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Izvleček: Pljučna fibroza je progresivno brazgotinjenje pljučnega tkiva, ki se pojavlja pri 

sistemski sklerozi (SS) in intersticijski pljučni fibrozi (IPF), z omejenimi možnostmi 

zdravljenja. Patofiziološko to stanje opišemo kot prekomerni nastanek medceličnine, 

katerega povzročajo vztrajno aktivirani fibroblasti, ki diferencirajo v miofibroblaste. Ker 

povečana beljakovinska sinteza in proliferacija celic zahtevata zvišano regulacijo 

metaboličnih poti, povezanih s stimulacijo mitohondrijske biogeneze, je bil cilj te raziskave 

pregledati metabolične motnje in mitohondrijsko biogenezo v pljučnih fibroblastih in 

posledični učinek na patogenezo SS in IPF. Z bioinformatično analizo (analiza obogatenosti 

genskih skupin/poti in analiza diferenčne izraženosti genov) dveh javno dostopnih naborov 

podatkov DNA-mikromrež, so bili pridobljeni seznami obogatenih poti in diferenčno 

izraženih genov. Za določitev morebitnih funkcijskih interakcij med proteini, ki jih kodirajo 

diferenčno izraženi geni, je bila uporabljena podatkovna baza STRING. Rezultati analize SS 

in IPF so pokazali motnje v metaboličnih poteh, ki so pričakovane v visoko proliferativnih 

celicah – povišana glikoliza/glukoneogeneza, povišan metabolizem purinov in pirimidinov 

ter povečana replikacija DNA. Poleg tega so rezultati pokazali motnje encimov, vključenih 

v vse tri stopnje celičnega dihanja (citosolna glikoliza, mitohondrijski cikel citronske kisline 

in oksidativna fosforilacija). 
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Opažena je bila tudi sprememba uravnavanja genov, povezanih z metabolizmom 

sfingolipidov, arginina in prolina ter arahidonske kisline. Vsi pridobljeni rezultati 

prikazujejo precejšne presnovne spremembe, kar odraža visoko energijsko zahtevo SS in IPF 

fibroblastov. Prav tako so rezultati pokazali diferenčno izražene gene v mitohondrijski 

biogenezi, kar indicira, da je ta proces afektiran tako v SS kot v IPF. Kljub temu, je za 

dokončne zaključke potrebna bolj podrobna preiskava omenjenega procesa. 
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Abstract: Pulmonary fibrosis is progressive scarring of lung tissue occurring in systemic 

sclerosis (SSc) and interstitial pulmonary fibrosis (IPF), with limited treatment options. 

Pathophysiologically, excessive extracellular matrix (ECM) build up occurs, caused by 

persistently activated fibroblasts that differentiate into myofibroblasts. Since increased 

protein synthesis and cell proliferation require upregulation of metabolic pathways linked to 

the stimulation of mitochondrial biogenesis, the aim of this research was to examine 

metabolic perturbations and mitochondrial biogenesis in lung fibroblasts and subsequent 

effect on SSc and IPF pathogenesis. Bioinformatic analysis (gene set enrichment analysis 

and differential expression analysis) of two publicly accessible DNA microarray datasets 

produced lists of differentially expressed (DE) genes and enriched pathways. To determine 

possible functional interactions between the expressed proteins encoded by DE genes, 

STRING database was used. The results of SSc and IPF analysis showed perturbations in 

metabolic pathways expected in highly proliferative cells, such as increased 

glycolysis/gluconeogenesis, increased metabolism of purines, metabolism of pyrimidines 

and increased DNA replication. Furthermore, results showed perturbations of enzymes 

involved in all three stages of cell respiration (cytosolic glycolysis, mitochondrial citric acid 

cycle and oxidative phosphorylation). 
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In addition, dysregulation of genes associated with sphingolipid metabolism, with arginine 

and proline metabolism and with arachidonic acid metabolism was observed. Taken 

together, our results show profound metabolic changes, reflecting high energy demand of 

SSc and IPF fibroblasts. Lastly, although results show few DE genes in mitochondrial 

biogenesis, suggesting that this process is affected in both SSc and IPF, this pathway requires 

more specific examination for definitive conclusions.
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1 INTRODUCTION 

1.1 Biological background 

Pulmonary fibrosis is progressive scarring (extracellular matrix deposition) of lung tissue 

caused by several different conditions, with limited treatment options and poor prognosis. 

The aim of this thesis is to investigate the role of mitochondrial metabolism and 

mitochondrial biogenesis in lung fibrosis associated with two different diagnoses, systemic 

sclerosis (SSc) and interstitial pulmonary fibrosis (IPF). 

SSc is a chronic autoimmune connective tissue disease with an estimate of an annual 

incidence (in the United States) of 19.3 new cases per million adults per year (Luckhardt & 

Thannickal, 2015). According to LeRoy et al. (1988), the two main types of the disease are 

diffuse SSc and limited SSc. The difference is in the extent of cutaneous changes and internal 

organ involvement (LeRoy et al., 1988). SSc is characterized by fibroproliferative 

vasculopathy, immunological abnormalities and progressive fibrosis of multiple organs such 

as lungs and skin (Mostmans et al., 2017). The peak incidence is between 45 and 64 years 

of age (Luckhardt & Thannickal, 2015). 

Silver and Silver (2015) stated that scleroderma-associated interstitial lung disease (SSc-

ILD) has become the leading SSc related cause of death. It is likely that it represents a 

complex interplay between innate and acquired immunity, inflammation and fibrosis, but the 

exact sequence of events remains uncertain. Females are at higher overall risk for developing 

SSc, but males are more likely to develop severe SSc-ILD. The prevalence of SSc-ILD is 

higher in patients with diffuse cutaneous SSc than in those with limited cutaneous SSc. 

Patients who have anti-topoisomerase I antibodies are also at a higher risk (Silver & Silver, 

2015). 

Due to poor understanding of molecular pathways involved in interstitial lung diseases 

(ILDs), a transcriptomic study was conducted by Cho et al. (2011), to identify perturbed 

gene networks. It revealed strong perturbances in pathways such as transforming growth 

factor β (TGF-β) pathway, Wnt signalling, focal adhesion, extracellular matrix (ECM)-

receptor interactions and mitogen-activated protein kinase (MAPK) signalling. In addition, 

the results also implied a decrease in general lung metabolic activities (Cho et al., 2011). 

Moore and Herzog (2013) stated that IPF is a chronic, progressive, incurable lung disease of 

unknown etiology (Moore & Herzog, 2013). According to Ryu et al. (2014), it accounts for 

20% to 30% of ILDs and occurs mostly in patients between 50 and 85 years of age, 

predominantly males. In the United States, the incidence of IPF is estimated to be 7 to 17 

per 100,000 person-years and estimated median survival after diagnosis is approximately 

three years (Ryu et al., 2014). 
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There are only a few expression profiling studies associated with IPF. Since an accurate 

diagnosis of the disease is very challenging, Meltzer et al. (2011) conducted a study in which 

the experiments were designed for developing definitive diagnostic and prognostic gene 

signatures for IPF. The study showed that a statistical method called Bayesian probit 

regression is a very powerful tool to increase accuracy in diagnosis and prognosis of IPF 

(Meltzer et al., 2011). Another study by Pardo et al. (2005), focusing on the molecular 

mechanisms of the disease, demonstrated that osteopontin (OPN) was highly upregulated in 

bleomycin induced lung fibrosis in mice. This study also analysed the direct effects of OPN 

on human lung fibroblasts, alveolar epithelial cell migration and proliferation and matrix 

metalloprotease (MMP) gene expression in vitro. Their analysis demonstrated that OPN is 

highly expressed in IPF lungs and their results suggest that the interaction between MMP-7 

and OPN may be involved in the progressiveness of the disease (Pardo et al., 2005). 

Although SSc and IPF have different gender predominance, they typically occur at different 

ages and have different natural history, Herzog et al. (2014) stated that pathophysiologically, 

they are both characterized by the same process of excessive ECM build up. This impairs 

the lung's architecture and function, which is the ability to exchange gas and deliver oxygen 

into the blood, resulting in hypoxia. Major producers of ECM are fibroblasts that, activated 

with pro-fibrotic stimuli (e.g. TGF-β) differentiate into myofibroblasts. They express ECM, 

including fibronectin, proteoglycans and collagen types I, III, V and VII (Herzog et al., 

2014). 

According to Bernard et al. (2015), differentiation of fibroblasts to myofibroblasts could be 

accompanied by robust metabolic reprogramming (Bernard et al., 2015). In vitro 

experiments showed that changes in mitochondrial biogenesis affect ECM production (Peng 

et al., 2013) and that metabolic changes affect development of lung fibrosis (Renzoni et al., 

2004). It is well known that in fast proliferating cells (as myofibroblasts in fibrotic tissue) 

the metabolism is reorganised, favouring glycolysis instead of oxidative phosphorylation 

(OXPHOS). The metabolic reprogramming can be induced by transforming growth factor 

β1 (TGF-β1) via the p38 mitogen-activated protein kinase (p38 MAPK) dependent pathway 

and is linked to the stimulation of both mitochondrial biogenesis and glycolysis (Bernard et 

al., 2015).  

Mitochondrial biogenesis is defined as the process through which cells increase their 

individual mitochondrial mass with growth and division (Ventura-Clapier et al., 2008). 

Cooper (2000) defined mitochondria as endomembrane systems in eukaryotic cells 

responsible for cellular energy production via the oxidative breakdown of glucose and fatty 

acids. These organelles are confined by the outer and the inner membranes which separate 

them from the cytosol. The inner membrane consists of many folds known as cristae and 

extends into the matrix of the mitochondrion. Glycolysis, the initial stage of glucose 

metabolism, occurs in the cytosol. It results in formation of pyruvate which is, together with 
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fatty acids, transported into mitochondrial matrix and converted to acetyl coenzyme A 

(CoA). Acetyl CoA is then oxidized in the central process of oxidative metabolism called 

the citric acid cycle (TCA). Most of the energy derived from this metabolism is further 

produced in the inner mitochondrial membrane as a result of OXPHOS in form of adenosine 

triphosphate (ATP) molecules (Cooper, 2000). Mitochondria, as the major reactive oxygen 

species (ROS) producers and antioxidant producers, have a significant role within the cell 

mediating processes, such as apoptosis (Valero, 2014), which fails to work in fibrotic 

diseases. This failure subsequently leads to persistence of myofibroblasts and consequently 

to expansion of the ECM (Bernard et al., 2015). 

Ventura-Clapier et al. (2008) stated that mitochondrial self-replication is dependent on 

nuclear and mitochondrial genome translation for which mitochondria contain a small 

fraction of a cell’s DNA. It encodes information for 13 protein subunits of the mitochondrial 

respiratory chain, 22 transfer RNAs and 2 mitochondrial ribosome-coding RNAs. The 

master regulator of mitochondrial biogenesis is PGC-1α. It activates downstream 

transcription factors, such as nuclear respiratory factors 1 and 2 (NRF1 and NRF2), leading 

to transcription of nuclear encoded proteins and of the mitochondrial transcription factor A 

(Tfam). Tfam then activates transcription and replication of the mitochondrial genome 

(Ventura-Clapier et al., 2008). 

Mitochondrial biogenesis is influenced by different stimuli, including low temperature, 

caloric restriction without malnutrition which increases AMP-activated protein kinase 

(AMPK) activity and Sirtuin 1 (SIRT1) activity, hormones, such as thyroid hormone and 

growth factors such as vascular endothelial growth factor (VEGF) (Guo et al., 2017; 

Jornayvaz & Shulman, 2010). Dysfunctional mitochondrial biogenesis has been implicated 

in the pathogenesis of numerous diseases, for instance, hypertrophic cardiomyopathy and 

heart failure (Pisano et al., 2016), pulmonary arterial hypertension (Yu & Chan, 2017), type 

2 diabetes mellitus (Johannsen & Ravussin, 2009) along with Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease  and amyotrophic lateral sclerosis (Xu et al., 

2015). Several pharmacologic substances are available to stimulate the pathways involved 

in mitochondrial biogenesis. Some of them are on the WADA (World Anti-Doping Agency) 

list of prohibited substances for athletes, due to their effects on skeletal muscles. It was 

reported that activation of some of the pathways involved in increased mitochondrial 

biogenesis such as AMPK signalling pathway (Liang et al., 2017) and the peroxisome 

proliferator-activated receptor (PPAR) signalling pathway (Dantas et al., 2015; Lakatos et 

al., 2007), with the addition of activation or upregulation of SIRT1 (Zeng et al., 2017) could 

be beneficial in fibrotic diseases (for instance SSc and IPF). 

Bernard et al. (2015) showed that blockage of mitochondrial biogenesis or glycolysis results 

in suppression of TGF-β1-induced α-smooth muscle actin and collagen α-2 expression 

(Bernard et al., 2015) subsequently decreasing ECM production. In addition, Xie et al. 
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(2015) demonstrated on the TGF-β1-induced pulmonary fibrosis in vivo model, that 

glycolytic suppression diminishes lung fibrosis (Xie et al., 2015). Furthermore, IPF has been 

consistently associated with the process of aging in which metabolic dysregulation and 

mitochondrial dysfunction naturally occur (Mora et al., 2017; Zank et al., 2018). 

Although several above-mentioned studies were based on cell cultures and in vivo models 

associated with metabolic changes in fibrosis, none of them specifically investigated 

mitochondrial biogenesis, glycolysis, OXPHOS or other metabolic pathways in SSc and IPF 

fibroblasts. The additional observation that general symptoms of SSc, such as muscle 

weakness and fatigue, could be closely associated with disorders of energy metabolism, lead 

us to investigate mitochondrial dysfunction, as a potential target for new treatments. 

1.2 Purpose of the study 

The objective of the current study was to determine the scope of metabolic reprogramming 

that occurs in SSc- and IPF-associated fibroblasts, characterized by lung fibrosis, using 

bioinformatics databases (two publicly available datasets) and tools. 

Specific aims: 

1. Determine which pathways are significantly enriched in patients SSc and IPF, using 

publicly available gene expression data from NCBI GEO (Barrett et al., 2013; Edgar et 

al., 2002) with accession numbers GSE40839 and GSE44723. These datasets contain 

cell culture fibroblast samples associated with development of lung fibrosis (SSc and 

IPF). 

2. Determine expression levels of genes associated with mitochondrial metabolic 

pathways (such as TCA cycle, OXPHOS, β-oxidation, glutaminolysis) and test this set 

of genes for enrichment using above-mentioned datasets.  

3. Determine expression levels of genes associated with mitochondrial biogenesis (such as 

PPARα, PGC-1α, PGC-1β, NRF1, NRF2, Tfam, AMPK, CaMIKV, eNOS, TORC, 

calcineurin, p38 MAPK, RIP140, Sin3A, TFB2M, HIF-1) and test this set for enrichment 

using above mentioned datasets.  
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2 MATERIALS AND METHODS 

2.1 Datasets 

2.1.1 Scleroderma associated interstitial lung disease data (GSE40839) 

Lindahl et al. (2013) conducted a study, in which primary lung fibroblasts used for analysis 

of the transcriptome were cultured from control tissue samples and from surgical lung biopsy 

samples of eight patients with pulmonary fibrosis (SSC-ILD). The control tissue of ten 

patients undergoing cancer-resection surgery, was histologically normal. The median age 

was 60 in control patients (range from 52 to 78) and 48 in SSc-ILD patients (range from 38 

to 69). Fibroblasts used for the experiments were between passages 2-5: median passage 

number for the control group was 4.5 (range 3-5) and 4 (range 2-5) for SSc-ILD group. Total 

RNA was harvested from serum-deprived fibroblasts. Complementary RNA (cRNA) was 

hybridized to Affymetrix human U133Av2 microarrays (Lindahl et al., 2013). 

2.1.2 Idiopathic pulmonary fibrosis data (GSE44723) 

Primary cultures of lung fibroblasts used for analysis were isolated from the distal 

parenchyma of patients with IPF. Fibroblast cell lines were characterized across two 

phenotypes; stable IPF (six donors) and rapidly progressing IPF (four donors). Primary cells 

were from passage 11. mRNA from harvested cells was purified and subsequently 

hybridized to Affymetrix HG-U133 plus 2.0 microarrays (Peng et al., 2013). 

2.2 Software used for statistical analysis 

BRB-ArrayTools Version 4.5.1 – Stable, an integrated software package implemented as an 

Excel add-in, was used for the analysis of two different DNA microarray datasets from NCBI 

GEO (Barrett et al., 2013; Edgar et al., 2002) – GSE40839 (Lindahl et al., 2013) and 

GSE44723 (Peng et al., 2013). BRB-ArrayTools was developed by the Biometric Research 

Branch of the Division of Cancer Treatment & Diagnosis of the National Cancer Institute, 

led by Dr. Richard Simon. The software, among other things, allows for processing and 

normalization of gene expression data, clustering of genes and samples, visualization of 

samples using multidimensional scaling and analysis of differential gene expression and 

enrichment of gene sets (Simon et al., 2007; Simon, 2010). 

2.3 Data pre-processing 

For both datasets used for analysis (GSE40839 and GSE44723) raw data were obtained from 

NCBI GEO. Raw data (Affymetrix CEL data file format) and GEO platform (GPL) files 

were downloaded. The data were imported into BRB-ArrayTools using the data import 

wizard. Robust multiarray average (RMA) method was used for data normalization. 
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Annotation of genes was performed using NCBI GEO GPL files (GPL96-57554 for 

GSE40839 and GPL570-55999 for GSE44723) associated with microarray platforms that 

were used for the corresponding studies. Based on previous studies by McCarthy and Smyth 

(2009) and Patterson et al. (2006), a 1.5-fold change threshold (in either direction from the 

gene’s median value across all arrays) was set, below that threshold differential expression 

is considered unlikely to be of interest for any gene was set (McCarthy & Smyth, 2009; 

Patterson et al., 2006). The following criteria were used for filtering the data in BRB-

ArrayTools: (a) genes of which more than 20% expression data values had at least a 1.5-fold 

change (in either direction from the gene’s median value across all arrays) and (b) genes 

which had less than 50% of missing values were used for further analysis. 

2.4 Analysis design 

Pathways (groups of genes) from BioCarta (Nishimura, 2001) and KEGG (Kanehisa & Goto, 

2000; Kanehisa et al., 2017; Kanehisa et al., 2016) databases were considered for enrichment 

analysis. Based on personal preference of KEGG gene set lists and corresponding maps, we 

chose the KEGG pathway database for further analysis. As mitochondrial biogenesis 

pathway was not included in that database, it had to be manually added. The list of genes 

involved in mitochondrial biogenesis (Table A1) was obtained from Reactome (Croft et al., 

2014; Fabregat et al., 2018) – Mitochondrial biogenesis (Homo sapiens) pathway. 

Analysis for each dataset consisted of three sections: 

1. Gene set enrichment analysis (GSEA) on all genes (termed Analysis of KEGG pathways) 

and on a subset of genes included in any metabolic pathway listed in Table 1 (termed 

Analysis of Metabolic pathways in the following). 

By using a suitable metric, GSEA ranks genes based on the correlation between their 

expression and the phenotypic class distinction. The gene sets/pathways are defined based 

on prior biological knowledge (Subramanian et al., 2005) – functional annotation/biological 

identity of the genes. 

Analysis tool uses Efron-Tibshirani's GSA maxmean test and LS/KS permutation test. The 

first mentioned test uses maxmean statistics to identify DE gene sets. The second mentioned 

test finds gene sets which have more DE genes among the initial state class and final state 

class than expected by chance (Simon, 2010). 
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Table 1: List of metabolic pathways that were analysed for detection of metabolic changes in SSc or rapid 

progressing IPF (Metabolic pathways subset) 

Pathway description Number of genes Defined gene list 

Citrate cycle (TCA cycle) 30 KEGG 

D-Glutamine and D-glutamate metabolism 4 KEGG 

Fatty acid biosynthesis 6 KEGG 

Fatty acid degradation 43 KEGG 

Glycolysis/Gluconeogenesis 65 KEGG 

Metabolic pathways 1130 KEGG 

Mitochondrial biogenesis 35 user 

Nitrogen metabolism 23 KEGG 

Oxidative phosphorylation 132 KEGG 

Pentose phosphate pathway 27 KEGG 

Pyruvate metabolism 40 KEGG 

Retinol metabolism 64 KEGG 

TGF-β signalling pathway 84 KEGG 

 

2. Analysis of genes from Metabolic pathways. 

According to Simon (2010), class comparison uses univariate parametric and non-parametric 

tests, performs random permutations of the class labels and computes the proportion of these 

random permutations to produce a list of DE genes in one class compared to the other. For 

each gene in the list, the tool computes the permutation p-value, which is based on before 

mentioned random permutations (Simon, 2010). 

2.1. Additionally, the STRING database was used to determine possible functional 

interactions between the expressed proteins encoded by DE genes. Simultaneously, 

lists of DE genes was analysed for functional enrichments – analysis of significantly 

enriched Gene Ontology Biological Processes GO-BP (The Gene Ontology 

Consortium et al., 2000; The Gene Ontology Consortium, 2017) and KEGG 

pathways based on protein-protein interactions (PPIs) was performed.  

Interaction predictions are derived from genomic context predictions, high-throughput 

lab experiments, (conserved) co-expression, automated text mining, and previous 

knowledge in curated databases (Szklarczyk et al., 2017). 

