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Izvleček:

Glavni predmet magistrskega dela je problem razširljivosti prirejanj v regularnih grafih

z majhnim premerom. V magistrskem delu je ta problem formalno definiran. Nadalje
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razredih. Povzet je dokaz izreka, ki pravi, da so vsi regularni grafi z lihim številom

vozlǐsč in premerom 2 01
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1 Introduction

Matching theory is one of the fundamental areas in graph theory. It studies the

structures and properties of matchings. Over the last hundred years, matching the-

ory has played a catalytic role in developing a number of more general combinatorial

methods. Since its appearance, much new and interesting progress has been made. In

last decades, matching extension theory is of particular interest.

In 1979, an interesting problem was posed by Sumner. The problem was to charac-

terize the graphs with the property that every matching of a graph can be extended to

a perfect matching. It turns out that the complete graphs and the complete bipartite

graphs are the only two classes of graphs which satisfy this property. Obviously, the

above condition is very strong since the matchings of arbitrary size have to be extended

to a perfect matching. However, relaxing this property by requiring only the match-

ing with the same size to be extended to a perfect matching, leads to an interesting

refinement.

Let l be a non-negative integer. A connected graph Γ with vertex set V (Γ) and an

even number of vertices is l-extendable if it contains a perfect matching, l ≤ |V (Γ)|
2

, and

any matching of l edges is contained in a perfect matching. The extendability of Γ is

defined as maximum l such that Γ is l-extendable.

The definition of l-extendability was first introduced by Plummer in the 1980s

(see [19]) for graphs with even order. Since then, this combinatorial parameter was

studied from the various points of view and for many classes of interesting graphs.

For example, Chan et al. characterized all 2-extendable Cayley graphs on dihedral

groups and on abelian groups. Holton and Lou first studied l-extendability of strongly

regular graphs (see [13]), and conjectured that all but a few strongly regular graphs are

2-extendable. This conjecture was proved by Lou and Zhu (in [16]), since they proved

that the Petersen graph, the complete multipartite graph K3×2 and K4 are the only

non-2-extendable strongly regular graphs with k ≥ 3.

In 2005, Brouwer and Haemers proved that all distance-regular graphs with an even

number of vertices are 1-extendable and in 2014, Cioabǎ and Li (see [9]) proved that

any connected strongly regular graph with an even number of vertices is 3-extendable

except for a small number of exceptions. These results were generalized by Cioabǎ
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et al. in 2017 (see [10]). They showed that all distance-regular graphs with diameter

greater than 2 are 2-extendable and obtain several lower bounds for the extendability

of distance-regular graphs of valency k ≥ 3.

Miklavič and Šparl (see [18]) proved that there are only few non-2-extendable Deza

graphs with diameter 2. Alajbegović et al. (in [1]) gave the classification of 2-

extendable quasistrongly regular graphs with diameter 2. Recently, Kutnar et al.

(in [14]) gave a classification of 2-extendable edge-regular graphs with diameter 2.

From the algorithmic point of view there are not many results. Zhang and Zhang

(see [23]) obtained an O(mn) algorithm for determining the extendability of a bipartite

graph with n vertices and m edges. The complexity of determining the extendability

of a non-bipartite graph is still an open problem.

The notion of extendability was extended to graphs of odd order by Yu (in [21]),

but until now there are not too many results in this area. Some results can be found

in [15] and [9]. One of the well known results is that it is possible to characterize all

l 1
2
-extendable graphs in terms of l-extendable and (l + 1)-extendable graphs. Such a

characterization was done by Yu and it can be found in [21].

Motivated by above results for graphs with even order, we started studying graphs

with an odd number of vertices and small diameter.

In this Master’s thesis we will give some new results about the extendability of match-

ings in regular graphs with an odd number of vertices and diameter 2. Also, we will

obtain some results about regular graphs with diameter 3. For graphs with diameter

3 we will also pay attention on regular graphs with even order.

Structure of the thesis. The thesis is divided into 4 main parts. Since graphs

with diameter 1 are complete graphs and matching extensions are trivial, those graphs

will be skipped. Therefore, we will start our work with graphs with diameter 2.

First part (Chapter 2) will be devoted to the extendability of matchings in the family

of regular graphs with an odd number of vertices and diameter 2. We will prove that all

such graphs are 01
2
-extendable and construct an infinite family of such graphs, which

are not 11
2
-extendable graphs.

After this construction, we will restrict our attention to the family of edge-regular

graphs. In Chapter 3 we will work with edge-regular graphs with an odd number of

vertices and diameter 2. The main result of this part will be the proof that cycle on 5

vertices is the only non-11
2
-extendable graph satisfying all above conditions.

Chapter 4 will be about 21
2
-extendability. We will give some basic results about edge-

regular graphs with diameter 2 and some examples of non-21
2
-extendable graphs. The
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21
2
-extendability of edge-regular graphs with diameter 2 and an odd number of ver-

tices seems to be pretty hard problem, so restricting to the family of strongly regular

graphs is natural step. In this part we will consider primitive and imprimitive strongly

regular graphs and obtain some important results. Namely, we will prove that there is

only 1 non-21
2
-extendable primitive strongly regular graph and that is Paley graph on

9 vertices. Also, we will prove that the complete multipartite graph K3×3 is the only

non-21
2
-extendable connected imprimitive strongly regular graph with an odd number

of vertices.

The last part of the thesis will be devoted to the extedability of regular graphs with

diameter 3. Since there are not too many results in this area, in this part we will

also consider graphs with an even number of vertices. We will prove that all such

graphs have a perfect matching. We will give some conclusions about 1-extendability

of regular graphs with an even number of vertices and diameter 3 and construct several

examples of non-2-extendable graphs satisfying previous conditions. We will prove the

result that all regular graphs with an odd number of vertices and diameter 3 are 01
2
-

extendable. This chapter will be concluded with some examples of non-11
2
-extendable

regular graphs with an odd number of vertices and diameter 3 and presentation of

possible directions for further research.

Since Graph Theory is a young branch of mathematics, there are many new ter-

minologies and knowledge accumulated in its development. Therefore, there are often

many names or notions defined for a same entity. In the next section we will give the

terms and notions used in this thesis.

1.1 Preliminaries

We will start this section with some basic definitions from graph theory and then

we will devote to more specific definitions and theorems directly related to the topics

discussed below.

Let Γ be a finite, simple, undirected graph with vertex set V (Γ) of order n. When-

ever there exists an edge between vertices x and y from V (Γ) we say that x and y are

adjacent and we denote that by x ∼ y.

The complement of a graph Γ is the graph Γ with the same vertex set as Γ, where two

distinct vertices are adjacent if and only if they are not adjacent in Γ.

With degΓ(x) we will usually denote the number of neighbours of x in Γ.

We use the notation d(x, y) for the distance between vertices x and y. The set of all

vertices of Γ which are at distance i from vertex x, where i is a non-negative integer,
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will be denoted by Ni(x) = {y ∈ V (Γ) : d(x, y) = i}. For i = 1 that will be the

set of neighbours of x and we will simply write N(x). The diameter of a graph Γ is

maxu,v∈V (Γ)d(u, v).

We say that a graph Γ is regular with valency k (or k-regular) if |N(x)| = k for every

x ∈ V (Γ).

Note that the connectivity of a graph is the minimum number of vertices one has to

remove in order to make it disconnected (or empty).

A set of vertices that induces an empty subgraph is called an independent set. Inde-

pendence number of a graph Γ (denoted by α(Γ)) is the size of the largest independent

set in Γ.

An isomorphism from a graph Γ to a graph Γ∗ is a bijection f : V (Γ) → V (Γ∗) such

that uv is an edge in Γ if and only if f(u)f(v) is an edge in Γ∗. We say that two simple

graphs Γ and Γ∗ are isomorphic if there is an isomorphism between them.

All graphs considered in this thesis will be finite and simple (no loops and no

multiple edges).

Definition 1.1. A matching (or independent edge set) of a graph Γ is a set of edges

such that no two of them share a common vertex.

A perfect matching (or a 1-factor) of a graph Γ is a matching of Γ such that every

vertex of the graph is incident with exactly one edge of the matching.

From the definition of a perfect matching is clear that only graphs with even order

may have a perfect matching.

The notion of an l-extendable graph was introduced at the beginning of the thesis, but

because of its importance now we will formally state it.

Definition 1.2. Let Γ be a connected graph of even order at least 2l+ 2, where l is a

non-negative integer. Graph Γ is l-extendable if it contains a matching of size l and if

every such matching is contained in a perfect matching of Γ. Otherwise, Γ is said to

be non-l-extendable.

Observe that Γ is 0-extendable if it contains a perfect matching.

For example, Petersen graph is 1-extendable (and also 0-extendable). This can be

easily seen from Figure 1. Blue edges represent one perfect matching of Petersen graph.

Since this graph has a nice symmetry, by rotating the graph we can easily see that an

arbitrary edge of Petersen graph is contained in some matching.

It is clear that matching containing edges {(0, 1), (1, 1)} and {(1, 0), (1, 2)} cannot be
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Figure 1: Petersen graph

extended to a perfect matching. Therefore, Petersen graph is not 2-extendable.

Note that if S is a subset of V (Γ) then Γ−S will denote the subgraph of Γ induced

on the set V (Γ)\S. If S = {x} we abbreviate Γ− {x} with Γ− x.

For graphs with an odd number of vertices, l 1
2
-extendability can be defined.

Definition 1.3. Let l denote a non-negative integer and let Γ be a connected graph

of odd order at least 2l+ 3. Graph Γ is l 1
2
-extendable if for any vertex x ∈ V (Γ) graph

Γ− x is l-extendable. Otherwise, Γ is said to be non-l 1
2
-extendable.

Definition of l-extendable graphs was first introduced by Plummer in 1980 and this

definition requirement for an l-extendable graph to have order at least 2l + 2 was not

stated. This requirement is important because in this case if l ≥ 1, l-extendability of

Γ implies (l− 1)-extendability of Γ, otherwise it could happen that l-extendable graph

is not (l − 1)-extendable.

To demonstrate this fact, let us observe a graph Γ from Figure 2. This graph has

order 4 and it can be easily seen that a matching containing 2 arbitrary independent

edges is a perfect matching of Γ. On the other hand, it is obvious that a matching

containing an edge {v2, v4} cannot be extended to a perfect matching of Γ. Hence Γ is

not 1-extendable.

Since we use l-extendability to define l 1
2
-extendable graphs, the requirement for

graphs with an odd number of vertices to be of order at least 2l+3 seems to be natural.
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Figure 2: A non-1-extendable graph Γ

Note that in the rest of this thesis we will use term components instead of term

connected components, where the term component of a graph Γ represents its maximal

connected subgraph of Γ. We will say that component is even if it has an even number

of vertices, and odd if it has an odd number of vertices. We will denote by σ(Γ) the

number of odd components of Γ. Components with cardinality 1 will be called single-

tons.

The following theorem is a famous result of Tutte from 1947 and it will be used

several times in this work. Tutte’s theorem is the most important result in non-bipartite

matching theory and implies many other important results. The proof can be found

in [11, Theorem 2.2.1] or [17, Theorem 3.1.1].

Theorem 1.4. (Tutte) A graph Γ has a perfect matching if and only if for every subset

S ⊆ V (Γ) we have σ(Γ− S) ≤ |S|.

This theorem gives a good characterization of the existence of a perfect matching

in a graph. It is clear that for proving that a graph has a perfect matching is enough

to list one. If we want to exibit the fact that observed graph does not contain a per-

fect matching, it will be enough to find a set S which does not satisfy Tutte’s condition.

Of particular use in the rest of this work will also be the following Mantel’s theorem

which gives us the upper bound on the number of edges for graphs without triangles:

Theorem 1.5. (Mantel) The maximum number of edges in a triangle-free graph of

order n is
⌊
n2

4

⌋
.
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The proof of Mantel’s theorem can be found in [20, Theorem 1.3.23].

Further new terminology and notation will be defined when it is required. For some

possible undefined (basic) terms we refer interested reader to [3] or [11]. For further

reading about graph factors and matching extensions we refer to [22].

1.1.1 Relationships between l-extendability and l 12-extendability

As we have already seen, l 1
2
-extendability is defined using l-extendability. Hence,

we can say that l 1
2
-extendability is, in some sense, stronger than l-extendability.

But what about relation between l 1
2
-extendability and (l + 1)-extendability?

It was proved in [21, Theorem 2.3] that if we join a new vertex to all vertices of l 1
2
-

extendable graph Γ, the resulting graph will be (l + 1)-extendable. Hence, we can say

that l 1
2
-extendability is weaker than (l + 1)-extendability.

On the other hand, not all (l + 1)-extendable graphs have a property that deletion of

an arbitrary vertex will result in a l 1
2
-extendable graph. An example of such a graph

is the 6-cycle C6.

After all, it seems natural to think about l 1
2
-extendability as lying between l-extendability

and (l + 1)-extendability. Also, it is possible to characterize all l 1
2
-extendable graphs

in terms of l-extendable and (l+ 1)-extendable graphs. Such a characterization can be

found in [21].

We end this introductory chapter by considering extendability of matchings in cy-

cles.

1.1.2 Extendability of cycles

Let us observe a cycle Cn with an odd number of vertices. Let u be an arbitrary

vertex in Cn. Graph Cn− u is a path Pn−1 with odd number of edges. Obviously such

graph contains a perfect matching and so Cn is 01
2
-extendable.

But is it 11
2
-extendable? Note that C3 does not satisfy the condition on the number

of vertices from the definition of l 1
2
-extendability, so there is no sense to speak about

11
2
-extendability of this graph. Let n ≥ 5 and let us choose the middle edge e in Pn−1.

It can be easily seen that the matching containing this edge cannot be extended to a

perfect matching of Pn−1. Therefore, Cn is not 11
2
-extendable for any odd n.

What about the extendability of cycles with an even number of vertices? Obvi-

ously each even cycle contains a perfect matching. Also, it can be easily seen that a

matching containing an arbitrary edge of an even cycle can be extended to a perfect



Koroman I. Matching extensions in regular graphs with small diameter.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 8

matching. Therefore, even cycles are 1-extendable. Since there is no sense to speak

about 2-extendability of C4 let us suppose that n ≥ 6. Let us choose edges e1 and e2

such that there is a vertex v which is adjacent to one endpoint of both edges. It is

clear that the matching containing edges e1 and e2 cannot be extended to a perfect

matching of Cn. Therefore, the even cycles are not 2-extendable.

