenimo nekaj odprtih vprašanj s tega področja, ki bi lahko bila zanimiva za

prihodnje raziskave.
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