3. Analysis of Mitochondrial biogenesis genes (Table A1). 

3.1. In order to subset the data in BRB-ArrayTools, Mitochondrial biogenesis gene list 

tab-delimited text file (Table A2) had to be custom-assembled and added to the 

already existing BRB-ArrayTools database. The file had to contain three columns – 

UniGene cluster IDs, the corresponding gene symbols and GenBank accession 

numbers of the transcripts, respectively. First two columns were used to search for 
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the UniGene annotation and the last column was used to search GenBank annotation 

(Simon, 2010). 

3.2. To ensure that all genes from Mitochondrial biogenesis gene list were available for 

the differential expression analysis, after the data import, GPL annotation files for 

both data sets were revised. Six genes (PRKAG3, PERM1, PPARGC1B, CRTC2, 

HELZ2, ACSS2) were missing from the GPL96 file associated with GSE40839 

dataset, which resulted in a list of 57 genes with 122 corresponding probe sets. In 

contrast, all 63 genes with 198 corresponding probe sets were present in the GPL570 

file associated with GSE44723 dataset. Nevertheless, three genes in both annotation 

files had to be corrected, in order to be detected when subsetting the data – 

“LOC100129518 /// SOD2” to “SOD2”, “NR1D1 /// THRA” to “NR1D1” and 

“CALM1 /// CALM2 /// CALM3” to “CALM1”. Since both GPL files had the same 

UniGene cluster and accession numbers for each gene and GPL96 was missing six 

genes (and corresponding probe set IDs), GPL570 was used to assemble 

Mitochondrial biogenesis gene list tab-delimited text file used in subsequent 

analysis. 

For both datasets, samples were divided in two classes defined by the disease state; control 

vs. SSc-ILD in dataset GSE40839 and rapidly progressing IPF vs. stable IPF, in dataset 

GSE44723. The univariate test used in data analysis sections 2-3 was a two-sample t-test. 

The significance threshold level α, allows to control a percentage of false positive genes and 

gene sets. Since gene lists with numerous false positives make interpretation very 

problematic, the significance threshold level was set at 0.01 (1% of expected false positive 

DE genes) in all sections except for section 2 of dataset GSE40839, where the level was set 

at 0.001 (0.1% of expected false positive invalid DE genes). 

Results from all analyses are presented in tables with probe set labels, gene symbols, p-

values and log2-fold change (logFC) values. Full name for each gene symbol is available in 

the online human gene database GeneCards (Stelzer et al., 2016). A p-value below the 

significance threshold suggests that data provide evidence to reject the null hypothesis and 

that there is a statistically significant difference in gene expression between the two groups 

of interest. logFC is a measure describing how much the expression of a gene changes 

between an initial (i.e. control class in GSE40839 or rapidly progressing IPF in GSE44723) 

and a final (i.e. SSc-ILD class in GSE40839 or steady IPF in GSE44723) value. In dataset 

GSE40839 logFC<0 suggests that a certain gene is upregulated and logFC>0 suggests that 

a certain gene is downregulated in SSc-ILD compared to the control. In contrast, in dataset 

GSE44723 logFC<0 suggests downregulation of a gene and logFC>0 suggests upregulation 

of a gene in rapidly progressing IPF compared to steady IPF. 
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2.5 Visualisation 

For visualisation of differentially expressed (DE) genes and corresponding probe sets from 

the Metabolic pathways subset and the Mitochondrial biogenesis subset, heatmaps were used 

– each row represents expression of a gene through all samples and each column represents 

expression levels of genes within a sample. The colour and intensity of the boxes represent 

gene expression levels using log2 intensity as a proxy. Heatmaps were generated with the 

use of the Genesis software (Sturn et al., 2002). Gene expression data associated with each 

gene in differential expression output gene lists was extracted from BRB-ArrayTools using 

their plugin for gene expression data. These files had to be modified and saved as a Stanford 

flat-file in order to import the data into Genesis. First column of the modified files had to be 

named UNIQID (probe set IDs), second column was optional and was named NAME 

(symbols of genes associated with probe set IDs) followed by required columns of gene 

expression data for each sample. Samples were renamed to be more comprehensible (Table 

A32) – controls, SSc-ILDs, rapidly progressing IPFs and steady IPFs. After data import, 

samples were divided in two groups for each dataset and hierarchical clustering was 

performed using “average group linkage (UPGMA)” agglomeration rule and “cluster 

experiments” calculation parameters. Colour scheme of generated heatmaps was adjusted to 

a single gradient one. Additionally, the maximum value for saturated colours was set to 15, 

because the highest gene expression value in all gene lists was 13.84. 

Functional interactions between DE genes, using STRING analysis, are presented as 

networks. According to Szklarczyk et al. (2017), each network node represents all the 

proteins produced by a single gene locus. Small nodes represent proteins of unknown 3D 

structure, while large nodes represent proteins of which 3D structure is somewhat known or 

predicted. Edges represent protein-protein associations – known, predicted or other 

interactions are marked with distinct colours (Szklarczyk et al., 2017). 

To visualise comparison of the experiments in one phenotype class versus the experiments 

in another phenotype class, scatterplots were used. They show the average log-ratio within 

one class on the x-axis versus the average log-ratio within the other class on the y-axis. These 

averages are taken on a gene-by-gene basis, and each gene (or probe sets representing the 

same gene) is represented by a single point in the resulting scatterplot (Simon, 2010). This 

visualisation method was used for second section (Metabolic pathways) and third section 

(Mitochondrial biogenesis) analysis. 

With the use of PathVisio 3.3.0 software (Kutmon et al., 2015; van Iersel et al., 2008), 

pathway data models (schemes of biological pathways), with coloured DE genes, were 

produced (Figures A7, A8, A9, A10, A11, A12). These schemes were used for visual 

representation when discussing the most informative pathways, associated with 

mitochondrial metabolism.  
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3 RESULTS 

3.1 Pathway enrichment analysis 

GSEA was used to identify significantly enriched or depleted groups of genes that may have 

an association with the pathogenesis of SSc and IPF. 

KEGG pathways of interest - based on our hypothesis of changed metabolism in lung 

fibroblasts in SSc - are Glycolysis/gluconeogenesis (hsa00010), Fat digestion and absorption 

(hsa04975), Ether lipid metabolism (hsa00565), Fructose and mannose metabolism 

(hsa00051) and DNA replication (hsa03030). Pathways of our interest in idiopathic 

pulmonary fibrosis research are Pyrimidine metabolism (hsa00240), DNA replication 

(hsa03030), One carbon pool by folate (hsa00670), Purine metabolism (hsa00230) and 

Osteoclast differentiation (hsa04380). 

Pathways that are not individually mentioned or discussed in this section represent different 

medical conditions that have no anatomical or histological meaning for SSc-ILD or IPF 

when comparing lung fibroblasts, for example, pathways of Pancreas cancer and Infectious 

trypanosomiasis. Nevertheless, they may include some of the same genes as the discussed 

pathways. The number of known pathways is lower than the number of known diseases and 

one pathway can have different effects on different cell types, which implies that one 

pathway or gene can be involved in any number of disease states. Pleiotopy is the term 

describing one gene affecting several seemingly unrelated phenotypic traits. Due to this 

overlap, our main goal is to identify pathways in fibroblasts which have the greatest impact 

on SSc-ILD and IPF based on pathophysiology of the two diseases. 

3.1.1 Scleroderma associated interstitial lung disease pathways (GSE40839) 

After the data import and normalization, 22,283 probe sets were available for the analysis; 

3,621 of them passed the filtering criteria and remained for the subsequent analysis. 

3.1.1.1 Analysis of KEGG pathways 

Thirty-eight out of 190 investigated KEGG gene sets were marked as enriched (Table A3). 

The position of each pathway (1st to 38th) is based on LS permutation p-value. Cytokine-

cytokine receptor interaction and cell adhesion molecules (CAMs), Chemokine signalling 

pathway, Antigen processing and presentation, Toll-like receptor signalling pathway, NOD-

like receptor signalling pathway, Cytosolic DNA-sensing pathway, Natural killer cell 

mediated cytotoxicity, Autoimmune thyroid disease, Allograft rejection and Graft-versus-

host disease are all Immune system pathways and are involved in environmental information 

processing. Phagosome pathway is identified as a transport and catabolism process. There 

are also pathways belonging to four types of diseases; endocrine/metabolic disease (type I 
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diabetes mellitus), immune diseases (autoimmune thyroid disease, allograft rejection and 

graft-versus-host disease), cardiovascular (viral myocarditis) and infectious diseases 

(hepatitis C and Leishmaniasis). Most of these pathways/diseases are already well studied 

and therefore have their own KEGG pathway, but are not implicated in our researched 

pathology (analysis of cultures of lung fibroblast cells). One example is Osteoclast 

differentiation (17th place on the list of enriched pathways, p=0.00005). There are two genes 

in this pathway (TGFB1 (Table A4) – upregulated and STAT1 (Table A5) – downregulated 

in SSc-ILD compared to controls) which are also major stimuli for profibrotic fibroblast 

activation which stimulates their differentiation into myofibroblast. In each of the two 

mentioned processes, the genes play a completely different role in different cell types. Thus, 

such pathways are not further investigated or analysed in this study. Nevertheless, they are 

an additional source of information regarding possible relations among other clinical 

symptoms or complications of the disease. 

Enriched pathways of interest are Glycolysis/gluconeogenesis (22nd, p=0.00071), Fat 

digestion and absorption (30th, p=0.00893), Ether lipid metabolism (31st, p=0.00898), 

Fructose and mannose metabolism (32nd, p=0.01912) and DNA replication (38th, 

p=0.53578). 

3.1.1.2 Analysis of Metabolic pathways 

After application of the subsetting criteria defined in analysis design (methods section), 351 

probe sets remained available for GSEA. Eight out of 93 total investigated gene sets were 

marked as enriched (Table 2). 

Table 2: Enriched Metabolic pathways by GSEA (α=0.01) in SSc-ILD compared to controls, sorted by LS 

permutation p-value 

Pathway description Number of probe sets LS permutation p-value 

Fc gamma R-mediated 

phagocytosis 

6 0.00043 

Ether lipid metabolism 9 0.00211 

Glycolysis/Gluconeogenesis 29 0.00292 

Fructose and mannose 

metabolism 

8 0.00698 

Metabolism of xenobiotics by 

cytochrome P450 

6 0.01958 

Glycerophospholipid 

metabolism 

10 0.04252 

Fat digestion and absorption 10 0.04468 

Lysosome 9 0.09520 
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Fc gamma R-mediated phagocytosis pathway was not chosen as a pathway of interest for 

the Metabolic pathways subset. However, it includes three genes, two of which (PPAP2B 

and PPAP2A) were found as DE in further differential expression analysis (Table A28). 

Ether lipid metabolism and Glycerophospholipid metabolism are both processes within 

Lipid metabolism. Fructose and mannose metabolism is part of Carbohydrate metabolism, 

Fat digestion and absorption is included in Digestive system and Lysosome takes part in 

Transport and catabolism. None of these pathways were previously specifically 

characterized to be changed in SSc-ILD, but they include certain genes, which are known to 

be associated with this disease. Those genes are PPAP2B, PPAP2A, AGPS, PAFAH1B1, 

TPI1, TSTA3, PFKP, AKR1B1, GMPPA, ATP6V0B, SGSH and GNS. They were found as 

DE in further differential expression analysis (Table A28). 

The two further investigated pathways in our research are Glycolysis/gluconeogenesis 

(Tables A7 and A8) and Metabolism of xenobiotics by cytochrome P450 (Table A9). 

Glycolysis/gluconeogenesis pathway has the same DE genes as in previous analysis based 

on all genes – 18 upregulated (Table A6) and 11 downregulated probe sets (Table A7). All 

three genes of Metabolism of xenobiotics by cytochrome P450 pathway (ADH5, ALDH1A3 

and ADH1B) are also included in Glycolysis/gluconeogenesis pathway. They are all 

downregulated in SSc-ILD compared to controls with the same parametric p-values and 

logFC values. ADH5 and ADH1B are also included in fatty acid degradation and retinol 

metabolism. 

3.1.2 Idiopathic pulmonary fibrosis pathways (GSE44723) 

After the data import and normalization, 54,675 probe sets were available for the analysis; 

7,792 of them passed the filtering criteria and remained for the subsequent analysis. 

3.1.2.1 Analysis of KEGG pathways 

Twenty-nine out of 203 investigated gene sets were marked as enriched (Table A11). 

Pyrimidine metabolism pathway, DNA replication, One carbon pool by folate and Cell cycle 

pathway are all expected to be changed in cells with rapid proliferation. Additionally, Base 

excision repair, Nucleotide excision repair and Mismatch repair pathways are shown to be 

enriched. We observe a few pathways, such as Progesterone-mediated oocyte maturation 

pathway, Oocyte meiosis and Type II diabetes mellitus, which are not linked to pathogenesis 

of IPF, but include certain common genes. 

Enriched pathways of interest in our research are Pyrimidine metabolism (1st, p=0.00001) 

(Tables A12 and A13), DNA replication (2nd, p=0.00001) (Table A14), One carbon pool by 

folate (9th, p=0.00025) (Tables A15 and A16), Purine metabolism (21st, p=0.00841) (Tables 

A17 and A18), and Osteoclast differentiation (27th, p=0.06275) (Tables A19 and A20). 

These pathways include some genes which were found as DE in further analysis (Sections 
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3.2 and 3.3). Those genes are RRM1, POLE2, PRIM2, CMPK2, TYMS, DTYMK, POLE3, 

PRIM1, POLA1, ATIC, DHFR, IMPDH2, PAICS, PFAS and PGM2 which is also included 

in Glycolysis/gluconeogenesis pathway. 

3.1.2.2 Analysis of Metabolic pathways 

After application of the subsetting criteria defined in analysis design (methods section), 508 

probe sets remained available for GSEA. Nine out of 112 investigated gene sets were marked 

as enriched (Table 3). 

Table 3: Enriched Metabolic pathways by GSEA (α=0.01) in stable IPF compared to rapidly progressing IPF, 

sorted by LS permutation p-value 

Pathway description Number of probe sets LS permutation p-value 

Pyrimidine metabolism 40 0.00001 

DNA replication 10 0.00003 

One carbon pool by folate 14 0.00027 

Purine metabolism 53 0.00037 

Nucleotide excision repair 5 0.00121 

Folate biosynthesis 5 0.00547 

Base excision repair 6 0.00886 

Mucin type O-Glycan biosynthesis 26 0.03494 

Bladder cancer 8 0.30927 

 

Eight pathways, not including Folate biosynthesis, are also marked as enriched in previous 

analysis of all genes. The difference is in total number of genes in each pathway, and the 

level of their expressions (Tables A21, A22, A23, A24, A25, A26 and A27). These 

alterations do not provide any additional information regarding inclusion of genes found as 

DE in further analysis (Sections 3.2 and 3.3). 

3.1.3 Comparison of pathway enrichment analysis of both datasets 

We observe enriched metabolic pathways – Carbohydrate and Lipid metabolism in SSc-ILD 

and Nucleotide metabolism with the addition of Metabolism of cofactors and vitamins in 

IPF. Another commonality is affected genetic information processing (enriched DNA 

replication pathway). When focusing on the differences, we observe changes in Digestive 

system and Xenobiotics metabolism in SSc-ILD which are not apparent in IPF and changes 

in organismal development, which are evident in IPF and not in SSc-ILD. 

3.2 Analysis of genes from Metabolic pathways 

Our aim was to identify genes which contribute to the pathologic activation of lung 

fibroblasts in patients with SSc-ILD and IPF. Thus, we included genes associated with 
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eleven metabolic pathways (Table 1) and a major profibrotic pathway (TGF-β signalling 

pathway) as a control. 

3.2.1 Genes from Metabolic pathways associated with Scleroderma associated 

interstitial lung disease (GSE40839) 

Comparison of gene expression levels among fibroblasts with profibrotic phenotype (SSc-

ILD class) and unaffected fibroblasts (control class) was performed. It resulted in a list of 

101 probe sets representing 75 DE genes (Table A28). Their logFC values range from -5.80 

to 3.69. Thirty-seven probe sets (36.6%), representing 26 DE genes, have logFC values 

greater than 0, which means they are downregulated in SSc-ILD class compared to control 

class. Sixty-four probe sets (63.4%), representing 49 genes, have logFC values less than 0, 

which means they are upregulated in SSc-ILD class compared to control class. There are 20 

genes represented by multiple probe sets (PPAP2B, TPI1, ADH5, PTGES, GLS, ENO1, 

PRPS1, PAICS, PGK1, DCN, ACLY, MAN1A1, GALNT10, BCAT1, PPAP2A, SMAD3, 

PTGS1, GFPT1, ID4 and GNS). All probe sets representing 75 genes are visualised in a 

heatmap based on their expression values (Figure A1). 

Of the 84 genes included in KEGG’s TGF-β signalling pathway, which is recognized as the 

main profibrotic pathway, nine are represented by 14 probe sets. Genes ID1, ID3, SMAD7, 

INHBA, ID4 and TGFB1 are upregulated, while genes TGFBR2, DCN and SMAD3 are 

downregulated. Altered expression of these genes leads to overall activation of TGF-β 

signalling pathway. Other 87 probe sets representing 66 genes are all involved in metabolic 

pathways. Out of 66 genes, four are included in Fatty acid degradation (ADH5, ACOX3, 

ADH1B and ALDH1B1). three of them (ADH5, ADH1B and ALDH1B1) are also included 

in Glycolysis/gluconeogenesis, which has total of ten DE genes – additional seven genes 

being TPI1, ENO1, ALDH1A3, PFKP, PGK1, GPI and LDHA. Genes PFKP and GPI are 

furthermore associated with the Pentose phosphate pathway which includes one additional 

DE gene (PRPS1). Genes GLS (also included in D-glutamine and D-glutamate metabolism) 

and GLUL are associated with Nitrogen metabolism. Genes AKR1B1, LDHA and 

ALDH1B1 are included in Pyruvate metabolism. Genes ACLY and IDH2 are involved in 

TCA cycle. Genes ATP6V0B, ATP5G1 and NDUFS1 are included in Oxidative 

phosphorylation pathway. 

After dividing 66 DE genes into two groups (downregulated and upregulated genes), 

STRING was used to detect possible connections among genes within each group. These 

connections, which are based on known and predicted PPIs are visually presented in two 

separate schemes (Figures A3 and A4). Analysis of enriched GO-BP and KEGG pathways, 

also based on PPIs, was performed. It showed major upregulation in TGF-β signalling 

pathway and processes associated with Nucleotide, Pyrimidine, Arginine and proline 
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metabolism (Tables 4 and 5), while downregulation was observed in Tyrosine and 

Cytochrome P450 xenobiotic metabolism and Carboxylic acid anabolism (Tables 6 and 7). 

Table 4: Functionally enriched GO-BP in the network of proteins encoded by upregulated group of DE genes 

Pathway description Count in 

gene set 

False discovery 

rate (FDR) 

Nucleotide metabolic process 21 8.46e-19 

Carbohydrate derivative metabolic process 26 8.59e-19 

Nucleobase-containing small molecule metabolic process 21 2.3e-18 

Nucleoside metabolic process 17 3.16e-16 

Nucleoside triphosphate metabolic process 15 9e-16 

 

Table 5: Functionally enriched KEGG pathways in the network of proteins encoded by upregulated group of 

DE genes 

Pathway description Count in 

gene set 

FDR 

Metabolic pathways 39 1.88e-37 

Pyrimidine metabolism 7 5.62e-07 

TGF-β signalling pathway 6 2.74e-06 

Amino sugar and nucleotide sugar metabolism 5 5.84e-06 

Arginine and proline metabolism 5 1.4e-05 

Glycolysis/gluconeogenesis 5 1.51e-05 

Biosynthesis of amino acids  5 2.82e-05 

Fructose and mannose metabolism 4 3.57e-05 

Purine metabolism  6 7.84e-05 

 

Table 6: Functionally enriched GO-BP in the network of proteins encoded by downregulated group of DE 

genes 

Pathway description Count in 

gene set 

FDR 

Single organism biosynthetic process 15 1.91e-08 

Small molecule biosynthetic process 9 1.58e-06 

Carboxylic acid biosynthetic process 8 1.58e-06 

Lipid biosynthesis process 9 1.15e-05 

Small molecule metabolic process 14 3.55e-05 

Monocarboxylic acid biosynthesis process 6 9.26e-05 
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Table 7: Functionally enriched KEGG pathways in the network of proteins encoded by downregulated group 

of DE genes 

Pathway description Count in 

gene set 

FDR 

Metabolic pathways 23 1.13e-23 

Tyrosine metabolism 4 1.89e-05 

Metabolism of xenobiotics by cytochrome P450 4 0.000107 

Drug metabolism – cytochrome P450 4 0.000107 

 

The following scatterplots show average log-ratio between SSc-ILD class and the Control 

class, with an emphasis on extremely upregulated genes (Figure 1a) and extremely 

downregulated genes (Figure 1b). 

 

Figure 1: Scatterplots for upregulated and downregulated genes (in SSc-ILD compared to controls) 

associated with Metabolic pathways and TGF-β pathway 

Definition of up/downregulation is based on a logFC>4 and logFC<4 respectively, which is visualised as a 

line parallel to the identity line. The farther away the point is from identity line, the larger the difference is 

between its expression in SSc-ILD class and control class. Points above the identity line represent genes with 

higher expression values in SSc-ILD. Points below the identity line represent genes with higher expression 

values in controls). 

