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Izvleček:

V zaključni nalogi obravnavamo problema vektorske dominacije in vektorske

povezanosti v grafih. Problem vektorske dominacije je najti najmanǰso tako

podmnožico S množice vozlǐsč danega grafa, da ima vsako vozlǐsce, ki ni v množici

S, vsaj določeno število sosedov v množici S. Problem vektorske povezanosti je

podobne narave, pri čemer namesto določenega števila sosedov želimo, da je vsako

vozlǐsče, ki ni v množici, z množico povezano prek določenega števila disjunktnih poti.

Znano je, da sta oba problema NP -težka na splošnih grafih. Po drugi strani, pa,

kot so ugotovili Cicalese idr. leta 2013 in Boros idr. leta 2014, lahko s preprostima

požrešnima algoritmoma problema aproksimiramo v polinomskem času na n-vozlǐsčnih

grafih s faktorjem lnn+ 2. To sledi iz splošneǰsega rezultata, ki ga je Wolsey leta 1982

izpeljal za tako imenovani problem submodularnega pokritja. V zaključni nalogi po-

damo enotno predstavitev teh rezultatov, pokažemo povezavo z Mengerjevim izrekom

in matroidi, problema vektorske dominacije in vektorske povezanosti modeliramo s

celoštevilskima linearnima programoma in z uporabo CPLEX-a empirično ovredno-

timo kvaliteto požrešnih metod na naključno generiranih vhodnih podatkih.
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Keywords: graph, vector domination, vector connectivity, submodular set covering

problem, approximation algorithm, greedy heuristic, integer linear programming

Math. Subj. Class. (2010): 05696, 05C40, 05B35, 05C58, 68W25, 90C10

Abstract:

In this final project paper we consider the vector domination and vector connectivity

problems in graphs. The vector domination problem is to find a smallest subset S

of the vertex set of a given graph such that every vertex not in S has at least a

certain number of neighbors in S. The vector connectivity problem is a problem of

similar nature, however, instead of a certain number of neighbors we want that every

vertex not in the set is connected to the set by a certain number of disjoint paths. Both

problems are known to be NP -hard on general graphs. On the other hand, as observed

by Cicalese et al. in 2013 and by Boros et al. in 2014, natural greedy algorithms can be

used to approximate both problems in polynomial time on n-vertex graphs to within

a factor of lnn + 2. This follows from a more general result due to Wolsey from 1982

on the so-called submodular set covering problem. In the final project paper we give

a unified presentation of these results, show a connection with Menger’s theorem and

matroids, model the two problems with integer linear programs, and use the CPLEX

solver to evaluate the performance of the two greedy methods on randomly generated

instances.
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1 Introduction

Domination theory in graphs is a well-developed and still developing area of graph

theory, motivated by a variety of real-life settings, including facility location problems,

problems involving finding sets of representatives, monitoring communication or elec-

trical networks, and land surveying. The main results and applications of domination

in graphs are discussed by Haynes et al. in the two books [17, 18]. We will consider a

quite general variant of domination, called Vector Domination, and a related problem,

called Vector Connectivity.

The Vector Domination problem is the following: given a graph G = (V,E) and a

vector k indexed by vertices of G, that is, k = (kv : v ∈ V ) such that for each v ∈ V , kv

is an integer between 0 and the degree of v, find a smallest set S ⊆ V such that every

vertex v that is not in S has at least kv neighbors in S. The Vector Domination problem

was introduced by Harant et al. [16] as a generalization of the classical Dominating Set

and Vertex Cover problems in graphs.

The Vector Connectivity problem is the following: given a graph G = (V,E) and a

vector k indexed by vertices of G, that is, k = (kv : v ∈ V ), such that, kv is an integer

between 0 and the degree of vertex v of G, find a smallest set S ⊆ V such that every

vertex v that is not in S has at least kv vertex-disjoint paths to S, where, in this case,

“vertex-disjoint” means that the paths have only one vertex in common, namely v. If

the paths are required to be of length one, the problem becomes the vector domination

problem. Therefore, the Vector Connectivity probelm is a relaxation of the Vector

Domination problem, where the condition of the number of neighbors is replaced by

the condition of the number of disjoint paths to the set S.

In Section 3, we will present Wolsey’s algorithm for the submodular set covering prob-

lem [32] and its analysis. In Sections 4 and 5 we will show, following Cicalese et al. [8]

and Boros et al. [5], respectively, that Vector Domination and Vector Connectivity

problems are special cases of the submodular set covering problem, which leads to

logarithmic approximation of the two problems. Analogous results for some related

problems will also be presented, as well as the known inapproximability results for the

considered problems.

We will model the Vector Domination and Vector Connectivity problems with integer

linear programs, in Section 6 and analyze, in Section 7, with help of computer, the
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quality of the approximation algorithm based on Wolsey’s theorem on randomly gen-

erated data. The optimal solution values will be computed exactly using CPLEX, via

our integer linear programs. These experiments and results are presented in Section 7.

We conclude the paper in Section 8 with a short summary and discussion.
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2 Preliminaries

Before we start with the main topics, let us first overview some basic terminology,

notations, and properties of graphs, hypergraphs, matroids, and submodular functions.

Unless stated otherwise, we consider finite, undirected, and simple graphs without

isolated vertices. A graph G will be denoted by G = (V,E) where V is the vertex set

and E the edge set of G. The degree of a vertex v in G will be denoted by d(v) (or

dG(v) if the graph is not clear from the context), the maximum degree of a vertex in

G will be denoted by ∆(G) . The vertex and the edge sets of G will be denoted by

V (G) and E(G), respectively. By N(v) (or NG(v) if the graph is not clear from the

context) we will denote the set of neighbors of vertex v of G = (V,E), that is the (open)

neighborhood of v, and by N [v] := N(v) ∪ {v} (or NG[v]), the closed neighborhood of

v. For graph theoretic notions not defined here, we refere to West [31].

A vertex cover in a graph G is a set S ⊆ V (G) such that each edge of G is incident to

at least one vertex in S.

A path in G is a finite sequence v1, {v1, v2}, v2, . . . , {vm−1, vm}, vm of distinct vertices

vi (1 ≤ i ≤ m) and distinct edges (vj−1, vj) (2 ≤ j ≤ m). We will sometimes identify

a path in a graph G with the corresponding subgraph in G.

We say that a graph is planar if it can be drawn in the plane so that its edges intersect

only at their endpoints. Given a graph G, its line graph L(G) is a graph such that

the vertices of L(G) are in a bijective correspondence of G, and two disjoint vertices of

L(G) are adjacent if and only if their corresponding edges share a common endpoint

in G. A graph G is said to be bipartite if its vertex set can be partitioned into two

disjoint independent sets.

The girth of a graph G is the length of a shortest cycle contained in G. If we have an

acyclic graph, that is, a graph that contains no cycle, then the girth is defined to be

∞.

A directed graph or digraph is an ordered pair D = (V,A) where V is the set of vertices

and A is the set of ordered pairs of vertices called directed edges. A (directed) path in

a digraph D is a finite sequence v1, (v1, v2), v2, . . . , (vm−1, vm), vm of pairwise distinct

vertices vi (1 ≤ i ≤ m) and pairwise distinct directed edges (vj−1, vj) (2 ≤ j ≤ m).

The vertices v1 and vm are called the initial and the terminal vertex of the path,

respectively, and all the other vertices in the path are called internal. A set of paths
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in D is pairwise vertex-disjoint if no two paths have a vertex in common.

Let D = (V,A) be a digraph and let s, t ∈ V . A function f : A → R is called a flow

from s to t, or an s-t flow, if:

(i) f(a) ≥ 0 for all a ∈ A,

(ii)
∑

w:(w,v)∈A f((w, v)) =
∑

w:(v,w)∈A f((v, w)) for each v ∈ V \ {s, t}.

The value of an s-t flow f is, by definition value(f) :=
∑

w:(w,s)∈A f((w, s)) −∑
w:(s,w)∈A f((s, w)).

Let c : A→ R+ be a capacity function. We say that a flow f is under c if f(a) ≤ c(a)

for each a ∈ A. We define the maximum s-t flow, or just maximum flow, to be an

s-t flow under c, of maximum value. For more maximum flow related concepts, see,

e.g., [28].

For the running time analysis of algorithms on graphs or digraphs in Sections 4 and 5 we

will assume, for simplicity, that each graph or digraph is represented with its adjacency

matrix.

For a set X we denote by P(X) the power set of X, that is, the set of all subsets of a

X.

For a finite set U let f : P(U) → R be a function that assigns to each subset S ⊆ U

a real value f(S). We say that f is submodular if for all X, Y ∈ P(U) the following

inequality holds: f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (see, e.g., [28]).

The following characterization of submodular functions can be found in e.g., Schrijver

[28, Theorem 44.1].

Proposition 2.1. A set function f : P(U)→ R is submodular if and only if

f(S ∪ {s}) + f(S ∪ {t}) ≥ f(S) + f(S ∪ {s, t}) (2.1)

for each S ⊆ U and distinct s, t ∈ U \ S.

We say that a set function f : P(U) → R is non-decreasing if f(A) ≤ f(B) whenever

A ⊆ B ⊆ U . Non-decreasing submodular functions are characterized as follows.

Proposition 2.2 (Nemhauser and Wolsey [23]). Let U be a finite set and let f :

P(U)→ R be a set function. Then, the following statements are equivalent:

(a) f is submodular and non-decreasing,

(b) f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ) ≥ 0 for all S ⊆ T ⊆ U and j ∈ U \ T ,

(c) f(T ) ≤ f(S) +
∑

j∈T\S(f(S ∪ {j})− f(S)) for all S, T ⊆ U.



Krbezlija M. Approximability Aspects of Vector Domination and Vector Connectivity in Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 5

Proof. We will first prove the equivalence between (a) and (b). Suppose that f is

submodular and non-decreasing. Let S ⊆ T ⊆ U , and let us take an arbitrary j ∈ U\T .

Since f is submodular, we have f(S∪{j})+f(T ) ≥ f((S∪{j})∪T )+f((S∪{j})∩T )

which is equivalent to f(S∪{j})−f(S) ≥ f(T ∪{j})−f(T ). Since f is non-decreasing

and T ⊆ T ∪ {j} we get that f(T ∪ {j})− f(T ) ≥ 0.

Now, suppose that (b) holds. LetX, Y ⊆ U be arbitrary and letX\Y = {x1, x2, . . . , xr}.
If X ⊆ Y , then f(X ∪ Y ) + f(Y ∩ Y ) = f(X) + f(Y ) thus, f is submoduler. Suppose

that r ≥ 1. Then by our condition we get the following inequalities:

f(Y ∪ {x1})− f(Y ) ≤ f((X ∩ Y ) ∪ {x1})− f(X ∩ Y ),

f(Y ∪ {x1, x2}) − f(Y ∪ {x1}) ≤ f((X ∩ Y ) ∪ {x1, x2}) − f((X ∩ Y ) ∪ {x1}),
f(Y ∪{x1, x2, x3})−f(Y ∪{x1, x2}) ≤ f((X∩Y )∪{x1, x2, x3})−f((X∩Y )∪{x1, x2}),

...

f(Y ∪ {x1, . . . , xr})− f(Y ∪ {x1, . . . , xr−1}) ≤ f((X ∩ Y ) ∪ {x1, . . . , xr})− f((X ∩ Y )

∪{x1, . . . , xr−1}). If we sum them up, we get:

f(Y ∪ {x1, . . . , xr})− f(Y ) ≤ f(X ∩ Y ∪ {x1, . . . , xr})− f(X ∩ Y ),

and since Y ∪ {x1, . . . , xr} = X ∪ Y and X ∩ Y ∪ {x1, . . . , xr} = X, we obtain the

inequality f(X ∪ Y ) − f(Y ) ≤ f(X) − f(X ∩ Y ). If we take X ⊆ Y ⊆ U and

Y \ X = {y1, . . . , yr} (with r ≥ 1) we get from f(S ∪ {j} − f(S) ≥ 0 that f(X) ≤
f(X ∪ {y1} ≤ f(X ∪ {y1, y2}) ≤ . . . ≤ f(X ∪ {y1, . . . , yr}) = f(Y ) which means that

f is non-decreasing.

