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Abstract:

We will present the Pélya-Eggenberger model, in which we have a particular number
of white and blue balls in the urn. Everytime, after we draw one ball, we add a fixed
number of balls of the same color. In the paper we study the distribution of the number

of white balls drawn. We obtain that it converges to the beta distribution.
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1 Short introduction of Urn and

balls models

The idea of presenting mathematical models via urns and balls is very old. The book
of Johnson and Kotz [3] presents a historical perspective. The urns are traced to the
times of the Old Testament. Plenty of noted mathematicians of the post-Renaissance
era mention urns, such as Huygens, de Moivre, Laplace and Bernoulli. Some most com-
mon applications are listed below (for a more detailed description see Mahmoud [4]).
Models of urns can be used to present the Ballot problems that are concerned with the
progress of a vote. Suppose we have two candidates running for A and B, with votes
won represented by m and n, respectively. We would like to know the probabillity that
A wins. We can view the progress of votes as white and blue balls placed in an urn. It
was first used by W. Whitworth in 1817.

The Occupancy problem was first studied by de Moivre in 1713. There are n balls
that will be thrown into k£ urns. Each ball is independently deposited in a uniformly
chosen urn. One of the questions of interest is what is the probability that no urn will
be empty.

The Gambler’s ruin starts with two gamblers A and B who keep on betting until one of
them goes bankrupt. A starts with m dollars, and B with n. They bet repeatedly on
the outcome of a game of flipping a coin. A bets on heads, and B bets on tails. After
the flip, the loser in that individual game gives a dollar to the winner. What is the
probabillity that A wins? The problem can be presented via two urns, A and B, that
start out with m and n balls, respectively. The problem is associated with a number
of famous scientists and mathematicians including a few Bernoullis, de Moivre, Feller,
Hermat, Huygens, Laplace, Lagrange, Pascal.

The Banach’s Matchbox problem deals with a pipe smoker that has two matchboxes.
He puts one box in each of the two pockets of his pants. Each complete new pack
has n matches in it. The smoker reaches into a randomly selected pocket and takes
a match from the box, whenever he needs a match. The problem can be presented
by two urns with n balls in each. The problem is often attributed by mathematician
Stefan Banach (1892-1945), who was a heavy smoker, but it may not be Banach who

set the problem or provided an answer.
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Urn Schemes can be applied to bioscience as well. Several models are used for popula-
tion genetics in evolution of species, such as Wright—Fisher Allelic Urn models, Gene
Miscopying, Mutations, Hoppe’s Urn scheme, Ewens’ Sampling Formula, Phylogenetic
Trees. Some present the competitive exclusion. Others are used in Epidemiology, such
as Kriz” Polytonomous Urn Scheme. Models also exist for the discriminatory monitor-

ing of alternative medical treatments, such as Play-the-Winner Schemes.
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2 The Pélya—Eggenberger Urn

Polya urns are a model of urns that involve only one urn and general methods of re-
placement. The form we know today and its numerous derivatives seem to have first
appeared in work of Markov around 1905-1907. A Pélya urn is an urn containing balls
of up to k different colors. We observe the changes of the composition of the urn as it
goes through discrete time steps. At each step we shake the urn well, and we sample
uniformly one ball at random (with all balls being equally likely). We notice the color
of the ball, and the ball is returned to the urn. We then add new balls to the urn in
various numbers and of various colors, depending on color of the ball and on the chosen
model. Primary interest is the long-term composition of the urn and in the stochastic
path leading to it. The examples of the important parameters are the number of balls
of each color and the number of times a ball of a particular color is drawn.

Polya Urns can be applied in informatics in search trees such as Binary Search Trees,
Fringe-Balanced Trees, m-ary Search Trees, 2-3 Trees, Paged Binary Trees, Bucket
Quad Trees, Bucket k-d Trees. It can be used in The Recursive trees model such as
Standard Recursive Trees, Pyramids, Plane-Oriented Recursive Trees, Bucket Recur-
sive Trees, Sprouts, to name the most common.

In the present work, we focus on the basic model of Pélya and Eggenberger [2] which
is one of the very first studies that focuses on balls of two different colors being present
in the urn at the start. However it is reported that the model had been considered
in Markov [5] and Tchuprov [7]. The model was introduced as a model for contagion.
This is a fixed model, where we notice the color of the ball withdrawn and we add s
balls of the same color to the urn (s is a positive integer). In this case, the probability
distribution of the composition of the urn after a fixed number of draws can be ex-
pressed by a closed formula.

Let Wy denote the number of white balls we have in the urn at the start, and Bj the
number of blue balls we have in the urn at the start. The total number of balls at the
start is equal to the sum of the number of white balls at the start and the number of
blue balls at the start, and thus Ty = Wy + By.

Let W,, and B,, denote the number of white and blue balls, respectively, after n draws.
Let W,, denote the number of white balls drawn from the urn after n draws, and simi-

larly let B, denote the number of blue balls drawn from the urn after n draws. Since
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we draw a total of n times, Wn + Bn = n. It must hold that the number of white balls
in the urn after n draws is equal to the sum of the white balls we had at the start and
the sum of the white balls added. Since we have drawn the white ball W, times, we
have W,, = Wy + sW,,. Similarly, we obtain B, = By + sB,.

Let us denote by T,, the total number of balls in the urn after n draws. This is equal to
the sum of the number of white balls after n draws and the number of blue balls after
n draws. Thus, T,, = W, + B, = Wy + sWn + By + an =Wy + By + sWn + an =

Wo + By + sn. The following assertion gives a closed formula for the distribution of

Wi,.