The six upregulated genes shown in the scatterplot (Figure 1a) are ID1, ID3, XYLT1, 

CTPS1, INHBA and PRPS1. Their interactions are shown in the following scheme produced 

by STRING analysis (Figure 2). 
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Figure 2: Protein-protein interactions between six upregulated genes (in SSc-ILD compared to controls) 

In this network, there are six proteins and one predicted protein-protein association. Interaction between ID1 

and ID3 is marked with three distinct colours. Black line represents co-expression, light purple line indicates 

protein homology, and yellow line represents connection based on textmining. Red coloured nodes represent 

proteins included in TGF-β pathway. 

Genes ID1 (inhibitor of DNA binding 1, HLH protein) and ID3 (inhibitor of DNA binding 

1, HLH protein 3) are farthest from the identity line (Figure 1a), compared to other 

upregulated genes and are both included in TGF-β signalling pathway. They are 

transcriptional regulators (repressors) associated with cell growth, apoptosis, senescence and 

differentiation. Among upregulated genes is also INHBA (Inhibin Beta A subunit) which 

encodes a member of the TGF-β superfamily of proteins. All the above-mentioned genes 

(ID1, ID3 and INHBA) are red coloured in Figure 2. Other genes are all included in different 

pathways. Another upregulated gene is XYLT1 (Xylosyltransferase 1) which encodes a 

protein that catalyses a transfer reaction necessary for biosynthesis of glycosaminoglycan 

chains in fibroblasts. The last two mentioned upregulated genes which are very closely 

positioned in the scatterplot are PRPS1 (Ribose-phosphate pyrophosphokinase 1) and 

CTPS1 (CTP synthase 1). They both encode enzymes which are involved in nucleotide 

biosynthesis (Stelzer et al., 2016). 

The six downregulated genes shown in the scatterplot (Figure 1b) are GCH1, PTGIS, 

ADH1B (two probe sets), HSD11B1, LAP3 and PPAP2B (three probe sets). Their 

interactions are shown in the following scheme (Figure 3). 

 

Figure 3: Protein-protein interactions between six downregulated genes (in SSc-ILD compared to controls) 

In this network, there are six proteins and one predicted protein-protein association. Interaction between 

ADH1B and HSD11B1 is marked with four distinct colours. Black line represents co-expression, yellow line 

represents connection based on textmining, light blue line represents known interaction from curated 

databases and green line shows predicted interaction based on gene neighbourhood. All purple marked nodes 

represent proteins included in metabolic pathway and two red marked nodes represent proteins involved in 

metabolism of xenobiotics by cytochrome P450. 
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ADH1B (alcohol dehydrogenase 1B (Class I), Beta polypeptide) gene is the farthest from 

the identity line (Figure 1b), which indicates the greatest difference in its expression in 

control group compared with SSc-ILD group. Another two downregulated genes are 

HSD11B1 (hydroxysteroid 11-Beta dehydrogenase 1) and PTGIS (Prostaglandin I2 

Synthase). They are associated with Metabolism of xenobiotics by cytochrome P450. 

PPAP2B (phosphatidic acid phosphatase type 2B) has a role in Metabolic pathways 

controlling the synthesis of glycerophospholipids (component of membranes – important 

during rapid growth) and triacylglycerols (storage of metabolic energy). Although among 

the six most downregulated genes, GCH1 (GTP cyclohydrolase 1), associated with eNOS 

activation and regulation and LAP3 (leucine aminopeptidase 3), presumably involved in the 

processing and regular turnover of intracellular proteins, are not involved in any of enriched 

pathways described in previous section (Stelzer et al., 2016). 

3.2.2 Genes from Metabolic pathways associated with Idiopathic pulmonary fibrosis 

(GSE44723) 

Similar to analysis of the SSc dataset, comparison of gene expression levels among 

fibroblasts with profibrotic phenotype (steady IPF class and rapidly progressing IPF class) 

was performed. It resulted in a list of 59 probe sets representing 42 genes (Table A29). Their 

logFC values range from -2.06 to 3.64. Forty-one probe sets (70%) representing 30 genes 

have logFC values greater than 0, which means they are upregulated in rapidly progressing 

IPF class compared to steady IPF class. Eighteen probe sets (30%) representing 12 genes 

have logFC values less than 0, which means they are downregulated in rapidly progressing 

IPF class compared to steady IPF class. There are 13 genes with multiple probe sets 

(GALNT7, ME2, GALNT6, BMP2, MEF2C, RDH10, PTGS1, DHFR, PAICS, TYMS, 

DTYMK, HADH and GK). As in analysis of previous dataset, all probe sets representing 42 

genes are visualised in a heatmap (Figure A2). Notably, sample IPF 4 - annotated as rapidly 

progressing - clusters with the steady state samples with IPF 6 exhibiting the most similar 

expression profile. 

Out of 42 DE genes, two are included in TGF-β signalling pathway (BMP2 and THBS1). 

They are both downregulated in rapidly progressing IPF class. We observe that upregulated 

gene MEF2C and downregulated gene TBL1X are directly implicated in Mitochondrial 

biogenesis pathway. Only gene ME2, which is shown to be upregulated, is involved in 

Pyruvate metabolism. Furthermore, four genes are included in Oxidative phosphorylation. 

Three of them (PPA1, COX15 and ATP6V0E2) are downregulated and one of them 

(TC1RG1) is upregulated. Out of these four genes, only PPA1 is not additionally implicated 

in KEGG’s gene list of Metabolic pathways, which includes 36 remaining DE genes. One of 

those genes (HADH), which is upregulated, is involved in Fatty acid degradation. Amongst 

remaining 36 DE genes are also downregulated gene ALDH1A3 and upregulated gene 

PGM2, which are additionally included in Glycolysis/gluconeogenesis pathway. 
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As in analysis of SSc dataset, STRING was used to identify possible connections among 

genes within two groups of genes (downregulated and upregulated). PRIM2 was excluded 

from upregulated group because STRING database does not include protein by this identifier 

in organism Homo sapiens. Connections among remaining proteins are visually presented in 

two separate schemes (Figures A5 and A6). Additionally, analysis of significantly enriched 

GO-BP and KEGG pathways showed upregulation in Oxidative phosphorylation and 

processes associated with Nucleotide biosynthesis, Purine and Pyrimidine metabolism 

(Tables 8 and 9). Downregulation was observed in Carbohydrate metabolic processes, 

Glycoprotein metabolism, Retinoic acid biosynthetic processes and in Lipid biosynthesis 

(Tables 10 and 11). 

Table 8: Functionally enriched GO-BP in the network of proteins encoded by upregulated group of DE genes 

Pathway description Count in 

gene set 

FDR 

Nucleotide biosynthetic process 10 1.1e-09 

Single-organism metabolic process 23 1.12e-08 

Nucleoside phosphate biosynthetic process 9 2.01e-08 

Nucleotide metabolic process 11 3.07e-08 

 

Table 9: Functionally enriched KEGG pathways in the network of proteins encoded by upregulated group of 

DE genes 

Pathway description Count in 

gene set 

FDR 

Metabolic pathways 26 2.74e-27 

Purine metabolism 10 1.97e-12 

Pyrimidine metabolism 8 9.25e-11 

One carbon pool by folate 4 8.92e-07 

DNA replication 4 9.49e-06 

Oxidative phosphorylation 3 0.0358 

Mucin type O-Glycan biosynthesis 2 0.0358 

 

Table 10: Functionally enriched GO-BP in the network of proteins encoded by downregulated group of DE 

genes 

Pathway description Count in 

gene set 

FDR 

Carbohydrate derivative metabolic process 7 0.00348 

Glycoprotein metabolic process 5 0.009 

Single organism metabolic process 10 0.009 

Retinoic acid biosynthetic process 2 0.0114 

Lipid biosynthetic process 5 0.0114 
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Table 11: Functionally enriched KEGG pathways in the network of proteins encoded by upregulated group of 

DE genes 

Pathway description Count in 

gene set 

FDR 

Metabolic pathways 9 3.2e-07 

 

The following scatterplots show average log-ratio between rapidly progressive IPF class and 

steady IPF class, with an emphasis on extremely upregulated genes (Figure 4a) and 

extremely downregulated genes (Figure 4b). 

 

Figure 4: Scatterplots for upregulated and downregulated genes (in rapidly progressing IPF class compared 

to steady IPF class) associated with Metabolic pathways and TGF-β pathway 

Definition of up/downregulation is based on a logFC>4 and logFC<4 respectively, which is visualised as a 

line parallel to the identity line. The farther away the point is from identity line, the larger the difference is 

between its expression in rapidly progressing IPF class and steady IPF class. Points above the identity line 

represent genes with higher expression values in rapidly progressing IPF. Points below the identity line 

represent genes with higher expression values in steady IPF fibroblasts. 

The seven upregulated genes shown in the scatterplot (Figure 4a) are ADA (two probe sets), 

TYMS (two probe sets), RRM2 (two probe sets), PRIM1, POLE2, CMPK2, ALDH5A1. 

Based on the STRING analysis, these seven genes encode proteins which are at least partially 

biologically connected, as a group. Their interactions are shown in the following scheme 

(Figure 5). 
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Figure 5: Protein-protein interactions between seven upregulated genes (in rapidly progressing IPF 

compared to steady IPF) 

In this network, there are seven proteins and nine edges (predicted protein-protein associations). The number 

of interaction indicates that the proteins are at least partially biologically connected, as a group. Interactions 

between proteins are marked with four distinct colours. Yellow line represents interactions based on text 

mining, black line indicates interactions based on co-expression, green line shows predicted interaction based 

on gene neighbourhoods, and light blue line represents known interactions from curated databases. 

All proteins are purple marked which represents their inclusion in Metabolic pathways. 

ALDH5A1 is the only gene, of which proteins have no predicted interactions with the others. 

Five genes (CMPK2, RRM2, TYMS, POLE2 and PRIM1) are all included in Pyrimidine 

metabolism pathway (red coloured nodes). Three of them (RRM2, POLE2 and PRIM1) are 

also involved in DNA replication (yellow coloured nodes) and with the addition of ADA 

play a role in Purine metabolism (green coloured nodes). 

Downregulated genes shown in the scatterplot (Figure 4) are KYNU, ALDH1A3, HSD11B1, 

PTGS1 and THBS2. As in visualisation of upregulated genes and their interactions, the 

STRING analysis produced a network of five downregulated genes which is shown in the 

following scheme (Figure 6). 

 

Figure 6: Protein-protein interactions between five downregulated genes (in rapidly progressing IPF 

compared to steady IPF) 

In this network, there are five proteins and one predicted protein-protein association. The lack of associations 

does not necessarily mean that this group of genes has no important biological connection – their interactions 

might not be known yet. Interaction between ALDH1A3 and HSD11B1 is marked with five distinct colours. 

Black line indicates interactions based on co-expression, yellow line represents connection based on textminig, 

green line shows predicted interaction based on gene neighbourhoods, and light blue line represents known 

interactions from curated databases which are also experimentally determined (pink line). 

Four out of five downregulated genes of which nodes are red coloured are included in 

Metabolic pathways (ALDH1A3, HSD11B1, KYNU and PTGS1). Two of them (ALDH1A3 

and HSD11B1), which are the only ones with protein-protein associations, are also included 

in Metabolism of xenobiotics by cytochrome P450 pathway (purple coloured nodes). In 
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addition, ALDH1A3 is involved in Glycolysis/gluconeogenesis. Lastly, gene THBS2 is 

associated with TGF-β signalling pathway. 

3.2.3. Comparison of analysis of gene expression levels in both datasets 

We observe a similar percentage of downregulated genes (approximately 30%) and 

upregulated genes (approximately 60%). In addition, we detect four common pathways 

which include different DE genes; Fatty acid degradation, Glycolysis/gluconeogenesis, 

Pyruvate metabolism and Oxidative phosphorylation. Out of those four pathways, only 

Glycolysis/gluconeogenesis has one common DE gene (ALDH1A3), which is 

downregulated in both SSc-ILD group and rapidly progressing IPF group. There are no other 

common DE genes in remaining three pathways. STRING predicted protein-protein 

association analysis shows a higher number of connections between upregulated genes rather 

than between downregulated genes in both datasets. 

3.3 Analysis of Mitochondrial biogenesis genes 

Our aim was to identify which of the genes involved in mitochondrial biogenesis contribute 

the most to the pathologic activation of fibroblasts in patients with SSc-ILD and IPF. Thus, 

we included 63 genes (Table A1) to detect any meaningful change in their expression. 

3.3.1 Mitochondrial biogenesis genes associated with Scleroderma associated 

interstitial lung disease (GSE40839) 

After the data import and normalization, 22,283 probe sets were available for the analysis. 

After removing all probe sets that are not associated with genes included in our 

Mitochondrial biogenesis gene list, 121 probe sets (Table A30) remained available for the 

differential expression analysis. Comparison of gene expression resulted in a list of 18 probe 

sets, representing 14 genes – 11 upregulated genes (Table 12) and three downregulated genes 

(Table 13). 

Table 12: List of probe sets, representing upregulated DE genes (α=0.01) of Mitochondrial biogenesis genes 

in SSc-ILD compared to controls (sorted by parametric p-value) 

Probe set Gene symbol Parametric p-value logFC 

208905_at CYCS 7.32E-05 -0.97 

210046_s_at IDH2 0.000116 -1.15 

201322_at ATP5B 0.000228 -0.45 

218590_at C10orf2 (TWNK) 0.000315 -0.40 

219169_s_at TFB1M 0.002148 -0.42 

216326_s_at HDAC3 0.005818 -0.27 

203737_s_at PPRC1 0.007069 -0.40 

202474_s_at HCFC1 0.007228 -0.25 

202591_s_at SSBP1 0.007233 -0.58 
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Probe set Gene symbol Parametric p-value logFC 

218605_at TFB2M 0.008826 -0.47 

211984_at CALM1 0.008960 -0.38 

 

Table 13: List of probe sets, representing downregulated DE genes (α=0.01) of Mitochondrial biogenesis 

genes in SSc-ILD compared to controls (sorted by parametric p-value) 

Probe set Gene symbol Parametric p-value logFC 

215223_s_at SOD2 < 1e-07 3.30 

216841_s_at SOD2 2.00E-07 2.96 

221477_s_at SOD2 6.00E-07 2.94 

209107_x_at NCOA1 0.001445 0.42 

209105_at NCOA1 0.002558 0.28 

212867_at NCOA2 0.004628 0.68 

209106_at NCOA1 0.008021 0.42 

 

Among DE genes, we do not observe PPARGC1A, PPARGC1B, NRF1, NRF2 or TFAM – 

genes which play major roles in mitochondrial biogenesis. However, we do observe 

upregulation of PPRC1, which encodes a protein belonging to the same family as 

PPARGC1A, which can activate mitochondrial biogenesis (Stelzer et al., 2016) in response 

to proliferative signals. We also detect upregulation of TFB1M and TFB2M (nuclear-

encoded, mitochondria-targeted transcription factors), genes which are necessary for 

mitochondrial gene expression – similar to TFAM (Litonin et al., 2010). Additionally, we 

observe upregulated C10orf2 (TWNK) and a housekeeping gene SSBP1, both involved in 

mitochondrial DNA replication, along with HDAC3, which plays a critical role in 

transcriptional regulation. Furthermore, we observe upregulation of mitochondrial proteins 

ATP5B, CYCS and IDH2 which are involved in OXPHOS, and TCA cycle, Moreover, we 

detect upregulation of HCFC1, involved in metabolism of proteins. In addition, we observe 

upregulation of CALM1, which encodes one of the four subunits of phosphorylase kinase 

(Stelzer et al., 2016). This upregulation is viewed as important, because Ca2+/calmodulim-

based signalling is one of the triggers for mitochondrial biogenesis (Michel et al., 2007) – 

PGC1a activation. Lastly, we detect downregulation of two transcriptional activators 

NCOA1 and NCOA2, together with SOD2, a gene encoding a major antioxidant protein, 

which detoxifies superoxide anion radicals generated by mitochondrial respiration (Weisiger 

& Fridovich, 1973). Of note, HDAC3, HCFC1 and NCOA1 are all involved in chromatin 

modifying functions – histone acetylation is catalysed by histone acetyl transferases, 

whereas the reverse reaction is performed by histone deacetylases (Legube & Trouche, 2003; 

Wysocka et al., 2003) 
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The following scatterplots show average log-ratio between SSc-ILD class and Control 

class, with an emphasis on extremely upregulated genes (Figure 7a) and extremely 

downregulated genes (Figure 7b). 

 

Figure 7: Scatterplots for upregulated and downregulated genes (in SSc-ILD vs. controls associated with 

Metabolic pathways and TGF-β pathway 

Definition of up/downregulation is based on a logFC>1.5 and logFC<1.5 respectively, which is visualised as 

a line parallel to the identity line. The farther away the point is from identity line, the larger the difference is 

between its expression in SSc-ILD and controls. Points above the identity line represent genes with higher 

expression values in SSc-ILD. Points below the identity line represent genes with higher expression values in 

controls). 

With the use of Genesis, the following heatmap was produced (Figure 8). 

 

Figure 8: Heatmap of expression values for DE genes (α=0.01) in SSc-ILD and controls 

Expression values are represented by black to pink colour gradient, ranging from 2.95 to 11.40 (lowest values 

in black and highest values in light pink). 
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3.3.2 Mitochondrial biogenesis genes associated with Idiopathic pulmonary fibrosis 

(GSE44723) 

After the data import and normalization, 54,675 probe sets were available for the analysis. 

After removing all probe sets that are not associated with genes included in our 

Mitochondrial biogenesis gene list, 197 probe sets (Table A31) remained available for 

differential expression analysis. Comparison of gene expression resulted in a list of eight 

probe sets representing six genes – three upregulated genes (Table 14) and three 

downregulated genes (Table 15). 

Table 14: List of probe sets, representing upregulated DE genes by differential expression analysis (α=0.01) 

of Mitochondrial biogenesis genes in rapidly progressing IPF class compared to steady IPF (sorted by 

parametric p-value) 

Probe set Gene symbol Parametric p-value logFC 

200854_at NCOR1 0.000744 0.51 

209199_s_at MEF2C 0.001744 1.55 

209200_at MEF2C 0.002325 1.30 

205811_at POLG2 0.003354 0.73 

 

Table 15: List of probe sets, representing upregulated DE genes by differential expression analysis (α=0.01) 

of Mitochondrial biogenesis genes in rapidly progressing IPF class compared to steady IPF (sorted by 

parametric p-value) 

Probe set Gene symbol Parametric p-value logFC 

204760_s_at NR1D1 0.0032302 -0.42 

201868_s_at TBL1X 0.0071714 -0.38 

1566932_x_at TFB2M 0.0080112 -0.32 

213400_s_at TBL1X 0.0086882 -0.62 

 

As in previous analysis in this section (dataset GSE40389), we do not observe any 

statistically significant change in expression of genes, which play major roles in 

mitochondrial biogenesis. However, we do observe upregulation of TFAM on the scatterplot 

(Figure 9a), of which upregulation is based on a 1.5-fold change. It is not included in Table 

14, because its p-value (0.037379) exceeds the selected significance level. 

The two upregulated genes NCOR1 and POLG2 are associated with organelle biogenesis 

and maintenance, with POLG2 (mitochondrial DNA polymerase-gamma) being additionally 

implicated in mitochondrial gene expression (Stelzer et al., 2016). As in previous dataset, 

we observe DE gene TFB2M, which is in contrast downregulated in this dataset. Lastly we 

notice upregulation of MEF2C, an important transcription factor upregulating transcription 

of PGC1a in response to various stimuli (Fernandez-Marcos & Auwerx, 2011) and 

downregulation of TBL1X and NR1D1. None of them are additionally implicated in any of 

the metabolic pathways discussed so far. NCOR1 and TBL1X are both involved in 
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repression of transcription following retinoid and thyroid receptor signalling and NR1D1 

acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 

corepressor complex (Stelzer et al., 2016). It also represses expression of PPARGC1A, a 

potent inducer of heme synthesis (Singh et al., 2016). 

The following scatterplots show average log-ratio between rapidly progressive IPF class and 

steady IPF class, with an emphasis on extremely upregulated genes (Figure 9a) and 

extremely downregulated genes (Figure 9b). 

 

Figure 9: Scatterplots for upregulated and downregulated genes (in rapidly progressing IPF vs. steady IPF) 

associated with Metabolic pathways and TGF-β pathway 

Definition of up/downregulation is based on a logFC>1.5 and logFC<1.5 respectively, which is visualised as 

a line parallel to the identity line. The farther away the point is from identity line, the larger the difference is 

between its expression in rapidly progressing IPF and steady IPF. Points above the identity line represent 

genes with higher expression values in rapidly progressing IPF. Points below the identity line represent genes 

with higher expression values in steady IPF. 

With the use of Genesis, the following heatmap was produced (Figure 10). 