Now we will prove that (a) is equivalent to (c). Assume that f is a submodular,

non-decreasing function and take arbitrary S, T ⊆ U . If T ⊆ S, then since f is non-

decreasing, we have f(T ) ≤ f(S) = f(S) +
∑

j∈T\S(f(S ∪ {j})− f(S)) and (c) holds.

Suppose now that T \ S = {j1, . . . , jr} with r ≥ 1. A repeated application of the fact

that f is submodular yields:∑
j∈T\S

f(S ∪ {j}) = f(S ∪ {j1}) + f(S ∪ {j2}) + f(S ∪ {j3}) + . . .+ f(S ∪ {jr}) ≥

f(S) + f(S ∪ {j1, j2}) + f(S ∪ {j3}) + . . .+ f(S ∪ {jr}) ≥

2f(S) + f(S ∪ {j1, j2, j3}) + . . .+ f(S ∪ {jr}) ≥

. . . ≥ f(S ∪ {j1, . . . , jr}) + (r − 1)f(S).

Thus we obtain:

f(S) +
∑
j∈T\S

(f(S ∪ {j})− f(S)) =
∑
j∈T\S

f(S ∪ {j})− (r − 1)f(S) ≥

≥ f(S ∪ {j1, . . . , jr}) = f(T ).
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To see that (c) implies (a) suppose that f(T ) ≤ f(S) +
∑

j∈T\S(f(S ∪ {j}) − f(S))

holds for all S, T ⊆ U . Let S ⊆ U . Let s, t ∈ U \ S. If we take T := S ∪ {s, t}, then

f(T ) = f(S ∪ {s, t}) ≤ f(S) + (f(S ∪ {s})− f(S)) + (f(S ∪ {t})− f(S))

which is equivalent to:

f(S ∪ {s, t}) + f(S) ≤ f(S ∪ {s}) + f(S ∪ {t})

and since the last inequality holds for arbitrary S, by Proposition 2.1, we have that f

is submodular.

Finally, let A ⊆ B, where B \ A = {b1, . . . , br} with r ≥ 1. If we take that T = A and

S = A ∪ {b1}, in condition (c), then we have f(A) ≤ f(A ∪ {b1}) + 0. Furthermore,

if we take T = A ∪ {b1} and S = A ∪ {b1, b2}, we get f(A ∪ {b1}) ≤ f(A ∪ {b1, b2})
and if we iterate that r times we obtain the following sequence of inequalities: f(A) ≤
f(A ∪ {b1}) ≤ f(A ∪ {b1, b2}) ≤ . . . ≤ f(A ∪ {b1, . . . , br}) = f(B), which implies that

f is non-decreasing. Thus, all the three statements are equivalent.

We show next that the family of submodular functions defined over the same ground

set is closed under finite sums.

Proposition 2.3. Let U be a finite ground set. Suppose that g1, g2, . . . , gn : P(U)→ R
are submodular. Then the function f : P(U) → R, defined as f(X) = g1(X) + . . . +

gn(X) for all X ⊆ U , is also submodular.

Proof. Let X, Y ⊆ U . Since g1, . . . , gn are submodular, we have that gi(X) + gi(Y ) ≥
gi(X ∩ Y ) + gi(X ∪ Y ) for all i = 1, . . . , n. Summing up over all i, we get

n∑
i=1

(gi(X) + gi(Y )) ≥
n∑
i=1

(gi(X ∩ Y ) + gi(X ∪ Y )),

which is equivalent to

n∑
i=1

gi(X) +
n∑
i=1

gi(Y ) ≥
n∑
i=1

gi(X ∩ Y ) +
n∑
i=1

gi(X ∪ Y ),

and that is further equivalent to

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ).

A hypergraph is a pair H = (U,F) where U is a finite set of vertices, also called the

ground set, and F is a set of subsets of U . Hypergraphs are combinatiorial objects

generelizing graphs. Many results on hypergraphs can be found in [3].

A kind of hypergraphs that are of particular importance for combinatorial computations

are matroids, see, e.g., Welsh [30]. A matroid is a hypergraph M = (U,F) such that F
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is nonempty and its elements, called independent sets, satisfy the following properties:

(a) if Y is an independent set and X ⊆ Y , then X is also an independent set; and (b)

the exchange property : for every two independent sets A and B such that |A| < |B|,
there exists an element of B whose addition to A results in a larger independent set.

A subset of the ground set U that is not independent is called dependent.

A maximal independent set is an independent set in a matroid that becomes dependent

after adding to it any element of the ground set U , not contained in the set. A maximal

independent set is called also called a basis of the matroid. A maximum independent

set is an independent set of maximum size.

The following well-known property of matroids follows easily from the exchange prop-

erty.

Proposition 2.4. Let M = (U,F) be a matroid and let J ∈ F be a maximal indepen-

dent set. Then J is also a maximum independent set.

Proof. Suppose that J ∈ F is a maximal independent set and that J is not a maximum

independent set. Let I ∈ F be a maximum independent set. Since J is not maximum,

we have that |J | < |I|. By the exchange property of matroids, there exists i ∈ I

such that J ∪ {i} is independent, which is a contradiction to the assumption that J is

maximal. Hence, J is also a maximum independent set.

Proposition 2.4 can also be stated as follows: All bases of a matroid have the same

size. A special case of this statement is the fact that all bases of a finite-dimensional

vector space are of the same size.

We say that I ∈ F is a spanning set if B ⊆ I for some basis B of the matroid.

Given a matroid M = (U,F), the rank function of M is the function rM : P(U)→ Z+

that assigns to every subset S of U the maximum size of an independent set contained

in S.

The following property of rank functions of matroids is well known.

Lemma 2.5. For every matroid M = (U,F), its rank function rM is submodular.

Proof. Consider any two sets X, Y ⊆ U . Let J be a maximal independent subset of

X ∩ Y ; thus, |J | = rM(X ∩ Y ). Let JX be any maximal independent set contained in

X such that J ⊆ JX . Then, by Proposition 2.4 we have that JX is maximum, hence,

|JX | = rM(X). Furthermore, by the maximality of J within X ∩ Y , we know that

JX \ Y = JX \ J. (2.2)

Now extend JX to a maximal independent set JXY of X∪Y . Thus, |JXY | = rM(X∪Y ).

In order to prove that

rM(X) + rM(Y ) ≥ rM(X ∩ Y ) + rM(X ∪ Y )
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or equivalently

|JX |+ rM(Y ) ≥ |J |+ |JXY |,

we need to show that rM(Y ) ≥ |J |+ |JXY |−|JX |. Observe that JXY ∩Y is independent

(by property (a) of definition of matroids) and a subset of Y , and thus rM(Y ) ≥
|JXY ∩ Y |. Observe now that

JXY ∩ Y = JXY \ (JX \ Y ) = JXY \ (JX \ J),

the first equality following from the fact that JXY \ (JX \Y ) = (JXY ∩Y )∪ (JXY \JX)

and JXY \ JX ⊆ Y , and the second equality by (2.2). Therefore,

rM(Y ) ≥ |JXY ∩ Y | = |JXY \ (JX \ J) = |JXY | − |JX |+ |J |,

proving the lemma.

A gammoid is a hypergraph Γ = (U,F) derived from a triple (D,S, T ) where D =

(V,A) is a digraph and S, T ⊆ V , S ∩ T = ∅, such that U = S and a subset S ′ of

S forms a hyperedge if and only if there exist |S ′| vertex-disjoint directed paths in D

connecting S ′ to a subset of T.

Lemma 2.6 (Perfect [26], Pym [27]). Let Γ = (U,F) be a gammoid, derived from a

triple (D,S, T ). Then Γ is a matroid.

We give a proof of a weaker version of Lemma 2.6, following Perfect [26].

Lemma 2.7 (The case of Theorem 5.1 in [26] for finite graphs). Let Γ = (U,F) be a

gammoid, derived from a triple (D,S, T ), such that no path from S to T has an internal

vertex in S. Then Γ is a matroid.

The proof is based on the following lemma.

Lemma 2.8. Let Γ = (U,F), derived from the triple (D,S, T ), be a gammoid. Let

S ′ ⊆ S and let k be an integer such that |S ′| ≤ k ≤ |S|. Let D′ be the graph with

vertex set V (D) ∪ F and edge set A(D) ∪ {(u, v) : u ∈ S \ S ′, v ∈ F}, where F is a

set that satisfies V (D) ∩ F = ∅ and |F | = |S| − k. Then, if there exist |S| pairwise

vertex-disjoint paths from S to T ∪ F in D′, then there exist k pairwise vertex-disjoint

paths from S to T in D whose initial vertices contain the set S ′.

Proof. Assume all the notation from the lemma and suppose also that there exist |S|
pairwise vertex-disjoint paths from S to T ∪ F in D′.

Let t = k−|S ′|. Since the number of pairwise vertex-disjoint paths from S to T ∪F in

D′ is |S|, and |F | = |S| − k, and there is no path leading from F , we have that there

are at least |S| − |F | pairwise vertex-disjoint paths from S to T in D. Observe that
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there is no path from S ′ to F .1 Therefore, there are |S ′| pairwise vertex-disjoint paths

from S ′ to T . We have that |F | = |S| − k = |S| − (|S ′|+ t). Hence, there are at least

t paths going from S \ S ′ to T . Thus, there are |S ′| + t = k pairwise vertex-disjoint

paths from S to T in D.

Now, we can prove Lemma 2.7.

Proof of Lemma 2.7. To prove that Γ is a matroid, we need to verify that F is nonempty

and its elements satisfy properties (a) and (b) from the definition of the matroid.

Obviously, F is nonempty since ∅ ∈ F .

To prove property (b), we will prove the following equivalent statement: For every two

independent sets A and B such that |B| = |A|+ 1, there exists an element b in B such

that A ∪ {b} is independent. Let A ⊆ S be such that A ∈ F , and let |A| = m. Let

B ⊆ S be such that B ∈ F and |B| = m+1. Let C = V (D)\(A∪B), F be a set of new

vertices such that F ∩V = ∅ and |F | = |A∪B|− (m+ 1). Let D′ be a new graph with

vertex set V (D′) = V (D)∪F and edge set A(D′) = A(D)∪{(u, v) : u ∈ B\A, v ∈ F}.
Let V ′ = K̃ ∪ C̃ ∪ F̃ , where K̃ ⊆ A ∪ B, C̃ ⊆ C and F̃ ⊆ F , be a set of vertices

separating T ∪ F from A ∪ B in D′. Since there are m pairwise vertex-disjoint paths

from A to T in D and no path from A to T has an internal vertex in B \ A we have:

(i) |K̃ ∩ A|+ |C̃| ≥ m

and,

since there are m+ 1 vertex-disjoint paths from B to T in D, we have:

(ii) |K̃|+ |C̃| ≥ m+ 1.