Theorem 2.1 (Eggenberger and Pélya, 1923). Let W, be the number of white balls
drawn in the Polya-Eggenberger urn after n draws. Then,

P(W, = k) =
Wo(Wo+8)---(Wo+ (k—1)s) Bo(Bo+5) -+ (Bo+ (n—k —1)s) (n)
To(T[)‘l—S)"'(T[)‘l—(TL—l)S) ]{3 '

Proof. We will use the notation introduced before. Following Mahmoud [4], suppose
1 <y <ip <--- < i <n are the time indices of the white ball draws. Thus, before
time 41, all drawn balls are blue. The probability that we will draw a blue ball in the
particular draw is equal to the number of blue balls at that particular time divided by

the number of total balls at that particular time.

Bo
To

new blue balls to the urn. The number of blue balls has now increased by s, giving us

In particular, the probability is equal to 2. As we have drawn a blue ball, we add s
a By + s blue balls. The total number of balls has increased by s as well, giving us a
total of Ty + s.

Given that the first drawn ball is blue, the conditional probability that we draw a
blue ball in the second draw is now, again, equal to the number of blue balls at that
particular time divided by the number of total balls at that particular time. This

probability equals to
BO + s

T,
and the probability that we draw a blue ball in the first as well as in the second draw

is now equal to the product:
BO Bo + s

T, T

We continue the procedure until we have drawn a white ball for the first time, at time
index 7;. We want to know the probability that we have drawn the blue ball at time
index i; — 1. The number of draws before the 7; — 1 time index is equal to i; — 2. The

number of blue balls at time index i; — 1 is equal to By + (i; — 2)s because we have
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started with By blue balls and after each draw we have added s new blue balls to the
urn, giving us a total of (i; — 2)s new blue balls. Given that all previous drawn balls
are blue, the conditional probability that we have drawn a blue ball at time index i; — 1

is thus equal to
BO + (’Ll — 2)5
Ti -2 '

We are now at time index ;. The ball drawn must now be of white color. At that time
index we have just as many white balls as we had at the start, W,, because we were
only drawing the blue balls in previous draws. The suitable conditional probability of

this event is thus
Wo

1—;1—1

Thus, the probability that the first white ball is drawn at the time index #; equals

BO B() + s Bo + 2s B[) + (21 - 2)8 WO
T, T T, Ti s Tia

We continue until we draw the white ball again. In between the first and second white
balls drawn, maybe some blue balls will be drawn. We are now at the time index 71 + 1.
It means that we have drawn ¢ times already, we drew the white ball only once, and we
drew the blue ball 7 — 1 times. The number of white balls is now Wy + s. The number
of blue balls has increased by s since the last time we drew the blue ball, and is thus

equal to By + (i1 — 2)s + s = By + (i1 — 1)s. The probability of interest is

By + (i1 — 1)s

T )
We arrive to the time index 7, when we draw the white ball the second time. We want
to know what happened in the draw before, at time index i, — 1. Up to that point
we drew 75 — 2 times, out of which we only drew the white ball once. We drew the
blue ball 75 — 3 times. So the total amount of blue balls at time index i, — 1 is equal
to By + (i — 3)s. The suitable conditional probability of drawing a blue ball at time

index 79 — 1 is then
B[) + (22 - 3)8
Tiy—o '

At time index 75 we draw the white ball the second time. But, out of all the previous

draws, we have drawn the white ball only once, at time index i;. The total number of
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white balls before the (iy)-th draw is then equal to Wy + s, the total number of balls
is T;,—1. The probability of drawing the white ball at time index iy is thus

Wo +s
Tip1

We continue the procedure until we draw k& white balls. That will happen at the time
index 7. Up to that point we have drawn n — 1 times out of which we have drawn the
white ball k times. The rest of the times we drew the blue ball. Thus, the number of
blue balls after n — 1 draws is By + (n — 1 — k)s. The probability that we draw the
blue ball at time index ,, — 1 is thus
By+(n—k—1)s
Th

Therefore, the probability of drawing white balls exactly at time indices i1, i, - - - i, is
then
By Bo+s Bo+2s By+(i1—2)s W
o T T Ty, Ty
By+ (i1 —1)s  Bo+(ia—3)s Wo+s
T, Tha Ty

Wo+ (k—1)s Bo+ (ix—k)s Bo+(n—Fk—1)s
T, —1 T; Ty ’

Now observe that this expression does not depend on the indices, which can be chosen

in exactly (Z) ways. This completes the proof. O

Remark 2.2. This standard proof bears an idea similar to the derivation of the binomial
law on n independent trials. The difference is that in the binomial case the trials are
identical, but here the probabilities change in time, because we add new balls after
each draw. However, like in the binomial case, the probability of a given sequence of
colors depends only of the number of white balls to be drawn, but not of the order of

the colors.

The probabilities in Theorem 3.1 can be written a bit differently:

(5] (T i
LR O ) () () (k)
() (E 1) (Bt (1)
LCECE 0 (D) (8) (24 (2 =) o)
(B @ 1) (B (a1 )
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Introducing the rising factorial or the Pochhammer symbol (o), , as
(o), = zo(xo + 1) (20 +2) (w0 +3) ... (x0 + k= 1)

the probabillity can be rewritten as:

Proposition 2.3 (Eggenberger and Pélya, 1923). Let W, be the number of white balls

drawn in the Polya-Eggenberger urn after n draws. Then,

E(W,) = " (2.1)
Var[ii,] = 20 %)(’TFESZ j) To) (2.2)

Proof. We will start with the classical definition of expected value:
Wo\ (Bao

E[,] = 3"k B(W, = k) = ik(z) (?)(klg)s )ik

S

We can write

n n! n! n!
k(k) ) =Dk k= Dl(n—1) = (h= 1))

. (n—1)! - n—1
 (E=DU(n—1) = (k—1)) <k—1>’

and use it in our main equation

E[IV,] = n@j - D (), (%),

Recalling that (W), is the rising factorial equal to
Wo(Wo +1)(Wo +2)(Wo+3) ... Wo + k — 1),
and (Wy),—_1 is the rising factorial equal to

Wo(Wo + 1)(Wo + 2)(Wo +3) ... (Wo + k — 2).