Since we completely determined l-extendability and l 1
2
-extendability of cycles, from

now on we will assume that graph Γ is regular with valency k ≥ 3.
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2 Extendability of regular graphs

In this chapter we will focus on the matching extensions of regular graphs with an

odd number of vertices and diameter 2. First section will be about 01
2
-extendability

and in the second section we will work on 11
2
-extendability of regular graphs with an

odd number of vertices and diameter 2.

2.1 On 01
2-extendability of regular graphs with di-

ameter 2

Lemma 2.1. Let Γ be a regular graph of valency k, odd order and diameter 2. Let

S ⊆ V (Γ) be such that Γ−S is not connected and let C be a component of Γ−S. Then

there are at least k edges between C and S in Γ.

The proof of this lemma is the same as for graphs with an even number of vertices

and is therefore omitted. It can be found in [18, Lemma 2.1].

Lemma 2.2. Let Γ be a regular graph of valency k, an odd number of vertices and

diameter 2. Let S ⊆ V (Γ) be such that Γ− S is not connected. Let C be a component

of Γ−S such that there are exactly k edges between S and C. Then C is either singleton

component or a complete graph with k vertices.

Proof. Assume that C is not a singleton. Since Γ is of diameter 2, each vertex from

C must have at least one neighbour in S. Hence, if C has more than k vertices, then

there are more than k edges from C to S, which is impossible.

Suppose that the cardinality of component C is less than k. Because of regularity of

Γ, there are k − degC(v) edges from each vertex v ∈ C to S. Therefore, total number

of edges between C and S is
∑

v∈C
(
k − degC(v)

)
.

Let us denote M = max{degC(v); v ∈ C} and note that M ≤ |C| − 1.

As |C| < k, we have ∑
v∈C

degC(v) ≤ |C|M < kM, (2.1)
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Therefore, ∑
v∈C

(
k − degC(v)

)
= |C|k −

∑
v∈C

(
degC(v)

)
> |C|k − kM

= k
(
|C| −M)

≥ k ,

(2.2)

Hence, there are more than k edges from S to C, which is impossible.

Therefore, |C| = k. If a component C is not a complete graph, then, because of

regularity, there are at least k + 2 edges from C to S. Contradiction.

Remark 2.3. For k-regular graphs with an odd number of vertices, k must be even.

This can be easily seen from the fact that k-regular graph of order n has nk
2

edges.

Theorem 2.4. Let Γ be a regular graph with an odd number of vertices and diameter

2. Then Γ is 01
2
-extendable.

Proof. Suppose that Γ is not 01
2
-extendable. Then there exists x ∈ V (Γ) such that

Γ− x is not 0-extendable (that is, it does not contain a perfect matching).

By Tutte’s result there exists S ⊆ V (Γ− x) such that

σ
(
V (Γ− x)− S

)
> |S|. (2.3)

Let us denote S ′ = S ∪ {x}. Let l denote the number of odd components of Γ − S ′.
Note that connected components of Γ − S ′ are the same as connected components of

Γ − x − S, so (by inequality (2.3)) we have that l > |S|. Let t denote the number of

edges between S ′ and odd components of Γ−S ′. From Lemma 2.1 it follows that there

are at least k edges between each (odd) component and S ′. On the other hand, each

vertex from S ′ has at most k neighbours in odd components of Γ − S ′ (because each

vertex in Γ has degree k). Therefore, we have the following:

lk ≤ t ≤ k|S ′| = k(|S|+ 1). (2.4)

From the previous inequality it follows that l ≤ |S| + 1 which, together with the fact

that l > |S|, gives us l = |S| + 1. Using this fact and inequality (2.4) we get that

t = k(|S|+ 1). It follows that equality holds in (2.4), and so there are exactly k edges

from each odd component to S ′. Hence, by Lemma 2.2, all odd components are either

singletons or complete graphs with k vertices. The second possibility is not possible

since components are odd and k is even. Therefore, all odd components are singletons,

so there are exactly |S|+ 1 vertices contained in odd components of graph Γ− S ′.
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Let X denote the union of all even components of Γ − S ′. Let us calculate the total

number of vertices in graph Γ:

|V (Γ)| = |S|+ 1 + |S|+ 1 + |X| = 2(|S|+ 1) + |X|. (2.5)

Since |X| is an even number, from equation (2.5) it follows that |V (Γ)| is an even

number. Contradiction.

Since we proved that all regular graphs with an odd number of vertices and diameter

2 are 01
2
-extendable, now we wonder what is happening with 11

2
-extendability of reg-

ular graphs with an odd number of vertices and diameter 2. Are they all 11
2
-extendable?

2.2 On 11
2-extendability of regular graphs with di-

ameter 2

As Γ is a regular graph with valency k and an odd number of vertices, k must be

an even number. Since the only graph with diameter 2 and valency k = 2 is the cycle

on 5 vertices and as it was proved before it is not 11
2
-extendable, from now on we will

observe graphs with k ≥ 4.

In order to prove that not all regular graphs with an odd number of vertices, di-

ameter 2 and k ≥ 4 are 11
2
-extendable we give the following construction of an infinite

family of regular graphs which are not 11
2
-extendable.

Construction 2.5. Let k ≥ 4 be an even integer and let Γ be a graph with vertex set

{u}∪V ∪W where V = {vi | i ∈ Zk} and W = {wi | i ∈ Zk}, and edge set E1∪E2∪E3

where E1 = {uvi | i ∈ Zk}, E2 = {viwj | i ∈ Zk, j ∈ Zk, i ≤ j ≤ i + k − 2} and

E3 = {wiwi+1 | i ∈ Zk, i = 2s+ 1, 0 ≤ s ≤ k
2
− 1}.

For example, for k = 4 we have a graph from Figure 3.

Note that Zk, in the previous construction, denotes the additive group of integers

modulo k.

Proposition 2.6. Let Γ be as in Construction 2.5. Then graph Γ is k-regular graph

with an odd number of vertices and diameter 2 which is not 11
2
-extendable.
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Figure 3: (9, 4)-regular graph

Proof. Note that number of vertices in graph Γ is

|V (Γ)| = 1 + |V |+ |W | = 1 + k + k = 1 + 2k, (2.6)

which is obviously an odd number.

Regularity: Observing the edge set E1 it can be easily seen that degΓ(u) = k. By

construction, each vertex vi is adjacent to vertex u, has no neighbours in V and has

exactly k − 1 neighbours in W . Hence degΓ(vi) = k. Note that none of vertices from

W is adjacent to u, each of them is adjacent to exactly k − 1 vertices from V and to

exactly one vertex from vertex set W . Therefore, degΓ(wi) = k. We proved that each

vertex of Γ has k neighbours, so Γ is k-regular graph.

Diameter: It is obvious that each vertex from V is at distance 1 from vertex u and

that each vertex from W is at distance 2 from vertex u. Also, each two vertices from V

are at distance 2 because vertex u is their common neighbour. Let us observe vertices

from W . Each wi is adjacent to exactly k − 1 vertices from V , so it is at distance 1

from them. The only vertex from V which, by construction, is not adjacent to wi is

vertex vi+1, but that vertex is adjacent to both vertices wi−1 and wi+1. Since exactly

one of them is adjacent to wi, it follows that each vertex from W is at distance at most

2 from any vertex from V . Note that each two vertices of W , by construction, have

k− 2 common vertices in V , so they are at distance at most 2. Therefore, diameter of

Γ is 2.

Non-extendability: Let us observe the graph Γ − u and a matching containing an

edge from the edge set E3. In order to cover vertices from V by a matching, we have

to choose edges from the edge set E2, but with each new edge in the matching we will

cover one vertex from W . As at the beginning there were k uncovered vertices from
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V and k − 2 uncovered vertices from W , no matter how we choose edges from E2 to

include them in matching there will always stay two uncovered vertices from V . Since

a matching of graph Γ − u containing an arbitrary edge from E3 cannot be extended

to a perfect matching of Γ− u, it follows that Γ is not 11
2
-extendable.

Now when we know that there exists an infinite family of non-11
2
-extendable graphs,

it will be useful to find some properties of such graphs. First, let us fix some notation.

Notation 2.7. Let Γ be a k-regular graph with an odd number of vertices and diameter

2, which is not 11
2
-extendable. Let us denote by x the vertex of V (Γ) such that the

graph Γ− x is not 1-extendable. Denote by e = {y, z} an edge such that the matching

containing this edge cannot be extended to a perfect matching of Γ − x. This means

that the graph Γ′ = Γ−{x, y, z} is not 0-extendable, so by Tutte’s result it follows that

there exists S ′ ⊆ V (Γ′) such that σ(Γ′ − S ′) > |S ′|. Denote S = S ′ ∪ {x, y, z}.

Note that the connected components of Γ′ − S ′ are the same as the connected

components of Γ− S.

Remark 2.8. With reference to Notation 2.7 every vertex in an odd component of

Γ− S has at least one neighbour in S (because the diameter of Γ is 2).

Lemma 2.9. With reference to Notation 2.7 we have that σ(Γ− S) = |S| − 1.

Proof. Let us denote

t = σ(Γ− S) = σ(Γ′ − S ′) > |S ′|, (2.7)

and let C1, C2, ..., Ct be odd components of Γ− S.

|V (Γ)| is an odd number, so the cardinality of S ′∪{x, y, z}∪C1∪C2∪...∪Ct is odd, and

so the cardinality of S ′∪C1∪C2∪ ...∪Ct is even. Therefore, |S ′| and |C1∪C2∪ ...∪Ct|
have the same parity. The numbers |C1|, |C2|, ..., |Ct| are odd, so the parity of t is the

same as the parity of |C1 ∪ C2 ∪ ... ∪ Ct|. Therefore, t and |S ′| have the same parity.

This conclusion together with equation (2.7) gives us

t ≥ |S ′|+ 2. (2.8)

Let us denote by S ′′ = S ′ ∪ {y, z}. Obviously, S ′′ ⊆ V (Γ − x). As Γ is regular graph

with an odd number of vertices, by Theorem 2.4, Γ is 01
2
-extendable. Therefore, Γ− x

is 0-extendable. So, by Tutte’s result it follows that σ(Γ − x − S ′′) ≤ |S ′′| = |S ′| + 2.

Note that the connected components of Γ − x − S ′′ are the same as the connected

components of Γ− S. Therefore, we have:

t = σ(Γ− S) ≤ |S ′|+ 2. (2.9)

Using (2.8) and (2.9) we get t = |S ′|+ 2 = |S| − 1.
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Proposition 2.10. With reference to Notation 2.7 we can assume that all components

of Γ− S are odd.

Proof. Suppose that Γ− S has an even component C. Pick an arbitrary vertex c ∈ C
and set S∗ = S ∪{c}. Note that each component of Γ−S different from component C

is also a component of Γ−S∗. The remaining components of Γ−S∗ are the components

of the subgraph of Γ induced on vertex set C − c. This set is of odd size, so at least

one of the new components must be odd. Therefore, we have:

σ(Γ− S∗) ≥ σ(Γ− S) + 1 = |S| − 1 + 1 = |S| = |S∗| − 1. (2.10)

Graph Γ is regular graph with an odd number of vertices, so by Theorem 2.4, it is

01
2
-extendable. Therefore, for each vertex w ∈ V (Γ), graph Γ − w contains a perfect

matching. Applying Tutte’s result on S∗ and some vertex w such that S∗ ⊆ V (Γ−w)

we get σ(Γ− w − S∗) ≤ |S∗|. Combining this result with the obvious fact that σ(Γ−
w − S∗) ≥ σ(Γ− S∗) we get that

σ(Γ− S∗) ≤ |S∗|. (2.11)

Using (2.10) and (2.11) we get

|S∗| − 1 ≤ σ(Γ− S∗) ≤ |S∗|. (2.12)

Let us denote t∗ = σ(Γ − S∗) and let C1, C2, ..., Ct∗ be odd components of V (Γ).

Cardinality of S∗ ∪ C1 ∪ C2 ∪ ... ∪ Ct∗ is odd (because |V (Γ)| is odd). Therefore, |S∗|
and |C1 ∪ C2 ∪ ... ∪ Ct∗| have different parity. Since numbers |C1|, |C2|,..., |Ct∗| are

odd, the parity of t∗ is the same as the parity of |C1 ∪ C2 ∪ ... ∪ Ct∗|. Therefore, t∗

and |S∗| have different parities. This fact, together with inequality (2.12) gives us

σ(Γ− S∗) = |S∗| − 1.

Repeating this process of enlarging S until no even component of Γ− S exists we can

eliminate all even components.

For the rest of this work we may assume that Γ− S has no even components.

Since the existence of an infinite family of regular graphs with an odd number of

vertices and diameter 2, which are not 11
2
-extendable, have been shown, it makes sense

to observe edge-regular graphs with an odd number of vertices and diameter 2.
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3 On 112-extendability of

edge-regular graphs with diameter 2

In this chapter we will recall the definition of an edge-regular graph and a famous

Moore’s bound on the number of vertices of an edge-regular graph of diameter 2. In

the first section we will consider edge-regular graphs with diameter 2, an odd number

of vertices and valency 4, while the second section is devoted to edge-regular graphs

with diameter 2, an odd number of vertices and valency greater than 4.

Definition 3.1. A connected k-regular graph Γ with n vertices is edge-regular, if there

exists an integer λ such that each two adjacent vertices of Γ have exactly λ common

neighbours.

Numbers n, k and λ are called parameters of graph Γ, and we say that Γ is an

(n, k, λ) edge-regular graph. It is clear that λ ≤ k − 1. In fact, λ = k − 1 if and only

if Γ is the complete graph with k + 1 vertices.

It is a well known fact that edge-regular graph with parameters (n, k, λ) has nkλ
6

tri-

angles. Also, there exists a famous Moore’s upper bound on the number of vertices of

an edge-regular graph.

Proposition 3.2. (Moore’s bound) Let Γ be an (n, k, λ) edge-regular graph with diam-

eter 2. Then 7 ≤ n ≤ 1 + k + k(k − λ− 1).

Remark 3.3. Original Moore’s bound gives just upper bound on the number of vertices.

But as all graphs considered in this chapter are with an odd number of vertices and

diameter 2, which exclude complete graphs (since they have diameter 1), we may add

lower bound on the number of vertices.