Note that, either F̃ = F or K̃ ⊇ B \ A.

If F = F̃ then from (ii) we get |V ′| = |K̃|+ |C̃|+ |A ∪B| − (m+ 1) ≥ |A ∪B|.
If K̃ ⊇ B \A then from (i) we get |V ′| = |A∪B| −m+ |K̃ ∩A|+ |C̃|+ |F̃ | ≥ |A∪B|.
Both cases yield that |V ′| ≥ |A ∪ B| and hence, by Menger’s theorem [22], there

exist |A ∪B| pairwise vertex-disjoint paths from A ∪B to T ∪ F in D′. Therefore, by

Lemma 2.8, there exists set K ⊆ S such that K ∈ F , |K| = m+1 and A ⊆ K ⊆ A∪B.

This proves property (b).

We will denote the natural logarithm (that is, logarithm with base e) as ln. For an

m× n matrix A and a set F ∈ {R,Q,Z}, we write A ∈ Fm×n≥0 when aij ∈ F and aij ≥ 0

for all i = 1, . . . , n and j = 1, . . . ,m. And for a vector b, we write b ∈ Fm>0 when bj ∈ F
and bj > 0 for all j = 1, . . . ,m.

1Suppose that there are l such paths. Since F has only edges in S \ S′, we need to have at least l

vertices in S \ S′ to be part of the paths from S′ to F . Then the number of pairwise vertex-disjoint

paths from S to T ∪ F is at most |S| − l. Therefore, l = 0 and there is no path from S to F .
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For a finite set U and a set S ⊆ U , we define the characteristic vector of S, denoted

by xS = (xj : j ∈ U), by the rule

xSj =

{
1, if j ∈ S;

0, otherwise.

We define an optimization problem to be a problem of finding the “best” solution

from all feasible solutions. More formally, an optimization problem is a 4-tuple Π =

(I,F , f, opt), where I is a set of instances, F = (XI : I ∈ I) is a collection of

(usually implicitly given) feasible solutions for the problem Π on each instance I,

f :
⊔
I∈I XI → R is the objective function and opt ∈ {max,min}.

Let us consider an minimization problem Π. For any instance I of Π we denote the

optimal value of the objective function for I as OPTΠ(I). If we have a polynomial-time

algorithm A which returns some feasible solution X for Π, we denote by AΠ(I) the

objective value f(X) returned by A given an instance I of Π. Then, assuming that Π

is a minimization problem, the ratio

ρΠ(I) =
AΠ(I)

OPTΠ(I)

denotes the approximation ratio of algorithm A on the instance I.

Suppose that for each ε > 0, we have an (1 + ε)-approximation algorithm for a mini-

mization problem Π, whose running time is polynomial for a fixed ε. Such a family of

algorithms is called a polynomial time approximation scheme (PTAS) for Π.

For any term mentioned regarding linear or integer programming that is not defined in

this paper, see, e.g., [15] and for approximation algorithms, see, e.g. [2], [25], or [29].

For a positive integer d, we define H(d) =
∑d

i=1
1
i
. The following well-known upper

bound on the values of H will be useful for an analysis of the approximation ratios of

the greedy algorithms for special cases of the submodular set covering problem.

Lemma 2.9. Let n be a positive integer. Then H(n) ≤ 1 + lnn.

Proof. Notice first that ∫ n

1

1

t
dt = lnn− ln 1 = lnn.

Consequently, we have that
n∑
k=2

∫ k

k−1

1

t
dt ≤ lnn.

Because 1
t

is decreasing, 1
a
≥ 1

t
≥ 1

b
for any a, b ∈ (0,∞) and t ∈ [a, b], we therefore

have:
n∑
k=2

∫ k

k−1

1

k
dt ≤ lnn,
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which is equivalent to
n∑
k=2

1

k
≤ lnn

which implies H(n) ≤ 1 + lnn.

Given real numbers a1, . . . , an we denote by avgi ai their average, given by the expres-

sion 1
n

∑n
i=1 ai, and by stdevi ai their standard deviation given by the expression√∑n

j=1(aj − avgi ai)
2

n
.



Krbezlija M. Approximability Aspects of Vector Domination and Vector Connectivity in Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 12

3 Greedy Algorithm for the

Submodular Set Covering Problem

This section follows Wolsey [32]. The results presented in this section will be used in

Sections 4 and 5 to derive the approximation results. All the results in this section are

from [32], unless stated otherwise.

3.1 The submodular set covering problem

Before defining the submodular set covering problem, we will first look at the integer

covering problem

min

{
n∑
j=1

cjxj : Ax ≥ b, xj ∈ {0, 1}, j = 1, . . . , n

}
(C)

where A ∈ Rm×n
≥0 (or Qm×n

≥0 ), b ∈ Rm
>0 (or Qm

>0) and cj > 0 for all i = 1, . . . , n and

j = 1, . . . ,m. The behaviour of the greedy heuristic for the integer covering problem

has been studied by Dobson [11]. The optimality of the greedy algorithm for finding

a minimum weight basis in a matroid is also a classic result by now and well known,

see [12].

We can define the submodular set covering problem, which is a generalization of both

problems above, as follows:

Z = min
S⊆U

{∑
j∈S

cj : f(S) = f(U)

}
(Q)

where f : P(U) → R is a non-decreasing, submodular set function on a finite non-

empty set U . To see that the integer covering problem (C) is a special case of (Q), it

suffices to take the function f : P(U) → R defined as f(S) :=
∑m

i=1 min{
∑

j∈S aij, bi}
for all S ⊆ U , while we obtain the minimum weight spanning set of a matroid by

taking f to be the rank function of the matroid. Indeed, an optimal solution S satisfies

f(S) = f(U), which implies that S is a spanning set of the matroid [13], and by

construction, it will be of minimum weight.

Observation 1. Function f : P(U) → R, defined as f(S) =
∑m

i=1 min{
∑

j∈S aij, bi}
for all S ⊆ U , is submodular.
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Proof. Let X, Y ⊆ U and let f : P(U)→ R be defined as above. Consider the following

inequality for arbitrary i ∈ {1, . . . ,m}:

min

{∑
j∈X

aij, bi

}
+ min

{∑
j∈Y

aij, bi

}
≥ min

{ ∑
j∈X∪Y

aij, bi

}
+ min

{ ∑
j∈X∩Y

aij, bi

}
(3.1)

To prove that (3.1) is true we consider the following cases.

1: If bi ≤
∑

j∈X aij then bi ≤
∑

j∈X∪Y aij (since aij ≥ 0 for all i, j) and hence (3.1)

becomes equivalent to min{
∑

j∈Y aij, bi} ≥ min{
∑

j∈X∩Y aij, bi} which implies,

since
∑

j∈Y aij ≥
∑

j∈X∩Y aij and the function gi : R → R, defined by gi(x) =

min{x, bi}, is non-decreasing, that (3.1) is true.

2: If bi ≤
∑

j∈Y aij, then, by symmetry with case 1, we get that (3.1) is true.

3: If bi >
∑

j∈X aij and bi >
∑

j∈Y aij then we have that either bi ≥
∑

j∈X∪Y aij

or bi <
∑

j∈X∪Y aij. If bj ≥
∑

j∈X∪Y aij, then (3.1) is equivalent to
∑

j∈X aij +∑
j∈Y aij ≥

∑
j∈X∪Y aij+

∑
j∈X∩Y aij which is obviously true (in fact, it holds with

equality). If bi <
∑

j∈X∪Y aij, then (3.1) is equivalent to
∑

j∈X aij +
∑

j∈Y aij ≥
bi +

∑
j∈X∩Y aij which is equivalent to

∑
j∈X aij +

∑
j∈Y \X aij +

∑
j∈X∩Y aij ≥

bi +
∑

j∈X∩Y aij. Since the last equality is true, we have that (3.1) is true as well.

Since in all cases, we have that

min

{∑
j∈X

aij, bi

}
+ min

{∑
j∈Y

aij, bi

}
≥ min

{ ∑
j∈X∪Y

aij, bi

}
+ min

{ ∑
j∈X∩Y

aij, bi

}

is true for arbitrary i ∈ {1 . . . ,m}, hence we get that

m∑
i=1

min

{∑
j∈X

aij, bi

}
+

m∑
i=1

min

{∑
j∈Y

aij, bi

}
≥

m∑
i=1

min

{ ∑
j∈X∪Y

aij, bi

}

+
m∑
i=1

min

{ ∑
j∈X∩Y

aij, bi

}

is true as well. Therefore, f , defined as above, is submodular.

In this section, we will show that if a greedy heuristic is applied to problem (Q), the

value ZG of a greedy heuristic solution always satisfies ZG ≤ (1+ln γ)Z where γ is one

of several possible problem parameters. In the special case when f is integer-valued,

the analysis gives ZG/Z ≤ H(maxj f({j}) − f(∅)). This leads to an error factor of

H(maxj
∑m

i=1 aij) for problem (C) with integer data, which is a result of Dobson [11],

generalizing earlier results of Johnson [19], Lovász [21], and Chvátal [7] for the set

covering problem. The set covering problem takes as input a hypergraph H = (U,F)
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and the task is to find a minimum size subfamily F ′ ⊆ F such that every element of

the ground set appears in at least one of the sets in F ′.
If f is the rank function of a nontrivial matroid, then maxj(f({j}) − f(∅)) = 1,

H(1) = 1; consequently, the greedy is optimal.

3.2 Problem reformulation and the greedy heuris-

tic

We will present a reformulation of (Q) as an integer linear program. To do this, we

will first see two properties of submodular functions.

Let %j(S) := f(S ∪ {j})− f(S).

Consider the following integer linear program:

ZI = min
∑
j∈U

cjxj (QI)

s.t.
∑
j∈U

%j(S)xj ≥ f(U)− f(S) for all S ⊆ U

xj ∈ {0, 1}, for all j ∈ U.

Proposition 3.1. A set T ⊆ U is feasible for (Q) if and only if its characteristic

vector xT is feasible for (QI).

Proof. Suppose that T is feasible for (Q). Let S ⊆ U . If j ∈ S, then %j(S) =

f(S ∪ {j}) − f(S) = f(S) − f(S) = 0. Thus, for the characteristic vector xT ,

we have that
∑

j∈U %j(S)xTj =
∑

j∈T\S %j(S). By Proposition 2.2 we have that∑
j∈T\S %j(S) ≥ f(T ) − f(S). Since T is feasible in (Q), we have that f(T ) = f(U).

Thus,
∑

j∈U %j(S)xTj ≥ f(U)− f(S) for all S ⊆ U , which means that xT is feasible in

(QI).

On the other hand, if xT is feasible in (QI) and we consider the constraint indexed

by T , we have xTj = 0 for all j 6∈ T and f(T ∪ {j}) = f(T ) for j ∈ T , therefore,

0 =
∑

j∈U %j(T )xTj ≥ f(U) − f(T ) and hence f(T ) = f(U) (note that f(T ) > f(U)

is impossible since f is non-decreasing and T ⊆ U), which means that T is feasible in

(Q).