Wo\  Wo (Wo+ts
s k_ s s b1

Then, we obtain that
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TO _TO T0+S
s ), s s b1

We notice that n, %,% are constants and can be written in front of the sum. Our

and similarly

equation is now:

E[W,] = n—z

- Wy n (n—l)(wz“)k_l (%) s

FiP=AC (F=),
:n%i n—1 (Wi‘—i_s)k*l (%)n,k
Ty E—1 (M) '

k=1 S n_1

Here, we introduce the substitution 7 = £ — 1, and we get:

a8 () e

-1
j=0 s

Now observe that the summands in the right hand side are exactly the point proba-
bilities for a Pdlya-Eggenberger urn with Wy + s white and By blue balls after n — 1
draws, so that their sum equals to 1. This proves (2.1).

To prove the second statement we can use the formula

Var(W,) = E(W?2) — E(W,,)? = E[W, (W, — 1)] + E(W,,) — E(W,)?

Similarly as in the derivation of E(V,,), we observe that

n

EW,(W, — 1)] = > k(k —1) P(W, = k)
(2.3)

Now write:

n n! n!
Kk —1) (k) = R T e )l R

B (n—2)! B n—2
= D =)~ D)l ‘”(”‘”(k—2)

Substituting into (2.3), we obtain:

E[W, (W, —1)] = Y n(n —1) (" - ;) (52 (8

T
V)
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Introducing a similar substitution as before, j = k — 2, we get:

) =S 7) BB

j @),
L mm )2 ) (), (),
- 1>%<%+1)§(j) @,

Similarly as before, observe that the summands in the right hand side are exactly the
point probabilities for a Pdélya-Eggenberger urn with W, + 2s white and By blue balls

after n — 2 draws, so that their sum equals 1. Thus, we get:

V. (W _ _ ol Gt B  Wo(Wo + s)
S = = el = gy = Vg )
and
E[W?2] = E[W, (W, — 1)] + E(W,) = n(n — 1)% + n% ,
Finally,

Var(W,,) = E[VNV,f] — E[Wn]2
Wo ( (Wo + s) ) n2W02
(n—1)-——+ —

- (To + 5) 2

Wo (nWo+ns—Wy—s+Ty+s n*W¢
', ( To+s ) T
Wy (nWo +ns — Wo+Ty)  n?WH(Th + s)
B T2(Ty + s) O TE(Ty + s)
_ aWoTy (nWo +ns —Wo+Ty)  n?WiTy + sn®W§
- TA(Ty + s)  T3(Ty+ )
W (MW Ty + nsTy — WoTy + 1) — n®W§Ty — sn® W
B T2(Ty + s)
Wy (nWoTy + nsTy — WoTy + T — nWoTy — nWys)
B T2(Ty + s)
Wy (nsTy — WoTo + T — nWps)
B T2(Ty + s)
Wy (sn(To — Wo) + To(To — Wh))
B T2(Tpy + s)
~ nWy(snBy + Ty By)
B T2 (Ty + )
_ nWyBy(sn + Tj)
 TE(Ty + s)

completing the proof. n
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3 Asymptotic behavior of the
Pdélya—Eggenberger urn distribution

We are interested to see what happens when the number of draws goes to infinity. We
will display the distribution of W,, as n increases to get an idea. Each time, we take
W() IS,BQ :5,822.

Histogram of white balls drawn

0.25
|

0.20
1

0.15
1

Frequency

0.10
1

0.05
1

0.00
L

white balls drawn

Figure 1: Histogram for Wy =3,By=5,s=2,n=25
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Histogram of white balls drawn

0.08
1

Frequency

0.02
1

white balls drawn

Figure 2: Histogram for Wy =3, By =5,s = 2,n =10

Histogram of white balls drawn

Frequency

0.00
L

[ T T T 1
0 5 10 15 20

white balls drawn

Figure 3: Histogram for Wy =3, By =5,s =2,n =20
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Histogram of white balls drawn

Frequency
0.015 0.020 0.025 0.030
I I I ]
T
T

0.010
1

0.005
1

0.000
L

[ T T T T 1
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white balls drawn

Figure 4: Histogram for Wy = 3, By = 5,s = 2,n =50

Histogram of white balls drawn

0.015
|

0.010
1

Frequency

0.005
1

0.000
L

[ T T T T 1
0 20 40 60 80 100

white balls drawn

Figure 5: Histogram for Wy =3, By = 5,5 = 2,n = 100

It seems that Z,, = % converges to a continuous distribution. This is also indicated

by the expectation and variance, as, by Proposition 2.3, E(Z,,) = %) and

V (Z ) W()BU (STL + To) WQBQS
ar(Z,) = 5 .
nTg (To +s) n—oo T2 (Ty+ s)
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To find it, we examine the relative differences:
P(W, = k+1) — P(W, = k)
P(W, = k) '

Observe that:

o -k (Mg nl () (B

PWo =kt ) =) Bk B R (D).
_(n—k) ("2 + k) (n (%)k (%)n—k
C(k+1) (Btn—k—1) \k L)
_(n—k) (2 +H) Vo
_(k+1)(%+n—k—1)P<Wn_k>