 

Figure 10: Heatmap of expression values for DE genes (α=0.01) in rapidly progressing IPF and steady IPF 

Expression values are represented by black to pink colour gradient, ranging from 3.40 to 9.07 (lowest values 

in black and highest values in light pink). 
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3.3.3 Comparison of analysis of gene expression levels in both datasets 

We observe greater percentage of probe sets representing DE genes in SSc-ILD controls 

(approximately 15%) as in rapidly progressing IPF vs. steady IPF (approximately 4%). In 

addition, we detect one common DE gene (from differential expression analysis; α=0.01) – 

TFB2M, which is upregulated in SSc-ILD group and downregulated in rapidly progressing 

IPF group. In addition, we observe one other common gene (in scatterplots Figures 7a and 

9a; differential expression based on FC=1.5) – IDH2.  
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4 DISCUSSION 

Fibrosis, a hallmark of SSc and IPF, which is defined by the accumulation of ECM, is seen 

as the central pathological process in their disease development. With the analysis of 

publicly available gene expression profiles of lung fibroblasts from patients with both 

diseases, we examined underlying mechanisms which may lead to their progression and 

represent potential therapeutic targets. In this study we set a specific question whether 

Mitochondrial biogenesis and Metabolic pathways play a role in progression of SSc and IPF. 

We believe that our study is the first to focus on metabolic genes and their expression profiles 

of SSc fibroblast cells, while other recent studies have been focusing on metabolism in SSc 

monocyte-derived macrophages (Moreno-Moral et al., 2018) and IPF lung tissue (Zhao et 

al., 2017). Our GSEA of all genes in SSc-ILD compared to controls revealed 39 enriched 

pathways of which four are associated with Carbohydrate and Lipid metabolism. The same 

analysis of all genes in stable IPF compared to rapidly progressing IPF, revealed six out of 

29 enriched pathways which are associated with Nucleotide and Amino acid metabolism. 

Comparing results of both datasets we have confirmed typical changes expected in highly 

proliferative cells, such as increased glycolysis, increased metabolism of purines and 

pyrimidines, along with increased DNA replication. 

Keeping in mind that very small changes in expression of enzymatic genes can have greater 

consequences than huge changes in expression of cytoskeletal genes, we reduced the number 

of investigated genes. With the analysis of this subset, containing genes associated with 

metabolism and TGF-β pathway as a positive control, we showed increased expression of 

enzymes involved in all three stages of cell respiration (glycolysis, TCA and OXPHOS) with 

predominant increase in glycolysis with 29 of all DE genes (Figures A7, A8 and A9). This 

may indicate that fibroblasts in SSc have high energy demand. They utilize a metabolic 

switch occurring in highly proliferative cells, known as the Warburg effect, to produce 

sufficient energy to function, although glycolysis does not provide the majority of energy – 

only 2 ATP molecules in contrast with OXPHOS which produces 36 ATP molecules per 

glucose molecule. According to Jiang (2017), the Warburg effect is observed in many cancer 

cells where glycolysis is utilised as a primary energy source even in the presence of sufficient 

amounts of oxygen. This process is called aerobic glycolysis. It is then followed by pyruvate 

conversion to lactic acid, instead of entering TCA cycle and represents the imbalance 

between maximum rate of glycolysis and pyruvate oxidation (Jiang, 2017). There are a few 

substances that actuate OXPHOS rather than glycolysis, such as the polyphenol Resveratrol 

which decreases the activity of the pentose phosphate pathway and lipogenesis in cells with 

high proliferation, such as cancer cells (Saunier et al., 2017). We consider this actuation of 

OXPHOS as a potential therapeutic target for both SSc and IPF. 
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Furthermore, our results showed dysregulation of genes associated with Sphingolipid 

metabolism (Figure A10) in both diseases, which implies disruption in sphingosine-1-

phosphate (S1P) production. Pyne et al. (2013) stated that S1P is an endogenous bioactive 

lipid which mediates a variety of biological cell responses, such as cell proliferation, cell 

migration, cell differentiation and apoptosis. It is generated from sphingosine through 

sphingosine kinase (SPHK)-activated phosphorylation and may be dephosphorylated by cell 

surface proteins lipid phosphate phosphatases (LPPs) PPAP2A and PPAP2B (Pyne et al., 

2013). Our results showed downregulation of these two genes (in SSc). They hydrolyse 

lysophosphatidate (LPA), a potent signalling molecule that accelerates lung fibrosis in IPF 

(Benesch et al., 2016) and acts as critical contributor to scleroderma skin fibrosis (Castelino 

et al., 2016). Clinical trials regarding antagonists of the LPA1 receptor, have been reported 

– antagonist SAR100842 (Allanore et al., 2015) as a potential treatment for SSc and 

antagonist BMS-986020 (Rosen et al., 2017) for treatment of IPF. Additionally, our analysis 

showed downregulation of UDP-glucose ceramide glucosyltransferase (UGCG) gene and 

upregulation of sphingosine-1-phosphate lyase 1 (SGPL1) gene in SSc. The results indicate 

disrupted Fat digestion and absorption. In comparison, we noticed downregulation of gene 

SPHK1 in IPF, also detected in another study (Zhao et al., 2017), which, as already 

mentioned, implies disruption of S1P production. Notably, all dysregulated genes mentioned 

in this paragraph are in close proximity to S1P – they are all involved in the sphingomyelin 

cycle (Meshcheryakova et al., 2016), suggesting their direct relation to S1P levels. The S1P 

signalling pathway has already been proposed as a potential therapeutic target in SSc 

(Pattanaik & Postlethwaite, 2010), IPF (Huang & Natarajan, 2015) and other fibrotic 

diseases (Gonzalez-Fernandez et al., 2017) with S1P receptor antagonists and SPHK 

inhibitors as developing drugs. 

Our study found increased expression of genes ODC1, AMD1, SRM and ASL in SSc, which 

are all associated with Arginine metabolism (Figure A11). Arginine metabolites are known 

to be involved in different sections of fibrotic process. Arginine is converted to ornithine and 

further to polyamines spermidine and putrescine required for cell proliferation. This 

conversion process is catalysed by enzymes among which are those encoded by genes 

ODC1, AMD1, SRM and ASL. In mitochondria, arginine can also be converted to proline 

and its metabolite hydroxyproline, both essential in collagen synthesis. We showed 

decreased levels of gene LAP3, encoding enzyme, involved in Proline metabolism (Figure 

A11). Additional findings in our analysis of SSc fibroblasts are decreased levels of GLUL 

which catalyses the synthesis of glutamine and increased levels of GLS which catalyses the 

hydrolysis of glutamine in mitochondria (Figure A11). It has been recently reported that 

glutaminolysis is required for TGF-β1-induced myofibroblast differentiation and activation 

(Bernard et al., 2018). We suggest that further exploration of the glutaminase inhibitor 

CB 839 (Bromley-Dulfano et al., 2013), an agent with potential antineoplastic activity, as an 

antifibrotic drug, could be beneficial. Comparing pathophysiological mechanisms of SSc 
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and IPF, we could say that our findings are in accord with other studies (Zhao et al., 2017). 

They also showed increases in arginine metabolites, decreased aspartate levels and elevated 

glutamate levels in IPF – we did not detect changes in genes associated with these 

metabolites and enzymes when comparing rapid and slow progressing IPF. This indicates 

that aforementioned underlying mechanisms are not the main factors that promote faster 

progression of IPF. 

Arachidonic acid (AA), a fatty acid present in cell membranes, is the precursor of a family 

of biologically and clinically important molecules, known as eicosanoids (including 

prostaglandins among others). AA is metabolized by the subsequent activities of 

cyclooxygenase (COX). We believe that our study is the first one to show upregulation of 

the gene PTGS1/COX1 in SSc, which is a common target of nonsteroidal anti-inflammatory 

drugs, such as Aspirin. In accordance with Ricciotti and FitzGerald (2011), we interpret that 

upregulation of PTGS1 (COX1), encoding the enzyme that converts AA to prostaglandin H2 

(PGH2), taken together with downregulation of genes PTGES and PTGIS, causes reduced 

conversion of PGH2 to PGE and PGI. This results in reduced vasodilation and platelet 

activation. Consequently, there is more than the usual amount of PGH2 available for 

conversion to PGD2- causing bronchoconstriction, PGF2 and TXA – causing 

vasoconstriction and platelet activation (Ricciotti & FitzGerald, 2011). We also detected 

downregulation of COX1 gene in IPF. Altogether, our findings indicate dysregulation in AA 

metabolism (Tables A12 and A13) and insinuate that this pathway could represent a potential 

therapeutic target. 

Krug et al. (2009) suggested that perturbations in AA metabolic pathways could lead to 

development of pulmonary hypertension (PH), which is in most cases caused by pulmonary 

fibrosis. Furthermore, altered production of vasodilator and vasoconstrictor AA metabolites 

(eicosanoids), such as PGI2, PGD2, PGE2 and PGF2α, plays an important role in 

pathophysiology of PH, one example being the lack of vasodilator PGI2 and its analogues. 

An analogue of PGI2 called iloprost, with antithrombotic, antiproliferative and anti-

inflammatory characteristics which contribute to pathogenesis of PH, is available for 

treatment of this disease (Krug et al., 2009). Based on our results and taking into 

consideration findings of previous studies (C. Foti et al., 2004; R. Foti et al., 2017; Krug et 

al., 2009; Lasota et al., 2013), we consider treatment of SSc and even IPF with iloprost as a 

viable option. 

Lastly, we sought to identify dysregulated genes in Mitochondrial biogenesis. The results 

regarding expression of gene IDH2 in SSc were consistent with the results of previous 

analysis (Metabolic pathways) on much greater number of genes. In both subsets, 

upregulation of IDH2, an enzyme that catalyses the oxidative decarboxylation of isocitrate 

to α-ketoglutarate, was detected. Since previous studies suggest an association between ILDs 

and lung cancer development based on similar characteristics (Archontogeorgis et al., 2012) 
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upregulation of IDH2 is in agreement with findings from Li et al. (2018) who found 

increased expression of IDH2 in blood lymphocytes from patients with lung cancer 

compared to controls (Li et al., 2018). Additionally, evidence from previous studies suggests 

that lung scarring caused by IPF represents a risk factor for lung carcinogenesis 

(Karampitsakos et al., 2017). IDH converts isocitrate to α-ketoglutarate after which 

glutamate from glutaminolysis (already identified in our research as dysregulated pathway) 

enters TCA cycle (Li et al., 2018). There exists one substance called enasidenib, which acts 

as an inhibitor of mutant IDH2 enzyme and is currently used for treatment of acute myeloid 

leukaemia in patients with specific mutations in the IDH2 gene (Stein, 2018). Taken 

together, we propose exploration of treatment with enasidenib for patients with SSc and IPF. 

Although our study was carefully prepared and has reached its aims, there were some 

limitations. First, when determining which genes are included in Mitochondrial biogenesis 

pathway, we selected genes that are encoded only by nuclear DNA (nDNA) and not by 

mitochondrial DNA (mtDNA), therefore analysing solely mtDNA encoded genes would be 

promising for a further and more specific study. Second, regarding the SSc-ILD dataset, the 

clinical data lacked severity classification, thus leaving us without the option to determine 

which genes, if any, contribute the most to progression of the disease. In contrast, when 

studying IPF, we could only compare stable and rapidly progressing phenotypes without a 

control group. Despite the lack of a control group, we are confident that comparing two 

different progressions of IPF has great benefits. For example, it gives us the ability to 

determine the genes with the most significant impact on disease development and 

progression. It can also contribute to further development of molecular diagnostic testing of 

the disease. Third, IPF fibroblasts were in culture for several passages (up to the 11th 

passage) which means that they grew under the same conditions. These cultured fibroblasts 

lack a wide variety of cytokines emitted by the immune/blood cells that are no longer present 

after the extraction from a patient. Therefore, with every passage, the fibroblasts may 

become less activated, which may be the reason why the difference between rapidly 

progressing and steady IPF is not as significant as expected – the samples do not cluster 

according to disease state (Figure A2). Another explanation for this unexpected clustering 

could be that some other cell type, which is not investigated in this study, contributes more 

to the severity of IPF than fibroblasts. 

For future work, we suggest the analysis of IPF versus control and also analysis of different 

levels of severity in SSc, with the aim to determine if there exists an overlap with the DE 

genes discovered in this study.  
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5 CONCLUSION 

The purpose of this study was to investigate if there are any changes in mitochondrial 

metabolism and mitochondrial biogenesis that have a significant role in development and 

progression of SSc and IPF. Our bioinformatic analysis incorporated publicly available gene 

expression data from ten patients with histologically normal lung tissue, eight patients with 

SSc and ten patients with IPF. 

GSEA of SSc dataset shows 38 enriched gene sets/pathways (Table A3) when analysing all 

genes and eight enriched pathways (Table 2) when analysing a subset of genes associated 

with metabolism. The same analysis of IPF dataset shows 29 enriched pathways (Table A11) 

when analysing all genes and nine enriched pathways (Table 3) when analysing a subset of 

genes associated with metabolism. 

As expected, the results reveal increased glycolysis, increased metabolism of purines and 

pyrimidines, as well as increased DNA replication in both diseases. Furthermore, the results 

show perturbed expression of enzymes involved in TCA and OXPHOS. These profound 

metabolic changes may reflect increased energy demand of highly proliferative cells and 

corresponding pathways should be further elucidated with the aim to find effective treatment 

options. 

In addition, results confirm changes in pathways that are already therapeutic targets for 

potential treatments of SSc and IPF, such as Sphingolipid metabolism, AA metabolism and 

Arginine metabolism. 

Lastly, gene expression analysis on genes associated with mitochondrial biogenesis (which 

was possible only after we created Mitochondrial biogenesis gene list) shows 18 DE genes 

in SSc dataset and eight DE genes in IPF dataset. Although these results suggest that this 

process is crucially affected in fibroblasts associated with both diseases, it should be further 

addressed with more specific experiments, for definitive conclusions. 
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6 POVZETEK NALOGE V SLOVENSKEM JEZIKU 

Pljučna fibroza je progresivno brazgotinjenje pljučnega tkiva, ki se pojavlja pri sistemski 

sklerozi (SS) in intersticijski pljučni fibrozi (IPF), z omejenimi možnostmi zdravljenja. 

Patofiziološko to stanje opišemo kot prekomerni nastanek medceličnine, katerega 

povzročajo vztrajno aktivirani fibroblasti, ki diferencirajo v miofibroblaste. Mitohondrijska 

biogeneza je opredeljena kot proces, preko katerega celice povečujejo svojo posamezno 

mitohondrijsko maso z rastjo in delitvijo. Ker povečana beljakovinska sinteza in proliferacija 

celic zahtevata zvišano regulacijo metaboličnih poti, povezanih s stimulacijo mitohondrijske 

biogeneze, je bil cilj te raziskave pregledati metabolične motnje in mitohondrijsko biogenezo 

v pljučnih fibroblastih in posledični učinek na patogenezo SS in IPF.  

Za bioinformatično analizo je bil uporabljen program BRB-ArrayTools. Analizirana sta bila 

dva javno dostopna nabora podatkov DNA-mikromrež (GSE40839 – SS fibroblasti in 

GSE44723 – IPF fibroblasti).   

Analiza je bila razdeljena na tri segmente: 

1. Analiza obogatenosti genskih skupin/poti na vseh genih. 

2. Analiza diferenčne izraženosti genov vključenih v metabolične poti. 

3. Analiza diferenčne izraženosti genov vključenih v mitohondrijsko biogenezo. 

Surovi podatki naborov SS in IPF so bili ob uvozu v BRB-ArrayTools logaritemsko 

transformirani (log2), normalizirani z metodo RMA in anotirani s pripadajočima GPL 

datotekama. Za nadaljnjo analizo so bile uporabljene KEGG poti, v katere mitohondrijske 

biogeneza ni bila vključena. Za analizo omenjene poti, je bilo potrebno narediti seznam 

genov in ga vključiti v že obstoječo bazo BRB-ArrayTools. Oba nabora podatkov sta bila 

razdeljena v dve skupini (SS v primerjavi s kontrolno skupino ter hitro napredujoča IPF v 

primerjavi s počasi napredujočo IPF). 

Z analizo vseh treh segmentov so bili pridobljeni seznami obogatenih poti (prvi segment) in 

diferenčno izraženih genov za vsako podmnožico genov (drugi in tretji segment). Za 

določitev morebitnih funkcijskih interakcij med proteini, ki jih kodirajo diferenčno izraženi 

geni, je bila uporabljena podatkovna baza STRING. 

Rezultati analize prvega segmenta, za SS v primerjavi s kontrolami, so pokazali 39 

obogatenih poti, od katerih so štiri povezane s presnovo ogljikovih hidratov in lipidov. Enaka 

analiza za hitro napredujočo IPF v primerjavi s počasi napredujočo IPF je pokazala 29 

obogatenih poti, od katerih je šest povezanih z metabolizmom nukleotidov in aminokislin. 

Medsebojna primerjava rezultatov je pokazala motnje v metaboličnih poteh, ki so 

pričakovane v visoko proliferativnih celicah – povišana glikoliza/glukoneogeneza, povišan 

metabolizem purinov in pirimidinov ter povečana replikacija DNA. 
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Rezultati analize drugega segmenta (za SS in IPF) so pokazali motnje encimov, vključenih 

v vse tri stopnje celičnega dihanja – citosolna glikoliza, mitohondrijski cikel citronske kisline 

in oksidativna fosforilacija. To nakazuje na visoko energetsko zahtevo fibroblastov, kateri z 

metaboličnim preklopom na aerobno glikolizo proizvedejo dovolj energije za delovanje. Na 

podlagi rezultatov, obravnavamo aktivacijo oksidativne fosforilacije kot možno terapevtsko 

tarčo. Opažena je bila tudi sprememba uravnavanja genov, povezanih z metabolizmom 

sfingolipidov, arginina in prolina ter arahidonske kisline. 

Rezultati analize tretjega segmenta so pokazali diferenčno izražene gene v mitohondrijski 

biogenezi, kar indicira, da je ta proces afektiran tako v SS kot v IPF. Kljub temu, je za 

dokončne zaključke potrebna bolj podrobna preiskava omenjenega procesa. 

Čeprav je naša raziskava dosegla zadane cilje, ni bila brez omejitev. Prvič, ker smo pri 

določanju genov vključenih v mitohondrijsko biogenezo izbirali gene, ki jih kodira le jedrna 

DNA, predlagamo dodatno analizo genov kodiranih z mitohondrijsko DNA. Drugič, 

podatkovni nabor SS ni imel kliničnih podatkov o resnosti bolezenskega stanja, zato nismo 

imeli možnosti določiti kateri geni največ prispevajo k napredovanju bolezni. Nasprotno, 

smo pri podatkovnem naboru IPF primerjali le hitro napredujočo v primerjavi s počasi 

napredujočo IPF brez kontrolne skupine. Kljub pomanjkanju le te, smo prepričani, da ima 

primerjanje dveh različnih napredovanj bolezenskega stanja veliko korist. Omogoča nam, 

da določimo gene, ki imajo na razvoj in napredovanje bolezni največji vpliv. 

Za nadaljnje raziskave predlagamo analizo s primerjavo IPF in kontrolne skupine ter analizo 

s primerjavo različnih stopenj resnosti SS, da bi lahko ugotovili, če obstaja prekrivanje 

genov, z diferenčno izraženimi geni naše raziskave. 
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APPENDIX A – Mitochondrial biogenesis gene list 
There are 63 genes involved in mitochondrial biogenesis Reactome pathway. Only 57 

genes with 122 corresponding probe sets are included in annotation file (GPL96) for 

dataset GSE40839 and all 63 genes with 198 corresponding probe sets are included in 

annotation file (GPL570) for dataset GSE44723. 