Consider the following greedy algorithm for (Q):
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Greedy heuristic for (Q):

Initialization: Set t = 1, S0 = ∅. Stop if f(∅) = f(U).

Iteration:

1. Let θt = minj∈U\St−1

{
cj

%j(St−1)

}
.

2. Let jt = arg minj∈U\St−1

{
cj

%j(St−1)

}
.

3. Let %t = %jt(S
t−1).

4. Set St = St−1 ∪ {jt} and σt = f(St)− f(St−1).

If f(St) = f(U) then set τ = t and stop. Otherwise, set t = t + 1 and repeat the

iteration.

Table 1: Greedy heuristic for (Q)

Then, Sτ is a greedy heuristic solution with value ZG =
∑

j∈Sτ cj. The following

theorem holds.

Theorem 3.2. If the greedy algorithm is applied to (Q), then

(i) ZG

Z
≤ 1 + ln

(
maxj,r

{
%j(S

0)

%j(Sr)
: %j(S

r) > 0
})

,

(ii) ZG

Z
≤ 1 + ln θτ

θ1 ,

(iii) ZG

Z
≤ 1 + ln

(
f(U)−f(∅)

f(U)−f(Sτ−1)

)
, if f is integer valued,

(iv) ZG

Z
≤ H(maxj f({j})− f(∅)), where H(d) =

∑d
i=1

1
i

for a positive integer d.

In order to prove Theorem 3.2, we will need the following preliminary result.

Proposition 3.3. Let 0 < u1 ≤ u2 ≤ . . . ≤ un, and x1 ≥ x2 ≥ . . . ≥ xn > 0. Let

S =
∑n−1

i=1 ui(xi − xi+1) + unxn = u1x1 +
∑n−1

i=1 (ui+1 − ui)xi+1. Then

S ≤ (max
i
uixi)

[
1 + ln min

(
x1

xn
,
un
u1

)]
.

Moreover,

if {xi}ni=1 are integers, then S ≤ (maxi uixi)H(x1), and

if {ui}ni=1 are integers, then S ≤ (maxi uixi)H(un).

Proof. Since ui, xi > 0 for all i = 1, . . . , n we have that

uixi ≤ max
j
ujxj ⇐⇒ ui ≤ (max

j
ujxj)

1

xi
,
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thus we get that

S =
n−1∑
i=1

ui(xi − xi+1) + unxn ≤ (max
j
ujxj)(xi − xi+1) + (max

j
ujxj)

= (max
j
ujxj)

[
n−1∑
i=1

(
1− xi+1

xi

)
+ 1

]
. (3.2)

Using the fact that 1− 1
x
≤ lnx, for all x ≥ 1 and xi

xi+1
≥ 1, we get that

(max
j
ujxj)

[
1 + ln

x1

xn

]
= (max

j
ujxj)

[
1 +

n−1∑
i=1

(
ln

xi
xi+1

)]

≥ (max
j
ujxj)

[
1 +

n−1∑
i=1

(
1− xi+1

xi

)]
≥ S,

which we get from equation (3.2). If {xi}ni=1 are integers, then 1 − xi+1

xi
≤ 1

xi+1+1
+

1
xi+1+2

+ . . .+ 1
xi

, since xi ≥ xi+1 ≥ 1 for all i ∈ {1, . . . , n− 1} 1, we get that

S ≤ (max
j
ujxj)

[
n−1∑
i=1

(
1− xi+1

xi

)
+ 1

]

≤ (max
j
ujxj)

[
n−1∑
i=1

(
1

xi+1 + 1
+

1

xi+1 + 2
+ . . .+

1

xi

)
+ 1

]

= (max
j
ujxj)

[
1

xn + 1
+ . . .+

1

xn−1

+
1

xn−1 + 1
+ . . .+

1

xn−2

+ . . .+
1

x1

+ 1

]
= (max

j
ujxj)H(x1). (3.3)

Analogously, we will get that S ≤ (maxj ujxj)[1 + ln un
u1

] and S ≤ (maxj ujxj)H(un),

using the fact that xi ≤ (maxj ujxj)
1
uj

which concludes the proof.

Let k1 = maxj,r

{
%j(S

0)

%j(Sr)
: %j(S

r) > 0
}

; k2 = θτ

θ1 ; k3 = f(U)−f(∅)
f(U)−f(Sτ−1)

.

Proof of Theorem 3.2. Consider the following linear programming relaxation of (QI):

ZL = min
∑
j∈U

cjxj (QL)

s.t.
∑
j∈U

%j(S
t)xj ≥ f(U)− f(St) for all t ∈ {0, . . . , τ − 1}

xj ≥ 0 for all j ∈ U.
1Let xi−xi+1 = k, now since x1 ≥ x2 ≥ . . . ≥ xn we get xi

xi+1+1 + xi

xi+1+2 + . . .+ xi

xi+1+k−1 +1 ≥ k =

xi−xi+1 (since xi

xi+1+j ≥ 1 for all j = 1, . . . , k−1) and that is equivalent to 1
xi+1+1 + 1

xi+1+2 +. . .+ 1
xi
≥

1− xi+1

xi
.
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We would like to find a lower bound on Z and to do so we will look for appropriate

dual feasible solutions for (QL).

The dual of (QL) is the following:

ZL
D = max

τ−1∑
t=0

(f(U)− f(St))yt (QLD)

s.t.

τ−1∑
t=0

%j(S
t)yt ≤ cj for all j ∈ U

yt ≥ 0 for all t = 0, . . . , τ − 1 .

(i) and (ii). Let θ∗ = (θ1, θ2 − θ1, . . . , θτ − θτ−1). Since for an arbitrary j, there exists

r ≤ τ such that %j(S
r−1) > 0 and %j(S

r) = 0, we can apply Proposition 3.3 with

0 < θ1 ≤ . . . ≤ θr and %j(S
0) ≥ . . . ≥ %j(S

r−1) > 0 2, to get that

θ1%j(S
0) + (θ2 − θ1)%j(S

1) + . . .+ (θr − θr−1)%j(S
r−1) ≤

≤
{

max
t=1,...,r

θt%j(S
t−1)

}[
1 + ln min

j,r

{
%j(S

0)

%j(Sr−1)
,
θr

θ1

}]
≤ cj [1 + ln(min{k1, k2})] ,

while we get that θt%j(S
t−1) ≤ cj as a consequence of the greedy heuristic.

Hence, (1 + ln min{k1, k2})−1θ∗ is dual feasible for (QL) and therefore

(1 + ln min{k1, k2})−1[θ1(f(U)− f(S0))+

+(θ2 − θ1)(f(U)− f(S2)) + . . .+ (θτ − θτ−1)(f(U)− f(Sτ−1))] ≤ ZL ≤ Z.

On the other hand,

ZG =
τ∑
t=1

θt(f(St)− f(St−1)) = θ1(f(U)− f(S0)) +
τ∑
t=2

(θt − θt−1)(f(U)− f(St−1)),

thus, ZG ≤ Z · (1 + ln min{k1, k2}).
(iii) Let us define ut ∈ Rτ by uti = θt if i = t and uti = 0 otherwise for all i ∈ {1, . . . , τ}.
Then,

ut(%j(S
0), . . . , %j(S

τ−1)) = θt%j(S
t−1) ≤ cj,

and hence ut is dual feasible for t = 1, . . . , τ . It follows that

max
t=1,...,τ

ut(f(U)− f(S0), . . . , f(U)− f(Sτ−1)) = max
t=1,...,τ

θt(f(U)− f(St−1)) ≤ ZL ≤ Z.

Applying Proposition 3.3 with 0 < θ1 ≤ . . . ≤ θτ , and f(U)− f(S0) ≥ f(U)− f(S1) ≥
. . . ≥ f(U)− f(Sτ−1) gives

ZG =
τ−1∑
t=1

θt(f(St)− f(St−1)) + θτ (f(U)− f(Sτ−1)) ≤

≤ max
t
{θt(f(U)− f(St−1))}

[
1 + ln

f(U)− f(S0)

f(U)− f(Sτ−1)

]
≤ Z · (1 + ln k3).

20 < θ1 ≤ . . . ≤ θr holds, since minj∈U\Sk−2
cj

%j(Sk−2)
≤ minj∈U\Sk−1

cj
%j(Sk−1)

for all k = 2, . . . , τ

and %j(S
0) ≥ . . . ≥ %j(Sr−1) > 0 holds because of the submodularity of f .
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(iv) If f is integer-valued, %j(S
t) is integer-valued as well for all j and t, and from

Proposition 3.3, we obtain

θ1%j(S
0) + . . .+ (θr − θr−1)%j(S

r−1) ≤ cjH(max
j
%j(S

0)).

The rest of the proof is same as that of (i) and (ii) above.

Corollary 3.4. Given p ≥ 1 matroids, for the problem of finding a minimum weight

set that is a spanning set in each of p matroids, there exists a greedy heuristic for which

ZG/Z ≤ H(p).

Proof. For i = 1, . . . , p, let ri be the rank function of matroid i. Take f =
∑p

i=1 ri.

Since f is a sum of submodular functions ri, hence submodular (by Proposition 2.3),

we can apply the greedy heuristic to the resulting problem (Q). As f(S) = f(U) only

if ri(S) = ri(U) for all i, the result follows from Theorem 3.2.
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4 Approximating Vector

Domination and Related Problems

This section follows Cicalese et al. [8] and all the definitions and theorems are from [8]

unless stated otherwise.

4.1 Problem Definitions

Let us now formally introduce dominating sets and total dominating sets to define the

Vector Domination problem as well as the related total vector domination and multiple

domination problems.

Definition 4.1. A dominating set in a graph G = (V,E) is a subset S of the vertex

set V such that every vertex not in the set S has a neighbor in it. Equivalently, for

every v ∈ V, we have S ∩N [v] 6= ∅.

Definition 4.2. A total dominating set in G = (V,E) is a subset S ⊆ V such that

every vertex of the graph has a neighbor in S, that is, for every v ∈ V there exists a

vertex u ∈ S such that uv ∈ E. Equivalently, for every v ∈ V, we have S ∩N(v) 6= ∅.

Remark 4.3. Only graphs without isolated vertices have total dominating sets.

The corresponding minimization problems can be formally defined as follows.

DOMINATION

Input: A graph G = (V,E).

Task: Find a dominating set of minimum size.

TOTAL DOMINATION

Input: A graph G = (V,E).

Task: Find a total dominating set of minimum

size.

Definition 4.4. A vector dominating set in a graph G = (V,E) with the requirement

vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . , dG(v)} for all v ∈ V , is a subset S of the

vertex set V of G such that every vertex not in S has at least kv neighbors in S.
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Definition 4.5. A total vector dominating set in a graph G = (V,E) with the require-

ment vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . , dG(v)} for all v ∈ V , is a subset S of

the vertex set V of G such that every vertex v of V (G) has at least kv neighbors in S.

We will use the same definition as in the introduction for the Vector Domination

problem :

VECTOR DOMINATION

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . ,
dG(v)} for all v ∈ V.

Task: Find a vector dominating set of minimum size, that is, a set S ⊆ V minim-

izing |S| such that |S ∩N(v)| ≥ kv for all v ∈ V \ S.