We now turn to the relative difference:
P(W, =k+1) —P(W, = k)
P(W, = k)
(n—k) (B2 +k)—(k+1) (B2 +n—-k—1)
(k+1) (B 4+n—-k-1)

e 4k — k% — B2 — (k22 4+ kn - K —k+ 2 4n—-k-1)
(k+1)(B2e+n—k-1)

nf 4k — kM — k2 kB —kn+ K2+ k-2 —n+k+1
k+1) (B2 +n—k-1)

m—k) M —(k+1)5 —n+4+2k+1

N (k+1) (B vn—k—1)

Now express this in terms of Z,, = %, which takes its values in {0, 1,2 ... 1}.
Clearly, W,, = nZ,. With k = nz, where = € {0, %, %, -+« , 1}, we have

P(W, = k) =P (Z, =)
and
P(W,=k+1) —P(W,=k) P(Z,=2+1)-P(Z, =2
P(W, = k) a P(Z, =)
C(n—nz) T —(nz4+1) B —n+2k+1
(nz+1) (B 4+n—k-1)
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As seen from the histogram, it is reasonable to conjecture that the distribution of Z,
approaches a probability distribution with some sufficiently smooth density f. In this

case,

P(Z P L7 ! e t)dt . 3.1
(Z,=12)= (g;_%< n<x+%)~/m_21 f (@) Nf(x)ﬁ (3.1)

The error in the second approximation can be estimated by means of the following

assertion:

Lemma 3.1. For each function f, which is twice continuously differentiable on
(x— 2,24 %), we have
63
| / Ddt—5f@)| < 2 max |70 (3:2)

24 g 3cteayd

Proof. Write
/ f(t)dt = flx+s)ds.
)
T—3G —

We continue with the Taylor expansion:

[SIEY

fl@+s) = fx)+ f'(x)s + R(s),

where R(s) = w:’ﬁ and 0 < 6, < 1. Integrating, we obtain

[N}
>,
—
—~
=
+
—
uy)
—~
w
S—
QL
)

N[>

2

gf(:z:—l—s)ds:f(a:)/i ds—l—f’(x)/_isds#—/j R(s)ds =

N[>

Therefore,

9

' flx+s)ds —df(x)

/_2 |R(s)| ds

5
1 " 2 2
<g swp [ [ sTds

S ) _9
x—§§t§z+§ )

1/8)°
s 1]z 5(5)
—%Stéx-i-%

m\ow
N[

]

From the preceding lemma, we saw that the error in the second approximation in (3.1)

is of order n—13, typically much smaller than the difference

1
THg,

P(Zn:x—l—%)—IP)(Zn:x)%/x f(t)dt
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15
which is typically of order % .The left hand side of 3.1 can be approximated as:
P(Zy=2+2)-P(Z,=2) [f+)i-f@)i [f(x)i
P(Z, = z) - -

n

f@) s f(x)
The right hand side of 3.1 can be approximated as:

P(Zy=2+1)—P(Z, =)
P(Z, =x)

(n—nz) ™ — (nz+1) 2 —n+2k+1

(nz+1) (B2 4+n—k-1)
Cn(l-2) - (r4 ) B -1 42041
2

n (nz+1) (B24+n—k-1)
1(1—a)o — g8 142z
n

z(l—2x)

It is reasonable to conjecture that in the approximation of both sides of (3.1), the
relative error tends to zero as n tends to infinity. In this case, we have:
flo) _ (Q=m)t

B —x%—1+2x
fla) z(1—x)

To solve this differential equation, we write y = f (z) and express the derivative in

terms of differentials:

dy (1—az)o — g8 142
dr y x(l—x)

Separating the variables, we obtain:
dy (1—z)%o — gl 1 4 2z) da
B z(1l—1x)

/(W01 By 1 1 2 )
s - dx
S T

s l—ux x(l—:c)+1—:c
W By

ln|y|:?ln|x|—|—?ln|1—a¢|—ln|x|—|—ln|1—a:|—21n|1—x|—|—C

No absolute values are necessary because z € [0, 1], so that

B
Iny = (%—1>lnx+(—o—1)ln(1—x)+0
s s

Yy = gl (1-— x)%’l e .
With

1
e =

this is the probability density function of the beta distribution (%, %), which should
be the limiting distribution. Recall that 5(a, b) is a continuous distribution with density

1 a—1 b—1
t (1 —1t) p0<t<1
pa,b(t) = { Alab)

_ (3.3)
0 ; otherwise
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Theorem 3.2 (Eggenberger and Pdlya, 1923). Let W, be the number of white ball

drawings in the Pélya-Eqggenberger urn after n draws. Then, Z, = % converges in the

Kolmogorov metric (see Appendiz B) to the beta distribution (3 (a,b), where a = 22
and b = %. That is,

sup|P(Z, < x) — Fop(z)] —— 0,

z€R n—00

where Fop(z) = [* pap(t) dt is the cumulative distribution function of 5(a,b). Con-

sequently, % converges weakly to B(a,b).

We illustrate the convergence with a few histograms of the Pélya Eggenberger distri-

butions along with the underlying beta distributions.

