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Ključna dokumentacijska informacija

Ime in PRIIMEK: Rade NJEŽIĆ
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Title of final project paper: Bifurcations of equilibria of vector fields with applications

to predator-prey systems

Place: Koper

Year: 2018

Number of pages: 30 Number of figures: 8 Number of references: 6

Mentor: Assist. Prof. Barbara Boldin, PhD

Keywords: dynamical system, differential equation, equilibrium, local stability, bifur-

cation, eigenvalue, mathematical model, predator, prey

Math. Subj. Class. (2010): 37C10,37H20,92D25

Abstract: In the final project paper we study bifurcations of equilibria of vector fields

and present some applications in predator-prey systems. We introduce the notion of

the transcritical, saddle-node, pitchfork and the Poincare-Andronov-Hopf bifurcation

and present the conditions for each of these bifurcations. As an example of applica-

tions, we present and study three models describing the interactions of predators and

their prey.
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1 Introduction

Mathematical models in natural sciences often come in the form of a system of ordinary

differential equations

ẋ(t) = f(x, µ), x ∈ Rn, µ ∈ Rp. (1.1)

Here, x(t) denotes the state variable of the system (for instance, the densities of the

modeled populations at time t, the concentrations of the chemicals at time t etc.) and

µ denotes the vector of the parameters of the system (for example, the per capita death

rates of individuals, the rate of reactions between the molecules etc.). More often than

not, such mathematical models are nonlinear (i.e. f is nonlinear) and explicit solutions

are difficult, if not impossible, to obtain. In order to obtain some knowledge about the

dynamics of the system, we must resort to other methods.

Some information about the dynamics can obtained by studying the equilibria of

(1.1). Equilibria are solutions which are constant over time: for a given µ0 ∈ Rp the

vector x0 ∈ Rn is an equilibrium of (1.1) if f(x0, µ0) = 0. From the point of view of the

dynamics, equilibria are not of particular interest. However, we can ask: what happens

with the solutions of the system, if the initial state of the system is in the vicinity of

an equilibrium? To answer this question, we perform linear stability analysis and in

such a way, some information about the system dynamics can be gained. But how do

equilibria of the system and their stability properties change when the parameter is

varied?

Such a question arises naturally when modelling natural phenomena (for example,

we may wish to know how the dynamics of a disease in a host population may change

when the transmissibility of the infection changes or how the outcome of a chemical

reaction depends on reaction rates). The branch of mathematics studying the change

in the qualitative or the topological structure of vector fields and other dynamical

systems is called the bifurcation theory. The basics of the bifurcation theory and its

applications in predator-prey systems are the topic of this final project.

In Chapter 2, we introduce the preliminary theory needed to start this work, with

important results from the theory of dynamical systems and differential equations.

In Chapter 3, we present the bifurcations of equilibria of continuous dynamical

systems in the form of a system of differential equations. We analyze and derive the

saddle-node, transcritical and pitchfork bifurcations, and provide the conditions for the
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Poincare-Andronov-Hopf bifurcation.

Finally, in Chapter 4, we focus on applications and present three models describing

the interactions between predators and their prey. We analyze their dynamics and

discuss the bifurcations occurring in the three models.
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2 Preliminaries

In this section, we aim to deliver preliminary theory which will be needed later on. We

start with an important theorem from multivariate calculus.

Theorem 2.1. (Implicit function theorem [3]) Let A ⊆ Rn ×Rm be an open set

and let f : A→ Rm be a Cr function. Let (x0, y0) ∈ A, f(x0, y0) = 0 and assume that

Df(x0, y0) (the Jacobian of f at (a, b)) is invertible. Then there is an open neighborhood

U ⊆ Rn of x0 and a neighborhood V of y0 in Rm and a unique function f : U → V

such that

F (x, f(x)) = 0

for all x ∈ U . Furthermore f is of class Cr.

The topic of this final project are dynamical systems which come in the form of a

parametrized system of differential equations,

ẋ(t) = f(x, µ), x ∈ Rn, µ ∈ R. (2.1)

Here, x(t) denotes the state variable at time t and µ is a parameter of the system.