The total vector domination problem is defined analogously:

TOTAL VECTOR DOMINATION

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . ,
dG(v)} for all v ∈ V.

Task: Find a total vector dominating set of minimum size, that is, a set S ⊆ V

minimizing |S| and such that |S ∩N(v)| ≥ kv for all v ∈ V .

If in the definition of the total vector domination we replace open neighborhoods with

closed ones, we get the so called multiple domination problem:

MULTIPLE DOMINATION

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) with kv ∈ {0, 1, . . . ,
dG(v)} for all v ∈ V.

Task: Find a set S ⊆ V

minimizing |S| and such that |S ∩N [v]| ≥ kv for all v ∈ V .

We will also look at the following special cases of Vector Domination, total vector

domination, and multiple domination:

• For 0 < α ≤ 1, an α-dominating set in G is a subset S ⊆ V such that every

vertex not in the set has at least an α-fraction of its neighbors in the set, that is,

for all v ∈ V \ S it holds that |N(v) ∩ S| ≥ α|N(v)|.

• For 0 < α ≤ 1, a total α-dominating set in G is a subset S ⊆ V such that every

vertex has at least an α-fraction of its neighbors in the set, that is, for all v ∈ V
it holds that |N(v) ∩ S| ≥ α|N(v)|.
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• For 0 < α ≤ 1, an α-rate dominating set in G is a subset S ⊆ V such that every

vertex has at least an α-fraction of the members of its closed neighborhood in

the set, that is, for all v ∈ V , it holds that |N [v] ∩ S| ≥ α|N [v]|.

Notice that for every α > 0, every α-dominating set is a dominating set, every total

α-dominating set is a total dominating set, every vertex cover is an α-dominating set

and every 1-dominating set is a vertex cover.

In the next subsections we will see some approximability and inapproximability results

for the related optimization problems.

4.2 Approximability results

In this section, we will show that Vector Domination and total vector domination can

be approximated in polynomial time by a factor of ln(2∆(G)) + 1 and ln(∆(G)) + 1,

respectively.

The results will be based on results for the submodular set covering problem1. Let us

consider the following generalization of the set covering problem:

SET MULTICOVERING

Instance: A set system C = (U,F), where U is a finite ground set and F is a coll-

ection of subsets of U ; a non-negative integer requirement req(u) for ev-

ery element u of the ground set.

Taks: Find a minimum size subcollection F ′ ⊆ F such that every element u

of the ground set appears in at least req(u) sets in F ′.

Every instance (G,k) of the total vector domination problem can be described as an

instance of the Set Multicovering problem in the following way: Take U = V (G) and

define F to be the collection of all (open) neighborhoods of G. Set req(u) = ku for

all u ∈ U . It is clear that a subset S ⊆ V (G) is a total vector dominating set for

(G,k) if and only if the collection (N(v) : v ∈ S) is a feasible solution to the instance

(U,F , req) of the Set Multicovering problem. Suppose that U = {u1, . . . , un} and

F = {U1, . . . , Um}. Then the Set Multicovering problem can be written as an integer

linear program in the following way:

min
m∑
j=1

xj

1We will consider the unweighted submodular set covering problem, from Section 3, which is a

special case of the submodular set covering problem in which all weights are unit: cj = 1 for all j.
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s.t
∑

j:ui∈Uj

xj ≥ req(ui) for all ui ∈ U

xj ∈ {0, 1} for all j=1,. . . , m.

The Set Multicovering problem is a special case of the integer covering problem (C).

Namely, if we take cj = 1 for all j = 1, . . . ,m, bi = req(ui) and define a matrix A with

entries

aij =

1 if ui ∈ Uj
0 otherwise,

we get the formulation of Set Multicovering problem as an integer covering problem.

Since this is a special case of (Q), we obtain the following theorem and corollary, by

part (iv) of Theorem 3.2 (or more directly from Dobson [11]).

Theorem 4.6. Total vector domination can be approximated in O(|V (G)|4) time by a

factor of ln(∆(G)) + 1.

Proof. As already showed above, total vector domination can be transformed to an

instance of Set Multicovering which, in turn, is a special case of the Submodular Set

Covering problem. This was shown in Section 3.1 by observing that the function

f : P(V (G)) → R, where (G,k) is the input for total vector domination, given by

f(S) =
∑

i∈V (G) min{
∑

j∈S aij, kj} for all S ⊆ V (G), where aij = 1 if and only if

i ∈ NG(j), is submodular. Therefore, by part (iv) of Theorem 3.2, the greedy al-

gorithm approximates total vector domination by a factor of H(max
∑

i∈V (G) aij) =

H(∆(G)) ≤ ln(∆(G)) + 1. Moreover, note that the function f as defined as above can

be easily evaluated in O(|V (G)|2) time and consequently the greedy algorithm runs in

O(|V (G)|4) time.

Corollary 4.7. For each α ∈ (0, 1], total α-domination can be approximated in

O(|V (G)|4) time by a factor of ln(∆(G)) + 1.

Proof. Immediately from Theorem 4.6, using the fact that if G is an input instance for

total α-domination, then (G,k) is an equivalent input instance for total vector domi-

nation provided kv = dα · dG(v)e for all v ∈ V (G). Since total vector domination was

approximated in O(|V (G)|4), the total α-domination is approximated in O(|V (G)|4)

time as well.

A similar reduction as for the total vector domination, except that the family of open

neighborhoods is replaced by the family of closed neighborhoods, shows that the Set

Multicovering problem is also a generalization of the multiple domination problem. We

therefore obtain the following results.
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Theorem 4.8. The multiple domination problem can be approximated in O(|V (G)|4)

time by a factor of ln(∆(G) + 1) + 1.

Corollary 4.9. For each α ∈ (0, 1], α-rate domination can be approximated in O(|V (G)|4)

time by a factor of ln(∆(G) + 1) + 1.

It is not clear whether Vector Domination can be expressed as a special case of Set

Multicovering. Nevertheless, Theorem 3.2 applies.

Theorem 4.10. Vector Domination can be approximated in O(|V (G)|4) time by a

factor of ln(2∆(G)) + 1.

Proof. For a graph G = (V,E) and a vector k = (kv : v ∈ V ) such that kv ∈
{0, 1, . . . , d(v)} for all v ∈ V , we define a function f : P(V )→ N, as follows:

f(S) =
∑
v∈V

τv(S), where S ⊆ V, and (4.1)

τv(S) =

min{|S ∩N(v)|, kv} if v 6∈ S;

kv if v ∈ S.

The following properties of f can be verified:

(i) f is integer valued. Since kv is integer valued, τv(S) is integer valued as well,

hence, f is also integer valued.

(ii) f(∅) = 0.

f(∅) =
∑
v∈V

τv(∅) =
∑
v∈V

min{|∅ ∩N(v)|, kv} =
∑
v∈V

min{0, kv} = 0.

(iii) f is non-decreasing. Let S ⊆ T ⊆ V . Then

f(T ) =
∑
v∈V

τv(T ) =
∑
v∈T

kv +
∑
v∈V \T

min{|T ∩N(v)|, kv} =

=
∑
v∈S

kv +
∑
v∈T\S

kv +
∑
v∈V \T

min{|T ∩N(v)|, kv} ≥

≥
∑
v∈S

kv +
∑
v∈T\S

min{|S ∩N(v)|, kv}+
∑
v∈V \T

min{|S ∩N(v)|, kv} =

=
∑
v∈S

kv +
∑
v∈V \S

min{|S ∩N(v)|, kv} =
∑
v∈V

τv(S) = f(S).

(iv) A set S ⊆ V satisfies f(S) = f(V ) if and only if S is a vector dominating set.



Krbezlija M. Approximability Aspects of Vector Domination and Vector Connectivity in Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 24

Suppose first that S ⊆ V satisfies f(S) = f(V ). We have that f(S) = f(V )

is equivalent, by (4.1), to
∑

v∈V τv(S) =
∑

v∈V τv(V ), which is, again by (4.1),

equivalent to ∑
v∈V \S

min{|S ∩N(v)|, kv}+
∑
v∈S

kv =
∑
v∈V

kv,

and that can be further reduced to∑
v∈V \S

min{|S ∩N(v)|, kv} =
∑
v∈V \S

kv. (4.2)

If there exists a w ∈ V \ S such that kw > |S ∩ N(v)|, then from (4.2), we can

deduce that ∑
v∈(V \S)\{w}

min{|S ∩N(v)|, kv} >
∑

v∈(V \S)\{w}

kv.

Since kv ≥ min{|S ∩ N(v)|, kv} for all v ∈ (V \ S) \ {w}, it follows that∑
v∈(V \S)\{w} kv ≥

∑
v∈(V \S)\{w}min{|S ∩ N(v)|, kv} >

∑
v∈(V \S)\{w} kv, which

is not possible. Thus, we have that |S ∩N(v)| ≥ kv for all v ∈ V \ S, hence, S is

a vector dominating set.

Now, suppose that S is a vector dominating set. Then for all v ∈ V \ S, |S ∩
N(v)| ≥ kv, which implies that min{|S ∩N(v)|, kv} = kv and hence

f(S) =
∑
v∈V

τv(S) =
∑
v∈V

kv = f(V ).

(v) f is submodular.

The proof of (v) is given below.

Lemma 4.11. The function f : P(V )→ N, given by (4.1), is submodular.

Proof. To show that f is submodular, by Proposition 2.3, it suffices to show that all

the functions τv(·) are submodular, that is, by Proposition 2.2, we need that for all

S ⊆ T ⊆ V and for all w ∈ V \ T,

τv(T ∪ {w})− τv(T ) ≤ τv(S ∪ {w})− τv(S). (4.3)

Observe that τv is non-decreasing.

Suppose first that τv(T ) = kv. Then τv(T ∪ {w}) = kv and the left-hand side of

inequality (4.3) is equal to 0. Hence inequality (4.1) holds since τv is non-decreasing.

From now on, we assume that τv(T ) < kv, which implies τv(T ) = |T ∩NG(v)|. Since τv

is non-decreasing, τv(S) < kv, and hence τv(S) = |S∩NG(v)|. Inequality (4.3) simplifies

to

τv(T )− τv(S) = |(T \ S) ∩NG(v)| ≥ τv(T ∪ {w})− τv(S ∪ {w}). (4.4)
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We may assume that τv(T ∪ {w}) > τv(S ∪ {w}), since otherwise the right-hand side

of (4.4) equals 0, and inequality (4.4) holds.

Therefore, τv(S ∪ {w}) < kv implying τv(S ∪ {w}) = |(S ∪ {w}) ∩ NG(v)|. If also

τv(T ∪ {w}) < kv then τv(T ∪ {w}) = |(T ∪ {w}) ∩NG(v)| and equality holds in (4.4).

So we may assume that τv(T ∪ {w}) = kv. Note that v does not belong to T ∪ {w}
since otherwise either τv(T ) or τv(S ∪ {w}) would equal to kv. Suppose that inequality

(4.4) fails. Then

|(T \ S) ∩NG(v)| < kv − |(S ∪ {w}) ∩NG(v)|,

which implies

|(T ∪ {w}) ∩NG(v)| < kv.

However, together with the fact that v 6∈ T ∪{w}, this contradicts the assumption that

τv(T ∪ {w}) = kv.