Histogram of white balls drawn

2.0
|

15

1.0

Frequency

0.0
L

[ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

white balls drawn

Figure 6: Histogram with beta density for Wy = 3, By = 5,5 = 2,n = 50
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Histogram of white balls drawn

Frequency
2
I

[ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

white balls drawn

Figure 7: Histogram with beta density for Wy =2, By = 2,s = 3,n = 50

Histogram of white balls drawn

Frequency
3
I

0.0 0.2 0.4 0.6 0.8 1.0

white balls drawn

Figure 8: Histogram with beta density for Wy =5, By =1,5s = 1,n = 50

Proof of Theorem 3.2. We can start by rewriting the equation

Wo) (Ba

o (1, 4) = (7) (e

ko (),

a bit differently. The rising factorial can be expressed in terms of the gamma function,
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which is defined in Appendix A, as follows:
() I'(z+n)
o T(e)
Furthermore, the binomial coefficient can be expressed as:
n\ n! B I'(n+1)
k) kKln—k)! TE+D)Tn—-k+1)
Putting it all together, we find that:
. I(n+1 I'(k+™)T (n—k+ 5
]P)(Wn - k) = F(k n 1)(7128; _) k n 1) ( S (n F( +E)s )
r () (&) L
Now recall Theorem A.1, which can be alternatively written as:
['(z+a)
where lim,_,o. R(z,a) = 1 for all a. Thus, we can rewrite P(W, = k), as:
. (% + k) D2 +n—k) DL I(n+1
P, gy = R R D =) TCE) (n+1)
NG [(=2) (=2 +n) Fk+D)(n—k+1)
CPE+2)T(n—k+2) T(n+1) T(R)
~ T(k+1) T(n—k+1) T(n+ L) T(M)p(t)
CT(k+") T(n—k+2) nl(n) NG
kD(k)  (n—k)T(n—k) T(n+ L) T(%e)T (L)
Wo WO Bo_ 4 BO To 1
p— k' S 1R k — k s R - k — 1 s
(50 e ® (oo )
1 k
— pwy By (—) S(n, k)
s ' s n
where

’ s ) s

R(n, 1)

'S

Sy — RCE o) R(n — k, 2)

Now we interrupt the proof of Theorem 3.2 by a few assertions.

Proposition 3.3.
lim sup |S(n,k)—1]=0.

m—o0  f>m

n—k>m
Proof. 1t is equivalent to prove:
lim sup |[InS(n,k)|=0

m—0o0 k>m
n—k>m
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Observe that
Wi B T
|In S(n, k)| < |In R(k, TON +|InR(n — k, ?°)| + | In R(n, ?0)|

The proof is now completed by the observation that: lim, ,., In R(z,a) = 0 implies

lim, o0 SUP,>,, |In R(z, k)| = 0. O

L k+i x
Pap <_) _/ Pa,b <_) dx‘ =
n k—1 n
=0 2

R
LD
k
L k+1 T
Pap |\ — | — Papb (—) dI‘
n k:—% n

Dy, can be estimated in two ways. First,
x
Dy, < pap <—> +/
n k

1
Dy < 57, nax 1Dl (@), (3.5)

1 1 Wa,bn

Lemma 3.4.

Proof. Let:
Dy =

k+3 T

L pa <E> dx (3.4)

Second, by Lemma 3.1,

where papn(r) = pay(£); notice that pll, . (z) = 5pll (%), so that

a,b,n

1
D, < max

1 T o 1 "
S oar 2 Dab <5>‘ = max |pl,(t)]-

2k_1 k1
Un® oLk

Take € > 0. There exist u,v > 0, such that u <1 — v,

u 1
/ Pap(x)dr < < and / Pap(x) dr < E
0 ’ 8 1—v ' 8

Moreover, as pqp has at most one stationary point, we can in addition assume that p,;

is monotone on [0,u| and [1 —v,1]. Take r,s € {1,2,--- ,n — 1} and write:
r—1 s n
Si=) Dy, Sa=) D, S3= > Dy,
k=0 k=r k=s+1

In ¥, we can estimate the summands according to (3.4), leading to:
r—1 k+1
k 2 x
Z1 S E DPab (_) +/ DPa,b <_> dx| .
k=0 " k=3 n

Letting 7 = |nu], pap is monotone on [0, £], and we can estimate:

r
n

= k " x
kz:;pa,b (ﬁ) S/O Dab (ﬁ) dx ,
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and N
" T n " ne
Y < 2/ Dab <—) dr = Qn/ Dap(t) dt < Zn/ Pap(t) dt < —.
0 n 0 0 4

Similarly, letting s = [n(1 — v)], pap is monotone on [£, 1], and

£
n’
1

n 1
Yia < 2/ Dab <£> dx = 2n/ Pap(t) dt < 2n/ Pap(t) dt < T
s n 5 1—v

In ¥, we estimate the s — r — 1 summands according to (3.5) leading to:

¥y < % e P ()]
1
S TR Pap()]
= ﬁ g e [Pas(®)]-
For sufficiently large n, we have u — % > 5and 1 —v+ % < 1—3. As pay is infinitely

smooth on [§,1 — $], we have

Collecting all together, we obtain:

1< 1 e M
— Dpy=—(2X1+X+33) <= )
nz ¥ n(1+ 2+ 3)_2+24n2
k=0
For sufficiently large n, % < 5 and the proof is complete. O

Proposition 3.5. For fired Wy, By and s we have P(Wn = 0) —— 0 and

n—0o0

P(Wn = n) — 0.

n—oo

Proof. Tt suffices to prove the first assertion, as the second one follows by symmetry.

By Theorem 2.1, we have:
B()(BO + S) s (BO + (n — 1)8)

P(W, =0) = . 3.6
Observe that:
Dotz —1— M < Q*Tgolio (3.7)
TO —|— xr TO + T

The latter inequality follows from Taylor’s expansion: e* = 1+ a + 69a§ where 0 <
6 <1, so that e* > 1+ a for all a € R. Applying (3.7) to (3.6), we obtain:

~ Bo(Bg+s)--(Bg+(n—1)s)

]P)(Wn = O) S 67 To(Tg+s) - (To+(n—1)s)
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Estimating
Ty — Bo /k+1T0—BOdt
T() + ks k TO +ts
— Ty — By /” Ty~ By,
0 Tg—i—k‘é’ 0 T0+t8
and integrating
"Ty— B L | Ty — B Ty +ns
/ 0 Odt:<T0—BO)/ dt:(o 0>ln 0+
0 To +ts 0 TO +ts S TO
we conclude that
~ _ (To=Bq) |, Totns
P(ano)ge E o —— 0.
n—oo
[

Proposition 3.6.