In this chapter we will prove that all edge-regular graphs with an odd number of

vertices, diameter 2 and k ≥ 4 are 11
2
-extendable. We will consider cases k = 4 and

k > 4 separately.
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3.1 Graphs with valency k = 4

In this section we will consider edge-regular graphs with an odd number of vertices,

diameter 2 and valency 4. Of our particular interest will be the Paley graph on 9

vertices, which is, as we will show, 11
2
-extendable.

Also, we will show that all triangle-free edge-regular graphs with an odd number of

vertices, diameter 2 and valency 4, must have 11, 13 or 15 vertices and that all of them

are 11
2
-extendable.

First, let us define Paley graphs. To do this we recall that if q is a prime power,

then GF (q) denotes finite (Galois) field with q elements.

Definition 3.4. Let q be a prime power, q ≡ 1 (mod 4). The Paley graph PGq is the

graph whose vertex set is the set of elements of the field GF (q), two vertices being

adjacent if their difference is a non-zero square in GF (q).

Figure 4: Paley graph on 9 vertices.

Proposition 3.5. Let Γ be an (n, 4, λ) edge-regular graph with odd order and diameter

2. Then Γ is either the Paley graph on 9 vertices, or λ = 0. Moreover, if λ = 0 then

n ∈ {11, 13, 15}.

Proof. Since k = 4 and λ < k − 1 it follows λ ∈ {0, 1, 2}. Graph Γ is edge-regular,

so by Proposition 3.2, we have that 7 ≤ n ≤ 1 + k + k(k − λ − 1) which implies

7 ≤ n ≤ 17− 4λ.
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Case 1: λ = 2. Since 7 ≤ n ≤ 9 and n is odd, we have n ∈ {7, 9}. The number

of triangles in Γ is equal to nkλ
6

= 4n
3

. Therefore, n is divisible by 3. So n = 9. Let

us suppose that such a graph exist and try to construct it. Let u denote our starting

vertex and let N(u) = V = {v1, v2, v3, v4}. Let W = {w1, w2, w3, w4} denote the other

vertices. Since diameter of Γ is 2, each vertex from W must have at least one neighbour

in V . Since λ = 2 each vertex from V must have exactly 2 common neighbours with

u. Therefore, each vertex in V has exactly 2 neighbours in V . Let us observe vertex

v1. It must have one neighbour in W . WLOG suppose that w1 is its neighbour. Since

λ = 2 they must have 2 common neighbours and they must be in V . WLOG suppose

that these vertices are v2 and v3. Now we have that v3 ∼ v4, because v3 must have two

neighbours in V and it cannot be adjacent to v2 (since in that case v2 and v3 would have

3 common neighbours). Using similar argument we also find that v2 ∼ v4. Vertex u is

a common neighbour of vertices v3 and v4. Therefore, vertex w1 is the only possibility

for their second common neighbour. Now, each vertex from V has 4 neighbours, so

vertices w2, w3, w4 cannot have any neighbours in V . Contradiction.

Case 2: λ = 1. Since in this case 7 ≤ n ≤ 13, we have that n ∈ {7, 9, 11, 13}. The

number of triangles in Γ is nkλ
6

= 2n
3

, so n is divisible by 3. Therefore, n = 9. It can

be easily seen that such a graph is unique, up to isomorphism. This graph is the well

known Paley graph on 9 vertices.

Case 3: λ = 0, 7 ≤ n ≤ 17, so n ∈ {7, 9, 11, 13, 15, 17}. Let Γ be a (n, 4, 0) edge-

regular graph with vertex set {u} ∪ V ∪W where V = N(u) = {v1, v2, v3, v4} and W

are vertices on distance 2 from vertex u. Now we split our analysis into the following

subcases depending on the value of n:

Subcase 1: n = 7. Since λ = 0, there are no triangles in Γ, so by Mantel’s result it

follows that the number of edges in Γ is at most
⌊
n2

4

⌋
=
⌊

49
4

⌋
= 12. On the other hand,

regular graph with 7 vertices and valency 4 has 7·4
2

= 14 edges. Contradiction.

Subcase 2: n = 9. In this case W = {w1, w2, w3, w4} and Γ has 18 edges. Vertex u has

4 neighbours in V and each vertex from V has 3 neighbours in W . Therefore, there

are 2 edges in a subgraph of Γ induced by W . WLOG we may assume that vertex

v1 is adjacent to vertices w1, w2, w3, so these two edges must have vertex w4 as an

endpoint (otherwise we would obtain a triangle). Also WLOG we may assume that

w4 is adjacent to vertex v2 (since w4 is at distance 2 from u it must have at least one

neighbour in V ). Since there are no triangles in Γ, vertex v2 cannot be adjacent to any

vertex from V or to any neighbours of vertex w4 in W . Therefore, vertex v2 can have

at most 2 neighbours in W. Contradiction.

Subcase 4: n = 11. Graph has parameters (11, 4, 0).

Subcase 5: n = 13. Graph has parameters (13, 4, 0).

Subcase 6: n = 15. Graph has parameters (15, 4, 0).
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Subcase 7: n = 17. In this case W = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12}.
As the diameter of Γ is 2, each vertex from W must have at least one neighbour in V .

There are 12 vertices in W and each vertex from V has exactly 3 neighbours in W .

Hence it follows that each vertex from W has exactly one neighbour in V and 3 more

neighbours in W . Therefore, the girth1 of this graph is 5. Note that edge-regular graph

(17, 4, 0) meets the Moore upper bound, and is therefore the so-called Moore graph.

But it is known (Hoffman-Singleton theorem, [2, Chapter 23]) that the Moore graph

with girth 5 could only exist if k = 2, 3, 7 or 57. Therefore, no (17, 4, 0) edge-regular

graph exist.

Using the previous proposition we will show that all edge-regular graphs with an

odd number of vertices, diameter 2 and valency 4 are 11
2
-extendable.

Lemma 3.6. Let Γ be an edge-regular graph with parameters (n, 4, 1), an odd number of

vertices and diameter 2. Then Γ is a Paley graph on 9 vertices which is 11
2
-extendable.

Proof. From Proposition 3.5 it follows that Γ is a Paley graph. Suppose to the contrary

that Γ is not 11
2
-extendable. That means that there is a vertex x ∈ V (Γ) such that Γ−x

is not 1-extendable. Therefore, there exists an edge e = {y, z} such that Γ− {x, y, z}
does not have a perfect matching. Let S be as in Notation 2.7. As Γ is regular graph

with an odd number of vertices, it follows from Lemma 2.9 that σ(Γ−S) = |S|−1. Let

C1, C2, ..., C|S|−1 denote the odd components of Γ − S. Vertices y and z are adjacent

and all other vertices from S may have at most k = 4 neighbours in C1∪C2∪...∪C|S|−1.

Therefore, there are at most 4|S| − 2 edges between S and C1 ∪C2 ∪ ...∪C|S|−1. There

are at least k = 4 edges between S and each odd component, so there are at least

4(|S| − 1) edges between S and odd components. On the other hand, Γ is 4-regular

graph with 9 vertices, so it has 18 edges and one of them is edge e in S. Therefore,

4|S| − 4 < 18, which implies that |S| ≤ 5. As S contains vertices x, y and z, we have

that |S| ≥ 3. Hence |S| = {3, 4, 5}. Now we can split our analysis into the following

three cases depending on the cardinality of S.

Case 1: |S| = 3. Γ has two odd components and since we assumed that there are no

even components in Γ−S it follows that there are 6 vertices in these two components.

If one of the components is singleton, vertex from that component has 4 neighbours in

S which is impossible. Therefore, |C1| = |C2| = 3. This shows that there are at least 6

edges between each of Ci, i ∈ {1, 2} and S, so at least 12 edges between C1 ∪ C2 and

S. Therefore, we get 12 ≤ 4|S| − 2 = 10. Contradiction.

Case 2: |S| = 4 and there are 3 odd components which altogether contain 5 vertices.

So, there are two singleton components. Vertices from singleton components have 4

1the lenght of a shortest circuit in the graph
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neighbours in S, so y and z have at least two common neighbours. Contradiction.

Case 3: |S| = 5. There are 4 components and all of them are singletons. There are

18 edges in Γ, and there are exactly 16 edges between S and odd components (because

each vertex from each odd component has 4 neighbours in S). So there are 2 edges in

S, one of which is edge e = {y, z}. Let us denote the other one by e1. As λ = 1, each 2

adjacent vertices must have a common neighbour. If one of the two adjacent vertices is

in Γ−S, their common neighbour must be in S. Therefore, each vertex from each odd

component must be adjacent to those vertices of S which are endpoints of e and e1.

But since k = 4 each of these endpoints have at most 3 neighbours in odd components.

Contradiction.

Lemma 3.7. Let Γ be a triangle-free edge-regular graph with an odd number of vertices,

valency 4 and diameter 2. Then Γ is 11
2
-extendable.

Proof. From Proposition 3.5 it follows that n = |V (Γ)| ∈ {11, 13, 15}. Suppose that

graph Γ is not 11
2
-extendable, so there exists a vertex x ∈ V (Γ) such that Γ− x is not

1-extendable and there exists an edge e = {y, z} such that Γ− {x, y, z} does not have

a perfect matching. Let S be as in Notation 2.7. Note that there are at most 4|S| − 2

edges between S and odd components. As Γ is regular graph with an odd number

of vertices, it follows from Lemma 2.9 that σ(Γ − S) = |S| − 1. Let C1, C2, ..., C|S|−1

denote the odd components of Γ − S. Since there are at least k edges between each

odd component and S, it follows that there are at least 4(|S|−1) edges between S and

odd components. This number, of course, must be smaller than the total number of

edges in Γ (since there is at least one edge in S). Now we can split our analysis into

the following 3 cases.

Case 1: n = 11. In this case graph Γ has 22 edges, so 4(|S| − 1) < 22 which

implies |S| < 26
4

. As |S| ≥ 3 is an integer, it follows that |S| = {3, 4, 5, 6}.
Subcase 1.1: |S| = 3. In this case there are two components of Γ − S which together

contain 8 vertices. Since k = 4 there is no singleton component (vertex from singleton

component would have 4 neighbours in S which is not possible). So, the only remaining

possibility is that one component has cardinality 3 and the other one has cardinality

5. Let |C1| = 3. As Γ is triangle-free and components are connected it follows that

C1 is the 3-vertex path P3. End vertices of this path are adjacent to all vertices in S

(because k = 4 and |S| = 3), but that is impossible since y and z do not have common

neighbours.

Subcase 1.2: |S| = 4. In this case there are three components which altogether contain

7 vertices. There are two options: there are two singleton components and one com-

ponent with 5 vertices, or there is one singleton component and 2 components with
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3 vertices. Vertices from singleton components must be adjacent to all vertices in S.

Contradiction (with the fact that y and z do not have common neighbours).

Subcase 1.3: |S| = 5. There are 4 components containing altogether 6 vertices, so

there must be 3 singletons and one component with 3 vertices. As there are 12 edges

between singleton components and S, there are at most 4|S|−2−12 = 6 edges between

S and the fourth component. As this component must be P3 it follows that it sends 8

edges to S. Contradiction.

Subcase 1.4: |S| = 6. In this case there are 5 singleton components. Therefore, there

are 20 edges between S and odd components. Since graph Γ has 22 edges, it follows

that there are exactly two edges in S (one of them is edge e). Let u ∈ S be a vertex

which is not an endpoint of any of the edges in S (such a vertex exists since |S| = 6 and

two edges can cover at most 4 vertices). Vertex u has 4 neighbours in odd components

(because k = 4 and it does not have any neighbours in S). Since there are 5 odd

components, there exists a vertex in an odd component, say v, which is not adjacent

to u. Vertices u and v are not adjacent and do not have any common neighbours, so

they are at distance greater than 2. Contradiction.

Case 2: n = 13. Graph Γ has 26 edges and 4(|S| − 1) < 26 implies that |S| ∈
{3, 4, 5, 6, 7}.
Subcase 2.1: |S| = 3, so there are two components containing 10 vertices. Using sim-

ilar approach like in the previous case, we can conclude that there are no singleton

components neither components with 3 vertices. So, the only remaining case is to have

two components both of cardinality 5. As there are at most 4|S| − 2 = 10 between S

and these odd components, it follows from Lemma 2.1 that there are exactly 5 edges

between each of these components and S. Therefore, by Lemma 2.2, the subgraphs

induced on these components are the complete graphs on 5 vertices. But this is a

contradiction with the fact that Γ is triangle-free.

Subcase 2.2: |S| = 4, so there are at most 14 edges from S to odd components. In

this case we have 9 vertices in 3 odd components. Note that there are no singleton

components (otherwise y and z would have a common neighbour which is impossible

since λ = 0). Now we are left with the case of 3 components with cardinality 3. Each

of them is the 3-vertex path P3, and so there are 8 edges from each odd component to

S (each end vertex of P3 has 3 neighbours in S and middle vertex has 2 neighbours in

S). Therefore, there are 3 · 8 = 24 edges between odd components and S which is not

possible.

Subcase 2.3: |S| = 5. There are 8 vertices in 4 odd components, and there are at

most 18 edges between S and odd components. If there are 3 singleton components

and one component with 5 vertices, then there are at least 4 + 4 + 4 + 6 = 18 edges
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between S and odd components. By Mantel’s result, there are at most 6 edges in

5-vertex component, and so there are at least 8 edges between 5-vertex component to

S. This gives us in total 4 + 4 + 4 + 8 = 20 edges between odd components and S, a

contradiction. The remaining possibility is that there are 2 singleton components and

two components with cardinality 3. In this case there are 4 + 4 + 8 + 8 = 24 edges

between odd components and S. Contradiction.

Subcase 2.4: |S| = 6. Maximal number of edges between S and odd components is

22. Here we have 7 vertices contained in 5 odd components, so the only possibility is

that there are 4 singletons and one component with 3 vertices. Therefore, there are

4 + 4 + 4 + 4 + 8 = 24 edges between odd components and S. Contradiction.

Subcase 2.5: |S| = 7. All 6 components are singletons. There are 24 edges between S

and odd components and therefore there are exactly two edges in S. Let us observe

an arbitrary vertex v in S which is not an endpoint of any of the edges from S (such

a vertex exists because two edges can cover at most 4 vertices and |S| = 7). As k = 4,

v has 4 neighbours in odd components. As there are 6 odd components it follows that

there are 2 vertices in odd components which are not adjacent to v. As v does not

have any neighbours in S and there are no edges between odd components it follows

that distance between this vertices and v is greater than 2. Contradiction (with the

fact that diameter of Γ is 2).