Table A1: Important genes associated with Mitochondrial biogenesis from Reactome database 

Symbol Name Genes 

included 

in 

GPL96 

Number of 

probe sets 

in GPL96 

for each 

gene 

Genes 

include

d in 

GPL570 

Number of 

probe sets 

in GPL570 

for each 

gene 

GABPB1 GA-binding protein 

transcription factor beta 

subunit 1 

YES 2 YES 2 

NRF1 Nuclear respiratory factor 1 YES 4 YES 5 

PRKAB1 Protein kinase, AMP-

activated, noncatalytic, beta-1 

YES 2 YES 2 

PRKAG2 Protein kinase, AMP-

activated, noncatalytic, 

gamma-2 

YES 2 YES 5 

PRKAB2 Protein kinase, AMP-

activated, noncatalytic, beta-2 

YES 1 YES 3 

PRKAG1 Protein kinase, AMP-

activated, noncatalytic, 

gamma-1 

YES 1 YES 1 

PRKAA2 Protein kinase, AMP-

activated, catalytic, alpha-2 

YES 1 YES 5 

PRKAG3 Protein kinase, AMP-

activated, noncatalytic, 

gamma-3 

NO 0 YES 1 

CYCS Cytochrome C, somatic YES 1 YES 3 

PPRC1 Peroxisome proliferator-

activated receptor-gamma, 

coactivator-related protein 1 

YES 1 YES 1 

HCFC1 Host cell factor C1 YES 2 YES 3 

GABPA GA-binding protein 

transcription factor, alpha 

subunit 

YES 1 YES 2 

PPARGC1A Peroxisome proliferator-

activated receptor-gamma, 

coactivator 1, alpha 

YES 1 YES 2 

CREB1 CAMP response element-

binding protein 1 

YES 4 YES 7 

SIRT4 Sirtuin 4 YES 2 YES 2 

TFB1M Transcription factor B1, 

mitochondrial 

YES 1 YES 4 



 

Symbol Name Genes 

included 

in 

GPL96 

Number of 

probe sets 

in GPL96 

for each 

gene 

Genes 

include

d in 

GPL570 

Number of 

probe sets 

in GPL570 

for each 

gene 

PERM1 PPARGC1- and ESRR-

induced regulator, muscle, 1 

NO 0 YES 1 

HDAC3 Histone deacetylase 3 YES 1 YES 1 

NCOR1 Nuclear receptor corepressor 1 YES 4 YES 5 

NR1D1/THR

A 

Nuclear receptor subfamily 1, 

group D, member 1 

YES 3 YES 3 

POLG2 Polymerase, DNA, gamma-2 YES 1 YES 1 

GLUD2 Glutamate dehydrogenase 2 YES 2 YES 2 

GLUD1 Glutamate dehydrogenase 1 YES 2 YES 2 

SIRT5 Sirtuin 5 YES 2 YES 4 

PPARGC1B Peroxisome proliferator-

activated receptor-gamma, 

coactivator 1, beta 

NO 0 YES 4 

SIRT3 Sirtuin 3 YES 3 YES 3 

MAPK12 Mitogen-activated protein 

kinase 12 

YES 1 YES 3 

MAPK11 Mitogen-activated protein 

kinase 11 

YES 3 YES 3 

MAPK14 Mitogen-activated protein 

kinase 14 

YES 4 YES 4 

CRTC3 CREB-regulated transcription 

coactivator 3 

YES 1 YES 3 

CRTC1 CREB-regulated transcription 

coactivator 1 

YES 2 YES 2 

CRTC2 CREB-regulated transcription 

coactivator 2 

NO 0 YES 1 

ATP5B ATP synthase, H+ 

transporting, mitochondrial F1 

complex, beta subunit 

YES 1 YES 1 

PEO1/C10orf

2 

Progressive external 

ophthalmoplegia with 

mitochondrial DNA deletions, 

autosomal dominant 3 

YES 1 YES 1 

IDH2 Isocitrate dehydrogenase 2 YES 2 YES 2 

ACSS2 Acetyl-CoA synthetase short 

chain family, member 2 

NO 0 YES 1 

SOD2 Superoxide dismutase 2 YES 4 YES 5 

POLRMT Polymerase, RNA, 

mitochondrial 

YES 2 YES 3 

TFAM Transcription factor A, 

mitochondrial 

YES 3 YES 4 

ESRRA Estrogen-related receptor, 

alpha 

YES 2 YES 2 



 

Symbol Name Genes 

included 

in 

GPL96 

Number of 

probe sets 

in GPL96 

for each 

gene 

Genes 

include

d in 

GPL570 

Number of 

probe sets 

in GPL570 

for each 

gene 

MEF2D Myocyte enhancer factor 2, 

polypeptide D 

YES 2 YES 3 

MEF2C Myocyte enhancer factor 2, 

polypeptide C 

YES 3 YES 3 

SSBP1 Single-stranded DNA-binding 

protein 1 

YES 2 YES 3 

TFB2M Transcription factor B2, 

mitochondrial 

YES 1 YES 4 

ATF2 Activating transcription factor 

2 

YES 2 YES 3 

MED1 Mediator complex subunit 1 YES 2 YES 4 

PPARA Peroxisome proliferator-

activated receptor-alpha 

YES 2 YES 8 

CHD9 Chromodomain helicase 

DNA-binding protein 9 

YES 3 YES 7 

TBL1X Transducin-beta-like 1, x-

linked 

YES 5 YES 6 

TGS1 Trimethylguanosine synthase 

1 

YES 1 YES 3 

HELZ2 Peroxisomal proliferator-

activated receptor alpha-

interacting cofactor complex, 

285-kd subunit 

NO 0 YES  4 

RXRA Retinoid x receptor, alpha YES 2 YES 2 

CREBBP CREB-binding protein YES 2 YES 4 

SMARCD3 SWI/SNF-related, matrix-

associated, actin-dependent 

regulator of chromatin, 

subfamily D, member 3 

YES 1 YES 2 

NCOA6 Nuclear receptor coactivator 6 YES 1 YES 2 

CARM1 Coactivator-associated 

arginine methyltransferase 1 

YES 1 YES 1 

NCOA1 Nuclear receptor coactivator 1 YES 4 YES 4 

TBL1XR1 Transducin-beta-like 1 

receptor 1 

YES 1 YES 6 

NCOA2 Nuclear receptor coactivator 2 YES 4 YES 4 

CAMK4 Calcium/calmodulin-

dependent protein kinase IV 

YES 1 YES 3 

CALM1 Calmodulin 1 YES 10  YES 11  

MTERF1 Transcription termination 

factor 1, mitochondrial 

YES 1 YES 1 

ALAS1 Delta-aminolevulinate 

synthase 1 

YES 1 YES 1 



 

Table A2: Custom made Mitochondrial biogenesis gene list which was added to already existing KEGG gene 

lists in BRB-ArrayTools database 

UGCluster Symbol Accession 

Hs.181202 GABPB1 NM_002041|NM_005254|NM_016654|NM_016655|NM_181427|XM_005254273|XM_00525427

4|XM_006720455|XM_006720456|XM_006720457|XM_006720458 

Hs.202007 NRF1 NM_001040110|NM_001293163|NM_001293164|NM_005011 

Hs.6061 PRKAB1 NM_006253|XM_005253909 

Hs.259842 PRKAG2 NM_001040633|NM_016203|NM_024429|XM_005250002|XM_005250003|XM_005250004|XM

_005250005|XM_005250006|XM_005250007|XM_005250009|XM_006716021 

Hs.50732 PRKAB2 NM_005399|NR_103870|NR_103871 

Hs.3136 PRKAG1 NM_001206709|NM_001206710|NM_002733|NM_212461|XM_005269019|XM_005269020|XM
_006719499|XM_006719500 

Hs.256067 PRKAA2 NM_006252 

Hs.434525 PRKAG3 NM_017431 

Hs.437060 CYCS NM_018947 

Hs.146957 PPRC1 NM_001288727|NM_001288728|NM_015062|XM_005269656|XM_005269658|XM_006717730|

XM_006717731 

Hs.83634 HCFC1 NM_005334|XM_005274664|XM_006724815|XM_006724816 

Hs.78 GABPA NM_001197297|NM_002040|XM_005260938|XM_005260939 

Hs.198468 PPARGC1A NM_013261|XM_005248130|XM_005248131|XM_005248132|XM_005248134 

Hs.22315 CREB1 NM_004379|NM_134442|XR_241289|XR_241290|XR_241292|XR_427071 

Hs.50861 SIRT4 NM_012240|XM_005253865|XM_006719308|XM_006719309|XM_006719310|XM_006719311|

XM_006719312  

Hs.279908 TFB1M NM_016020|XM_005267005|XM_005267006 

Hs.271462 PERM1 NM_001291366|NM_001291367|NM_032722|NR_027693 

Hs.388681 HDAC3 NM_003883|XM_006714802 

Hs.144904 NCOR1 NM_001190438|NM_001190440|NM_006311|XM_005256866|XM_005256867|XM_005256868|
XM_005256871|XM_005256872|XM_005256873|XM_005256874|XM_005256875|XM_0067216

01|XM_006721602|XM_006721603|XM_006721604|XM_006721605 

Hs.276916 NR1D1 NM_001190918|NM_001190919|NM_003250|NM_021724|NM_199334 

Hs.437009 POLG2 NM_007215|XM_006721651|XR_243630 

Hs.525862 GLUD2 NM_012084 

Hs.355697 GLUD1 NM_005271 

Hs.282331 SIRT5 NM_001193267|NM_001242827|NM_012241|NM_031244|XM_005248967|XM_005248968|XM
_005248969 

Hs.248652 PPARGC1B NM_001172698|NM_001172699|NM_133263|XM_005268372 

Hs.511950 SIRT3 NM_001017524|NM_012239|XM_005252835 

Hs.432642 MAPK12 NM_002969|XM_003846644|XM_005275911 

Hs.57732 MAPK11 NM_002751|NR_110887 

Hs.79107 MAPK14 NM_001315|NM_139012|NM_139013|NM_139014|XM_006714998 

Hs.567572 CRTC3 NM_001042574|NM_022769|XM_005254968 

Hs.6051 CRTC1 NM_001098482|NM_015321|NM_025021|XM_005259833|XM_005259834|XM_005259835|XM

_005259836|XM_006722710 

Hs.406392 CRTC2 NM_181715|XM_005244946|XM_005244947|XM_005244949|XM_006711199|XM_006711200|

XM_006711201|XM_006711202 

Hs.406510 ATP5B NM_001686 

Hs.22678 C10orf2 NM_001163812|NM_001163813|NM_001163814|NM_021830|XM_006717921|XM_006717922|
XR_246100 

Hs.5337 IDH2 NM_001289910|NM_001290114|NM_002168 

Hs.14779 ACSS2 NM_001076552|NM_001242393|NM_018677|NM_139274|XM_005260455|XM_005260456|XM

_006723825|XM_006723826 

Hs.384944 SOD2 NM_000636|NM_001024465|NM_001024466 

Hs.254113 POLRMT NM_005035|XM_005259580 

Hs.75133 TFAM NM_001270782|NM_003201|NM_012251|NR_073073 



 

UGCluster Symbol Accession 

Hs.110849 ESRRA NM_001282450|NM_001282451|NM_004451|XM_006718449|XM_006718450 

Hs.77955 MEF2D NM_001271629|NM_005920|XM_005245169|XM_005245170|XM_006711330|XM_006711331|
XM_006711332|XM_006711333|XM_006711334 

Hs.368950 MEF2C NM_001131005|NM_001193347|NM_001193348|NM_001193349|NM_001193350|NM_002397|

XM_005248511|XM_006714618|XM_006714619|XM_006714620|XM_006714621|XM_0067146
22|XM_006714623|XM_006714624|XM_006714625 

Hs.923 SSBP1 NM_001256510|NM_001256511|NM_001256512|NM_001256513|NM_003143|NR_046269|XM

_005250048|XM_005250049|XM_005250050|XM_005250051 

Hs.7395 TFB2M NM_022366 

Hs.80285 ATF2 NM_001256090|NM_001256091|NM_001256092|NM_001256093|NM_001256094|NM_001880|

NR_045768|NR_045769|NR_045770|NR_045771|NR_045772|NR_045773|NR_045774 

Hs.15589 MED1 NM_004774|XM_005257465|XM_006721957 

Hs.271640 PPARA NM_001001928|NM_001001929|NM_001001930|NM_005036|NM_032644|XM_005261653|XM

_005261655|XM_005261656|XM_005261657|XM_006724269|XM_006724270|XM_006724271 

Hs.59159 CHD9 NM_025134|XM_005256168|XM_005256169|XM_005256170|XM_005256171|XM_005256172|

XM_005256174|XM_005256175|XM_005256176|XM_006721280|XM_006721281|XM_0067212

82|XM_006721283|XR_429731 

Hs.76536 TBL1X NM_001139466|NM_001139467|NM_001139468|NM_005647 

Hs.179909 TGS1 NM_024831|XM_005251328|XM_006716485|XM_006716486 

Hs.151714 HELZ2 NM_001037335|NM_033405 

Hs.20084 RXRA NM_001291920|NM_001291921|NM_002957|XM_005263409|XM_006717232 

Hs.270804 CREBBP NM_001079846|NM_004380|XM_005255124|XM_005255125|XM_006720848 

Hs.444445 SMARCD3 NM_001003801|NM_001003802|NM_003078 

Hs.435788 NCOA6 NM_001242539|NM_014071|XM_005260348|XM_006723750|XM_006723751|XM_006723752|

XM_006723753|XM_006723754|XM_006723755 

Hs.371416 CARM1 NM_199141|XM_005259708 

Hs.386092 NCOA1 NM_003743|NM_147223|NM_147233|XM_005264625|XM_005264626|XM_005264627|XM_00
5264628|XM_006712126 

Hs.438970 TBL1XR1 NM_024665|XM_005247771|XM_005247772|XM_005247775|XM_005247776|XM_006713745|

XM_006713746 

Hs.446678 NCOA2 NM_006540|XM_005251128|XM_005251129|XM_005251130|XM_005251131|XM_005251132|

XM_005251133 

Hs.440638 CAMK4 NM_001744 

Hs.282410 CALM1 NM_001166106|NM_006888|XM_006720258 

Hs.97996 MTERF NM_006980|XM_005250593|XM_005250594|XM_005250595|XM_006716126 

Hs.511918 ALAS1 NM_000688|NM_199166|XM_005264944|XM_005264945 

  



 

APPENDIX B – GSEA of SSc 
 

Table A3: Enriched pathways by GSEA (α=0.001) of all genes in SSc-ILD compared to controls, sorted by LS 

permutation p-value 

Pathway description Number of 

gene sets 

LS permutation 

p-value 

Cytokine-cytokine receptor interaction 89 0.00001 

Chemokine signalling pathway 58 0.00001 

Phagosome 73 0.00001 

Cell adhesion molecules (CAMs) 57 0.00001 

Antigen processing and presentation 43 0.00001 

Toll-like receptor signalling pathway 36 0.00001 

NOD-like receptor signalling pathway 24 0.00001 

Cytosolic DNA-sensing pathway 18 0.00001 

Natural killer cell mediated cytotoxicity 48 0.00001 

Type I diabetes mellitus 27 0.00001 

Hepatitis C 48 0.00001 

Autoimmune thyroid disease 24 0.00001 

Allograft rejection 24 0.00001 

Graft-versus-host disease 26 0.00001 

Viral myocarditis 47 0.00001 

Leishmaniasis 26 0.00001 

Osteoclast differentiation 52 0.00005 

RIG-I-like receptor signalling pathway 18 0.00021 

Amyotrophic lateral sclerosis (ALS) 18 0.00051 

JAK-STAT signalling pathway 51 0.00057 

Pancreatic cancer 43 0.00060 

Glycolysis/Gluconeogenesis 29 0.00071 

Toxoplasmosis 47 0.00073 

Endocytosis 75 0.00093 

Staphylococcus aureus infection 12 0.00190 

Proteasome 14 0.00204 

Pathogenic Escherichia coli infection 40 0.00332 

Gap junction 51 0.00340 

African trypanosomiasis 23 0.00624 

Fat digestion and absorption 12 0.00893 

Ether lipid metabolism 11 0.00898 

Fructose and mannose metabolism 13 0.01912 

Chagas disease (American trypanosomiasis) 52 0.02238 

Pathways in cancer 155 0.07025 

Steroid hormone biosynthesis 14 0.09451 

Lysosome 49 0.14518 

p53 signalling pathway 59 0.15075 

DNA replication 26 0.53578 



 

APPENDIX C – Genes of enriched pathways in SSc 
Tables of genes involved in important significantly enriched pathways by GSEA (α=0.001) 

– datset GSE40839. 

Table A4: Upregulated genes (α=0.001) in Osteoclast differentiation pathway in SSc-ILD compared to 

controls, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

201473_at JUNB 0.0005496 -0.74 

203085_s_at TGFB1 0.0006889 -1.12 

212607_at AKT3 0.0045982 -0.62 

209949_at NCF2 0.0333401 -0.32 

206943_at TGFBR1 0.0572675 -0.43 

204628_s_at ITGB3 0.0826239 -0.34 

203879_at PIK3CD 0.1209761 -0.43 

202429_s_at PPP3CA 0.1481402 -0.30 

204627_s_at ITGB3 0.3597784 -0.32 

211537_x_at MAP3K7 0.4155386 -0.17 

202949_s_at FHL2 0.4456635 -0.29 

220407_s_at TGFB2 0.6193209 -0.12 

204313_s_at CREB1 0.6726583 -0.10 

 

Table A5: Downregulated genes (α=0.001) in Osteoclast differentiation pathway in SSc-ILD compared to 

controls, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

AFFX-

HUMISGF3A/M97935_3_at 

STAT1 < 1e-07 2.06 

209969_s_at STAT1 < 1e-07 2.14 

AFFX-

HUMISGF3A/M97935_MB_at 

STAT1 < 1e-07 2.15 

AFFX-

HUMISGF3A/M97935_MA_at 

STAT1 < 1e-07 2.07 

200887_s_at STAT1 < 1e-07 2.13 

AFFX-

HUMISGF3A/M97935_5_at 

STAT1 2.00E-07 1.90 

203882_at IRF9 3.00E-07 1.64 

208944_at TGFBR2 1.70E-06 0.93 

201502_s_at NFKBIA 8.70E-06 1.83 

211676_s_at IFNGR1 1.05E-05 1.16 

210001_s_at SOCS1 1.16E-05 1.06 

209716_at CSF1 4.71E-05 0.96 

202948_at IL1R1 5.38E-05 1.63 

215561_s_at IL1R1 0.0001191 0.78 

204932_at TNFRSF11B 0.0001532 2.09 

209239_at NFKB1 0.0001625 0.60 

201471_s_at SQSTM1 0.0003801 1.15 



 

Probe set Gene symbol Parametric p-value logFC 

210105_s_at FYN 0.0004628 1.14 

201466_s_at JUN 0.0004828 0.63 

204933_s_at TNFRSF11B 0.0005089 2.23 

201465_s_at JUN 0.0007686 0.57 

202743_at PIK3R3 0.0008968 0.63 

201464_x_at JUN 0.0020500 0.69 

202450_s_at CTSK 0.0024082 1.93 

205170_at STAT2 0.0024738 0.82 

207233_s_at MITF 0.0033579 1.04 

213112_s_at SQSTM1 0.0036446 0.97 

207334_s_at TGFBR2 0.0043350 0.46 

216033_s_at FYN 0.0045883 1.00 

209341_s_at IKBKB 0.0272084 0.53 

203752_s_at JUND 0.0724440 0.42 

208510_s_at PPARG 0.0746871 0.57 

203028_s_at CYBA 0.0774965 0.29 

205067_at IL1B 0.1768759 0.34 

221903_s_at CYLD 0.1811908 0.36 

212240_s_at PIK3R1 0.3174871 0.21 

204369_at PIK3CA 0.4180769 0.20 

201648_at JAK1 0.6447218 0.10 

204420_at FOSL1 0.7430879 0.12 

 

Table A6: Upregulate genes (α=0.001) in Glycolysis/Gluconeogenesis pathway in SSc-ILD compared to 

controls, sorted by parametric p-value –all genes 

Probe set Gene symbol Parametric p-value logFC 

213011_s_at TPI1 5.00E-07 -1.03 

217294_s_at ENO1 7.40E-06 -1.03 

201037_at PFKP 9.70E-06 -1.89 

201231_s_at ENO1 1.20E-05 -0.84 

200737_at PGK1 1.32E-05 -0.97 

208308_s_at GPI 2.19E-05 -0.89 

200822_x_at TPI1 2.32E-05 -0.86 

217356_s_at PGK1 3.70E-05 -1.22 

200738_s_at PGK1 5.41E-05 -0.92 

200650_s_at LDHA 9.79E-05 -0.81 

209645_s_at ALDH1B1 0.0008129 -1.29 

201313_at ENO2 0.0015445 -0.79 

209646_x_at ALDH1B1 0.0024024 -0.58 

211023_at PDHB 0.0067421 -0.43 

203502_at BPGM 0.1526975 -0.54 

202847_at PCK2 0.1704186 -0.54 

200697_at HK1 0.2103270 -0.25 



 

Probe set Gene symbol Parametric p-value logFC 

202934_at HK2 0.8117521 -0.07 

 

Table A7: Downregulated genes (α=0.01) in Glycolysis/Gluconeogenesis pathway in SSc-ILD compared to 

controls, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

208848_at ADH5 3.00E-06 1.03 

203180_at ALDH1A3 9.30E-06 1.82 

209612_s_at ADH1B 0.0003134 3.69 

208847_s_at ADH5 0.0005913 0.66 

209613_s_at ADH1B 0.0023055 3.08 

209614_at ADH1B 0.0027065 1.83 

202054_s_at ALDH3A2 0.0210571 0.88 

202053_s_at ALDH3A2 0.0251304 0.51 

210544_s_at ALDH3A2 0.0711939 0.50 

201425_at ALDH2 0.1736907 0.64 

201251_at PKM 0.9665203 0.01 

 

Table A8: Upregulated genes (α=0.001) in Glycolysis/Gluconeogenesis pathway in SSc-ILD compared to 

controls, sorted by parametric p-value –Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

213011_s_at TPI1 5.00E-07 -1.03 

217294_s_at ENO1 7.40E-06 -1.03 

201037_at PFKP 9.70E-06 -1.89 

201231_s_at ENO1 1.20E-05 -0.84 

200737_at PGK1 1.32E-05 -0.97 

208308_s_at GPI 2.19E-05 -0.89 

200822_x_at TPI1 2.32E-05 -0.86 

217356_s_at PGK1 3.70E-05 -1.22 

200738_s_at PGK1 5.41E-05 -0.92 

200650_s_at LDHA 9.79E-05 -0.81 

209645_s_at ALDH1B1 0.0008129 -1.29 

201313_at ENO2 0.0015445 -0.79 

209646_x_at ALDH1B1 0.0024024 -0.58 

211023_at PDHB 0.0067421 -0.43 

203502_at BPGM 0.1526975 -0.54 

202847_at PCK2 0.1704186 -0.54 

200697_at HK1 0.210327 -0.25 

202934_at HK2 0.8117521 -0.07 

 

 



 

Table A9: Downregulated genes (α=0.001) in Glycolysis/Gluconeogenesis pathway in SSc-ILD compared to 

controls, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

208848_at ADH5 3.00E-06 1.03 

203180_at ALDH1A3 9.30E-06 1.82 

209612_s_at ADH1B 0.000313 3.69 

208847_s_at ADH5 0.000591 0.66 

209613_s_at ADH1B 0.002306 3.08 

209614_at ADH1B 0.002707 1.83 

202054_s_at ALDH3A2 0.021057 0.88 

202053_s_at ALDH3A2 0.02513 0.51 

210544_s_at ALDH3A2 0.071194 0.50 

201425_at ALDH2 0.173691 0.64 

201251_at PKM 0.96652 0.01 

 

Table A10: Downregulated genes (α=0.001) in Metabolism of xenobiotics by cytochrome P450 pathway in 

SSc-ILD compared to controls, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

208848_at ADH5 3.00E-06 1.03 

203180_at ALDH1A3 9.30E-06 1.82 

209612_s_at ADH1B 0.000313 3.69 

208847_s_at ADH5 0.000591 0.66 

209613_s_at ADH1B 0.002306 3.08 

209614_at ADH1B 0.002707 1.83 

  



 

APPENDIX D – GSEA of IPF 
 

Table A11: Enriched pathways by GSEA (α=0.01) of all genes in stable IPF compared to rapidly progressing 

IPF, sorted by LS permutation p-value 

Pathway description Number 

of probe sets 

LS permutation p-

value 

Pyrimidine metabolism 45 0.00001 

DNA replication 40 0.00001 

Base excision repair 16 0.00001 

Nucleotide excision repair 24 0.00001 

Mismatch repair 19 0.00001 

Cell cycle 103 0.00001 

Progesterone-mediated oocyte maturation 54 0.00001 

Homologous recombination 17 0.00023 

One carbon pool by folate 17 0.00025 

Spliceosome 26 0.00049 

Non-small cell lung cancer 27 0.00160 

Protein processing in endoplasmic 

reticulum 

67 0.00178 

Ribosome biogenesis in eukaryotes 11 0.00179 

Lysine degradation 24 0.00206 

Oocyte meiosis 67 0.00233 

Basal transcription factors 6 0.00326 

Glioma 49 0.00451 

RNA transport 40 0.00454 

Bacterial invasion of epithelial cells 27 0.00681 

Chronic myeloid leukaemia 39 0.00707 

Purine metabolism 89 0.00841 

Type II diabetes mellitus 19 0.00929 

Ubiquitin mediated proteolysis 35 0.00947 

Other glycan degradation 6 0.01252 

Protein export 5 0.01688 

Mucin type O-Glycan biosynthesis 26 0.04634 

Osteoclast differentiation 62 0.06275 

Antigen processing and presentation 36 0.06836 

Bladder cancer 31 0.08121 

  



 

APPENDIX E – Genes of enriched pathways in IPF 
Tables of genes involved in important significantly enriched pathways by GSEA (α=0.01) – 

dataset GSE44723. 