Typically, the systems of interest are nonlinear (i.e. f) is nonlinear, which makes it

difficult to get explicit solutions. We will be particularly interested in a particular type

of solutions, called equilibria. To this end, we for a moment ignore the dependence of

f on a parameter µ.

Definition 2.2. Let ẋ(t) = f(x), x ∈ Rn. A constant solution x0 that satisfies

f(x0) = 0 is called an equilibrium or steady state.

That means that the equilibria are the solutions of the system that stay constant

over time. They are not interesting dynamically, but are useful for getting more infor-

mation about the system. We can now ask ourselves: what happens with the solutions

of the system, if the initial state is close to an equilibrium? Do solutions approach

the equilibrium or move away from it? To study this, we introduce the notions of

stability [6].

Definition 2.3. Let x0 be a steady state of ẋ(t) = f(x). Then x0 is locally stable if

for every ε > 0 there exists δ > 0 s.t. for every solution x(t) of ẋ = f(x) with initial

state x(0) we have: if ‖ x(0)− x0 ‖< δ then ‖ x(t)− x0 ‖< ε for all t > 0.

A steady state which is not locally stable is an unstable steady state.
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Definition 2.4. Let x0 be an equilibrium of ẋ(t) = f(x). Then x0 is locally

asymptotically stable (LAS) if x0 is locally stable and exists a constant b > 0 s.t. if

‖ x(0)− x0 ‖< b then lim
t→∞
‖ x(t)− x0 ‖= 0.

The definitions describe different types of stability, but do not give us a

concrete method to determine whether the equilibrium is stable or unstable. To deter-

mine whether an equilibrium is stable, we consider the dynamics in the vicinity of x0.

Let

y = x− x0.

If f ∈ C2, Taylor expansion gives us

ẏ(t) = ẋ(t) = f(x) = f(x0 + y) = f(x0) +Df(x0)y +O(|y|2).

To determine the stability of x0 we therefore consider the associated linear system

ẏ(t) = Df(x0)y. (2.2)

We know the solution of (2.2) [6]: if y(0) is the initial state of y(t), the solution is given

by

y(t) = eDf(x0)ty(0).

The method described above is called linearization. We know that the stability of

solutions of linear system are determined by the eigenvalues of their associated matrix

[6]. But what does this tell us about the stability of the equilibrium for the nonlinear

system? We have the following

Theorem 2.5. (Hartman-Grobman theorem [4]) Let E ⊆ Rn be an open set

containing the origin, and let φ be the solution of the system ẋ(t) = f(x). Suppose

that f(0) = 0 and that A = Df(0) has no eigenvalue with zero real part. Then there

exists a homeomorphism H of an open set U containing the origin onto an open set V

containing the origin s.t. for each x ∈ U , there is an open interval I ⊆ R containing

zero s.t. for all x ∈ U and t ∈ I

H ◦ φ(x) = eAtH(x).

In another words, the Hartman-Grobman theorem states that the linearized and the

original system have qualitatively the same dynamics near the equilibrium, provided

that the Jacobian has no eigenvalue with real part equal to zero. Such equilibria are

given a special name.

Definition 2.6. Let ẋ(t) = f(x), x ∈ Rn be a system of differential equations, and x0

its equilibrium. We say that x0 is hyperbolic if all eigenvalues of Df(x0) have nonzero

real parts. Otherwise, x0 is non-hyperbolic.
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We then have the following [6].

Theorem 2.7. Let x = x0 be an equilibrium of ẋ(t) = f(x). Suppose that all of the

eigenvalues of Df(x0) have negative real parts. Then x0 is LAS. If at least one of the

eigenvalues has a positive real part, the equilibrium is unstable.

As a special case, let us turn to the systems of two nonlinear differential equations

ẋ = f(x, y)

ẏ = g(x, y), x, y ∈ R.
(2.3)

We turn to them because they will be frequently used in the remainder of the text,

and they have also have some special properties that will be used in this paper.

Theorem 2.8. Suppose that X0 = (x0, y0) is an equilibrium of (2.3). We have

1. Equilibrium X0 is LAS if the trace of D(X0) is negative and the determinant of

D(X0) is positive.

2. Equilibrium X0 is unstable if the trace of D(X0) is positive or the determinant of

D(X0) is negative.