Case 3: n = 15. There are 30 edges in Γ. As 4(|S| − 1) < 30 it follows that

|S| ∈ {3, 4, 5, 6, 7, 8}. Depending on the cardinality of S, we have the following sub-

cases.

Subcase 3.1: |S| = 3. In this case, there are at most 4|S| − 2 = 10 edges between S

and components, and there are 12 vertices in two components. As each vertex in odd

component has at least one neighbour in S, it follows that there are at least 12 edges

from odd components to S. Contradiction.

Subcase 3.2: |S| = 4. There are 3 components which altogether contain 11 vertices.

Since there are no singleton components (otherwise y and z would have a common

neighbour), there are two components with 3 vertices and one component with 5 ver-

tices. As components with 3 vertices are 3-vertex paths, there are 8 edges from each of

them to S. Therefore, there are at least 8 + 8 + 5 = 21 edges from odd components to

S. This is impossible, since there are at most 14 edges between S and odd components.

Subcase 3.3: |S| = 5. In this case there are 4 components and at most 18 edges between

S and Γ−S. The case when there are 3 singletons and one component with 7 vertices

is impossible, since there would be at least 4 + 4 + 4 + 7 = 19 edges between S and odd

components. If there are 2 singletons, then the other two components must be with

cardinalities 3 and 5. So, there are at least 4 + 4 + 8 + 5 = 21 edges between S and
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Γ−S. Impossible. The only remaining possibility is that there are 3 components with

cardinality 3 and one singleton. But, in this case there are at least 28 edges from odd

components to S. Contradiction.

Subcase 3.4: |S| = 6. There are 9 vertices in 5 odd components and there are at most

22 edges between S and them. If there are 3 singletons and two components with car-

dinality 3, there are at least 28 edges between them and S. Impossible. So, there must

be 4 singletons and one component with 5 vertices. Similarly as above, it follows from

Mantel’s result that there are at least 8 edges between the 5-vertex component and S.

Hence, there are at least 24 edges between odd components and S. Contradiction.

Subcase 3.5: |S| = 7. There are 8 vertices in 6 components. In this case there must be

5 singletons and a 3-vertex component. Hence, there are at least 28 edges between S

and Γ− S. Contradiction (because there are at most 26 such edges).

Subcase 3.6: |S| = 8. There are 7 singletons and exactly 28 edges from S to them.

Since there are 30 edges in Γ, S contains exactly 2 edges. Let us observe an arbitrary

vertex v in S which is not an endpoint of any of the edges from S. Since k = 4, v has

4 neighbours in the odd components. As there are 7 components, it follows that there

are 2 vertices in the odd components which are not adjacent to v. As v does not have

any neighbours in S and there are no edges between components, it follows that the

distance between these vertices and v is greater than 2. Contradiction.

In the following theorem we will summarize the results obtained in this section.

Theorem 3.8. Let Γ be an edge-regular graph with an odd number of vertices, diameter

2 and valency 4. Then Γ is 11
2
-extendable.

3.2 Graphs with valency k ≥ 6

In this section we will consider edge-regular graphs with an odd number of vertices,

diameter 2 and k > 4. First, let us fix some notation.

Notation 3.9. Let Γ be a non-11
2
-extendable edge-regular graph with parameters (n, k, λ),

n odd, k ≥ 6 and diameter 2. Let S ⊆ V (Γ) be such that |S| ≥ 3, S contains at least

one edge, σ(Γ − S) = |S| − 1 and Γ − S has no even components. Let the subgraph

induced by S contains a vertex x such that Γ − x is not 1-extendable, and there is an

edge e = {y, z} in S such that the matching containing this edge cannot be extended to

a perfect matching of Γ− x.

Remark 3.10. Since |S| ≥ 3 it follows that σ(Γ − S) ≥ 2. As Γ is of diameter 2 it

follows that each vertex from V (Γ)− S has at least one neighbour in S.
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Lemma 3.11. With reference to Notation 3.9 each vertex in Γ − S has at least 2

neighbours in S.

Proof. Suppose on the contrary that there is a vertex v in an odd component C which

has just one neighbour in S. Let us denote this neighbour by u and let C1, C2, ..., C|S|−2, C

be odd components of Γ − S. Denote mi = |Ci|, 1 ≤ i ≤ |S| − 2 and WLOG assume

that m1 ≤ m2 ≤ ... ≤ m|S|−2. As the diameter of Γ is 2, the unique neighbour u of v

must be adjacent to all vertices in C1 ∪ C2 ∪ ... ∪ C|S|−2. Since u an v have λ common

neighbours and all of them are in C (because u is the only neighbour of v which is in

S), we have:

k ≥ 1 +m1 +m2 + ...+m|S|−2 + λ. (3.1)

On the other hand, for each vertex w ∈ C1 it holds that N(w1) ⊆ C1 ∪ S. As vertex u

is adjacent to each vertex of component C1, w has at most λ neighbours in C1, so

k ≤ λ+ |S|. (3.2)

Now we can split our analysis into two cases:

Case 1: m1 ≥ 3. In this case, we have:

k ≥ 1 +m1 +m2 + ...+m|S|−2 + λ ≥ 1 + 3(|S| − 2) + λ, (3.3)

which together with (3.2) gives us

1 + 3(|S| − 2) + λ ≤ k ≤ λ+ |S|, (3.4)

which implies |S| ≤ 5
2
, and therefore |S| ≤ 2. This is a contradiction with the fact that

|S| ≥ 3.

Case 2: m1 = 1. Let w1 be the unique vertex in C1. As all neighbours of w1 are in S

it follows that k ≤ |S|. On the other hand, as u and w1 have λ common neighbours

and all of them are contained in S, vertex u must have at least λ neighbours in S, so

k ≥ 1 + 1 +m2 + ...+m|S|−2 + 2λ. Therefore,

|S| − 2 +m|S|−2 + 2λ ≤ 1 + 1 +m2 + ...+m|S|−2 + 2λ ≤ k ≤ |S|, (3.5)

which implies

2λ ≤ 2−m|S|−2. (3.6)

Since λ is non-negative integer and m|S|−2 is odd we have m|S|−2 = 1 (and therefore all

odd components, except possibly C, are singletons) and λ = 0. As Γ is triangle free it

follows that at least one of y and z is not adjacent to w, and so k ≤ |S|−1. Now, using

(3.1) we get k = |S| − 1 and because of that we can conclude that u does not have any

neighbours in S and there is exactly one vertex in S which is not adjacent to w1. The
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same conclusion holds for each wi ∈ Ci, 1 ≤ i ≤ |S| − 2 which together with the fact

that λ = 0 imply that each wi (1 ≤ i ≤ |S| − 2) is adjacent to exactly one of vertices y

and z and to all other vertices from S. Let us observe vertex x different from vertices

u, y and z (such a vertex exists since otherwise |S| = 3 would imply k = 2 which is

not possible). Since diameter of Γ is 2 and vertices from S − u are not adjacent to u

and v, each vertex from S− u must be adjacent to at least one neighbour of v. As x is

adjacent to all vertices in C1∪C2∪ ...∪C|S|−2 and k = |S|− 1, it is adjacent to exactly

one neighbour of v, say v1. Therefore, x is not adjacent to any of the vertices from

S. As vertex x must be at distance 2 from other neighbours of v it follows that all of

them must be adjacent to v1. Since λ = 0 it follows that v has only one neighbour in

C. Therefore, k = 2. Contradiction.

The proof of the following lemma is the same as for graphs with an even number

of vertices, so it will be omitted. It can be found in [1, Lemma 4.3].

Lemma 3.12. With reference to Notation 3.9, suppose C is a component of Γ − S

which is not a singleton. Then there are at least 3k
2

edges between C and S.

Using this result we will prove that there is at most one component of Γ−S which

is not a singleton.

Lemma 3.13. With reference to Notation 3.9, Γ−S has at most one component with

cardinality at least 3.

Proof. Suppose to the contrary that Γ − S has two odd components C1 and C2 such

that their cardinalities are at least 3. Let us denote m1 = |C1| and m2 = |C2|. WLOG

we may assume that m1 ≤ m2. Let f denote the number of edges between S and Γ−S.

Since Γ contains at least one edge we have that

f ≤ k|S| − 2. (3.7)

By Lemma 3.12 there are at least 3k
2

+ 3k
2

= 3k edges between C1 ∪ C2 and S. By

Lemma 2.1, there are at least k(|S| − 3) edges between the remaining |S| − 3 odd

components and S. Therefore, there are at least 3k + k(|S| − 3) = k|S| edges between

the odd components and S. Together with (3.7) this shows that k|S| ≤ k|S| − 2, a

contradiction.

Using the previous results, we can prove that all components of Γ−S are singletons.

Proposition 3.14. With reference to Notation 3.9 all components of Γ − S are sin-

gletons.
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Proof. Let us suppose that Γ− S has a component, say C, with cardinality at least 3.

By Lemma 3.13, Γ − S has exactly one such component. Let |C| = m = 2l + 1 ≥ 3

and let w1, w2, ..., w|S|−2 denote the vertices of the singleton components. Let s denote

the number of edges contained in S and f denote the number of edges between S and

C. Counting the number of edges between S and Γ− S in two ways we get:

k|S| − 2s = k(|S| − 2) + f, (3.8)

and so

f = 2k − 2s. (3.9)

As, by Lemma 3.12 f ≥ 3k
2

holds, we get that

2k − 2s ≥ 3k

2
, (3.10)

which implies s ≤ k
4
.

Observe that N(wi) ⊆ S for i ∈ {1, 2, ..., |S| − 2} and note that there are kλ
2

edges

contained in N(wi) (because there are k vertices in N(wi) and each of them has λ

neighbours in N(wi)). This implies kλ
2
≤ s ≤ k

4
. This shows that λ = 0, so Γ is

triangle-free, and therefore the subgraph of Γ induced by C is triangle-free. Now we

can use the result of Mantel on C, so we get that the number of edges contained in C

is at most⌊m2

4

⌋
=
⌊(2l + 1)2

4

⌋
=
⌊4l2 + 4l + 1

4

⌋
=
⌊
l2 + l +

1

4

⌋
= l(l + 1). (3.11)

Therefore, f ≥ km− 2l(l + 1).

Now, using (3.8) we get

k|S| − 2s =k(|S| − 2) + f

≥k(|S| − 2) + km− 2l(l + 1)

=k(|S| − 2) + k(2l + 1)− 2l(l + 1),

(3.12)

which implies

2l(l + 1) ≥ 2s+ k(2l − 1) ≥ k(2l − 1) + 2. (3.13)

Therefore,

k ≤
⌊

2l2 + 2l − 2

2l − 1

⌋
=

⌊
l +

3

2
− 1

2(2l − 1)

⌋
≤ l + 1. (3.14)

As each vertex from C sends at least two edges to S, equation (3.9) gives us 2k− 2s ≥
2m, and so

s ≤ k −m ≤ l + 1− 2l − 1 ≤ −1. (3.15)

This is a contradiction with the definition of s.
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Proposition 3.15. With reference to Notation 3.9 there are exactly k
2

edges contained

in S and graph Γ is triangle-free.

Proof. Let the number of edges in S be denoted by s. As all components are singletons,

by Proposition 3.14, counting the number of edges between S and Γ−S in two different

ways we get the following equation:

k|S| − 2s = k(|S| − 1) = k|S| − k, (3.16)

which obviously implies that s = k
2
, as claimed.

Now, let us prove that Γ is triangle-free, that is, that λ = 0. Observe, like in the proof

of the previous proposition, that N(wi) ⊆ S for all i ∈ {1, 2, ..., |S| − 1} and that the

number of edges in the subgraph of Γ induced by N(wi) is kλ
2

. Therefore, kλ
2
≤ k

2
which

implies that λ ≤ 1. As λ is non-negative integer we have λ ∈ {0, 1}.
Suppose that λ = 1 and let C1, C2, ..., C|S|−1 be components of Γ−S. First, let us prove

that each vertex of S has at least two neighbours in S. Let v be an arbitrary vertex from

S which does not have any neighbours in S. Since k ≥ 6 v has at least 6 neighbours

in Γ − S. Then as λ = 1, v must have one common neighbour with each of them.

Since all components are singletons, those neighbours must be in S. Contradiction.

Now, let us suppose that v has exactly one neighbour in S, say u. Then vertex v is

adjacent to k−1 vertices in C1∪C2∪ ...∪C|S|−1. However, in that case (since λ = 1) v

and each wi, i ∈ {1, 2, ..., |S| − 1} must have a common neighbour, and that neighbour

must be u (because all components are singletons and all neighbours of vertices from

components are in S). So, u and v are adjacent vertices and they have k − 1 common

neighbours, which implies 1 = λ = k − 1 and k = 2. Contradiction. Therefore, each

vertex in S has at least two neighbours in S. Since |S| ≥ k there are at least k edges

in S. Contradiction (with the fact that there are exactly k
2

edges in S).

Using the previous Proposition we will show that set S from Notation 3.9 has

exactly 3k
2

vertices.

Proposition 3.16. With reference to Notation 3.9 we have that |S| = 3k
2

.

Proof. Let us observe a vertex wj (1 ≤ j ≤ |S| − 1) from an arbitrary odd component.

Vertex wj has k neighbours in S. By Proposition 3.15, there are exactly k
2

edges in S.

Hence there are at most k
2

vertices in S which are at distance 2 from wj (note that there

are no edges in the subgraph induced by N(wj) since Γ is triangle-free, by Proposition

3.15). Since there are no vertices in Γ at distance greater than 2 from vertex wj, it

follows that |S| ≤ k + k
2

= 3k
2

.

Let us prove the other inequality. Suppose to the contrary that |S| < 3k
2

. Let wi

(1 ≤ i ≤ |S| − 1) be a vertex from an odd component of Γ− S. Let V denote the set
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of vertices from S\N(wi) and let us observe a vertex v from V . Since the diameter of

Γ is 2, v must have at least one neighbour in N(wi). Let us denote that neighbour by

u. By Proposition 3.15, we have that λ = 0, so vertices u and v do not have common

neighbours. Since there are exactly k
2

edges in S, vertices u and v (together) may have

at most k
2
−1 neighbours in S. Therefore, they have at least 2(k−1)− (k

2
−1) = 3k

2
−1

neighbours in odd components. That is a contradiction with the fact that there are

|S| − 1 < 3k
2
− 1 singleton components of Γ− S.