Back to proof of Theorem 4.10, by (iv) we have that an optimal solution to the vec-

tor dominating set is provided by a minimum size set S such that f(S) = f(V ). In

other words, we have recast Vector Domination as a particular case of the Minimum

Submodular Set Covering problem from Section 3.

Let A denote the natural greedy strategy which starts with S = ∅ and iteratively

adds to S the element v ∈ V \ S such that f(S ∪ {v}) − f(S) is maximum, until

f(S) = f(V ) is achieved. By Theorem 3.2 (iv), it follows that algorithm A is a

(ln(maxy∈V f({y})) + 1)-approximation algorithm for Vector Domination. For every

y ∈ V, we have f({y}) =
∑

v∈V \{y} τv({y}) + τy({y}) ≤ d(y) + ky ≤ 2d(y). Hence

maxy∈V f({y}) ≤ 2∆(G), yielding the desired result. Since the value of f(S) can be

computed in O(|V (G)|2) time, the greedy algorithm finds the set S in O(|V (G)|4)

time.

Since α-domination is a special case of the Vector Domination problem, Theorem 4.10

implies the following result:

Corollary 4.12. For each α ∈ (0, 1], α-domination can be approximated in O(|V (G)|4)

time by a factor of ln(2∆(G)) + 1.

4.3 Inapproximability results

We now present the best known inapproximability results for Vector Domination and

related problems under the assumption that P 6= NP . Together with approximation

ratios of greedy algorithms presented in Section 4.3, these results give a complete
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answer to the question of how well these problems can be approximated in polynomial

time, up to a constant multiplicative factor.

The following inapproximability result about domination and total domination is from

Bonomo et al. [4, Theorem 6.5] (improving an analogous result under the stronger

hypothesis that NP 6⊆ DTIME(nO(ln lnn)) due to Chleb́ık and Chleb́ıkova [6]).

Theorem 4.13. For every ε > 0 there is no polynomial-time algorithm approximating

domination or total domination on n-vertex graphs within a factor of (1−ε) lnn, unless

P = NP .

Since Vector Domination and multiple domination generalize domination and total

vector domination generalizes total domination, Theorem 4.13 implies the following

result.

Corollary 4.14. For every ε > 0, there is no polynomial-time algorithm approximating

Vector Domination, total vector domination, or multiple domination within a factor of

(1− ε) lnn on n-vertex graphs, unless P = NP .

The following inapproximability results for variants of domination are a consequence

of [8, Theorem 12].

Theorem 4.15. There exist a number c > 0.0755 such that for every α ∈ (0, 1) there

is no polynomial-time algorithm approximating α-domination, total α-domination, or

α-rate domination within a factor of c · lnn on n-vertex graphs, unless P = NP .

The above theorem was derived using a similar inapproximability result for the set

covering problem due to Alon et al. [1]. This result was further improved by Dinur

and Steurer [10]. In turn, this immediately leads to the following improvement of

Theorem 4.15.

Theorem 4.16. Unless P=NP, the following holds:

• For every α ∈ (0, 1) and every ε > 0, there is no polynomial-time algorithm

approximating α-domination within a factor of (1
2
− ε) lnn on n-vertex graphs.

• For every α ∈ (0, 1) and every ε > 0, there is no polynomial-time algorithm

approximating total α-domination or α-rate domination within a factor of (1
3
−

ε) lnn on n-vertex graphs.

The result of Dinur and Steurer was also instrumental for the derivation of Theo-

rem 4.16. Further related results can be found in [4, Section 6.1]
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5 Approximating Vector

Connectivity

In this section, we will state the formal definition of Vector Connectivity, following

Boros et al. who introduced the problem in [5], and discuss the greedy approximation

of the problem, which we will use in Section 6.

5.1 Problem definition

Definition 5.1. Given a graph G = (V,E), a set S ⊆ V, and a vertex v ∈ V \ S, a

v, S-fan of order k is a collection of k paths P1, . . . , Pk such that

(1) every Pi is a path connecting v to a vertex of S,

(2) the paths are pairwise vertex-disjoint except at v, i.e., V (Pi)∩V (Pj) = {v} holds

for all 1 ≤ i < j ≤ k.

Let A ⊆ V , and let v ∈ V , then we denote by σ(v, A) the maximum order of a v,A-fan

in G.

Definition 5.2. Given an integer-valued vector k = (kv : v ∈ V ), a Vector Connec-

tivity set for (G,k) is a set S ⊆ V such that for every v ∈ V \S, there exists a v, S-fan

of order kv. We say that kv is the requirement of vertex v.

Definition 5.3. Given an undirected simple graph G = (V,E) and a vector k indexed

by vertices of G, such that k = (kv : v ∈ V ) and kv is between 0 and the degree of

vertex v of G, d(v), the Vector Connectivity problem is to find a Vector Connectivity

set for (G,k) of minimum size.

Formally, the problem is stated as follows:

Vector Connectivity

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) ∈ Zn+ with kv ∈ {0, 1, . . . ,
dG(v)} for all v ∈ V.

Task: Find a minimum size Vector Connectivity set for (G,k).
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Definition 5.4. For every v ∈ V and every set S ⊆ V \{v}, we say that v is k-connected

to S if there is a v, S-fan of order k in G.

Hence, given an instance (G,k) of Vector Connectivity, a set S ⊆ V is a Vector Con-

nectivity set for (G,k) if and only if every v ∈ V \ S is kv-connected to S.

5.2 A polynomial-time approximation algorithm

By showing that Vector Connectivity can be recast as a particular case of the Minimum

Submodular Set Covering problem, which we saw in Section 3, we will conclude that

Vector Connectivity can be approximated in polynomial time by a factor of lnn+ 2 on

n-vertex graphs.

Recall that an instance of the Minimum Submodular Set Covering problem consists of

a finite set U and an integer-valued, non-decreasing submodular function f : P(U)→
Z+, and the objective will be to find a set S ⊆ U of minimum cardinality such that

f(S) = f(U). (We can ignore the weights if we take them to be cj = 1 for all j ∈ U .)

For any instance (G = (V,E),k) of Vector Connectivity, we will define a function

f : P(V )→ Z+ as follows:

f(X) =
∑
v∈V

fv(X) where X ⊆ V, and (5.1)

fv(X) =

min{σ(v,X), kv} if v 6∈ X

kv if v ∈ X.

Proposition 5.5 (Boros et al. [5]). A set S ⊆ V satisfies f(S) = f(V ) if and only if

S is a Vector Connectivity set for (G, k).

Proof. Suppose first that S ⊆ V satisfies f(S) = f(V ). Then we have that f(S) =

f(V ) is equivalent, by (5.1), to
∑

v∈V fv(S) =
∑

v∈V fv(V ), which is, again by (5.1),

equivalent to ∑
v∈V \S

min{σ(v, S), kv}+
∑
v∈S

kv =
∑
v∈V

kv,

and that can be further reduced to∑
v∈V \S

min{σ(v, S), kv} =
∑
v∈V \S

kv. (5.2)

If there exists a w ∈ V \S such that kw > σ(w, S), then from (5.2) we can deduce that∑
v∈(V \S)\{w}

min{σ(v, S), kv} >
∑

v∈(V \S)\{w}

kv.
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Since kv ≥ min{σ(v, S), kv} for all v ∈ (V \ S) \ {w}, it follows that
∑

v∈(V \S)\{w} kv ≥∑
v∈(V \S)\{w}min{σ(v, S), kv} >

∑
v∈(V \S)\{w} kv, which is not possible. Thus, we have

that σ(v, S) ≥ kv for all v ∈ V \S, hence, there is a v, S-fan of order kv for all v ∈ V \S
which implies that S is a Vector Connectivity set for (G,k).

Now, suppose that S is a Vector Connectivity set for (G,k). Then for all v ∈ V \ S,

there exists a v, S-fan of order kv. Thus, σ(v, S) ≥ kv for all v ∈ V \ S, which implies:

f(S) =
∑
v∈V

fv(S) =
∑
v∈V

kv = f(V ).

Consequently, Lemma 5.6 below implies that Vector Connectivity is a special case of

Minimum Submodular Set Cover.

Lemma 5.6 (Boros et al. [5]). Let (G = (V,E), k) be an instance of Vector Con-

nectivity. Then the function f : P(V ) → Z+, given by (5.1), satisfies the following

properties:

(i) f(∅) = 0.

(ii) f is integer valued.

(iii) f is non-decreasing.

(iv) f is submodular.

Proof. It is easy to verify that properties (i), (ii), and (iii) hold: Since fv(X) ∈ Z
for all v ∈ V and for all X ⊆ V , we have that f is integer valued. Suppose that

X ⊆ Y ⊆ V . Then f(Y ) =
∑

v∈V fv(Y ) =
∑

v∈Y kv +
∑

v∈V \Y min{σ(v, Y ), kv} =∑
v∈X kv +

∑
v∈Y \X kv +

∑
v∈V \Y min{σ(v, Y ), kv} ≥

∑
v∈V fv(X) = f(X), hence, f is

non-decreasing.

In order to show that f is submodular, by Proposition 2.3, it suffices to show that the

functions fv(·) are submodular for all v ∈ V . Let v ∈ V be an arbitrary vertex, and

let C := max{∆(G),maxv∈V (G){kv}} + 1. We define a function gv : P(V ) → Z+ as

follows:

gv(X) =

σ(v,X) ifv 6∈ X

C ifv ∈ X.

It is easy to verify that gv is non-decreasing. Let S ⊆ T ⊆ V . Then, if v ∈ S, we

get that gv(T ) = C = gv(S). If v ∈ T \ S, then, since the maximal size of a v, S-fan

is ∆(G), we get that gv(T ) = C ≥ σ(v, S) = gv(S), and lastly, if v ∈ V \ T, we have

that bv(T ) = σ(v, T ) ≥ σ(v, S) = gv(S) which proves that gv is non-decreasing for all

v ∈ V .
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Moreover, we have fv(X) = min{gv(X), kv} for every X ⊆ V . Therefore, in order to

prove the submodularity of fv, it suffices to prove that gv is submodular (see, e.g., [28]),

which is equivalent to (see Proposition 2.2) proving that for all X ⊆ Y ⊆ V and for

all w ∈ V \ Y,
gv(Y ∪ {w})− gv(Y ) ≤ gv(X ∪ {w})− gv(X). (5.3)

If v ∈ Y, then gv(Y ) = gv(Y ∪ {w}) = C and (5.3) holds, since gv is non-decreasing.

Similarly, if w = v, then gv(Y ∪ {w}) = gv(X ∪ {w}) = C, and inequality (5.3) holds,

since gv is non-decreasing.

Now, suppose that w 6∈ Y ∪ {v}. Since X ⊆ Y, we also have that w 6∈ X ∪ {v}. In this

case, inequality (5.3) simplifies to

σ(v, Y ∪ {w})− σ(v, Y ) ≤ σ(v,X ∪ {w})− σ(v,X). (5.4)

In order to show that inequality (5.4) holds, it suffices to prove that the function

hv : P(V \{v})→ Z+, defined by hv(W ) = σ(v,W ) for all W ⊆ V \{v}, is submodular.

Consider the gammoid Γ derived from the triple (D, V \ {v}, NG(v)) where D is a

digraph obtained from G by replacing each edge with a pair of oppositely directed arcs.