Table A12: Downregulated genes (α=0.01) in Pyrimidine metabolism pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

204077_x_at ENTPD4 0.0217312 -0.67 

203234_at UPP1 0.0247452 -0.94 

209474_s_at ENTPD1 0.3163895 -0.38 

223342_at RRM2B 0.3208927 -0.30 

1553994_at NT5E 0.3890537 -0.45 

207691_x_at ENTPD1 0.4075008 -0.30 

205627_at CDA 0.5090810 -0.30 

227556_at NME7 0.5429829 -0.23 

203939_at NT5E 0.5976266 -0.25 

209473_at ENTPD1 0.6939727 -0.18 

201695_s_at PNP 0.8350958 -0.09 

227486_at NT5E 0.8414048 -0.12 

 

Table A13: Upregulated genes (α=0.01) in Pyrimidine metabolism pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

225291_at PNPT1 0.0014094 1.06 

201476_s_at RRM1 0.0014875 0.76 

205909_at POLE2 0.0016366 2.31 

205628_at PRIM2 0.0018440 1.05 

226702_at CMPK2 0.0029050 3.64 

1554696_s_at TYMS 0.0040362 2.36 

1553983_at DTYMK 0.0040484 0.69 

202589_at TYMS 0.0047698 2.43 

208828_at POLE3 0.0052202 0.99 

1553984_s_at DTYMK 0.0056362 1.16 

205053_at PRIM1 0.0058456 2.26 

204835_at POLA1 0.0080029 1.62 

203270_at DTYMK 0.0100524 1.09 

201477_s_at RRM1 0.0111839 1.01 

216026_s_at POLE 0.0112797 1.14 

208956_x_at DUT 0.0143346 0.90 

203302_at DCK 0.0150716 0.82 

204441_s_at POLA2 0.0154821 1.07 

206653_at POLR3G 0.0164935 1.34 

212836_at POLD3 0.0168184 0.95 

203422_at POLD1 0.0168464 1.04 



 

Probe set Gene symbol Parametric p-value logFC 

209932_s_at DUT 0.0169020 0.91 

208955_at DUT 0.0175086 1.77 

209773_s_at RRM2 0.0175463 2.17 

201890_at RRM2 0.0214974 2.02 

202338_at TK1 0.0275547 1.09 

1554408_a_at TK1 0.0291660 1.19 

218997_at POLR1E 0.0397613 0.52 

233341_s_at POLR1B 0.0403370 0.76 

217647_at DHODH 0.1572036 0.65 

202613_at CTPS1 0.2053446 0.40 

204646_at DPYD 0.2191307 0.45 

206197_at NME5 0.5494710 0.21 

 

Table A14: Upregulated genes (α=0.01) in DNA replication pathway in rapidly progressing IPF compared to 

stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

205909_at POLE2 0.0016366 2.31 

203022_at RNASEH2A 0.0016891 1.79 

202726_at LIG1 0.0017467 1.07 

205628_at PRIM2 0.0018440 1.05 

203210_s_at RFC5 0.0018636 1.59 

201202_at PCNA 0.0019247 1.44 

204767_s_at FEN1 0.0028930 1.60 

204768_s_at FEN1 0.0029900 1.54 

202107_s_at MCM2 0.0030816 1.74 

201930_at MCM6 0.0034859 1.90 

204023_at RFC4 0.0037503 1.56 

212141_at MCM4 0.0044429 0.93 

204128_s_at RFC3 0.0044786 1.69 

201528_at RPA1 0.0046364 1.01 

216237_s_at MCM5 0.0051082 1.94 

208828_at POLE3 0.0052202 0.99 

201755_at MCM5 0.0053360 1.41 

203209_at RFC5 0.0056880 1.60 

205053_at PRIM1 0.0058456 2.26 

204127_at RFC3 0.0059669 1.51 

201555_at MCM3 0.0060818 1.56 

222036_s_at MCM4 0.0063213 1.40 

209507_at RPA3 0.0064839 1.43 

219056_at RNASEH2B 0.0065023 2.17 

213647_at DNA2 0.0066281 1.98 

222037_at MCM4 0.0072396 1.54 

204835_at POLA1 0.0080029 1.62 



 

Probe set Gene symbol Parametric p-value logFC 

208795_s_at MCM7 0.0081063 1.53 

210983_s_at MCM7 0.0096923 1.51 

216026_s_at POLE 0.0112797 1.14 

212142_at MCM4 0.0145609 0.90 

204441_s_at POLA2 0.0154821 1.07 

212836_at POLD3 0.0168184 0.95 

203422_at POLD1 0.0168464 1.04 

1053_at RFC2 0.0181381 1.01 

238977_at MCM6 0.0189354 1.90 

203696_s_at RFC2 0.0459311 0.87 

209085_x_at RFC1 0.0702684 0.50 

214060_at SSBP1 0.2170583 0.24 

236675_at RPA1 0.3757452 0.36 

 

Table A15: Downregulated genes (α=0.01) in One carbon pool by folate pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

231202_at ALDH1L2 0.0314808 -1.47 

1556841_a_at ALDH1L2 0.0326266 -0.74 

1559393_at ALDH1L2 0.0519851 -0.49 

220346_at MTHFD2L 0.5867397 -0.17 

 

Table A16: Upregulated genes (α=0.01) in One carbon pool by folate pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

208758_at ATIC 0.0021904 0.88 

202533_s_at DHFR 0.0026556 1.69 

1554696_s_at TYMS 0.0040362 2.36 

202589_at TYMS 0.0047698 2.43 

202534_x_at DHFR 0.0056074 1.62 

48808_at DHFR 0.0066937 1.68 

202309_at MTHFD1 0.0073173 1.24 

202532_s_at DHFR 0.0075526 1.66 

238762_at MTHFD2L 0.0148880 1.08 

230097_at GART 0.0508094 0.76 

239562_at MTHFD2L 0.1382986 0.76 

234976_x_at MTHFD2 0.1676506 0.52 

1554841_at MTHFD2L 0.3724131 0.20 

  



 

Table A17: Downregulated genes (α=0.01) in Purine metabolism pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

212522_at PDE8A 0.0056566 -0.69 

236344_at PDE1C 0.0063397 -1.32 

216869_at PDE1C 0.0094213 -0.86 

239218_at PDE1C 0.0159725 -1.56 

204077_x_at ENTPD4 0.0217312 -0.67 

205501_at PDE10A 0.0244203 -1.15 

236300_at PDE3A 0.0302880 -1.18 

222862_s_at AK5 0.0452287 -1.18 

228962_at PDE4D 0.0572375 -0.58 

228507_at PDE3A 0.0590218 -1.29 

243438_at PDE7B 0.0783267 -0.62 

211302_s_at PDE4B 0.0787966 -0.84 

207992_s_at AMPD3 0.0809413 -0.69 

219308_s_at AK5 0.0898381 -1.18 

230109_at PDE7B 0.0967604 -1.18 

203708_at PDE4B 0.1093486 -1.25 

1562227_at PDE5A 0.2249707 -0.47 

205593_s_at PDE9A 0.2359090 -0.49 

209474_s_at ENTPD1 0.3163895 -0.38 

223342_at RRM2B 0.3208927 -0.30 

1553994_at NT5E 0.3890537 -0.45 

233547_x_at PDE1A 0.3896786 -0.29 

207691_x_at ENTPD1 0.4075008 -0.30 

1558680_s_at PDE1A 0.4407162 -0.25 

227088_at PDE5A 0.4835999 -0.49 

206757_at PDE5A 0.5324234 -0.42 

227556_at NME7 0.5429829 -0.23 

208396_s_at PDE1A 0.5538320 -0.40 

204491_at PDE4D 0.5739310 -0.27 

203939_at NT5E 0.5976266 -0.25 

240088_at PDE5A 0.6057441 -0.17 

236234_at PDE1A 0.6358906 -0.15 

1553175_s_at PDE5A 0.6380457 -0.14 

1562228_s_at PDE5A 0.6654720 -0.15 

231213_at PDE1A 0.6724942 -0.22 

209473_at ENTPD1 0.6939727 -0.18 

226325_at ADSSL1 0.7633995 -0.20 

201695_s_at PNP 0.8350958 -0.09 

227486_at NT5E 0.8414048 -0.12 

223272_s_at NTPCR 0.8567387 -0.04 

241994_at XDH 0.9202875 -0.06 

 



 

Table A18: Upregulated genes (α=0.01) in Purine metabolism pathway in rapidly progressing IPF compared 

to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

201892_s_at IMPDH2 0.0012528 0.89 

225291_at PNPT1 0.0014094 1.06 

201476_s_at RRM1 0.0014875 0.76 

205909_at POLE2 0.0016366 2.31 

205628_at PRIM2 0.0018440 1.05 

208758_at ATIC 0.0021904 0.88 

201013_s_at PAICS 0.0035761 1.24 

201014_s_at PAICS 0.0039213 1.42 

208828_at POLE3 0.0052202 0.99 

213302_at PFAS 0.0055167 1.53 

205053_at PRIM1 0.0058456 2.26 

223358_s_at PDE7A 0.0072323 1.86 

204835_at POLA1 0.0080029 1.62 

225367_at PGM2 0.0080542 0.68 

212175_s_at AK2 0.0111551 0.70 

201477_s_at RRM1 0.0111839 1.01 

216026_s_at POLE 0.0112797 1.14 

202854_at HPRT1 0.0130152 0.85 

203302_at DCK 0.0150716 0.82 

204441_s_at POLA2 0.0154821 1.07 

206653_at POLR3G 0.0164935 1.34 

212836_at POLD3 0.0168184 0.95 

203422_at POLD1 0.0168464 1.04 

209773_s_at RRM2 0.0175463 2.17 

204120_s_at ADK 0.0190332 0.74 

201890_at RRM2 0.0214974 2.02 

225366_at PGM2 0.0251897 0.66 

222317_at PDE3B 0.0341903 2.23 

209433_s_at PPAT 0.0362300 0.82 

224046_s_at PDE7A 0.0367858 1.20 

204639_at ADA 0.0382945 3.02 

218997_at POLR1E 0.0397613 0.52 

233341_s_at POLR1B 0.0403370 0.76 

214582_at PDE3B 0.0420283 1.76 

216705_s_at ADA 0.0435364 2.86 

230097_at GART 0.0508094 0.76 

204119_s_at ADK 0.0708036 0.53 

212174_at AK2 0.0800793 0.49 

209440_at PRPS1 0.4377859 0.29 

230352_at PRPS2 0.5022550 0.18 

228952_at ENPP1 0.5397365 0.34 

206197_at NME5 0.5494710 0.21 



 

Probe set Gene symbol Parametric p-value logFC 

208447_s_at PRPS1 0.6494109 0.19 

229088_at ENPP1 0.6870518 0.37 

224209_s_at GDA 0.7203912 0.18 

205066_s_at ENPP1 0.9075678 0.11 

203741_s_at ADCY7 0.9435177 0.04 

209321_s_at ADCY3 0.9811355 0.01 

 

Table A19: Downregulated genes (α=0.01) in Osteoclast differentiation pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Probe set Gene symbol Parametric p-value logFC 

209189_at FOS 0.003058 -1.40 

202450_s_at CTSK 0.006722 -2.25 

204933_s_at TNFRSF11B 0.007955 -1.89 

211676_s_at IFNGR1 0.008680 -0.64 

1552610_a_at JAK1 0.009024 -0.89 

204627_s_at ITGB3 0.010495 -1.22 

1552611_a_at JAK1 0.010992 -1.00 

204932_at TNFRSF11B 0.011150 -1.51 

201648_at JAK1 0.013787 -0.79 

207233_s_at MITF 0.015150 -0.86 

204628_s_at ITGB3 0.018706 -0.79 

201471_s_at SQSTM1 0.023080 -0.89 

227697_at SOCS3 0.028083 -2.32 

202948_at IL1R1 0.033502 -1.47 

206359_at SOCS3 0.036310 -1.60 

39582_at CYLD 0.048504 -0.51 

205205_at RELB 0.052184 -0.60 

213295_at CYLD 0.059492 -0.58 

226066_at MITF 0.064035 -0.81 

225636_at STAT2 0.064541 -0.79 

215561_s_at IL1R1 0.075050 -0.45 

203752_s_at JUND 0.091650 -0.34 

209909_s_at TGFB2 0.099261 -0.92 

213112_s_at SQSTM1 0.108901 -0.67 

228442_at NFATC2 0.119038 -0.84 

229029_at CAMK4 0.120376 -0.60 

224793_s_at TGFBR1 0.125840 -0.36 

39402_at IL1B 0.143776 -2.25 

205067_at IL1B 0.144697 -2.40 

228121_at TGFB2 0.156321 -0.64 

202897_at SIRPA 0.162888 -0.64 

32541_at PPP3CC 0.163603 -0.40 

204813_at MAPK10 0.178523 -0.58 



 

Probe set Gene symbol Parametric p-value logFC 

204638_at ACP5 0.205251 -0.49 

222880_at AKT3 0.246106 -0.30 

210118_s_at IL1A 0.251436 -1.06 

226991_at NFATC2 0.254158 -0.56 

213281_at JUN 0.322681 -0.43 

220407_s_at TGFB2 0.351414 -0.38 

216033_s_at FYN 0.361407 -0.34 

201464_x_at JUN 0.417200 -0.38 

201465_s_at JUN 0.463437 -0.32 

201502_s_at NFKBIA 0.520934 -0.22 

201466_s_at JUN 0.536944 -0.34 

200887_s_at STAT1 0.542287 -0.22 

AFFX-

HUMISGF3A/M97935_3_at 

STAT1 0.554775 -0.22 

210105_s_at FYN 0.572800 -0.20 

212486_s_at FYN 0.579435 -0.27 

208510_s_at PPARG 0.664412 -0.15 

241871_at CAMK4 0.884169 -0.07 

 

Table A20: Upregulated genes (α=0.01) in Osteoclast differentiation pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – all genes 

Gene set Gene symbol Parametric p-value logFC 

212239_at PIK3R1 0.001329 0.83 

212240_s_at PIK3R1 0.002687 0.94 

202743_at PIK3R3 0.003138 1.54 

205698_s_at MAP2K6 0.007669 1.91 

210001_s_at SOCS1 0.009300 0.73 

211580_s_at PIK3R3 0.013292 0.77 

230917_at PLCG2 0.077044 1.40 

1552263_at MAPK1 0.084414 0.43 

236561_at TGFBR1 0.272305 0.41 

211105_s_at NFATC1 0.307455 0.52 

209949_at NCF2 0.402598 0.66 

209969_s_at STAT1 0.947796 0.03 

  



 

Table A21: Downregulated genes in Pyrimidine metabolism (α=0.01) pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

203234_at UPP1 0.024745 -0.94 

223342_at RRM2B 0.320893 -0.30 

1553994_at NT5E 0.389054 -0.45 

205627_at CDA 0.509081 -0.30 

227556_at NME7 0.542983 -0.23 

203939_at NT5E 0.597627 -0.25 

201695_s_at PNP 0.835096 -0.09 

227486_at NT5E 0.841405 -0.12 

 

Table A22: Upregulated genes (α=0.01) in Pyrimidine metabolism pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

201476_s_at RRM1 0.001488 0.76 

205909_at POLE2 0.001637 2.31 

205628_at PRIM2 0.001844 1.05 

226702_at CMPK2 0.002905 3.64 

1554696_s_at TYMS 0.004036 2.36 

1553983_at DTYMK 0.004048 0.69 

202589_at TYMS 0.004770 2.43 

208828_at POLE3 0.005220 0.99 

1553984_s_at DTYMK 0.005636 1.16 

205053_at PRIM1 0.005846 2.26 

204835_at POLA1 0.008003 1.62 

203270_at DTYMK 0.010052 1.09 

201477_s_at RRM1 0.011184 1.01 

216026_s_at POLE 0.011280 1.14 

208956_x_at DUT 0.014335 0.90 

203302_at DCK 0.015072 0.82 

204441_s_at POLA2 0.015482 1.07 

206653_at POLR3G 0.016494 1.34 

212836_at POLD3 0.016818 0.95 

203422_at POLD1 0.016846 1.04 

209932_s_at DUT 0.016902 0.91 

208955_at DUT 0.017509 1.77 

209773_s_at RRM2 0.017546 2.17 

201890_at RRM2 0.021497 2.02 

202338_at TK1 0.027555 1.09 

1554408_a_at TK1 0.029166 1.19 

218997_at POLR1E 0.039761 0.52 

233341_s_at POLR1B 0.040337 0.76 

217647_at DHODH 0.157204 0.65 



 

Probe set Gene symbol Parametric p-value logFC 

202613_at CTPS1 0.205345 0.40 

204646_at DPYD 0.219131 0.45 

206197_at NME5 0.549471 0.21 

 

Table A23: Upregulated genes (α=0.01) in DNA replication pathway in rapidly progressing IPF compared to 

stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

205909_at POLE2 0.001637 2.31 

205628_at PRIM2 0.001844 1.05 

208828_at POLE3 0.005220 0.99 

205053_at PRIM1 0.005846 2.26 

204835_at POLA1 0.008003 1.62 

216026_s_at POLE 0.011280 1.14 

204441_s_at POLA2 0.015482 1.07 

212836_at POLD3 0.016818 0.95 

203422_at POLD1 0.016846 1.04 

214060_at SSBP1 0.217058 0.24 

 

Table A24: Downregulated genes (α=0.01) in One carbon pool by folate pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

220346_at MTHFD2L 0.58674 -0.17 

 

Table A25: Upregulated genes (α=0.01) in One carbon pool by folate pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

208758_at ATIC 0.002190 0.88 

202533_s_at DHFR 0.002656 1.69 

1554696_s_at TYMS 0.004036 2.36 

202589_at TYMS 0.004770 2.43 

202534_x_at DHFR 0.005607 1.62 

48808_at DHFR 0.006694 1.68 

202309_at MTHFD1 0.007317 1.24 

202532_s_at DHFR 0.007553 1.66 

238762_at MTHFD2L 0.014888 1.08 

230097_at GART 0.050809 0.76 

239562_at MTHFD2L 0.138299 0.76 

234976_x_at MTHFD2 0.167651 0.52 

1554841_at MTHFD2L 0.372413 0.20 

 



 

Table A26: Downregulated genes (α=0.01) in Purine metabolism pathway in rapidly progressing IPF 

compared to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

222862_s_at AK5 0.045229 -1.18 

207992_s_at AMPD3 0.080941 -0.69 

219308_s_at AK5 0.089838 -1.18 

223342_at RRM2B 0.320893 -0.30 

1553994_at NT5E 0.389054 -0.45 

227556_at NME7 0.542983 -0.23 

203939_at NT5E 0.597627 -0.25 

226325_at ADSSL1 0.763400 -0.20 

201695_s_at PNP 0.835096 -0.09 

227486_at NT5E 0.841405 -0.12 

223272_s_at NTPCR 0.856739 -0.04 

241994_at XDH 0.920288 -0.06 

 