Therefore, |S| ≥ 3k
2

, which together with |S| ≤ 3k
2

gives us the desired result.

Lemma 3.17. With reference to Notation 3.9, let wi be a vertex in an odd component

Ci of Γ− S and let V = S −N(wi) (1 ≤ i ≤ |S| − 1). Then there are no edges in the

subgraph induced by V and any vertex from V is adjacent to exactly one vertex from

N(wi). Moreover, all vertices from V are adjacent to the same vertex from N(wi).

Proof. Suppose that there is an edge in the subgraph induced by V , or there is a vertex

in V adjacent to more than one vertex from N(wi). In both cases, there is a vertex in

V which is an endpoint of at least two edges in S. There are exactly k
2

edges in S and
k
2

vertices in V . Hence there is a vertex in V which does not have any neighbours in

N(wi), and such a vertex is at distance more than 2 from wi. Contradiction.

In order to prove the second part of the claim, it will be enough to prove that there

is a vertex in N(wi) which is adjacent to all vertices from V . Let us suppose to the

contrary, that there is no such a vertex in N(wi). Let us observe a vertex u ∈ N(wi)

which has at least one neighbour in V (such a vertex exists since there are k
2

edges

in S and Γ is triangle-free). Vertex u is adjacent to at most k
2
− 1 vertices in S, and

therefore to at least k − (k
2
− 1) = k

2
+ 1 vertices in odd components. Let v ∈ V be

an arbitrary neighbour of u. Vertex v is adjacent to u and to k − 1 vertices in odd

components (because by the first part of this Lemma, it does not have any neighbours

in V or in N(wi)− u). As Γ is, by Proposition 3.15, triangle-free, we have that there

are at least (k
2

+ 1) + (k− 1) = 3k
2

vertices in odd components. Therefore, 3k
2
≤ |S| − 1

which, since by Proposition 3.16 |S| = 3k
2

, implies 3k
2
≤ 3k

2
− 1. Contradiction.

Now we can finally prove the main result of this chapter.

Theorem 3.18. Let Γ be an edge-regular graph with parameters (n, k, λ), n odd, k ≥ 6

and diameter 2. Then Γ is 11
2
-extendable.

Proof. Let us suppose that an edge-regular graph Γ with an odd number of vertices,

diameter 2 and k ≥ 6 is not 11
2
-extendable. Then, with reference to Notation 3.9,

Proposition 3.14 holds, all components of Γ − S are singletons and (by Lemma 2.9)

there are |S| − 1 of them.

Let wi, 1 ≤ i ≤ |S| − 1, be a vertex in an odd component. It has k neighbours in S,
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so |N(wi)| = k. By Lemma 3.17, there is a vertex u ∈ N(wi) which is adjacent to k
2

vertices in V = S−N(wi). Vertex u has k
2

neighbours in odd components. Each vertex

v from V has k − 1 neighbours in odd components. The total number of vertices in

odd components is 3k
2
− 1 (because, by Proposition 3.16, |S| = 3k

2
) and u and v do not

have common neighbours (since Γ is, by Proposition 3.15, triangle-free). So it follows

that all vertices from V are adjacent to the same k − 1 vertices in odd components.

Let us observe a vertex wj, 1 ≤ j ≤ |S|−1, from some odd component which is adjacent

to all vertices from V . Vertex wj has k
2

neighbours in V and k
2

neighbours in N(wi).

Therefore, there are |N(wi)| − k
2

= k− k
2

= k
2

vertices in N(wi) which are not adjacent

to wj. There are no edges in the subgraph induced by N(wi), and all vertices from V

are adjacent to the same vertex in N(wi). Hence there are k
2

vertices in S which are

not adjacent to wj. Also, k
2
− 1 of them do not have any common neighbours with wj

(wj and u have |V | common neighbours). Therefore, they are at distance greater than

2 from wj. Contradiction.

In the following theorem we will summarize the results obtained in this chapter.

Theorem 3.19. Let Γ be an edge-regular graph with an odd number of vertices and

diameter 2. If Γ is non-11
2
-extendable graph, then it is isomorphic to the graph C5.
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4 On 212-extendability of

edge-regular graphs with diameter 2

This chapter is devoted to the 21
2
-extendability of edge-regular graphs and strongly

regular graphs with an odd number of vertices and diameter 2.

In the first section we represent some basic properties for non-21
2
-extendable edge-

regular graphs with an odd number of vertices and diameter 2 which will be used in the

rest of this chapter. The second section will be about examples of non-21
2
-extendable

edge-regular graphs of diameter 2 and an odd number of vertices.

Since there are some edge-regular graphs of diameter 2 which are not 21
2
-extendable,

we will narrow our attention to strongly regular graphs. In the last section we will prove

that there are only 2 non-21
2
-extendable strongly regular graphs with an odd number

of vertices.

4.1 Basic results about edge-regular graphs with

diameter 2

In the previous chapter we proved that C5 is the only edge-regular graph with an

odd number of vertices and diameter 2 which is not 11
2
-extendable. It was already

mentioned that C5 does not satisfy the lower bound on the number of vertices given

in the definition of the 21
2
-extendable graph, so there is no sense to talk about the 21

2
-

extendability of C5. But what about the 21
2
-extendability of other edge-regular graphs

with an odd number of vertices and diameter 2?

Before we start proving the properties of edge-regular graphs with an odd number

of vertices and diameter 2, which are not 21
2
-extendable, let us fix some notation.

Notation 4.1. Let Γ be a non-21
2
-extendable edge-regular graph with parameters (n, k, λ),

an odd number of vertices and diameter 2, which is not C5. Let x denote the vertex of

Γ such that Γ− x is not 2-extendable. Let e1 = {y1, z1} and e2 = {y2, z2} be two edges

of Γ such that Γ′ = Γ− {x, y1, y2, z1, z2} does not contain a perfect matching.
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By Tutte’s result, there exists a subset S ′ of V (Γ) such that σ(Γ′ − S ′) > |S ′|. Let

S = S ′ ∪ {x, y1, y2, z1, z2}. Note that the components of Γ′ − S ′ are the same as the

components of Γ− S, and therefore σ(Γ′ − S ′) = σ(Γ− S).

Note that since |Γ| is odd, |S| and σ(Γ− S) have different parity.

Now we can find the number of components of Γ− S.

Lemma 4.2. With reference to Notation 4.1 we have σ(Γ− S) = |S| − 3.

Proof. By Theorem 3.19, we have that Γ is 11
2
-extendable. So, Γ − x is 1-exendable.

Therefore, Γ′′ = Γ − {x, y1, z1} contains a perfect matching. Let us denote S ′′ =

S ′ ∪ {x, y1, z1}. By Tutte’s result, we have σ(Γ′′ − S ′′) ≤ |S ′′|. As the components of

Γ′′ − S ′′ are the same as the components of Γ− S we have the following: σ(Γ− S) ≤
|S ′′| = |S ′| + 3 = |S| − 2. As σ(Γ − S) and |S| have different parity, it follows that

σ(Γ− S) ≤ |S| − 3. On the other hand, since Γ′ does not contain a perfect matching,

σ(Γ− S) = σ(Γ′ − S ′) > |S ′| = |S| − 5. Therefore, again because of different parity of

|S| and σ(Γ− S), we get σ(Γ− S) ≥ |S| − 3. Therefore, σ(Γ− S) = |S| − 3.

Similarly as in the proof of Proposition 2.10 we can show, that we could assume,

that all components of Γ− S are odd.

4.2 Some examples of non-21
2-edge-regular graphs

Since we proved that all (n, k, λ)-edge-regular graphs with n > 5 odd and diameter

2 are 11
2
-extendable, it is natural to ask if all such graphs are 21

2
-extendable.

In this section we will give two examples of non-21
2
-extendable edge-regular graphs

with an odd number of vertices and diameter 2.

First, let us prove the following proposition.

Proposition 4.3. Let Γ be an (n, k, 0)-edge-regular graph with an odd number of ver-

tices and diameter 2 for which there exists a vertex u of Γ, such that N2(u) contains

two independent edges and |N2(u)| < k + 4. Then Γ is not 21
2
-extendable.

Proof. Let Γ be a graph satisfying all given conditions. Suppose that Γ is 21
2
-extendable.

Let us observe Γ− u and let us choose any two independent edges from the subgraph

induced on N2(u). The matching containing these two edges will cover four vertices in

N2(u). Therefore, as |N2(u)| < k + 4 there will be less than k uncovered vertices in

N2(u). Since Γ is triangle-free, there are no edges in the subgraph induced on N(u).

Since |N(u)| = k, there will always stay at least one uncovered vertex in N(u). Hence

our starting matching cannot be extended to a perfect matching of Γ− u. Contradic-

tion.
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Figure 5: (11, 4, 0)-edge-regular graph

Figure 6: (15, 6, 0)-edge-regular graph
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Let us consider an edge-regular graph from Figure 5.

It is easy to see that this graph is an (11, 4, 0)-edge-regular graph. This graph has

diameter 2 since obviously each two non-adjacent vertices have at least one common

neighbour. Let us show that it is not 21
2
-extendable. In this case k = 4 and |N2(u)| = 6,

so it follows from Proposition 4.3 that this graph is not 21
2
-extendable.

Let us consider an edge-regular graph from Figure 6.

It is easy to see that this graph is an (15, 6, 0)-edge-regular graph. Obviously each two

non-adjacent vertices have at least one common neighbour, so this graph has diameter

2. In this case k = 6 and |N2(u)| = 8. Hence, by Proposition 4.3 this graph is not

21
2
-extendable.

Since there are some edge-regular graphs with an odd number of vertices and di-

ameter 2 which are not 21
2
-extendable, we will restrict our attention to the family of

strongly regular graphs.

4.3 Extendability of strongly regular graphs

At the beginning of this section we will recall a definition of a strongly regular

graph and some fundamental results about these graphs. Later on we will prove that

there are only two non-21
2
-extendable strongly regular graphs with an odd number of

vertices and diameter 2.

Definition 4.4. Let Γ be a regular graph that is neither complete nor empty. Then

Γ is said to be strongly regular with parameters (n, k, λ, µ) if it has n vertices, it is

k-regular, every pair of adjacent vertices have λ common neighbours and every pair of

distinct non-adjacent vertices have µ common neighbours.

Remark 4.5. If µ is non-zero, strongly regular graph is a distance-regular graph with

diameter 2. If µ = 0, then Γ is a disjoint union of complete graphs of the same size.

Since by Definition 1.2 and Definition 1.3 we are only interested in connected graphs,

we will assume that µ ≥ 1.

The parameters of strongly regular graphs are not independent and they must obey

the following relation:

k(k − λ− 1) = µ(n− k − 1). (4.1)

We can obtain this relation by counting the number of edges between the neighbours

and non-neighbours of an arbitrary vertex u from V (Γ) in two ways. Let t denote the

number of edges between the neighbours and non-neighbours of u. Each vertex in Γ
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has k neighbours and n− k − 1 non-neighbours. Each non-neighbour of u is adjacent

to µ neighbours of u, so t = µ(n− k− 1). On the other hand, each of the k neighbours

of u is adjacent to u itself and to λ neighbours of u, so it is adjacent to k − λ − 1

non-neighbours of u. Thus, t = k(k − λ− 1).

It is well known that the complement of a strongly regular graph with parameters

(n, k, λ, µ) is again a strongly regular graph, and it has parameters

(n, n− k − 1, n− 2k + µ− 2, n− 2k + λ). (4.2)

If Γ is a strongly regular graph with parameters (n, k, λ, µ) we will often write just

Γ is (n, k, λ, µ) strongly regular graph.

Strongly regular graphs are special case of edge-regular graphs, so (as we already

proved) C5 is the only strongly regular graph which is not 11
2
-extendable. But, what

about the 21
2
-extendability of other strongly regular graphs?

Note that C5 is the only strongly regular graph with k = 2 and an odd number of

vertices. So, we can start our analysis observing strongly regular graphs with k = 4.

Proposition 4.6. The only strongly regular graph with an odd number of vertices and

k = 4 is the Paley graph on 9 vertices, which is not 21
2
-extendable.

Proof. From the relation (4.1) it can be easily seen that n ≤ 17 for any possible

combination of λ and µ. From the Brouwer’s list of strongly regular graphs (see [4]) we

see that the Paley graph on 9 vertices is indeed the only strongly regular graph with

k = 4.

Let us observe the Paley graph on 9 vertices labelled as in the following figure.

Figure 7: Paley graph on 9 vertices
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Let us observe Γ − {1} and the matching containing edges {2, 7} and {8, 4}. The

only way to cover vertex 9 is to add edge {9, 5} in a matching. But, in this case, there

is no possibility to cover vertices 3 and 6 by a matching. So, our starting matching

cannot be extended to a perfect matching of Γ−{1}. Therefore, the Paley graph on 9

vertices is not 21
2
-extendable.

Now we can observe strongly regular graphs with k ≥ 6. First, let us fix some

additional notation.

Notation 4.7. Let Γ be a (n, k, λ, µ) strongly regular graph, with an odd number of

vertices and k ≥ 6 which is not 21
2
-extendable. Since the class of strongly regular

graphs is a subclass of edge-regular graphs, we will use Notation 4.1 with the additional

assumption that Γ is strongly regular with k ≥ 6.

Lemma 4.8. With reference to Notation 4.7, each vertex of Γ − S sends at least µ

edges to S.

Proof. As by Lemma 4.2, σ(Γ − S) = |S| − 3 and |S| ≥ 5 it follows that Γ − S has

at least 2 odd components. Since vertices from different components are not adjacent,

the result follows from the definition of the strongly regular graphs.

Let us recall that by Lemma 2.1 there are at least k edges from each component of

Γ− S to S. This result will be of particular use in the rest of this chapter.

Using the previous results we can prove that each vertex of Γ− S sends at least 2

edges to S.

Lemma 4.9. With reference to Notation 4.7 each vertex of each component of Γ− S
has at least max{2, µ} neighbours in S.

Proof. If µ ≥ 2 the claim follows from Lemma 4.8.