R . 1 k
JL%%!PWHZ’@ ~ P (—) -0

3

Proof. Let
~ 1 k
Dy = [P(Wa = k) = = pay (—) .
n n

Observe that, by the definition of p,; (Formula (3.3)), Dy = P(W, = 0) and D, =

P(Wn = n) For, k=1,2,--- ,n — 1 we can estimate

1 k
Dk < E|S(nak‘) - 1‘pa7b ( ) .

n
Let € > 0. By Proposition 3.3, there exists m € N, such that

€

max [S(n,k) — 1| < 3

m<k<n—m

Put

n

m—1 n—m
Si=Y Di,  Sp=Y D S3= > Dy
k=1 k=m

k=n—m+1

We can estimate

By Lemma (3.5), we have

1 n
2=

Pa,b _
n
0
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for sufficiently large n. Then

1< B\ 1< [t
—Zpa,b (—) < —Z/ Dab (E) dr +1
n & n n 1 n

k=0

1 n+2 orn
n 1 n

—5or0

1
—/ pmbdt—i‘l
0

= 2.

As a result, ¥y < ¢ for sufficiently large n. Since R(z, ™), R(z, 22) and R(z, ) all

converge to 1 as * — oo, R(x, %),R(as, %) and R(z, %) are all bounded in z > 1.
Therefore,
M= sup |S(n,k)—1] < oc.
1<hEn-1

There exist u > 0, v > 0, such that © <1 — v, and

u € 1
/Opa,b(t)dt<m and /I_U;Dab()alt<m

Again, we can assume that p,; is monotone on (0,u] and [v,1). Now if = < n, p, is

monotone on (0, ] and

ml k M (™ B
i< [ Mp ( ) do < [ pan (2) o <0 [ pattyde < §
k=1 n nJo n 0 4

Similarly, if 2 <

— ¥, Pa,p s monotone on [*= 1) and

E3§/ _Mpab(>dx<_/ pab dl’<M/ pab )dt<_
knm+1n 4

By Proposition 3.5, Dy = P(Wn = O) < ¢and D, = P(Wn = 0) <

large n. Summing up, we obtain that

k+3

S [p =8~ 3 [ () o] <

for sufficiently large n. This completes the proof.

Combining Lemma 3.4 and Proposition 3.6, we obtain the following

Corollary 3.7.

. n ~ 1 [kt x
JE&;‘P(W” =R -3 / peo () o] =

¢ for sufficiently
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The preceding corollary can be equivalently written as:

li ” P(Z b L[r t)dt| =0
i 3 | (n—;)—a/k_;n paplt) df] =0,

Defining a discretized beta distribution as the distribution of a {0, %, -+« 1}-valued

random variable B, ;,, with

k 1 k’+ﬁ
]P)(Ba,b,n = E) —5/ pa,b(t) dt:(), k:O,l, ,n
k

1
Corollary 3.7 says that
dTV (ﬁ(Zn), AC(me’n)) — 0.

n—o0

(See Proposition B.5).

Continuation of Proof of Theorem 3.2. Corollary 3.7 says that the distribution of Z,
and B, ., are close as n — o0o. If L(Byp,) is close to (a, b), then Z, is close to 5(a, b).
However, since By, is discrete and (a, b) is continuous, the latter two distributions

cannot be close in d7y, but they are close in dg. To show the latter, first observe that

k 1
k ko1 ntan
P (Ba,b,n < _) = Fa,b (_ + _> = / 2 pmb(t) dt
n n  2n 0

for all k =0,1,...,n. Now let t € [0,1) and k = [nt]. Write

k Eo1
]P(Ba,b,n < t) =P (Ba,b,n < E) = Fa,b (ﬁ + %) ~ Fa,b(t) (38)

Let € > 0. Observe that ((a,b) is continuous and uniformly continuous on [0, 1].
Therefore, there exists 0, such that |F,,(z) — Fap(y)| < € for all z,y € [0, 1] with

|z — y| < 4. In particular, if ‘% + % — t| < 0, then
Eo1
F.ol—+— ) —F,,(t i
’b(n+2n) pt)] <

However, according to the choice of k, we have ’% + ﬁ — t} < 2L Therefore, if n > 2—15,

"

then, recalling (3.8), we have
|P(Bapn < t) — Fup(t)| <€

fort € [0, 1) As P(thbﬁ < t) = Fa,b@) =0fort <0 and P(B&b,n < t) = Fa,b(t) =1
for t > 1, we conclude that

sup |P(Bapn < t) — Fup(t)| <e.
teR

Therefore, dg (E(Bal,,n), B(a, b)) —— 0. Recalling that dg (E(Zn), E(me’n)) — 0,
n—oo

n—oo
we obtain the desired result.

O
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4 Conclusion

The rescaled Pélya Eggenberger distribution converges to the beta distribution rapidly
as the number of draws increases. It is curious that the limiting properties of a
Pélya Eggenberger urn depend critically on the initial conditions. However, the use-
fulness of this fact may be limited as the point probabilities of the Pdlya Eggenberger
distribution can be expressed by a closed formula. It would be interesting to exam-

ine convergence of more complicated urn models, but this is beyond the scope of this

paper.
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5 Povzetek naloge v slovenskem
jeziku

Eni izmed najpogostejsih modelov, s katerimi se srecamo v kombinatori¢ni verjetnosti,
so modeli v katerih iz posod (zar) jemljemo kroglice. Z njimi se da predstaviti veliko
problemov, kot so potek volitev, problem zasedenosti, kockarjev bankrot, Banachov
problem vzigalic in tudi kar nekaj modelov v bioznanosti.