By Lemma 2.6, Γ is a matroid. It follows directly from the definition that function

hv is equal to the rank function rΓ of Γ. Therefore, by Lemma 2.5, the function hv is

submodular, which completes the proof of Lemma 5.6.

Theorem 5.7 (Boros et al. [5]). Vector Connectivity can be approximated in O(n6)

time within a factor of lnn+ 2 on n-vertex graphs.

Proof. The proof follows [5] and adds the complexity analysis. Let (G = (V,E),k) be

an instance of Vector Connectivity with |V | = n and |E| = m. From the definition of

the function f , given by (5.1), it follows that a set S ⊆ V satisfies f(S) = f(V ) if and

only if S is a Vector Connectivity set for (G,k). Hence, an optimal solution to the

Vector Connectivity problem is provided by a minimum size subset S ⊆ V such that

f(S) = f(V ), i.e., by an optimal solution for the Minimum Submodular Set Cover. An

approximation to such a set S can be found in the following way.

Let A denote the natural greedy strategy that starts with S = ∅ and iteratively adds

to S the element v ∈ V \S such that f(S∪{v})−f(S) is maximum, until f(S) = f(V )

is achieved. The maximum order of a v, S-fan can be computed in polynomial time

using a standard reduction to the well-known Maximum Flow problem, see, e.g., [28]

(see Example 5.8). The reduction is done in O(m+ n) time and a maximum flow can

be computed in O(mn) time (see Orlin [24]), thus, the maximum order of a v, S-fan

can be calculated in O(mn) time and the function f can be calculated in O(mn2)

time. Therefore, the greedy strategy, can be implemented in O(mn4) = O(n6) time.

Moreover, by Theorem 3.2 (iv), since f satisfies the four properties listed in Lemma 5.6,
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algorithm A is an H(maxy∈V f({y}) − f(∅))-approximation algorithm for Minimum

Submodular Set Cover, and consequently for Vector Connectivity. For every y ∈ V, we

have

f({y}) =
∑

v∈V \{y}

fv({y}) + fy({y}) ≤ n− 1 + ky ≤ n+ ∆(G).

Since f(∅) = 0, this implies τ ≤ n + ∆(G). Hence, algorithm A is an H(n + ∆(G))-

approximation algorithm for Vector Connectivity. Since H(n) ≤ lnn + 1 for n ≥ 1

(see Lemma 2.9), we can further bound the approximation ratio ρ of A from above as

follows:

ρ ≤ H(n+ ∆(G)) ≤ ln(n+ ∆(G)) + 1 ≤ ln(2n) + 1 ≤ lnn+ ln 2 + 1 ≤ lnn+ 2,

yielding the desired result.

Example 5.8. Given a graph G = (V,E) and a vertex v ∈ V and a set S, we

construct a digraph D = (V1, A) where V1 = V (G) ∪ {t} for a new vertex t and

A = {(x, y) : {x, y} ∈ E(G), y 6= v} ∪ {(s, t) : s ∈ S}. Then for every w ∈ V1 \ {v, t}
we add a vertex w′, add an arc from w to w′ and take each outgoing arc from w, say

(w, z), and replace it with the arc (w′, z) to make a new graph D′. Then, the maximum

order of a v, S-fan in G equals the maximum value of the flow in the network obtained

from D′ by assigning unit capacity to each arc and taking v as the source and t as

the sink. We can see an example of the transformation in Figure 5.2. Let n = |V (G)|
and m = |E(G)|. The transformation from G to D takes O(m + n) time, while

the transformation from D to D′ takes O(m + n) time as well. Hence, the whole

transformation is done in O(m+ n) +O(m+ n) = O(m+ n) time.
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Figure 1: Reduction of a graph G to compute the maximum order of a v, S-fan

5.3 An inapproximability result

We now present the best known inapproximability result for vector connectivity, due

to Cicalese et al. [9]. Unlike Vector Domination and related problems, it is not known

whether there exists a positive number c such that the existence of a polynomial-time

approximation algorithm for vector connectivity within a factor of c lnn on n-vertex

graphs would imply P = NP . In fact, it is not even known whether any constant factor

approximation for vector connectivity is possible in polynomial time, unless P = NP .

However, it was shown by Cicalese et al. [9], that the problem cannot be approximated

to an arbitrary precision, unless P = NP . This was established using the notion of

APX-hardness. Since the definition of APX-hardness is somewhat technical and not

necessary for our purposes we refer the interested reader, e.g., to [2].

Theorem 5.9 (Cicalese et al. [9]). Vector Connectivity is APX-hard. In particular,

Vector Connectivity admits no PTAS, unless P = NP.

Using the fact that the maximum order of v, S-fan can be computed in polynomial
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time using a reduction as in Example 5.8 shows that we can check in polynomial-time

whether a given set S ⊆ V (G) is a vector connectivity set fot (G, k). Therefore, the

decision version of Vector Connectivity is in NP . Moreover, Theorem 5.9 implies that

Vector Connectivity is NP -hard.

In fact the problem is NP -complete in rather restricted graphs as the following theorem

states.

Theorem 5.10 (Cicalese et al. [9]). The decision version of the Vector Connectivity

problem restricted to instances with maximum requirement 4 is NP-complete, even for:

• 2-connected planar bipartite graphs of maximum degree 5 and girth at least k (for

every fixed k),

• 2-connected planar line graphs of maximum degree 5.
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6 Integer Programming

Formulations

6.1 Vector domination problem

We can represent the Vector Domination problem as an integer linear problem in the

following way. For a given graph G = (V,E) and vertex requirement vector k = (kv :

v ∈ V ), let us denote by xv the decision variable expressing whether vertex v is in the

dominating set or not. Then we can make the following integer linear program:

min
∑
v∈V

xv (DI)

s.t.
∑

u∈N(v)

xu + kvxv ≥ kv for all v ∈ V

xv ∈ {0, 1} for all v ∈ V.

Proposition 6.1. Given an input (G = (V,E), k) for the Vector Domination problem

and a subset S ⊆ V , set S is vector dominating set for (G, k) if and only if its charac-

teristic vector xS is feasible for (DI). In particular, there is a bijective correspondence

between minimum vector dominating set for (G, k) and optimal solutions of (DI).

Proof. Suppose first that S is a vector dominating set for (G,k). If v ∈ S then xSv = 1

and we have
∑

u∈N(v) x
S
u + kvx

S
v ≥ kvx

S
v = kv. If v ∈ V \ S, then xSv = 0, however,

since v has at least kv neighbors in S, we have
∑

u∈N(v) x
S
u ≥ kv. Hence, S is a feasible

solution for (DI).

Suppose now that for some S ⊆ V , its characteristic vector xS is feasible for (DI). Let

v ∈ V \ S. From the constraints, it follows that
∑

u∈N(v) x
S
u + kvx

S
v ≥ kv and, since

xSv = 0, that is equivalent to
∑

u∈N(v) x
S
u ≥ kv. Hence, for every v ∈ S \ V , we have

that v has at least kv neighbors in S, which implies that S is a vector dominating set

for (G,k).

The above shows the existence of a bijective correspondence between vector dominating

sets and feasible solutions for (DI). Moreover, since the size of a vector dominating set

S for (G,k) is equal to the objective function value of (DI) at its characteristic vector

xS, the second part of the proposition follows.
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6.2 Vector connectivity problem

Let G = (V,E) be a simple undirected graph and let X ⊆ V . Given a vertex re-

quirements vector k = (kv ∈ Z : v ∈ V ), if we take ∅ 6= X ⊆ V, then we define

k(X) = maxx∈X kx and NG(X) = (∪v∈XNG(v)) \X.

The proof of [9, Proposition 1] implies the following:

Proposition 6.2. For every graph G = (V,E), vertex requirement vector k and a set

S ⊆ V, the following conditions are equivalent:

(i) S is a vector connectivity set for (G, k).

(ii) For every non-empty set X ⊆ V such that k(X) > |NG(X)|, we have S ∩X 6= ∅.

Proof. The proof follows [9]. Let S be a vector connectivity set for (G, k). Suppose

for a contradiction that there is a non-empty set X ⊆ V such that k(X) > |NG(X)|
and S ∩ X = ∅. Let C = NG(X), and let x ∈ X be a vertex such that kx > |C|.
Since S ∩ X = ∅, we have x 6∈ S. Moreover, the definition of C implies that in the

graph G−C, there is no path from x to S. Therefore, by Menger’s Theorem [22], the

maximum number of disjoint x, S-paths is at most |C|, which contradicts the fact that

x is kx-connected to S and kx > |C|.
Now, suppose for a contradiction that S ⊆ V is not a vector connectivity set for (G, k),

and suppose that for every non-empty set X ⊆ V such that |NG(X)| < k(X), we have

S ∩ X 6= ∅. Since S is not a vector connectivity set for (G, k), there exists a vertex

x ∈ V \S such that x is not kx-connected to S. By Menger’s Theorem [22], there exists

a set C ⊆ V \ {x} such that |C| < kx and every path connecting x to S contains a

vertex of C. Let X be the component of G−C containing x. Then, NG(X) is contained

in C, implying |NG(X)| ≤ |C| < kx ≤ k(X). Hence, by the assumption on S, we have

S ∩ X 6= ∅. But this means that there exists a path connecting x to S avoiding C,

contrary to the choice of C.

This proposition allows us to express the vector connectivity problem as an integer

linear problem (ILP) in the following way:

min
∑
v∈V

xv

s.t.
∑
u∈X

xu ≥ 1 for all ∅ 6= X ⊆ V such that k(X) > |NG(X)|

xv ∈ {0, 1} for all v ∈ V.
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Unfortunately, the number of constraints in the above ILP can be exponential in the size

of the input.1 On the other hand, the fact that the decision version of vector connectiv-

ity is in NP , along with the fact that integer programming is NP -hard (see, e.g., [14]),

imply that there exists a polynomially sized integer programming formulation of vector

connectivity. We are, however, not aware of any explicit such formulation.

1To construct an explicit family of inputs (G,k) such that the number of inclusion-minimal subsets

X ⊆ V (G) with k(X) > |NG(X)| grows exponentially with |V (G)|, let us consider complete graphs

with uniform requirements, that is, n-vertex complete graphs where every vertex requirement is k,

with 1 ≤ k ≤ n− 1. Then subset X of the vertex set such that |X| ≥ n− k+ 1 satisfies the condition

k(X) > |NG(X)|, and the number of constraints grows exponentially with |V (G)|, since the number

of sets X such that |X| = n− k + 1 is
(

n
n−k+1

)
=
(

n
k−1
)
, which is exponential in n when k is close to

n
2 .
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7 Numerical Results

In this section we present our experimental evaluation, testing the quality of solutions

for Vector Domination and Vector Connectivity problems obtained by the two greedy

algorithms in Sections 4 and 5. This was done by comparing them to the optimal

solutions computed by the use of integer linear programming formulations presented

in Section 6. For the comparison we used randomly generated graphs on 12 vertices

with each edge present with probability p, independently of other edges, for the range

of edge probabilities p ∈ {0.25, 0.5, 0.75}. For each choice of p we generated five

12-vertex graphs and for each obtained graph G we generated five requirement vectors

at random, by selecting for each vertex v ∈ V (G), its requirement kv uniformly at

random from the set {0, 1, . . . , dG(v)}, independently of other vertices. Hence, for each

choice of the edge probability p, we generated a total of 25 input instances for each of

the two problems. The corresponding sets of instances will be denoted by IpΠ, where Π

denotes either Vector Domination or Vector Connectivity and with AΠ we denote the

corresponding greedy algorithm. Correspondingly, for an instance I of Π we denote

by AΠ(I) the size of the solution obtained by the greedy algorithm and by OPTΠ(I)

the corresponding optimal solution value. For each instance I = (G,k) we computed

the ratio AΠ(I)
OPTΠ(I)

and the difference AΠ(I) − OPTΠ(I), as well as the upper bound

UBΠ(I) on the approximation ratio of the corresponding greedy algorithm given by

the theoretical analysis in Section 3;

• If Π is the Vector Domination problem, then

UBΠ(I) = H( max
j∈V (G)

(kj + dG(j)))

(see Theorem 3.2 and the proof of Theorem 4.10).