Let µ = 1. As Γ is strongly regular, we have that n = k(k−λ) + 1 (by (4.1)). Suppose

to the contrary that there is a vertex v in an odd component C of Γ−S which has only

one neighbour in S. Let u be that neighbour. Let C1, C2, ..., C|S|−4 be the components

of Γ − S different from C. Let |Ci| = mi (1 ≤ i ≤ |S| − 4) and WLOG let us assume

that m1 ≤ m2 ≤ ... ≤ m|S|−4. Let w1 ∈ C1 be an arbitrary vertex. Then

deg(w1) = k ≤ m1 − 1 + |S|. (4.3)

Since µ = 1, each vertex in each odd component of Γ− S different from component C

is adjacent to u. As u is adjacent to all vertices in C1 and has λ common neighbours

with w1, it follows that

deg(w1) = k ≤ |S|+ λ. (4.4)
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Since vertex u is adjacent to vertex v and all vertices in C1 ∪ C2 ∪ ... ∪ C|S|−4 and it

has λ common neighbours with v (and all of them are in C) we have that

deg(u) = k ≥ 1 +m1 +m2 + ...+m|S|−4 + λ. (4.5)

Let us consider the following two cases depending on the value of m1.

Case 1: m1 ≥ 3. Using (4.4) and (4.5) we get 1 + 3(|S| − 4) + λ ≤ |S|+ λ, which

implies that |S| ≤ 5. Since |S| ≥ 5, we get |S| = 5. Using this fact together with (4.3)

we have that k ≤ m1 + 4. But as k is even and m1 is odd it follows that k ≤ m1 + 3.

Equation (4.5) together with the fact that |S| = 5 gives us k ≥ m1 + 1 + λ. Therefore,

λ ≤ 2. Let us consider the following 3 subcases depending on the value of λ.

Subcase 1.1 λ = 2. Then by (4.4) we have that k ≤ 7. Since k is even we get k = 6.

Therefore, we get that Γ has parameters (25, 6, 2, 1), but there is no such strongly reg-

ular graph (by [4]).

Subcase 1.2 λ = 1. Since k is even and k ≥ m1 + 2 we get that k ≥ m1 + 3. By (4.4)

and the assumption that k ≥ 6 it follows that k = 6. Therefore, we get that Γ has

parameters (31, 6, 1, 1), but there is no such strongly regular graph (by [4]).

Subcase 1.3 λ = 0. In this case, by (4.4) it follows that k ≤ 5. Contradiction.

Case 2: m1 = 1. Let w1 denote the unique vertex in C1. It has k neighbours in S,

so k ≤ |S|. As u and w1 have λ common neighbours and all of them are in S, vertex u

must have at least λ neighbours in S. So, deg(u) = k ≥ 1 + 1 +m2 + ...+m|S|−4 + 2λ.

Therefore,

|S| − 4 +m|S|−4 + 2λ ≤ 1 + 1 +m2 + ...+m|S|−4 + 2λ ≤ k ≤ |S|, (4.6)

which implies

m|S|−4 ≤ 4− 2λ. (4.7)

As m|S|−4 is odd, non-negative integer, it follows that λ ∈ {0, 1} and m|S|−4 ∈ {1, 3}.
Now we can split our analysis into the following two subcases:

Subcase 2.1: m|S|−4 = 1. All components of Γ − S different from C are singletons.

Each vertex from each singleton has k neighbours in S. As µ = 1 any two vertices from

C1 ∪ ...∪C|S|−4 have exactly one common neighbour in S and that neighbour must be

vertex u. So,

|S| ≥ 1 + (k − 1)(|S| − 4) ≥ 1 + 5(|S| − 4), (4.8)

which implies |S| < 5. Contradiction.

Subcase 2.2: m|S|−4 = 3. Then λ = 0, and

deg(u) = k ≥ 1 + 1 +m2 + ...+m|S|−5 + 3 ≥ |S| − 1. (4.9)
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As k ≤ |S|, it follows that k ∈ {|S| − 1, |S|}. But, in both cases w1 must be adjacent

to both endpoints of at least one of the edges in S (there are at least two independent

edges in S). Contradiction (with the fact that λ = 0).

Lemma 3.12 from the previous chapter holds also with reference to Notation 4.7.

In this chapter it will be again of particular use, so we will recall it.

Lemma 4.10. With reference to Notation 4.7, let C be a component of Γ − S which

is not a singleton. Then the number of edges between S and C is at least 3k
2

.

From the definition of strongly regular graphs it is obvious that µ ≤ k. In this

chapter, we will consider cases µ = k and µ < k separately.

4.3.1 Imprimitive strongly regular graphs with diameter 2

Before we start our analysis of strongly regular graphs with µ = k, let us recall

some important definitions and facts.

Definition 4.11. A strongly regular graph Γ is imprimitive if Γ, or its complement is

disconnected. Otherwise, Γ is primitive.

Since we are interested only in connected graphs, we assume that the complement

of Γ is disconnected. It follows from equation (4.2) that this is the case if and only if

n− 2k+λ = 0. By (4.1) this happens if and only if k = µ. In this case Γ is a complete

multipartite graph Ka×m, with parameters n = am, k = µ = (a− 1)m, λ = (a− 2)m.

In this subsection we will show that there is exactly one imprimitive strongly regular

graph with an odd number of vertices and diameter 2 which is not 21
2
-extendable.

Before we do that, we will state one important result given by Yu [21, Theorem 2.5].

Theorem 4.12. A graph Γ is 11
2
-extendable if and only if for any S ⊆ V (Γ), S 6= ∅,

1. σ(Γ− S) ≤ |S| − 1 and

2. if both σ(Γ− S) = |S| − 1 and |S| ≥ 3, then S is independent.

Now we can prove the main result of this subsection.

Proposition 4.13. Let Γ be a connected imprimitive strongly regular graph with an

odd number of vertices. If Γ is not 21
2
-extendable, then it is isomorphic to K3×3.
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Figure 8: Complete multipartite graph K3×3.

Proof. Let us suppose that Γ is not 21
2
-extendable. Then Γ is a graph from Notation

4.7 and σ(Γ−S) = |S| − 3. Since each vertex from each component sends k = µ edges

to S and all components of Γ−S are connected, it follows that all components of Γ−S
are singletons. As each vertex from an odd component has k neighbours in S it follows

that k ≤ |S|.
Let us denote by wi the unique vertex from component Ci, 1 ≤ i ≤ |S|−3. Since k = µ

it follows that N(wi) = N(wj) for 1 ≤ i, j ≤ |S| − 3. Let us suppose that k < |S|.
Let us pick a vertex y ∈ S − N(w1). As w1 is not adjacent to y and µ = k it follows

that N(y) = N(w1). Let us consider set S ′ = S − y. We have that |S ′| = |S| − 1 and

σ(Γ − S ′) = |S| − 3 + 1 = |S ′| − 1. Since S contains at least 2 independent edges,

S ′ contains at least one edge. Hence by Theorem 4.12 it follows that Γ is not 11
2
-

extendable. This is in contradiction with Theorem 3.18. Therefore k = |S|. Moreover,

as each two adjacent vertices have λ = (a− 2)m common neighbours, it follows that a

vertex from N(w1) must have (a− 2)m neighbours in N(w1) = S. Hence,

|S| = k = |S| − 3 + (a− 2)m, (4.10)

which implies

3 = (a− 2)m. (4.11)

Since Γ is not complete and has an odd number of vertices it follows that m ≥ 3. This

fact together with (4.11) gives us m = 3 and a = 3. Therefore, Γ = K3×3.

Let us show that Γ is not 21
2
-extendable. Since m = a = 3 it follows that Γ contains

three independent sets of size 3, say I1, I2 and I3. Let u ∈ I1 be an arbitrary vertex

and let us observe Γ− u. Let us choose any two edges with endpoints in I1− u and I2.

Then there is one uncovered vertex in I2, 3 uncovered vertices in I3 and no uncovered
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vertices in I1 − u. No matter how we choose the next edge in the matching, there will

always remain 2 uncovered vertices in I3. Therefore, the starting matching cannot be

extended to a perfect matching of Γ. This shows that K3×3 is not 21
2
-extendable.

From now on, we will consider primitive strongly regular graphs with an odd number

of vertices.

4.3.2 Primitive strongly regular graphs

Cioabǎ and Li in [9] mentioned that it can be proved that the Paley graph on 9

vertices is the only primitive strongly regular graph with an odd number of vertices

which is not 21
2
-extendable. We already proved that the Paley graph on 9 vertices is not

21
2
-extendable (Proposition 4.6), so in this subsection we will prove that all primitive

strongly regular graphs with an odd number of vertices and k ≥ 6 are 21
2
-extendable.

The following lemma is a generalization of [9, Lemma 16] and it will be of particular

use in the rest of this chapter.

Lemma 4.14. Let Γ be a primitive (n, k, λ, µ) strongly regular graph and S be a dis-

connecting set of vertices. If Γ− S contains at least two singleton components, then S

contains at least µ(k − µ) + kλ
2

edges.

Proof. Let C1 and C2 be two singleton components of Γ− S and let wi ∈ Ci, i = 1, 2.

All neighbours of wi are in S. As Γ is (n, k, λ, µ) strongly regular graph, it follows that

|N(w1)| = |N(w2)| = k and |N(w1) ∩ N(w2)| = µ. Let u be an arbitrary vertex from

N(w1)\N(w2). Vertex u has λ common neighbours with w1. Therefore, there are at

least kλ
2

edges in the subgraph induced by N(w1). Now, let v be an arbitrary vertex

from N(w2)\N(w1). Since vertices v and w1 are not adjacent, they have µ common

neighbours. As |N(w2)\N(w1)| = k−µ, it follows that there are at least µ(k−µ) edges

from N(w2)\N(w1) to N(w1). Obviously, none of this edges is contained in subgraph

of Γ induced by N(w1). Therefore, there are at least µ(k − µ) + kλ
2

edges in S.

Of great importance in the rest of this chapter will be the following lemma. Proof

is given in [9, Lemma 11], so we will omit it.

Lemma 4.15. Let Γ be a primitive (n, k, λ, µ) strongly regular graph. If A is a subset

of vertices with 3 ≤ |A| ≤ n
2

and Ac denotes its complement, then e(A,Ac) ≥ 3k − 6.

In the previous lemma, e(A,Ac) denotes the number of edges with one endpoint in

A and the other in Ac.
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Note that in the rest of this chapter all claims will be with reference to Notation

4.7 with additional assumption that Γ is primitive.

Since there are no edges between the components of Γ − S, the number of edges

between the component C of Γ−S and its complement will be the same as the number

of edges between C and S. From now on, let f denote the number of edges between S

and Γ− S.

Lemma 4.16. There are at most 2 non-singleton components in Γ− S.

Proof. Let us suppose that there are at least 3 components of Γ − S with cardinality

at least 3, say C1, C2 and C3.

It is obvious that at most one of these components can have cardinality greater than n
2
.

Therefore, we can apply Lemma 4.15 to at least two non-singleton components. Using

this together with Lemma 4.10 we have

f ≥ k(|S| − 6) +
3k

2
+ 2(3k − 6) = k|S|+ 3k

2
− 12. (4.12)

On the other hand, as there are at least 2 edges in S, it holds that

f ≤ k|S| − 4. (4.13)

Combining the inequalities (4.12) and (4.13) we get that k ≤ 16
3

. This is a contradiction

with the assumption that k ≥ 6.

Brouwer and Mesner (see [8]) proved the following result which we will use to prove

that there is at least one singleton component in Γ− S.

Proposition 4.17. If Γ is a primitive strongly regular graph of valency k, then Γ is

k-connected. Any disconnecting set of size k must be the neighbourhood of some vertex.

Remark 4.18. The set S used in the Notation 4.7 is a disconnecting set of Γ. So,

using the Proposition 4.17 we may conclude that |S| ≥ k ≥ 6.

Using the following two lemmas we will prove that there is at most one non-singleton

component in Γ− S.

Lemma 4.19. If there are exactly two components of Γ − S with cardinality at least

3, then there is at least one singleton component.

Proof. Suppose to the contrary that there are no singleton components in Γ − S.

Then there are exactly two components in Γ − S (both with cardinality at least 3).

Therefore, σ(Γ − S) = |S| − 3 = 2 which implies |S| = 5. But this is a contradiction

with Proposition 4.17 and Remark following it.
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Lemma 4.20. If there are exactly two components of Γ − S with cardinality at least

3, then λ ∈ {0, 1}.

Proof. Let us denote by e the number of edges in S. As by the previous lemma there

is at least one singleton component in Γ− S, it follows that e ≥ kλ
2

(because there are
kλ
2

edges in the subgraph induced on the neighbourhood of a singleton component).

By Lemma 4.15 it follows that f ≥ k(|S| − 5) + 3k
2

+ 3k − 6. If λ ≥ 2 we get

f = k|S| − 2e ≤ k|S| − k. Hence, k ≤ 4. Contradiction. Therefore, λ ∈ {0, 1}.

Lemma 4.21. There is at most one component in Γ− S with cardinality at least 3.

Proof. Suppose that there are exactly two non-singletons in Γ− S, say C1 and C2. At

least one of them has cardinality at most n
2
.

In the previous lemma we proved that λ ∈ {0, 1}, so now we can split our analysis into

the following two cases.

Case 1: λ = 1. Let us split our analysis into the two cases depending on the number

of singleton components.

Subcase 1.1: There are at least 2 singletons. Using Lemma 4.14 and the fact that

1 ≤ µ ≤ k − 1 we have that there are at least µ(k − µ) ≥ k − 1 edges in S. Therefore,

f ≤ k|S|−2(k−1). On the other hand, f ≥ k(|S|−5)+ 3k
2

+3k−6. Hence, k ≤ 16
3
< 6.

Contradiction.

Subcase 1.2: There is at most one singleton component. Since |S| ≥ 6 and σ(Γ−S) =

|S|−3, there is exactly one singleton. Therefore, |S| = k = 6. Since k(k−λ−1) = (n−
k−1)µ, we get that the possible parameter sets are: (31, 6, 1, 1), (19, 6, 1, 2), (15, 6, 1, 3)

and (13, 6, 1, 4). Regarding [4], among these parameter sets, strongly regular graph

(15, 6, 1, 3) is the only one which exists. But, for this graph there is no disconnecting set

S such that |S| = 6 and Γ−S contains one singleton and 2 components with cardinality

at least 3. Suppose to the contrary. Vertex from singleton component is adjacent to

all vertices in S. Since µ = 3, each vertex from C1 ∪C2 has exactly 3 neighbours in S.