V pric¢ujocem delu predstavimo Pélya-Eggenbergerjev model, pri katerem imamo eno
samo posodo, v kateri je najprej Wy belih in By modrih kroglic. Pri vsakem koraku na
slepo izvle¢emo eno kroglico, pogledamo njeno barvo, jo vrnemo v posodo in dodamo Se
s novih kroglic iste barve. Oznac¢imo z W, tevilo izvlecenih belih kroglic po n korakih.

Potem se porazdelitev te slucajne spremenljivke da izraziti z eksplicitno formulo:

Wo(Wo+s)---(Wo+ (k—1)s) Bo(Bo+s)---(By+ (n—k—1)s) (n
To(To+8) - (To+ (n—1)s) (k:) '
To formulo izpeljemo korak za korakom, ko vlecemo kroglice. Najprej dolo¢imo, ob
katerih trenutkih naj bodo izvlecene bele kroglice, nakar za vsako vlec¢enje izracunamo
ustrezno pogojno verjetnost, da bomo izvlekli kroglico ustrezne barve. Zanimivo je, da
je verjetnost posameznega zaporedja barv neodvisna od razporeditve belih kroglic, kar
se zgodi tudi pri binomski porazdelitvi.

Na preprost nacin se izrazata pricakovana vrednost in varianca:

~ W() B() n (sn + To)
Var|W,,| =

Pricakovano vrednost izracunamo tako, da c¢lene k P(Wn = k) izrazimo kot tockaste
verjetnosti za neko drugo zaro, pomnozene s konstantnim faktorjem, nato pa upora-
bimo, da je vsota verjetnosti enaka 1. Pri varianci pa izhajamo iz E [Wn(Wn — 1)}, kar
izracunamo na enak nacin kot E(W,,).

V nadaljevanju nas zanima obnasSanje porazdelitve, ko gre n proti neskon¢no, Wy, By
in s pa so fiksni. NariSemo histograme za neko izbiro parametrov Wy, By in s ter

vedno vecje vrednosti parametra n. Histogrami nakazujejo, da sluc¢ajne spremenljivke
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Ly = % konvergirajo proti neki zvezni porazdelitvi. Da bi ugotovili, katera po-

razdelitev je to, studiramo relativne razlike

P(W, =k+1) —P(W, =k)
P(W, = k)

in jih primerjamo z logaritamskim odvodom gostote limitne porazdelitve. Izpeljemo
diferencialno enacbo, ki ji mora ta gostota zadoscati, jo reSimo in ugotovimo da gre za

porazdelitev beta s parametroma a := % inb:= %. To je porazdelitev z gostoto

1 a—1 b—1
(1 =1) ; 0<t<1
Pap(t) = { B(a,b) _
0 ; sicer

Konvergenco pokazemo v metriki Kolmogorova, kar pomeni, da gre

sup‘IP’(Zn <z -— Fab(x)| — 0,

)

z€ER n—o0

kjer je Fyp(z) = f_zoo Pap(t) dt kumulativna porazdelitvena funkcija porazdelitve 5(a, b).
Pokazemo tudi, da gre razdalja v totalni variaciji med ustrezno skréeno Pélya-Eggenbergerjevo
porazdelitvijo in ustrezno diskretizirano porazdelitvijo beta proti 0. Natancneje, pokazemo,

da je
k+3

3205 =0 [ (2) a0
k=0 -2

To naredimo z neposredno oceno razlik v slednji vsoti. Verjetnosti pri Pélya-Eggenbergerjevi
porazdelitvi izrazimo s funkcijo gama in uporabimo da je logaritem funkcije gama pri

velikih vrednostih priblizno linearen, natancneje, da za vse a € R velja

lim [z +a) _
n—00 :E“F(:L‘)

To dejstvo tudi eksplicitno izpeljemo iz Gaussove izrazave funkcije gama

) n!n®
N = i e e+ (e tn)
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Appendices



A Some Properties of the Gamma

Function

The purpose of the gamma function is to extend the factorial to real numbers: for
historical reasons, we set I'(x) = (z — 1)! for x € N. As 2! = (z — 1)l z, it would
be reasonable to assume that I'(x + 1) = 2 ['(x) for all . However, the gamma
function is not uniquely determined by these two properties. What would be another
reasonable assumption that would determine I' uniquely? Observe that for a € N,
Fz+1)=T(z)x(z —1)---(x+a—1) and that z(x +1)--- (v +a+1) ~2* if z is
large. Therefore, it would be reasonable to assume lim, % =1 for all a € R.
According to Gauss, we define the gamma function as:
n!n®

L) =, zx+1)(x+2)---(x+n) (A1)

(see also [6], page 12, Equation (4)). This function is defined for all z € R\{0, -1, —-2,---}

(see again [6]). We first show that this is an extension of the factorial. Observe that

nln n

I'(1) = i ' = 1li =1
(1) Wi 12 n(nt1) nbeentl
and
n!nx-i-l
I'x+1) = lim
( ) nsoo (x+1)(z+2)---(zr+n)(x+1+n)
' n nln®
= lim
nmoox+14+n(z+1)(z+2) - (x+n)
y n!n®
= lim
n—oo (x+ 1)(z+2)-- (x4 n)
y xn!ln®
= lim
n—oo x(x + 1)(z+2)- - (x +n)
=z[(z)

It follows by induction that I' is an extension of the factorial: I'(n) = (n — 1)! for all
n € N.