Table A27: Upregulated genes (α=0.01) in Purine metabolism pathway in rapidly progressing IPF compared 

to stable IPF, sorted by parametric p-value – Metabolic pathways genes 

Probe set Gene symbol Parametric p-value logFC 

201892_s_at IMPDH2 0.001253 0.89 

201476_s_at RRM1 0.001488 0.76 

205909_at POLE2 0.001637 2.31 

205628_at PRIM2 0.001844 1.05 

208758_at ATIC 0.002190 0.88 

201013_s_at PAICS 0.003576 1.24 

201014_s_at PAICS 0.003921 1.42 

208828_at POLE3 0.005220 0.99 

213302_at PFAS 0.005517 1.53 

205053_at PRIM1 0.005846 2.26 

204835_at POLA1 0.008003 1.62 

225367_at PGM2 0.008054 0.68 

212175_s_at AK2 0.011155 0.70 

201477_s_at RRM1 0.011184 1.01 

216026_s_at POLE 0.011280 1.14 

202854_at HPRT1 0.013015 0.85 

203302_at DCK 0.015072 0.82 

204441_s_at POLA2 0.015482 1.07 

206653_at POLR3G 0.016494 1.34 

212836_at POLD3 0.016818 0.95 

203422_at POLD1 0.016846 1.04 

209773_s_at RRM2 0.017546 2.17 

204120_s_at ADK 0.019033 0.74 

201890_at RRM2 0.021497 2.02 

225366_at PGM2 0.025190 0.66 



 

Probe set Gene symbol Parametric p-value logFC 

209433_s_at PPAT 0.036230 0.82 

204639_at ADA 0.038295 3.02 

218997_at POLR1E 0.039761 0.52 

233341_s_at POLR1B 0.040337 0.76 

216705_s_at ADA 0.043536 2.86 

230097_at GART 0.050809 0.76 

204119_s_at ADK 0.070804 0.53 

212174_at AK2 0.080079 0.49 

209440_at PRPS1 0.437786 0.29 

230352_at PRPS2 0.502255 0.18 

228952_at ENPP1 0.539737 0.34 

206197_at NME5 0.549471 0.21 

208447_s_at PRPS1 0.649411 0.19 

229088_at ENPP1 0.687052 0.37 

224209_s_at GDA 0.720391 0.18 

205066_s_at ENPP1 0.907568 0.11 



 

APPENDIX F – DE genes of Metabolic pathways analysis (SSc 

and IPF) 
 

Table A28: DE genes (SSc-ILD vs. controls – upregulated in orange and downregulated in black) by 

differential expression analysis (α=0.01) of Metabolic pathways genes 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value 

logFC 

208937_s_at ID1 TGF-β  signalling pathway < 1e-07 -5.80 

207826_s_at ID3 TGF-β  signalling pathway < 1e-07 -4.18 

212226_s_at PPAP2B Metabolic pathways < 1e-07 2.15 

217933_s_at LAP3 Metabolic pathways 2.00E-07 2.43 

204790_at SMAD7 TGF beta signalling pathway,  3.00E-07 -1.51 

201516_at SRM Metabolic pathways 5.00E-07 -1.09 

204608_at ASL Metabolic pathways 5.00E-07 -0.86 

213011_s_at TPI1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

5.00E-07 -1.03 

209355_s_at PPAP2B Metabolic pathways 5.00E-07 2.34 

212230_at PPAP2B Metabolic pathways 6.00E-07 2.44 

208941_s_at SEPHS1 Metabolic pathways 7.00E-07 -0.89 

213725_x_at XYLT1 Metabolic pathways 7.00E-07 -2.84 

201577_at NME1 Metabolic pathways 9.00E-07 -1.15 

36936_at TSTA3 Metabolic pathways 9.00E-07 -0.81 

204224_s_at GCH1 Metabolic pathways 1.10E-06 2.39 

208944_at TGFBR2 TGF beta signalling pathway 1.70E-06 0.93 

208848_at ADH5 Fatty acid degradation, 

Glycolysis/Gluconeogenesis, 

Metabolic pathways 

3.00E-06 1.03 

200790_at ODC1 Metabolic pathways 3.90E-06 -1.60 

210511_s_at INHBA TGF-β  signalling pathway 6.00E-06 -2.47 

207388_s_at PTGES Metabolic pathways 6.30E-06 0.97 

203157_s_at GLS D-Glutamine and D-glutamate 

metabolism, Metabolic 

pathways, Nitrogen metabolism 

7.20E-06 -1.25 

217294_s_at ENO1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

7.40E-06 -1.03 

204241_at ACOX3 Fatty acid degradation, 

Metabolic pathways, PPAR 

signalling pathway 

7.50E-06 -0.94 

203180_at ALDH1A3 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

9.30E-06 1.82 

202613_at CTPS1 Metabolic pathways 9.70E-06 -2.32 

201037_at PFKP Glycolysis/Gluconeogenesis, 

Metabolic pathways, Pentose 

phosphate pathway 

9.70E-06 -1.89 



 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value 

logFC 

208447_s_at PRPS1 Metabolic pathways, Pentose 

phosphate pathway 

1.08E-05 -2.40 

203159_at GLS D-Glutamine and D-glutamate 

metabolism, Metabolic 

pathways, Nitrogen metabolism 

1.12E-05 -1.56 

201231_s_at ENO1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

1.20E-05 -0.84 

201014_s_at PAICS Metabolic pathways 1.24E-05 -0.97 

210367_s_at PTGES Metabolic pathways 1.28E-05 1.51 

200737_at PGK1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

1.32E-05 -0.97 

218189_s_at NANS Metabolic pathways 1.42E-05 -0.94 

209440_at PRPS1 Metabolic pathways, Pentose 

phosphate pathway 

1.89E-05 -1.89 

208308_s_at GPI Glycolysis/Gluconeogenesis, 

Metabolic pathways, Pentose 

phosphate pathway 

2.19E-05 -0.89 

211813_x_at DCN TGF-β  signalling pathway 2.29E-05 1.16 

200822_x_at TPI1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

2.32E-05 -0.86 

201893_x_at DCN TGF-β  signalling pathway 2.50E-05 0.93 

210337_s_at ACLY Citrate cycle (TCA cycle), 

Metabolic pathways 

2.58E-05 -1.12 

200078_s_at ATP6V0B Metabolic pathways, Oxidative 

phosphorylation 

2.80E-05 -0.84 

210029_at IDO1 Metabolic pathways 2.89E-05 1.16 

208972_s_at ATP5G1 Metabolic pathways, Oxidative 

phosphorylation 

3.40E-05 -0.79 

208116_s_at MAN1A1 Metabolic pathways 3.44E-05 1.01 

207357_s_at GALNT10 Metabolic pathways 3.65E-05 -1.60 

217356_s_at PGK1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

3.70E-05 -1.22 

212256_at GALNT10 Metabolic pathways 4.69E-05 -1.64 

214390_s_at BCAT1 Metabolic pathways 5.29E-05 -0.67 

200738_s_at PGK1 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

5.41E-05 -0.92 

201272_at AKR1B1 Metabolic pathways, Pyruvate 

metabolism 

5.78E-05 1.27 

207992_s_at AMPD3 Metabolic pathways 5.89E-05 1.10 

209147_s_at PPAP2A Metabolic pathways 6.48E-05 1.29 

212322_at SGPL1 Metabolic pathways 6.83E-05 -0.62 

208905_at CYCS Apoptosis 7.32E-05 -0.97 

205396_at SMAD3 TGF beta signalling pathway 8.30E-05 1.23 

204881_s_at UGCG Metabolic pathways 8.51E-05 1.14 

217993_s_at MAT2B Metabolic pathways 8.76E-05 0.72 



 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value 

logFC 

201013_s_at PAICS Metabolic pathways 8.93E-05 -0.81 

201127_s_at ACLY Citrate cycle (TCA cycle), 

Metabolic pathways 

9.29E-05 -1.00 

200650_s_at LDHA Glycolysis/Gluconeogenesis, 

Metabolic pathways, Pyruvate 

metabolism 

9.79E-05 -0.81 

205066_s_at ENPP1 Metabolic pathways 0.0001024 -1.74 

205401_at AGPS Metabolic pathways 0.0001060 -1.15 

203302_at DCK Metabolic pathways 0.0001137 -1.18 

210046_s_at IDH2 Citrate cycle (TCA cycle), 

Metabolic pathways 

0.0001157 -1.15 

201128_s_at ACLY Citrate cycle (TCA cycle), 

Metabolic pathways 

0.0001273 -1.12 

215813_s_at PTGS1 Metabolic pathways 0.0001358 -1.89 

35626_at SGSH Metabolic pathways 0.0001362 0.99 

202721_s_at GFPT1 Metabolic pathways 0.000146 -0.81 

202722_s_at GFPT1 Metabolic pathways 0.0001524 -0.84 

203270_at DTYMK Metabolic pathways 0.000158 -0.81 

211896_s_at DCN TGF-β  signalling pathway 0.0001833 1.20 

220751_s_at FAXDC2 Metabolic pathways 0.0001893 0.90 

221760_at MAN1A1 Metabolic pathways 0.0002171 1.51 

217870_s_at CMPK1 Metabolic pathways 0.0002358 -0.71 

205128_x_at PTGS1 Metabolic pathways 0.0002363 -1.51 

208070_s_at REV3L Metabolic pathways 3.00E-04 1.30 

209335_at DCN TGF-β  signalling pathway 0.0003125 1.68 

209612_s_at ADH1B Fatty acid degradation, 

Glycolysis/Gluconeogenesis, 

Metabolic pathways 

0.0003134 3.69 

219374_s_at ALG9 Metabolic pathways 0.0003382 -0.76 

215001_s_at GLUL Metabolic pathways, Nitrogen 

metabolism 

0.0003495 1.02 

205397_x_at SMAD3 TGF beta signalling pathway,  0.0003695 1.13 

208131_s_at PTGIS Metabolic pathways 0.0004129 2.01 

209293_x_at ID4 TGF-β  signalling pathway 0.0004158 -0.74 

200815_s_at PAFAH1B

1 

Metabolic pathways 0.0004176 -0.84 

214452_at BCAT1 Metabolic pathways 0.000559 -0.94 

201476_s_at RRM1 Metabolic pathways 0.0005772 -1.09 

208847_s_at ADH5 Fatty acid degradation, 

Glycolysis/Gluconeogenesis, 

Metabolic pathways 

0.0005913 0.66 

203158_s_at GLS D-Glutamine and D-glutamate 

metabolism, Metabolic 

pathways, Nitrogen metabolism 

0.0005980 -1.06 



 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value 

logFC 

201724_s_at GALNT1 Metabolic pathways 0.0006385 -0.79 

218070_s_at GMPPA Metabolic pathways 0.0006484 -0.69 

212334_at GNS Metabolic pathways 0.0006886 0.78 

203085_s_at TGFB1 MAPK Signalling Pathway, p38 

MAPK Signalling Pathway, 

TGF beta signalling pathway 

0.0006889 -1.12 

201196_s_at AMD1 Metabolic pathways 0.0006948 -0.76 

205404_at HSD11B1 Metabolic pathways 0.0007209 2.37 

205083_at AOX1 Metabolic pathways 0.0007283 1.01 

203039_s_at NDUFS1 Metabolic pathways, Oxidative 

phosphorylation 

0.0007392 -0.58 

209291_at ID4 TGF-β  signalling pathway 0.0007531 -1.36 

205571_at LIPT1 Metabolic pathways 0.0008057 0.79 

209645_s_at ALDH1B1 Fatty acid degradation, 

Glycolysis/Gluconeogenesis, 

Pyruvate metabolism 

0.0008129 -1.29 

210946_at PPAP2A Metabolic pathways 0.0008358 1.23 

212335_at GNS Metabolic pathways 0.0008924 0.83 

208828_at POLE3 Metabolic pathways 0.0009829 -0.92 

 

Table A29: DE genes (rapidly progressing IPF vs. steady IPF – upregulated in orange and downregulated in 

black) by differential expression analysis (α=0.01) of Metabolic pathways genes 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value  

logFC 

218313_s_at GALNT7 Metabolic pathways 0.000387 1.37 

222587_s_at GALNT7 Metabolic pathways 0.000829 1.48 

209397_at ME2 Pyruvate metabolism 0.000902 1.13 

219956_at GALNT6 Metabolic pathways 0.000937 1.34 

205289_at BMP2 TGF-β  signalling pathway 0.001018 -1.84 

210154_at ME2 Pyruvate metabolism 0.001188 1.12 

201892_s_at IMPDH2 Metabolic pathways 0.001253 0.89 

201476_s_at RRM1 Metabolic pathways 0.001488 0.76 

205909_at POLE2 Metabolic pathways 0.001637 2.31 

209199_s_at MEF2C Mitochondrial biogenesis 0.001744 1.55 

205290_s_at BMP2 TGF-β  signalling pathway 0.001773 -1.89 

205628_at PRIM2 Metabolic pathways 0.001844 1.05 

201563_at SORD Metabolic pathways 0.001868 1.07 

1552378_s_at RDH10 Metabolic pathways 0.001927 -1.00 

208758_at ATIC Metabolic pathways 0.002190 0.88 

228303_at GALNT6 Metabolic pathways 0.002225 1.12 

238669_at PTGS1 Metabolic pathways 0.002315 -2.06 

209200_at MEF2C Mitochondrial biogenesis 0.002325 1.30 



 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value  

logFC 

205127_at PTGS1 Metabolic pathways 0.002477 -1.89 

1552306_at ALG10 Metabolic pathways 0.002594 1.37 

202533_s_at DHFR Metabolic pathways 0.002656 1.69 

226702_at CMPK2 Metabolic pathways 0.002905 3.64 

201013_s_at PAICS Metabolic pathways 0.003576 1.24 

201014_s_at PAICS Metabolic pathways 0.003921 1.42 

215813_s_at PTGS1 Metabolic pathways 0.003942 -1.89 

1554696_s_at TYMS Metabolic pathways 0.004036 2.36 

1553983_at DTYMK Metabolic pathways 0.004048 0.69 

203228_at PAFAH1B3 Metabolic pathways 0.004102 1.18 

217848_s_at PPA1 Oxidative phosphorylation 0.004369 0.94 

205128_x_at PTGS1 Metabolic pathways 0.00446 -1.84 

201036_s_at HADH Fatty acid degradation, 

Metabolic pathways 

0.004616 1.58 

202438_x_at IDS Metabolic pathways 0.004697 -0.79 

202589_at TYMS Metabolic pathways 0.00477 2.43 

223515_s_at COQ3 Metabolic pathways 0.004844 1.34 

208828_at POLE3 Metabolic pathways 0.00522 0.99 

213302_at PFAS Metabolic pathways 0.005517 1.53 

202534_x_at DHFR Metabolic pathways 0.005607 1.62 

1553984_s_at DTYMK Metabolic pathways 0.005636 1.16 

205053_at PRIM1 Metabolic pathways 0.005846 2.26 

214681_at GK Metabolic pathways 0.005848 -1.03 

211569_s_at HADH Fatty acid degradation, 

Metabolic pathways 

0.006397 1.55 

48808_at DHFR Metabolic pathways 0.006694 1.68 

203180_at ALDH1A3 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

0.006831 -2.12 

202309_at MTHFD1 Metabolic pathways 0.007317 1.24 

202532_s_at DHFR Metabolic pathways 0.007553 1.66 

221550_at COX15 Metabolic pathways, Oxidative 

phosphorylation 

0.007553 0.89 

201697_s_at DNMT1 Metabolic pathways 0.007855 1.03 

218440_at MCCC1 Metabolic pathways 0.00795 0.93 

204835_at POLA1 Metabolic pathways 0.008003 1.62 

239461_at GALNT15 Metabolic pathways 0.008041 -1.40 

225367_at PGM2 Glycolysis/Gluconeogenesis, 

Metabolic pathways 

0.008054 0.68 

204158_s_at TCIRG1 Metabolic pathways, Oxidative 

phosphorylation 

0.008148 -0.97 

215775_at THBS1 TGF-β  signalling pathway 0.008199 -0.56 

213400_s_at TBL1X Mitochondrial biogenesis 0.008688 -0.62 

235801_at TUSC3 Metabolic pathways 0.008951 -0.81 



 

Probe set Gene 

symbol 

Defined gene list Parametric 

p-value  

logFC 

213587_s_at ATP6V0E2 Metabolic pathways, Oxidative 

phosphorylation 

0.009119 1.28 

219257_s_at SPHK1 Metabolic pathways 0.009144 -1.29 

226021_at RDH10 Metabolic pathways 0.009613 -1.03 

207387_s_at GK Metabolic pathways 0.009827 -1.12 

  



 

APPENDIX G – List of probe sets available for the analysis of the 

Mitochondrial biogenesis subset (SSc and IPF) 
 

Table A30: List of 121 probe sets, sorted by parametric p-value, available for differential expression analysis 

(SSc vs. controls) after normalization and subsetting –Mitochondrial biogenesis genes 

Probe set Symbol Parametric p-value logFC 

215223_s_at SOD2 < 1e-07 3.30 

216841_s_at SOD2 2.00E-07 2.96 

221477_s_at SOD2 6.00E-07 2.94 

208905_at CYCS 7.32E-05 -0.97 

210046_s_at IDH2 0.0001157 -1.15 

201322_at ATP5B 0.0002282 -0.45 

218590_at C10orf2 0.0003153 -0.40 

209107_x_at NCOA1 0.0014446 0.42 

219169_s_at TFB1M 0.0021482 -0.42 

209105_at NCOA1 0.0025580 0.28 

212867_at NCOA2 0.0046282 0.68 

216326_s_at HDAC3 0.0058180 -0.27 

203737_s_at PPRC1 0.0070686 -0.40 

202474_s_at HCFC1 0.0072277 -0.25 

202591_s_at SSBP1 0.0072333 -0.58 

209106_at NCOA1 0.0080209 0.42 

218605_at TFB2M 0.0088261 -0.47 

211984_at CALM1 0.0089600 -0.38 

219185_at SIRT5 0.0115379 0.28 

203004_s_at MEF2D 0.0133999 -0.30 

200855_at NCOR1 0.0138047 -0.25 

206173_x_at GABPB1 0.0157815 -0.40 

209563_x_at CALM1 0.0218286 -0.32 

215078_at SOD2 0.0227743 0.31 

218292_s_at PRKAG2 0.0292772 0.30 

201834_at PRKAB1 0.0334026 0.25 

208541_x_at TFAM 0.0334419 -0.25 

205731_s_at NCOA2 0.0335788 0.23 

203003_at MEF2D 0.0340323 -0.34 

210449_x_at MAPK14 0.0384103 -0.22 

210188_at GABPA 0.0407322 -0.27 

210045_at IDH2 0.0416791 -0.18 

207243_s_at CALM1 0.0425208 -0.30 

214474_at PRKAB2 0.0577492 -0.42 

203176_s_at TFAM 0.0614762 -0.30 

200655_s_at CALM1 0.0849745 -0.30 

200653_s_at CALM1 0.0883483 -0.38 

221428_s_at TBL1XR1 0.1009750 0.42 



 

Probe set Symbol Parametric p-value logFC 

204618_s_at GABPB1 0.1072150 -0.32 

213400_s_at TBL1X 0.1074280 0.31 

200854_at NCOR1 0.1103970 -0.27 

211280_s_at NRF1 0.1130610 -0.17 

217476_at NR1D1 0.1184230 -0.15 

210249_s_at NCOA1 0.1248630 0.31 

203496_s_at MED1 0.1415590 -0.29 

211985_s_at CALM1 0.1482650 -0.23 

205633_s_at ALAS1 0.1519780 0.39 

204652_s_at NRF1 0.1591500 -0.15 

206106_at MAPK12 0.1695700 0.14 

203783_x_at POLRMT 0.2005140 -0.14 

221010_s_at SIRT5 0.2075850 0.10 

221913_at SIRT3 0.2169620 0.12 

202160_at CREBBP 0.2179980 0.25 

205732_s_at NCOA2 0.2477040 0.11 

200856_x_at NCOR1 0.2525450 0.15 

49327_at SIRT3 0.2695580 0.18 

205446_s_at ATF2 0.2756580 -0.22 

201868_s_at TBL1X 0.2780400 -0.17 

203177_x_at TFAM 0.2819550 -0.17 

202530_at MAPK14 0.2916050 0.11 

213091_at CRTC1 0.2919330 -0.10 

211499_s_at MAPK11 0.2970560 0.11 

209200_at MEF2C 0.3062120 0.12 

221562_s_at SIRT3 0.3075310 0.10 

211279_at NRF1 0.3192650 -0.07 

200622_x_at CALM1 0.3209210 -0.15 

203782_s_at POLRMT 0.3333940 -0.17 

212616_at CHD9 0.3352560 -0.25 

215605_at NCOA2 0.3605410 0.08 

203497_at MED1 0.3616640 -0.25 

202426_s_at RXRA 0.3645390 -0.14 

207968_s_at MEF2C 0.3769420 0.07 

201805_at PRKAG1 0.4026110 -0.09 

213401_s_at TBL1X 0.4115300 0.08 

201867_s_at TBL1X 0.4275180 0.21 

207709_at PRKAA2 0.4412490 -0.06 

201835_s_at PRKAB1 0.4697280 0.08 

204099_at SMARCD3 0.4712930 -0.09 

207159_x_at CRTC1 0.4872620 -0.07 

204651_at NRF1 0.4899510 -0.06 

200623_s_at CALM1 0.4921500 -0.18 

200947_s_at GLUD1 0.4984920 0.10 



 