On the other hand, at least one of non-singleton components must have cardinality 3

and each vertex in it must have at least 4 neighbours in S. Contradiction.

Case 2: λ = 0. Similarly as in the previous case we can prove that there is exactly one

singleton component in Γ − S and |S| = k = 6. Therefore, vertex from the singleton

component is adjacent to all vertices in S, but that is impossible since λ = 0 and there

are at least 2 edges in S.

Using the previous result we can prove that all components of Γ−S are singletons.

Lemma 4.22. All components of Γ− S are singletons.

Proof. Suppose that there is exactly one non-singleton component of Γ−S, say C. Let

C1, C2, ..., C|S|−4 denote the singleton components of Γ − S and let wi ∈ Ci, 1 ≤ i ≤
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|S| − 4.

Denote by e the number of edges in S. Obviously, f = k|S| − 2e. Since there are k

edges from each singleton component to S and at least 3k
2

edges from a non-singleton

component to S we have that f ≥ k(|S| − 4) + 3k
2

. Therefore, e ≤ 5k
4

.

First we will show that µ ∈ {1, k − 1} and λ = 0.

By Lemma 4.14 we get

µ(k − µ) +
kλ

2
≤ 5k

4
. (4.14)

If 2 ≤ µ ≤ k − 2 then µ(k − µ) ≥ 2(k − 2). But 2(k − 2) ≤ 5k
4

gives us 3k ≤ 16.

Contradiction. Therefore, µ ∈ {1, k − 1} and so kλ
2

+ k − 1 ≤ 5k
4

. This implies λ = 0.

In this case there are at least k− 1 edges in S. Depending on the value of |C| we have

the following two cases:

Case 1: |C| > n
2
. Since |S| > k we have that n = |S| + |S| − 4 + |C| > 2k − 4 + n

2
.

This implies n > 4k − 8. On the other hand, inequality f ≥ k|S| − 4k + 2 · n
2

together

with f ≤ k|S| − 2(k− 1) gives us n ≤ 2k + 2. Therefore, we get k < 5. Contradiction.

Case 2: |C| ≤ n
2
. Using Lemma 4.15 we get f ≥ k(|S| − 4) + 3k − 6 which together

with f ≤ k|S| − 2(k − 1) gives us k ≤ 8. As k is even and k ≥ 6 we have k ∈ {6, 8}.
Using relation (4.1) together with the facts that n is odd and µ ∈ {1, k − 1} we can

obtain the possible parameter sets. If k = 6 we get (37, 6, 0, 1) and (13, 6, 0, 5). If k = 8

we get (65, 8, 0, 1) and (17, 8, 0, 7). By [4] there is no strongly regular graph with any

of the above parameter sets.

Using the fact that all components of Γ − S are singletons, we can obtain several

observations.

Lemma 4.23. With reference to Notation 4.7 we have

(i) there are at least 4 singletons in Γ− S,

(ii) there are exactly 3k
2

edges in S,

(iii) λ ≤ 1, and

(iv) if λ = 1 then µ ∈ {1, k − 1}.

Proof. (i) If there are at most 3 singleton components in Γ−S, then |S| ≤ 6. This fact

together with |S| ≥ k ≥ 6 gives us k = |S| = 6. Each singleton component is adjacent

to all vertices from S, so µ = k. But, this is a contradiction with the fact that Γ is

primitive.

(ii) As there are |S|−3 singleton components in Γ−S, there are exactly k(|S|−3) edges

between S and odd components. Γ is strongly regular with valency k, so it has nk
2

edges.

As n = 2|S|−3 we get that the total number of edges in S is (2|S|−3)k
2
−k(|S|−3) = 3k

2
.
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(iii) Suppose that λ ≥ 2. By Lemma 4.14 there are at least k+µ(k−µ) edges in S. On

the other hand, by (ii) there are exactly 3k
2

edges in S, so we have that k+µ(k−µ) ≤ 3k
2

.

This implies µ(k − µ) ≤ k
2
. Contradiction.

(iv) Let λ = 1. Suppose to the contrary that 2 ≤ µ ≤ k − 2. Then there are
k
2

+µ(k−µ) ≥ k
2

+ 2(k− 2) edges in S. Using (ii) we get k
2

+ 2(k− 2) ≤ 3k
2

. Therefore,

k ≤ 4. Contradiction.

We proved that all components of a non-21
2
-extendable graph must be singletons

and that λ ∈ {0, 1}. We can prove the main result of this chapter by obtaining the

contradictions in each case depending on the value of λ. But, before that we will need

some theoretical background from the spectral graph theory.

Definition 4.24. Let Γ be a simple graph. The adjacency matrix A(Γ) is the integer

matrix with rows and columns indexed by the vertices of Γ, such that the uv-entry is

1 if vertices u and v are adjacent, and 0 otherwise.

The spectrum of a matrix is the list of its eigenvalues together with their multiplic-

ities. The spectrum of a graph is the spectrum of its adjacency matrix.

Let us denote by k = θ1 ≥ θ2 ≥ ... ≥ θn the eigenvalues of Γ. It is known that if Γ

is a strongly regular graph that it has exactly three distinct eigenvalues k, θ2 and θn

(see [12, Section 10.2]). Let r be the multiplicity of θ2 and g be the multiplicity of θn.

The eigenvalue k has multiplicity 1. It is a well known fact (see [5, Theorem 1.3.1])

that θ2 ≥ 0 and θn ≤ −1.

The following theorem [6, Theorem 9.1.3] will be of particular use in the rest of this

chapter.

Theorem 4.25. Let Γ be (n, k, λ, µ) strongly regular graph with adjacency matrix A.

Let θ2 and θn (θ2 > θn) be the eigenvalues of A and let r, g be their respective multi-

plicities. Then

(i) θ2θn = µ− k

(ii) θ2 + θn = λ− µ

(iii) r, g = 1
2

(
n− 1∓ (θ2 + θn)(n− 1) + 2k

θ2 − θn

)
(iv) If θ2 and θn are non-integral then r = g and (n, k, λ, µ) = (4t+ 1, 2t, t− 1, t) for

some integer t.

Remark 4.26. Since θ2 ≥ 0 and θn ≤ −1 it follows that θ = 0 if and only if µ = k.
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Graphs satisfying the last condition from the previous theorem are called conference

graphs. The Paley graphs belong to these class of graphs, but there are many further

examples.

The following theorem [6, Theorem 3.5.2] gives us the well known Hoffman ratio

bound for the independence number.

Theorem 4.27. If Γ is a regular graph of non-zero degree k, then

α(Γ) ≤ n

1 + k/(−θn)
. (4.15)

If an independent set C meets this bound, then every vertex not in C is adjacent to

precisely −θn vertices of C.

Note that since we proved that all components of Γ−S are singletons, it is obvious

that α(Γ) ≥ σ(Γ− S) = |S| − 3 = n−3
2

.

Now we can prove the following lemma.

Lemma 4.28. With reference to Notation 4.7 with additional assumption that Γ is

primitive, we have n > 3α(Γ).

Proof. By Lemma 4.23 we know that λ ≤ 1. Depending on the value of λ we have the

following two cases.

Case 1: λ = 0. The proof of this case is the same as the proof of [9, Lemma 14], so

it will be omitted.

Case 2: λ = 1. The Hoffman-ratio bound states that α(Γ) ≤ n

1 + k/(−θn)
. Note

that in this case the only conference graph is the Paley graph on 9 vertices, but in that

case k = 4. Therefore, we may assume that all eigenvalues of Γ are integer. As Γ is

primitive, case θ2 = 0 is not possible by Theorem 4.25 and Remark following it. So,

we will consider cases θ2 ≥ 2 and θ2 = 1.

If θ2 ≥ 2 then, since θ2(−θn) = k − µ < k, we have k
−θn > 2. Thus α(Γ) < n

3
.

If θ2 = 1 then θn = µ− k. We have 1−µ = λ−µ = θ2 + θn = 1 +µ− k, which implies

k = 2µ. By Lemma 4.23 we have that µ ∈ {1, k − 1}. In both cases we get k = 2.

Contradiction.

Now we can finally prove that all primitive strongly regular graphs with k ≥ 6 and

an odd number of vertices are 21
2
-extendable. The following theorem is the main result

of this chapter.

Theorem 4.29. Let Γ be a (n, k, λ, µ) primitive strongly regular graph with an odd

number of vertices and k ≥ 6. Then Γ is 21
2
-extendable.
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Proof. Suppose to the contrary, that Γ is not 21
2
-extendable. Then, by the previous

results, we have
n− 3

2
≤ α(Γ) <

n

3
. (4.16)

This implies n < 9. Contradiction (with the fact that |S| ≥ 5 and there are at least 4

singletons in Γ− S).

In the following theorem we will summarize the results obtained in this chapter.

Theorem 4.30. Let Γ be a (n, k, λ, µ) strongly regular graph. If Γ is a non-21
2
-

extendable primitive graph, then it is isomorphic to the Paley graph on 9 vertices.

If Γ is a non-21
2
-extendable connected imprimitive graph, then it is isomorphic to the

complete multipartite graph K3×3.



Koroman I. Matching extensions in regular graphs with small diameter.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 45

5 Extendability of regular graphs

with diameter 3

This chapter will be devoted to the extendability of matchings in regular graphs

with diameter 3. We will consider graphs with an odd number of vertices and also

graphs with an even number of vertices.

First we will prove some results which will hold for all regular graphs, and then we

will observe graphs with an even number of vertices and graphs with an odd number

of vertices separately.

5.1 Basic results

In this section we will give two results which will hold for both, graphs with an

even number of vertices and graphs with an odd number of vertices. This results will

be important for proving the results in the next sections.

Lemma 5.1. Let Γ be a regular graph with valency k and diameter 3. Let S ⊂ V (Γ)

be such that Γ−S is not connected and let C be a connected component of Γ−S. Then

there is at most one component of Γ− S containing a vertex with no neighbours in S.

Proof. Suppose to the contrary that there are components C1 and C2 of Γ−S containing

vertices, say v1 and v2 (respectively), with no neighbours in S. Then the distance

between vertices v1 and v2 is at least 4. Contradiction.

The next Lemma is a generalization of Lemma 2.2 for graphs with diameter 3. The

proof is the same as for graphs with diameter 2, so it will be omitted.

Lemma 5.2. Let Γ be a regular graph with valency k and diameter 3. Let S ⊂ V (Γ)

be such that Γ− S is not connected and let C be a component of Γ− S such that each

vertex in C has at least one neighbour in S. Then there are at least k edges between k

and S.
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5.2 Graphs with an even number of vertices

This section will be devoted to the extendability of matchings in regular graphs

with an even number of vertices and diameter 3. We will prove that all such graphs are

0-extendable. We will give a sufficient condition for 1-extendability of regular graphs

with diameter 3. Also, we will give some examples of non-2-extendable regular and

edge-regular graphs with an even number of vertices and diameter 3.

In the next theorem we will prove that all regular graphs with an even number of

vertices and diameter 3 have a perfect matching.

Theorem 5.3. Let Γ be a regular graph with an even number of vertices, valency k

and diameter 3. Then Γ is 0-extendable.

Proof. Suppose that Γ is not 0-extendable, that is, it does not contain a perfect match-

ing. Then, by Tutte’s result, there exists a set S ⊂ V (Γ) such that

σ(Γ− S) > |S|. (5.1)

Let t = σ(Γ − S) and let us denote by f the number of edges between S and Γ − S.

Obviously, f ≤ k|S|. By Lemma 5.1 and Lemma 5.2 we have that f > k(t − 1).

Therefore, k(t− 1) < k|S| which implies

t− 1 < |S|. (5.2)

Since |V (Γ)| is even, |S| and t must have the same parity, so inequality (5.1) implies

|S| ≤ t− 2. This is in a contradiction with inequality (5.2).

Proving that all regular graphs with an even number of vertices and diameter 3 are

1-extendable seems to be a difficult problem. In this master thesis we will give only one

sufficient condition for 1-extendability of regular graphs with diameter 3. But before

that let us fix some notation.

Notation 5.4. Let Γ be a regular graph with valency k, an even number of vertices

and diameter 3 which is not 1-extendable. Let e = {x, y} be an edge of Γ such that

Γ′ = Γ − {x, y} does not contain a perfect matching. By Tutte’s result there exists

S ′ ⊂ V (Γ′) such that σ(Γ′−S ′) > |S ′|. Let S = S ′∪{x, y}. The connected components

of Γ− S are the same as connected components of Γ′ − S ′. In particular, σ(Γ− S) =

σ(Γ′ − S ′).

Now we can find the number of odd components in a regular graph with diameter

3 and even order.
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Lemma 5.5. With reference to Notation 5.4 we have that σ(Γ− S) = |S|.

Proof. Let t denote the number of odd components of Γ−S. By Tutte’s result, we have

that t > |S ′| = |S| − 2. Let C1, C2, ..., Ct be odd components of Γ− S. As |V (Γ)| is an

even number, the cardinality of S∪C1∪ ...∪Ct is even. Therefore, |S| and |C1∪ ...∪Ct|
have the same parity. Numbers |C1|, |C2|,...,|Ct| are odd, so the parity of t is the same

as the parity of |C1 ∪ ... ∪ Ct|. Therefore, t and |S| have the same parity.

Let us calculate the number of edges f between S and Γ − S. Since Lemma 5.1 and

Lemma 5.2 hold (and Γ is connected), we have

f ≥ k(t− 1) + 1 > k(t− 1). (5.3)

On the other hand, since e is an edge in Γ, we have

f ≤ k|S| − 2 < k|S|. (5.4)

Combining these inequalities, we get

k(t− 1) < f < k|S|, (5.5)

which implies t < |S| + 1. This, together with t > |S| − 2 and the fact that |S| and t

are of the same parity, gives us t = |S|.

The fact that diameter of Γ is equal to 3 gives a possibility that, with reference

to Notation 5.4, there may exist a component of Γ − S which contains a vertex with

no neighbours in S. Now we can prove that if such a component does not exist, Γ is

1-extendable.

Theorem 5.6. Let Γ be a regular graph with an even number of vertices and diameter

3. Let S ⊂ V (Γ) be such that Γ − S is not connected. Let each vertex in each odd

component of Γ− S has at least one neighbour in S. Then Γ is 1-extendable.