Theorem A.l. For alla € R
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In order to prove the result, we need the following assertion:

Lemma A.2.
tlim t[ln(a+t) —Int]=a (A.2)
—00
Proof.
t
lim ¢ [In(a+t) —Int] = lim ¢ ln(a i )
t—00 t—o0
1 t)—1Int
— lim n(a + 1) n
t—o00 =

t

As the numerator and the denominator both tend to 0 as t — oo, we can use L’Hopital’s

rule to obtain:

1 1 t—(a+t) 9
. a+t ¢ . (att)t . at ) at
lim —=——— = lim —~— = lim = lim =a
t—00 — t—00 — t—00 (a+t)t t—sooq +t
O
Now we can prove Theorem A.1.
Proof of Theorem A.1. Observe that by (A.1)
F(a;+a)_hmna z(x+1)--(x+n)
['(x) nsoo  (r4a)(x+a+1)---(x+a+n)
I'(z+a) :
In m = nh_)rgo F(l‘, n),
where .
F(z,n)=alnn —alnz — Z[ln(az +a+k)—In(z+k)].
k=0
It suffices to prove that
lim lim F(z,n)=0 (A.3)

T—r00 N—00

Write

k
bie o+ -te o= () = )

which is a decreasing function in k, so we can bound:

/n+1(1n(x +a+t)—In(z+1t))dt < i(ln(m +a+k)—In(z+k))

g/n(ln(x+a+t)—ln(x+t)) dt

-1
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We will write the left hand side as I~ (x,n), and the right hand side as I (z,n). Here

we introduce a substitution s =t 4+ 1, and continue:

It(z,n) = /n (In(z +a+1t)—In(x+1t)) dt

-1

/n+1(ln(m—|—a+s—1)—ln(x+s—1)) ds

I™(z—1,n)
Furthermore, it holds that:

alnn —alnx — I (z,n) < F(z,n) <alnn—alnz — I (z,n)
In order to show (A.3), it suffices to show

lim lim [alnn —alnz — I (z,n)] = 0.
T—>00 N—00

lim lim [alnn —alnz — I~ (z,n)] = 0.
T—>00 N—00

Observe that:

alnn —alnx — I (x,n)
=alnn —alnz — I (x —1,n)

=alnn—aln(z—1)—I"(z—1,n)+aln(x —1) —alnzx

-1
=alnn—aln(z —1)—I"(z —1,n) taln?

Clearly,

. . xr —
lim lim aln =0,
I—00 N—00 x

because lim,_, ””7’1

=1.

So it suffices to prove:

lim lim [alnn —alnx — I~ (x,n)] = 0.
T—00 N—r00

Computing:
n+1
I (z,n) :/ (In(z+a+t) —In(z+1)) dt
0

n+1 n+1
:/ ln(:c+a+t)dt—/ In(x +t)dt
0 0

n+1 n+1
Z(a-l—x—kt)ln(a—l—m—f—t)‘ —(z+t)In(z + 1)
0 0

=(a+z+n+1)In(a+z+n+1)—(a+2z)n(a+2)
—(x+n+1)n(z+n+1)+zhe
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we obtain:

.
at+r+n-+a
—(z+n+1)[In(a+z+n+1)—In(z+n+1)]

alnn —alnz — I~ (z,n) =aln

—alnz+ (a+2z)ln(a+2x) —zlnx

Letting n — oo, the first term tends to 0, while, by lemma (3.3), the second term tends
to a. Therefore,

Jirgo[alnn—alnx — I (z,n)]

=—alnz—alnz+ (a+x)In(a+2x) —zlnz
Now let z — oo:

lim lim [alnn—alnz—I (z,n)] = lim [~alnz—a+aln(a+z)+z(In(a+z)—Inz)]
T—>00 N—00 T—00

Applying Lemma (3.2) once again we find that: lim, . z(In(a+2)—Inz) = a. Finally,
we get:

lim lim (alnn—alnz — I (z,n)) = lim lim [~alnz —a+ aln(a + z) + d
T—00 N—00 T—00 N—00

= lim lim [—alnz + aln(a + z)]
T—00 N—00
= lim lim a lna+x

T—00 N—00 X

=0



B Convergence of Probability

Distributions

There are numerous concepts of convergence of probability distribtutions. Many of
them are based on metrics. Let us denote with £(X) the distribution of X.

Definition B.1. The total variation distance between the distributions of X and Y is
defined as:
dry(L(X),L(Y)) = sup IP(X € A) —P(Y € A)].

A measurable

This metric is usually too strong: Let X be a discrete random variable which takes
values in a countable set S, and let Y be a continuous random variable. Then,
P(X € S)=1and P(Y € S) = 0. This implies that dry(L£(X),L£(Y)) = 1. So we shall

also consider a weaker metric.
Definition B.2. The Kolmogorov distance is given as:

dr(L(X),L(Y)) =sup |P(X <a) —P(Y <a)l.

a€R
Clearly,

die (L(X), L(Y)) < dpv (LX), L(Y)).
Definition B.3. A sequence of the distributions of random variables X, (n = 1,2,...)

is said to converge weakly to the distribution of X if

lim P(X, <z)=P(X <z

n—oo

at each = where Fx(z) = P(X < z) is continuous. We write

X, 4 X.

n—o0

Remark B.4. For a sequence of random variables X, and an additional random variable

X, we have the following implications:

drv(L(X), L(Y)) —— 0 = dx(L(X), L(Y)) = X, — X

n—o0

Proposition B.5. For discrete random variables X and Y, both taking values on a
countable set S, we have

Ay (£(X), £(Y)) = 5 3 [B(X =a) ~B(Y = a)].

a€S

See [1].