Probe set Symbol Parametric p-value logFC 

218648_at CRTC3 0.5117900 -0.10 

202449_s_at RXRA 0.5174090 0.10 

203193_at ESRRA 0.5211590 -0.06 

213688_at CALM1 0.5237480 -0.07 

1487_at ESRRA 0.5399710 -0.06 

220047_at SIRT4 0.5969070 0.04 

204314_s_at CREB1 0.5974750 0.07 

200857_s_at NCOR1 0.5989710 -0.09 

215231_at PRKAG2 0.6020820 -0.03 

210447_at GLUD2 0.6048560 -0.03 

219195_at PPARGC1A 0.6225600 -0.07 

204760_s_at NR1D1 0.6239580 0.07 

220586_at CHD9 0.6527850 0.04 

204313_s_at CREB1 0.6726580 -0.10 

214060_at SSBP1 0.6792820 0.04 

202473_x_at HCFC1 0.6967420 -0.03 

204312_x_at CREB1 0.7274390 -0.04 

210349_at CAMK4 0.7286710 -0.03 

219231_at TGS1 0.7293910 -0.04 

214513_s_at CREB1 0.7298040 -0.04 

222248_s_at SIRT4 0.7325070 0.04 

209199_s_at MEF2C 0.7389180 -0.06 

206040_s_at MAPK11 0.7437450 0.03 

206870_at PPARA 0.7450940 -0.03 

212512_s_at CARM1 0.7479720 -0.04 

211561_x_at MAPK14 0.7731330 -0.04 

211500_at MAPK11 0.8109190 0.03 

212615_at CHD9 0.8152320 0.03 

211087_x_at MAPK14 0.8631680 0.01 

200946_x_at GLUD1 0.9031610 0.03 

210771_at PPARA 0.9095890 0.00 

205811_at POLG2 0.9332510 0.00 

31637_s_at NR1D1 0.9468600 0.03 

208979_at NCOA6 0.9557760 0.01 

211808_s_at CREBBP 0.9568340 0.00 

212984_at ATF2 0.9697980 0.00 

215794_x_at GLUD2 0.9700170 0.00 

213710_s_at CALM1 0.9743620 0.00 

201869_s_at TBL1X 0.9812360 0.00 

 

  



 

Table A31: List of 197 probe sets, sorted by parametric p-value, available for differential expression analysis 

(SSc vs. controls) after normalization and subsetting –Mitochondrial biogenesis genes 

ProbeSet Symbol Parametric p-value logFC 

200854_at NCOR1 0.000744 0.51 

209199_s_at MEF2C 0.001744 1.55 

209200_at MEF2C 0.002325 1.30 

204760_s_at NR1D1 0.003230 -0.42 

205811_at POLG2 0.003354 0.73 

201868_s_at TBL1X 0.007171 -0.38 

1566932_x_at TFB2M 0.008011 -0.32 

213400_s_at TBL1X 0.008688 -0.62 

203782_s_at POLRMT 0.010707 0.48 

203003_at MEF2D 0.011657 -0.34 

226307_at CRTC2 0.013580 -0.25 

202591_s_at SSBP1 0.014086 0.51 

219231_at TGS1 0.014427 0.70 

1566931_at TFB2M 0.014910 -0.30 

200857_s_at NCOR1 0.023314 0.24 

202449_s_at RXRA 0.023733 -0.62 

201867_s_at TBL1X 0.023998 -0.62 

225452_at MED1 0.024543 0.23 

200622_x_at CALM1 0.026926 0.63 

203193_at ESRRA 0.027585 -0.23 

210046_s_at IDH2 0.027785 1.01 

202474_s_at HCFC1 0.029779 0.42 

203004_s_at MEF2D 0.030244 -0.23 

234312_s_at ACSS2 0.030648 -0.32 

200623_s_at CALM1 0.030960 0.40 

233748_x_at PRKAG2 0.032598 -0.74 

225641_at MEF2D 0.037192 -0.47 

203177_x_at TFAM 0.037379 0.73 

244689_at PPARA 0.038830 -0.30 

222634_s_at TBL1XR1 0.039180 0.51 

201869_s_at TBL1X 0.039400 -0.45 

238346_s_at TGS1 0.040005 0.53 

222582_at PRKAG2 0.041525 -0.79 

218292_s_at PRKAG2 0.041542 -0.81 

218590_at C10orf2 0.042331 0.64 

203737_s_at PPRC1 0.044666 0.40 

220047_at SIRT4 0.045006 -0.29 

200947_s_at GLUD1 0.045294 0.32 

206106_at MAPK12 0.045305 -0.34 

200856_x_at NCOR1 0.046379 0.25 



 

ProbeSet Symbol Parametric p-value logFC 

203497_at MED1 0.047401 0.32 

242157_at CHD9 0.047939 0.78 

235890_at TBL1XR1 0.048837 0.45 

213401_s_at TBL1X 0.051887 -0.36 

222633_at TBL1XR1 0.054116 0.37 

203176_s_at TFAM 0.056028 0.51 

243189_at NRF1 0.060412 0.34 

201322_at ATP5B 0.065566 0.28 

223013_at TBL1XR1 0.072883 0.42 

221428_s_at TBL1XR1 0.073854 0.53 

1487_at ESRRA 0.076617 -0.22 

211279_at NRF1 0.079960 0.36 

210045_at IDH2 0.082099 0.80 

216326_s_at HDAC3 0.082935 0.29 

232181_at PPARGC1B 0.089875 1.21 

225456_at MED1 0.090836 0.31 

1558631_at PPARA 0.099322 -0.18 

208905_at CYCS 0.108071 0.25 

229112_at SIRT5 0.114331 -0.15 

204651_at NRF1 0.116675 0.49 

225278_at PRKAB2 0.118269 -0.36 

229029_at CAMK4 0.120376 -0.60 

213710_s_at CALM1 0.122069 -0.36 

207968_s_at MEF2C 0.130221 0.31 

213091_at CRTC1 0.130297 -0.20 

232787_at HELZ2 0.135262 -0.14 

208979_at NCOA6 0.136726 0.43 

1553639_a_at PPARGC1B 0.138822 0.24 

204652_s_at NRF1 0.142470 0.36 

200655_s_at CALM1 0.143315 0.21 

202426_s_at RXRA 0.146067 -0.23 

200855_at NCOR1 0.155882 0.15 

206040_s_at MAPK11 0.157273 -0.25 

202160_at CREBBP 0.157871 0.26 

219185_at SIRT5 0.164555 0.38 

206173_x_at GABPB1 0.169428 0.33 

201835_s_at PRKAB1 0.175773 0.19 

1558027_s_at PRKAB2 0.180649 -0.30 

237289_at CREB1 0.182522 0.24 

212867_at NCOA2 0.196436 0.40 

31637_s_at NR1D1 0.201438 -0.25 

222248_s_at SIRT4 0.204025 -0.25 



 

ProbeSet Symbol Parametric p-value logFC 

215231_at PRKAG2 0.204459 -0.12 

223437_at PPARA 0.210714 -0.17 

226978_at PPARA 0.212875 -0.18 

210447_at GLUD2 0.215465 -0.42 

214060_at SSBP1 0.217058 0.24 

209563_x_at CALM1 0.219472 0.19 

208541_x_at TFAM 0.244016 0.25 

1556340_at MAPK12 0.244934 -0.22 

228177_at CREBBP 0.257255 -0.14 

218605_at TFB2M 0.261980 0.19 

209106_at NCOA1 0.269216 0.34 

236371_s_at TGS1 0.273943 0.16 

204099_at SMARCD3 0.276655 -0.38 

231144_at SMARCD3 0.285500 -0.12 

234301_s_at TFB1M 0.300686 -0.12 

207159_x_at CRTC1 0.306118 -0.17 

217476_at NR1D1 0.308437 0.10 

211087_x_at MAPK14 0.329513 0.11 

1566342_at SOD2 0.333134 -0.51 

210188_at GABPA 0.352066 0.19 

209107_x_at NCOA1 0.352656 0.18 

221477_s_at SOD2 0.355244 -0.51 

238443_at TFAM 0.359844 0.31 

238489_at PRKAA2 0.364919 -0.10 

205732_s_at NCOA2 0.372989 0.08 

1566930_at TFB2M 0.377298 -0.06 

213688_at CALM1 0.380009 -0.27 

1560981_a_at PPARA 0.382778 0.38 

210249_s_at NCOA1 0.386329 0.19 

201805_at PRKAG1 0.387460 -0.20 

201834_at PRKAB1 0.397346 0.10 

49327_at SIRT3 0.403485 -0.09 

225572_at CREB1 0.406383 0.19 

228616_at POLRMT 0.412571 -0.09 

1562442_a_at SSBP1 0.422454 0.08 

204618_s_at GABPB1 0.426056 0.20 

211499_s_at MAPK11 0.427059 -0.12 

221010_s_at SIRT5 0.428260 0.12 

200653_s_at CALM1 0.435084 0.14 

235858_at CREBBP 0.447006 -0.10 

204312_x_at CREB1 0.449209 0.12 

200946_x_at GLUD1 0.452102 0.15 



 

ProbeSet Symbol Parametric p-value logFC 

216841_s_at SOD2 0.455916 -0.40 

232879_at CRTC3 0.464335 -0.14 

219169_s_at TFB1M 0.479494 -0.15 

202530_at MAPK14 0.493204 0.08 

211808_s_at CREBBP 0.498123 0.07 

1569938_at SIRT5 0.500065 -0.09 

205633_s_at ALAS1 0.510889 0.11 

203496_s_at MED1 0.513221 0.07 

1555282_a_at PPARGC1B 0.524583 0.15 

232518_at HELZ2 0.526083 -0.06 

223904_at PRKAG3 0.526847 -0.09 

229415_at CYCS 0.534438 0.16 

205731_s_at NCOA2 0.538601 -0.09 

204313_s_at CREB1 0.539266 0.11 

211280_s_at NRF1 0.548906 0.14 

210449_x_at MAPK14 0.555744 0.10 

210349_at CAMK4 0.559777 -0.07 

232517_s_at HELZ2 0.561164 -0.07 

203783_x_at POLRMT 0.568684 -0.06 

212616_at CHD9 0.579124 -0.07 

223438_s_at PPARA 0.579326 -0.07 

206870_at PPARA 0.582114 -0.06 

233633_at TBL1XR1 0.589328 -0.06 

241619_at CALM1 0.593738 0.06 

207709_at PRKAA2 0.595948 0.10 

209105_at NCOA1 0.596007 0.12 

221913_at SIRT3 0.596268 -0.04 

235388_at CHD9 0.604945 -0.07 

227892_at PRKAA2 0.606393 -0.25 

231224_x_at PRKAG2 0.614216 -0.07 

220586_at CHD9 0.614506 0.04 

1556341_s_at MAPK12 0.620769 -0.12 

1563943_at PPARGC1B 0.621434 -0.06 

228230_at HELZ2 0.637614 -0.06 

219195_at PPARGC1A 0.649544 -0.25 

214474_at PRKAB2 0.651353 -0.10 

229586_at CHD9 0.655269 -0.06 

202473_x_at HCFC1 0.684349 -0.03 

240349_at PRKAA2 0.685158 -0.09 

232022_at TFB1M 0.688451 -0.07 

228075_x_at TFB1M 0.700160 -0.09 

239654_at CHD9 0.712821 -0.10 



 

ProbeSet Symbol Parametric p-value logFC 

212512_s_at CARM1 0.722940 0.04 

207243_s_at CALM1 0.726569 -0.04 

244546_at CYCS 0.734295 -0.09 

215223_s_at SOD2 0.744542 -0.18 

210771_at PPARA 0.744690 0.08 

227428_at GABPA 0.755201 0.07 

211561_x_at MAPK14 0.767185 0.03 

238441_at PRKAA2 0.772699 -0.12 

215794_x_at GLUD2 0.778838 0.06 

225565_at CREB1 0.783737 -0.04 

1568874_at NCOA6 0.804301 -0.03 

1555146_at ATF2 0.805390 0.03 

221562_s_at SIRT3 0.813687 0.03 

212984_at ATF2 0.815867 0.04 

214513_s_at CREB1 0.823071 0.03 

1570293_at TBL1X 0.830102 0.01 

237142_at PPARA 0.850463 0.01 

234313_at NCOR1 0.853295 -0.01 

218648_at CRTC3 0.861444 -0.01 

224501_at PERM1 0.882620 -0.01 

241871_at CAMK4 0.884169 -0.07 

1569141_a_at PPARGC1A 0.895282 -0.01 

215078_at SOD2 0.912929 -0.03 

231177_at HCFC1 0.939291 0.01 

211984_at CALM1 0.940579 -0.01 

204314_s_at CREB1 0.941928 0.01 

211500_at MAPK11 0.949142 0.00 

212615_at CHD9 0.957975 -0.01 

205446_s_at ATF2 0.970069 -0.01 

211985_s_at CALM1 0.970843 0.01 

215605_at NCOA2 0.975854 0.00 

 

  



 

APPENDIX H – Heatmaps (differential expression analysis of 

Metabolism pathways) and explanatory information regarding 

the names of samples 

 

Figure A1: Heatmap of gene expression values for DE genes (α=0.001) in SSc-ILD patients and controls –

Metabolic pathways genes 

Expression values are represented by black to pink colour gradient, ranging from 2.43 to 13.87 (lowest values 

in black and highest values in light pink). 



 

 

Figure A2: Heatmap of expression values for DE genes (α=0.01) in rapidly progressing IPF and steady IPF 

– Metabolic pathways genes 

Expression values are represented by black to pink colour gradient, ranging from 2.29 to 12.72 (lowest values 

in black and highest values in light pink). 



 

Table A32: List of renamed samples used when generating heatmaps in Genesis (SSc and IPF) 

GSE40839  

Original names of samples Renamed samples 

GSM1003058 Control 1 

GSM1003059 Control 2 

GSM1003060 Control 3 

GSM1003061 Control 4 

GSM1003062 Control 5 

GSM1003063 Control 6 

GSM1003064 Control 7 

GSM1003065 Control 8 

GSM1003066 Control 9 

GSM1003067 Control 10 

GSM1003069  SSc-ILD 1 

GSM1003070 SSc-ILD 2 

GSM1003071 SSc-ILD 3 

GSM1003072 SSc-ILD 4 

GSM1003073 SSc-ILD 5 

GSM1003074 SSc-ILD 6 

GSM1003075 SSc-ILD 7 

GSE44723  

Original names of samples Renamed samples 

GSM1089614 Rapidly progressing IPF 1 

GSM1089615 Steady IPF 1 

GSM1089619 Rapidly progressing IPF 2 

GSM1089621 Steady IPF 2 

GSM1089622 Rapidly progressing IPF 3 

GSM1089623 Rapidly progressing IPF 4 

GSM1089624 Steady IPF 3 

GSM1089625 Steady IPF 4 

GSM1089626 Steady IPF 5 

GSM1089627 Steady IPF 6 

  



 

APPENDIX I – STRING schemes (SSc and IPF) 

 

Figure A3: STRING scheme of 26 downregulated genes (SSc-ILD vs. controls) – Metabolic pathways and 

TGF-β pathway genes 
There are 26 nodes (proteins) and 19 edges (protein-protein associations) in this network. Such an enrichment 

indicates that the proteins are at least partially biologically connected, as a group. Connections between genes 

associated with specific pathways are nicely visible. 4 genes which are in the centre of the scheme (ALDH1A3, 

ADH1B, AOX1 and ADH5) all participate in Tyrosine metabolism (red nodes) and Drug metabolism – 

Cytochrome P450 (light green nodes) pathways. 3 of them (ALDH1A3, ADH1B and ADH5) are included in 

Glycolysis/gluconeogenesis (brown nodes) and together with the most central gene in the scheme (HSD11B,) 

form a group of genes involved in Metabolism of xenobiotics by cytochrome P450 (dark blue nodes). A triangle 

on the right side of the scheme represents Sphingolipid metabolism (yellow nodes) which involves 3 genes 

(UGCG, PPAP2B and PPAP2A). 2 of them (PPAP2A and PPAP2B) have additional connection due to their 

association with Fat digestion and absorption (pink nodes) and Ether lipid metabolism (dark green nodes). 

There are also 2 connected genes above the triangle (GLUL and LAP3) which are associated with Arginine 

and proline metabolism (light blue nodes) and 2 connected genes below the triangle (SGSH and GNS) which 

are involved in Glycosaminoglycan degradation (orange nodes). In addition, we observe connection between 

genes PTGIS and PTGES which are involved in Arachidonic acid metabolism (purple nodes). 



 

 

Figure A4: STRING scheme of 49 upregulated genes ( SSc-ILD vs. controls) – Metabolic pathways and 

TGF-β pathway genes 

There are 49 nodes (proteins) and 134 edges (protein-protein associations) in this network. Such an enrichment 

indicates that the proteins are at least partially biologically connected, as a group. There are 5 connected 

genes in the upper right corner of the scheme (SMAD7, TGFB1, INHBA, ID1 and ID3) which are all involved 

in TGF-β signalling pathway (red nodes). In the lower right corner, there are 7 connected genes (CTPS1, 

NME1, POLE, CMPK1, RRM1, DCK, and DTYMK) which are included in Pyrimidine metabolism (dark blue 

nodes). 4 of them (NME1, POLE, RRM1 and DCK), with the addition of PAICS, form a group of genes involved 

in Purine metabolism (green nodes). In addition, 5 yellow nodes represent genes involved in 

Glycolysis/gluconeogenesis and 5 orange nodes represent genes involved in Biosynthesis of amino acids. 

Genes associated with other pathways (for example TCA cycle – pink nodes, Mucin type O-Glycan biosynthesis 

– dark green nodes and Pentose phosphate pathway – light blue nodes) mostly form groups of 2 and their 

connections are not as nicely visible as in pathways described thus far. 



 

 

Figure A5: STRING scheme of 12 downregulated genes ( rapidly progressing IPF vs. steady IPF) - 

Metabolic pathways and TGF-β pathway genes 

There are 12 nodes (proteins) and 1 edge, which represents predicted association between genes ALDH1A3 

and RDH10. Black line indicates interaction based on co-expression, yellow line represents connection based 

on textminig, green line shows predicted interaction based on gene neighbourhoods and light blue line 

represents known interaction from curated databases which are also experimentally determined (pink line). 

All red marked genes are included in Metabolic pathways. 

  



 

 

Figure A6: STRING scheme of 29 upregulated genes (rapidly progressing IPF vs. steady IPF) – Metabolic 

pathways and TGF-β pathway genes 

There are 29 nodes (proteins) and 64 edges (protein-protein associations) in this network. Such an enrichment 

of edges indicates that the proteins are at least partially biologically connected as a group. Nodes are marked 

with seven distinct colours. Each one represents different KEGG defined pathway. Red colour marks 26 genes 

included in Metabolic pathways, purple colour marks ten genes included in Purine metabolism, light green 

colour marks eight proteins included in Pyrimidine metabolism, yellow colour marks four proteins included in 

One carbon pool by folate pathway, pink colour marks four proteins included in DNA replication, dark green 

colour marks three proteins included in Oxidative phosphorylation and light blue colour marks two proteins 

included in Mucin type O-Glycan biosynthesis. There are six distinct colours of edges. Black lines indicate 

interactions based on co-expression, yellow lines represent connections based on textminig, green lines show 

predicted interactions based on gene neighbourhoods, light blue lines represent known interactions from 

curated databases which are also experimentally determined (pink lines) and dark blue lines show predicted 

interactions based on gene co-occurrence. 

  



 

APPENDIX J – KEGG schemes with DE genes 

 

Figure A7: DE genes in Glycolysis/gluconeogenesis pathways 

Orange coloured genes are upregulated in SSc-ILD, and purple coloured genes are downregulated in SSc-

ILD.  



 

 

Figure A8: DE genes in TCA cycle pathway 

Orange colour represents upregulated genes in SSc-ILD. 

 

 

Figure A9: DE genes in OXPHOS pathway 

Orange coloured genes are upregulated in SSc-ILD, light blue coloured genes are downregulated in rapidly 

progressing IPF and pink coloured gene is upregulated in rapidly progressing IPF  

  



 

 
Figure A10: DE genes in Sphingolipid metabolism 

Purple coloured genes are downregulated in SSc-ILD, orange coloured gene is upregulated in SSc-ILD and 

light blue coloured genes are downregulated in rapidly progressing IPF. 

 

 

Figure A11: DE genes in Arginine and proline metabolism, Nitrogen metabolism and D-Glutamine, D-

Glutamate metabolism 

Purple coloured genes are downregulated in SSc-ILD and orange coloured genes are upregulated in SSc-ILD. 



 

 

Figure A12: DE genes in Biosynthesis of eicosanoids pathway 

Orange colour represents upregulation of a gene in SSc-ILD, light blue colour represents downregulation of 

a gene in rapidly progressing IPF and red colour represents downregulation of a gene in SSc-ILD. 