Proof. Suppose that Γ is not 1-extendable. Then following Notation 5.4 and using

Lemma 5.5 we have that σ(Γ−S) = |S|. Let f denote the number of edges between S

and Γ− S. Since, by Lemma 5.2, each odd component of Γ− S sends at least k edges

to S, we have that f ≥ k|S|. On the other hand, since e is an edge in S we have that

f ≤ k|S| − 2. Contradiction.

Since we could not find any example of a non-1-extendable regular graph with

an even number of vertices and diameter 3, we believe that all such graphs are 1-

extendable. Neither, we were not able to prove similar result for the family of edge-

regular graphs. Family of distance-regular graphs1 was studied in [7]. It is proved that

all distance-regular graphs with an even number of vertices and diameter greater than

2 are 1-extendable.
1this graphs are generalization of strongly regular graphs with diameter greater than 2.
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5.2.1 Examples of non-2-extendable graphs

In this section we will give some examples of regular and edge-regular graphs with

an even number of vertices and diameter 3 which are not 2-extendable.

Figure 9: (8, 3)-regular graph

It is easy to see that a regular graph with diameter 3 from Figure 9 is not 2-

extendable. Namely, if we take edges {v5, v6} and {v7, v8} it is obvious that exactly

one of vertices v2, v3, v4 can be covered by a matching. So, starting matching cannot

be extended to a perfect matching.

Let us observe a graph from Figure 10. Obviously, this graph is regular graph with

an even number of vertices and diameter 3. Let us take edges {v5, v6} and {v9, v10} for

starting matching. In this case, at least one of vertices v2 and v4 will stay uncovered.

Therefore, graph from Figure 10 is not 2-extendable.

Let us observe a graph from Figure 11. It is easy to see that this graph is edge-

regular with diameter 3. Let us take edges {v5, v7} and {v6, v8} for starting matching.

In this case, at least one of the vertices v2, v3 will stay uncovered. Therefore, graph

from Figure 11 is not 2-extendable.
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Figure 10: (10, 3)-regular graph

Figure 11: (10, 3, 0)-edge-regular graph

Graph from Figure 12 is a regular graph with an even number of vertices and di-

ameter 3. Let us take edges {v8, v10} and {v6, v12} for starting matching. There are

two possibilities to cover vertex v9. WLOG let us cover vertex v9 by an edge {v7, v9}.
Then at least one of vertices v2, v3 will stay uncovered. Therefore, observed graph is

not 2-extendable.
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Figure 12: (12, 3)-regular graph

Figure 13: (12, 3, 0)-edge-regular graph

Let us observe a graph from Figure 13. It is easy to see that this graph is edge-

regular with diameter 3. Let us take edges {v6, v8} and {v7, v9} for starting matching.
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In this case, the only way to cover vertices v3, v11 and v12 is to include edges {v1, v3},
{v5, v11} and {v10, v12} in the matching. But in this case vertices v2 and v4 will stay

uncovered. So, observed graph is not 2-extendable.

As we have seen, there are some edge-regular graphs with an even number of vertices

and diameter 3 which are not 2-extendable. Therefore, we can restrict our attention to

the family of distance-regular graphs with diameter 3. But, the results for extendability

of matchings in distance-regular graphs with an even number of vertices and diameter

3 are given in [10]. Therefore, we will continue studying extendability of graphs with

an odd number of vertices.

5.3 Graphs with an odd number of vertices

This section will be devoted to the extendability of matchings in regular graphs

with an odd number of vertices and diameter 3.

First we will prove that all regular graphs with an odd number of vertices and diameter

3 are 01
2
-extendable and then we will give some examples of regular graphs with an

odd number of vertices and diameter 3 which are not 11
2
-extendable.

Theorem 5.7. Let Γ be a regular graph with an odd number of vertices, valency k and

diameter 3. Then Γ is 01
2
-extendable.

Proof. Suppose to the contrary that there exists a vertex x in V (Γ) such that Γ − x
does not contain a perfect matching. Then by Tutte’s result there exists a subset

S ⊂ V (Γ−x) such that σ((Γ−x)−S) > |S|. Let us denote S ′ = S∪{x}. Let t denote

the number of odd components of Γ − S ′. Let f be the number of edges between S ′

and Γ − S ′. Using Lemma 5.1 and Lemma 5.2 we will calculate the number of edges

between S ′ and odd components. We get

k(t− 1) < f ≤ k|S ′| = k(|S|+ 1), (5.6)

which implies

t < |S ′|+ 1 = |S|+ 2. (5.7)

This, together with the fact that t > |S|, gives us

t = |S|+ 1. (5.8)

Let C1, C2, ..., Ct be odd components of Γ − S ′. Note that since |V (Γ)| is odd, the

cardinality of S ′ ∪ C1 ∪ C2 ∪ ... ∪ Ct is odd. Therefore, |S ′| and |C1 ∪ ... ∪ Ct| have

different parity. Since |Ci| is odd for each i ∈ {1, 2, ..., t}, it follows that |C1∪C2∪...∪Ct|
and t have the same parity. Therefore, t and |S ′| have different parity. Hence |S| and

t have the same parity. Contradiction (with equality (5.8)).
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5.3.1 Examples of non-11
2-extendable graphs

In this subsection we will give two examples of non-11
2
-extendable regular graphs

with an odd number of vertices and diameter 3.

Let us observe a graph Γ from Figure 14. It is easy to see that this graph is regular

with diameter 3 and an odd number of vertices. Let us observe Γ− u1 and a matching

containing an edge {u6, u7}. This matching cannot be extended to a perfect matching

of Γ− u1 since at least one of the vertices u2, u3 will stay uncovered.

Figure 14: (11, 4)-regular graph

Let us observe a graph Γ from Figure 15. This graph is an edge-regular graph with

an odd number of vertices and diameter 3. Let us observe Γ − u1 and a matching

containing an edge {u8, u9}. There are 2 possibilities to cover vertex u2: to add an

edge {u2, u6} or an edge {u2, u7}. WLOG let us add an edge {u2, u6} in the matching.

Then the only way to cover vertex u3 is to include an edge {u3, u7} in the matching.

Then we must include an edge {u10, u11} (in order to cover vertex u11). In this case

vertex u5 will stay uncovered. Therefore, observed graph is not 11
2
-extendable.



Koroman I. Matching extensions in regular graphs with small diameter.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2019 53

Figure 15: (11, 4, 0)-edge-regular graph

To conclude, in this chapter we studied matching extensions in regular graphs with

diameter 3. For graphs with an even number of vertices we obtained a proof that all

such graphs contain a perfect matching. Possible next step in further research in this

area could be classifying all 1-extendable regular or edge-regular graphs with diameter

3.

For graphs with an odd number of vertices we proved that all such graphs are 01
2
-

extendable. We have also constructed an example of non-11
2
-extendable regular and

an example of non-11
2
-extendable edge-regular graph. Possible next step in further

work could be observing distance-regular graphs with diameter 3 and an odd number

of vertices.
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6 Conclusion

In this thesis, we were solving the problem of extendability of matchings in regular

graphs with small diameter. Main focus was on the graphs with an odd number of

vertices, while graphs with an even number of vertices were studied only in the last

chapter. At the beginning of the thesis we gave basic definitions and a short overview

of results from the literature. Also, we presented some examples and relationships

between this problem in graphs with odd order and in graphs with even order.

Since extendability of matchings in graphs with diameter 1 is trivial, we started

with observing 01
2
-extendability of regular graphs with an odd number of vertices and

diameter 2. We proved that all regular graphs with an odd number of vertices and

diameter 2 are 01
2
-extendable. Trying to answer the question are all such graphs 11

2
-

extendable, we constructed an infinite family of non-11
2
-extendable regular graphs with

an odd number of vertices and diameter 2.

Later on, we restricted attention to the family of edge-regular graphs with an odd

number of vertices and diameter 2. Main result of this part of the thesis was the proof

that cycle on 5 vertices is the only non-11
2
-extendable edge-regular graph with an odd

number of vertices and diameter 2.

After constructing several examples of non-21
2
-extendable edge-regular graphs, we tried

to classify all such graphs, but that was a difficult problem. Therefore, we restricted

attention to the family of strongly regular graphs. Using various results from the spec-

tral graph theory, we were able to classify all non-21
2
-extendable connected strongly

regular graphs with an odd number of vertices. Namely, we proved that all primitive

strongly regular graphs except Paley graph on 9 vertices, are 21
2
-extendable. Moreover,

we proved that the complete multipartite graph K3×3 is the only connected imprimitive

strongly regular graph which is not 21
2
-extendable.

Last part of this thesis was devoted to the matching extensions in regular graphs with

diameter 3. In this part we studied also graphs with an even number of vertices. Using

Tutte’s result, we proved that all such graphs have a perfect matching. We gave a con-

dition when all such graphs are 1-extendable. Also, we constructed several examples

of non 2-extendable regular and edge-regular graphs with diameter 3 and even order.

For regular graphs with odd order and diameter 3 we proved that all such graphs have
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a near-perfect matching, i.e. all of them are 01
2
-extendable. We concluded this chapter

with some examples of non-11
2
-extendable regular and edge-regular graphs with an odd

number of vertices and diameter 3. Since the existence of some non-11
2
-extendable reg-

ular graphs with diameter 3 has been proved, one of the possible steps in further work

could be classifying all such graphs or restricting attention to the family of distance-

regular graphs.

In this master thesis we have successfully solved some of the open problems in the

area of matching extensions. But there are many open problems in this area, giving

the possibility of obtaining new research results, solving either partially or completely

some of the open problems in future work.
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7 Povzetek naloge v slovenskem

jeziku

Teorija prirejanj že od nekdaj predstavlja eno izmed osnovnih področjih teorije

grafov. V zadnjem obdobju pa se je znotraj teorije prirejan izjemno povečalo zani-

manje za teorijo razširljivosti prirejanj.

Glavni predmet magistrskega dela je problem razširljivosti prirejanj v regularnih grafih

z majhnim premerom.

Prirejanje v grafu je taka podmnožica njegovih povezav, da nobeni dve povezavi

nimata skupnega krajǐsča. Prirejanje M je popolno, ce je vsako vozlisšče grafa krajǐsče

vsaj ene (in zato natanko ene) povezave iz M. Potreben in zadosten pogoj za obstoj

popolnega prirejanja je že leta 1947 podal Tutte in je danes znan kot Tutte-ov izrek.

Ta izrek pravi, da graf Γ vsebuje popolno prirejanje če in samo če je σ(Γ−S) ≤ |S| za

vsako množico S ⊆ V (Γ) (oznaka σ(Γ−S) označuje število lihih povezanih komponent

grafa Γ− S). Tutte-ov izrek je bil v tem magistrskem delu pogostokrat uporabljen.

Naj bo l nenegativno celo število. Za povezan graf Γ z množico vozlǐsč V (Γ), kjer je

|V (Γ)| ≥ 2l + 2, pravimo, da je l-razširljiv, če vsebuje l-prirejanje, in če lahko vsako

l-prirejanje v grafu Γ razširimo do popolnega prirejanja.

Leta 1980 je Plummer uvedel definicijo l-razširljivega grafa za grafe s sodim številom

točk. Od takrat se je ta lastnost grafov veliko proučevala. V literaturi pa lahko zasled-

imo tudi kar nekaj del, ki se ukvarjajo s problemom l-razširljivosti znotraj posameznih

grafovskih razredov. Na primer, v [9] in [10] je proučevan problem razširljivosti prire-

janj v krepko regularnih in razdaljno regularnih grafih s sodim številom vozlǐsč. V [14]

je podana klasifikacija povezavno-regularnih grafov s premerom 2, ki niso 2-razširljivi.

Motivirani z zgoraj opisanimi rezultati za grafe s sodim številom vozlǐsč,, smo se odločili

raziskat problem razširljivosti prirejanj v regularnih grafih z majhnim premerom in li-

him številom vozlǐsč.

Definicijo l 1
2
-razširljivega grafa za grafe z lihim številom vozlǐsč je uvedel Yu (v [21]).

Naj bo l nenegativno celo število. Povezan graf Γ z množico vozlǐsč V (Γ), kjer je

|V (Γ)| ≥ 2l+3, je l 1
2
-razširljiv, če je za poljubno vozlǐsče x ∈ V (Γ) graf Γ−x l-razširljiv.
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Na začetku magistrske naloge je predstavljeno nekaj osnovnih definicij in pojmov

s področja teorije grafov. Problem razširljivosti prirejanj v regularnih grafih z majh-

nim premerom je formalno definiran in motivirano je raziskovanje problema v posebnih

grafovskih razredih. Bistvo magistrskega dela se začne v drugem poglavju, kjer defini-

ramo regularne grafe in dokažemo da so vsi regularni grafi s premerom 2 in lihim

številom točk 01
2
-razširljivi. Med pomembne rezultate tega poglavja sodi tudi kon-

strukcija neskončne družine regularnih grafov s premerom 2 in lihim številom vozlǐsč

ki niso 11
2
-razširljivi.

V tretjem poglavju so definirani povezavno-regularni grafi. Dokazan je izrek, ki pravi,

da je cikel na 5 vozlǐsčih edini povezavno-regularen graf s premerom 2 in lihim številom

vozlǐsč ki ni 11
2
-razširljiv.

V četrtem poglavju je pregled osnovnih rezultatov o povezavno-regularnih grafih, ki

niso 21
2
-razširljivi. Pokazano je, da obstajajo povezavno-regularni grafi s premerom 2

in lihim številom vozlǐsč ki niso 21
2
-razširljivi. Kasneje, z uporabo različnih rezultatov

spektralne teorije grafov, izpeljemo dokaz izreka, ki pravi, da so vsi krepko regularni

grafi, 21
2
-razširljivi (razen K3×3 in Paley-ov graf na 9 vozlǐsčih) .

Na koncu smo se ukvarjali z regularnimi grafi s premerom 3. Pokazali smo, da so vsi

regularni grafi s premerom 3 in sodim številom vozlǐsč, 0-razširljivi. Pokazali smo tudi,

da so vsi regularni grafi s premerom 3 in lihim številom vozlǐsč 01
2
-razširljivi. Podani

so tudi primeri regularnih grafov s premerom 3 ki niso 11
2
-razširljivi.

V zaključku magistrske naloge so povzeti pridobljeni rezultati ter podane nekatere

možnosti za nadaljnje raziskave.
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