• If Π is the Vector Connectivity problem, then

UBΠ(I) = H( max
j∈V (G)

(kj + |{z ∈ NG(j) : kz > 0}|))

(see Theorem 3.2 and the proof of Theorem 5.7).

The resulting program was implemented in Java and, with the help of the CPLEX

solver, we solved the two problems on the random instances to optimality. For the



Krbezlija M. Approximability Aspects of Vector Domination and Vector Connectivity in Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 38

same instances we also implemented the greedy algorithms described in earlier sections

and computed the corresponding values.

The results of the experiment are summarized in the Table 7.

Π Vector Domination Vector Connectivity

p = 0.25 p = 0.5 p = 0.75 p = 0.25 p = 0.5 p = 0.75

1. maxI∈IpΠ UBΠ(I) 5.7549 6.8775 7.5761 4.7887 6.2613 6.1861

2. avgI∈IpΠ UBΠ(I) 4.4729 6.0599 6.8096 4.0371 5.2111 4.7288

3. stdevI∈IpΠ UBΠ(I) 0.4574 0.3567 0.3432 0.3659 0.4229 0.3494

4. maxI∈IpΠ
AΠ(I)

OPTΠ(I)
1.2000 1.1428 1.2000 1.0000 1.0000 1.0000

5. avgI∈IpΠ
AΠ(I)

OPTΠ(I)
1.0533 1.0221 1.0337 1.0000 1.0000 1.0000

6. stdevI∈IpΠ
AΠ(I)

OPTΠ(I)
0.0859 0.0508 0.0679 0.0000 0.0000 0.0000

7. maxI∈IpΠ(AΠ(I)−OPTΠ(I)) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

8. avgI∈IpΠ(AΠ(I)−OPTΠ(I)) 0.2800 0.1600 0.2000 0.0000 0.0000 0.0000

9. stdevI∈IpΠ(AΠ(I)−OPTΠ(I)) 0.4490 0.3667 0.4000 0.0000 0.0000 0.0000

Table 2: Computational results about the greedy algorithms.

The reason for the small size of randomly generated instances is due to the fact that

the integer programming formulation of Vector Connectivity given in Section 6 has an

exponential number of constraints. This limited the size of the integer programs that

we could solve optimally using the freely available version of the CPLEX solver.

The above experiments show that on the given set of instances, the greedy algorithm

computes solutions that are never more than 20% away from the optimum (see line 5.)

which is much better than the theoretically predicted upper bounds on the approxima-

tion ratios of the two algorithms (see lines 1–3). The known inapproximability result

for Vector Domination (see Section 4.3) implies that the theoretically predicted upper

bound will be asymptotically tight in the worst case. However, it is possible that on

random instances the greedy algorithm performs much better on average.

Furthermore, the results seem to suggest that we can be even more optimistic about

Vector Connectivity. First of all, on the given set of instances the greedy algorithm

always solved the problem to optimality. Second, as pointed out at the end of Section 5,

the worst case polynomial-time approximability status for Vector Connectivity is not

known, leaving open the existence of a constant factor approximation algorithm for the

problem. In particular, it is not known whether the greedy algorithm approximates

Vector Connectivity within a constant factor. Of course, due to the small size of

the generated random instances, one should be careful before claiming any educated

guesses about the actual worst case (in)approximability status of Vector Connectivity.
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In order to perform a more extensive experimental analysis of the average performance

of the greedy algorithm for Vector Connectivity, an explicit polynomially sized integer

programming formulation of the problem would probably be helpful.
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8 Conclusion

Our main topics were the problems of Vector Domination and vector connectivity. In

order to state the relevant results, we needed to give definitions of submodular functions

and define the submodular set covering problem, as well as its special case, the integer

covering problem. We stated the results for the submodular set covering problem, which

included a greedy algorithm that would approximate the integer covering problem in

polynomial time within a factor of lnn+ 2, where n is the number of variables.

To get a polynomial-time approximation of Vector Domination, we defined a suitable

submodular function and used the greedy algorithm stated for the submodular set

covering problem. This resulted in an approximation of Vector Domination within a

factor of ln(2∆(G)) + 1, where ∆(G) is the maximum degree of a vertex in G.

We also stated some results for problems related to Vector Domination, such as total

vector domination, α-domination, α-rate domination, and multiple domination. We

established that total vector domination and total α-domination can be approximated

in polynomial time by a factor of ln(∆(G)) + 1 by showing that every instance of

total vector domination can be described as an instance of set multicovering problem,

which is a special case of the integer covering problem. In a similar way we showed

that multiple domination and α-rate domination can be approximated by a factor of

ln(∆(G) + 1) + 1.

We presented the best known inapproximability results for Vector Domination and

the related problems under the assumption that P 6= NP . The result for Vector

Domination states that there is no polynomial-time algorithm approximating Vector

Domination within a factor of (1− ε) lnn on n-vertex graphs, unless P = NP .

For vector connectivity we also defined a suitable function, the submodularity of which

was established by means of gammoids and Menger’s theorem. We again used the

greedy algorithm stated for the submodular set covering to see that the problem can

be approximated, in polynomial time, within a factor of lnn + 2 on n-vertex graphs.

We also stated the best known inapproximability results for vector connectivity. Un-

like for Vector Domination and related problems, the gap between upper and lower

bounds regarding approximabilty of vector connectivity is large. It is only known that

the problem cannot be approximated in polynomial time to an arbitrary precision un-

less P = NP ; even the existence of a constant-factor approximation algorithm is an
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open problem. For further reading on approximation and parameterized algorithms for

vector connectivity the interested reader is referred to [20].
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9 Povzetek naloge v slovenskem

jeziku

V zaključni nalogi smo obravnavali problema vektorske dominacije in vektorske

povezanosti v grafih kot posebna primera problema submodularnega pokritja in anal-

izirali požrešno metodo za omenjena problema glede na kvaliteto aproksimacije, tako

s teoretičnega vidika (po Wolseyu) kot tudi eksperimentalno, na slučajno generiranih

vhodnih podatkih.

Za dan graf G = (V,E) in tak vektor k = (kv : v ∈ V ), indeksiran z vozlǐsči grafa G,

da je za vsak v ∈ V ustrezna komponenta kv celo število med 0 in stopnjo vozlǐsča v,

problem vektorske dominacije zahteva, da najdemo najmanǰso tako množico S ⊆ V ,

da ima vsako vozlǐsče v, ki ni v množici S, vsaj kv sosedov v množici S. Za vektorsko

povezanost pa je cilj najti najmanǰso tako mnžico S ⊆ V , da ima vsako vozlǐsče v,

ki ni v množici S, vsaj kv disjunktnih poti do množice S. Če so dolžine poti enake

ena, problem postane problem vektorske dominacije. Vektorska povezanost je torej

relaksacija problema vektorske dominacije, kjer je pogoj o številu sosedov v množici S

nadomeščen s pogojem o številu (poljubno dolgih) disjunktnih poti do množice S.

Preden v zaključni nalogi navedemo rezultate za omenjena problema, definiramo po-

jem submodularne funkcije in problem submodularnega pokritja. Uporabimo rezultat

Wolseyja iz leta 1982, ki pravi, da obstaja požrešni algoritem, ki aproksimira problem

submodularnega pokritja s faktorjem (1+ln γ), kjer je γ eden od več možnih parametrov

problema. V posebnem primeru, ko je funkcija celoštevilska, analiza daje zgornjo mejo

za faktor aproksimacije vrednosti H(maxj f({j})−f(∅)), kjer je f dana submodularna

funkcija in H(d) =
∑d

i=1
1
i
. To privede do faktorja aproksimacije H(max

∑m
i=1 aij)

za problem celoštevilskega pokritja, kar je rezultat Dobsona, ki posplošuje preǰsnje

rezultate Johnsona, Lovásza in Chvátala za problem celoštevilskega pokritja.

Z definicijo ustrezne submodularne funkcije problem vektorske dominacije obravnavamo

kot poseben primer problema submodularnega pokritja. Od tod z uporabo požrešnega

aproksimacijskega algoritma za problem submodularnega pokritja izpeljemo, da je

problem vektorske dominacije mogoče aproksimirati v polinomskemu času s faktor-

jem aproksimacije ln(2∆(G))+1, kjer ∆(G) označuje največjo stopnjo vozlǐsča v grafu

G. Verjetno je, da je do členov nižjega reda natančno ta rezultat najbolǰsi možen. Ob-
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stoj algoritma, ki bi problem vektorske dominacije v polinomskem času aproksimiral s

faktorjem aproksimacije (1− ε) lnn na grafih z n vozlǐsči, bi namreč impliciral enakost

P = NP .

V zaključni nalogi obravnavamo tudi nekatere sorodne probleme, kot so totalna dom-

inacija, večkratna dominacija, α-dominacija, totalna α-dominacija in α-kratna dom-

inacija. Nekatere od teh problemov prevedemo na problem večkratnega pokritja, ki

je poseben primer problema celoštevilskega pokritja. Vsi omenjeni problemi pa so

poseben primer problema submodularnega pokritja. Prevedbe omogočajo aproksi-

macijo navedenih problemov v polinomskem času s faktorjem aproksimacije lnn+ 2 za

n-vozlǐsčne grafe.

Podobno kot za problem vektorske dominacije tudi problem vektorske povezanosti z

uvedbo ustrezne submodularne funkcije preoblikujemo v poseben primer problema sub-

modularnega pokritja, kar vodi do aproksimacije s faktorjem lnn + 2 za n-vozlǐsčne

grafe v polinomskem času. Za razliko od problema vektorske dominacije in z njim

povezanih problemov, pa ni znano, ali obstaja kakšno tako pozitivno število c, da bi

obstoj algoritma polinomske časovne zahtevnosti, ki bi vektorsko povezanost na grafih

z n vozlǐsči aproksimiral s faktorjem c lnn, impliciral enakost P = NP . Tudi obstoj

aproksimacijskega algoritma za problem vektorske povezanosti s konstantnim faktorjem

aproksimacije je odprt problem.

Problema vektorske dominacije in vektorske povezanosti nadalje modeliramo s

celoštevilskima linearnima programoma in s pomočjo računalnika analiziramo kvaliteto

aproksimacijskega algoritma, ki temelji na Wolseyevem izreku, na slučajno generi-

ranih podatkih. Optimalne vrednosti so izračunane z uporabo CPLEX-a in izpeljanih

celoštevilskih linearnih programov.
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