Before we continue, we introduce some terminology. If X0 is an equilibrium of (2.3),

and its Jacobian has one positive and one negative eigenvalue we call it a saddle. If both

eigenvalues are positive, it is called an unstable node. If both eigenvalues are negative,

it is called a stable node. If the Jacobian has a pair of pure imaginary eigenvalues,

then X0 is a center. If it has a pair of complex eigenvalues with a positive real part, it

is called an unstable focus, and if it has a pair of complex eigenvalues with a negative

real part, it is called a stable focus.

As we previously mentioned, two dimensional systems have some special properties

associated with them. One of those properties is that solutions of (2.3) have a limited

behaviour. The theory studying that is called the Poincare-Bendixon theory. We will

not go into details, and just introduce the basics we need for our work.

Definition 2.9. Let φ(t, x(0)) be the solution of (2.3), which satisfies the starting

condition φ(0, x(0)) = x(0) (we also call φ the flow of the system described above). We

mark the orbit (trajectory) of the system, which starts in x(0) by Γ(x(0)).

Γ(x(0)) is defined by

Γ(x(0)) = {X ∈ R2 : X = φ(t, x(0)), t ∈ R}.

The positive orbit Γ+(x(0)) is

Γ+(x(0)) = {X ∈ R2 : X = φ(t, x(0)), t ≥ 0}.
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One of the properties that an orbit can possess is periodicity.

Definition 2.10. Periodical solution φ of the system ẋ(t) = f(x), x ∈ Rn is

nonconstant solution, which satisfies φ(t, x(0)) = φ(t + T, x(0)) for all t. We call the

smallest such T the period of the solution.

We are also interested in the behavior of orbits as t approaches infinity.

Definition 2.11. The ω-limit set, ω(x(0)) is the set of points, which are approached

by the positive orbit, i.e.

x ∈ ω(x(0)) ⇐⇒ ∃{tn}∞n=1, lim
n→∞

tn =∞; lim
n→∞

φ(tn, x(0)) = x.

We have the following

Theorem 2.12. (Poincare-Bendixon theorem) Let Γ+ be a positive orbit of (2.3)

contained in compact set B ⊂ R2. If ω(x0) has no equilibria, then one of the following

holds:

1. Γ+(x(0)) is periodic orbit

2. ω(x(0)) is periodic orbit.

The periodic orbits, just like equilibria, can also be stable or unstable.

Definition 2.13. Periodical orbit of φ(t, x(0)) is said to be stable if for every ε > 0,

there exists δ > 0 s.t. for every other solution φ(t, y(0)) of (2.3) satisfying |φ(t0, x(0))−
φ(t0, y(0))| < δ, then |φ(t, x(0)− φ(t, y(0))| < ε for every t > t0, t0 ∈ R.

Periodic orbit, which is not stable is an unstable periodic orbit.

Definition 2.14. Periodical orbit of φ(t, x(0)) is said to be asymptotically stable if

it is stable and for every other solution φ(t, y(0)) of φ(t, y(0)) there exists a constant

b > 0 such that, if |φ(t0, x(0))− φ(t0, y(0))| < b, then lim
t→∞
|φ(t, x(0)− φ(t, y(0))| = 0

In the fourth chapter, we will see an example of such behavior. To see such

examples, we will plot phase portraits, geometrical representations of flows of a

dynamical system in a phase space (space of all possible states of the system). In

addition to flows, our plots will also include two different classes of curves:

1. x-isoclines are the curves given with by f(x, y) = 0

2. y-isoclines are the curves given with by g(x, y) = 0.
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Clearly, the equilibria are the intersections of x and y isoclines.

Before we start with the next chapter, we will briefly mention the center manifold

theory, which is the main tool that enables us to analyze stability around the non-

hyperbolic equilibria. We will first state the notion of central subspace.

Definition 2.15. The central subspace Ec is defined as

Ec = span{e1, . . . , ec},

where {e1, . . . , ec} are the (generalized) eigenvectors corresponding to eigenvalues of

Jacobian of ẋ(t) = f(x) having real part equal to zero.

The empty central subspace corresponds to non-hyperbolic equilibria. For systems

with non-empty central subspace, there exists a space called the center manifold, which

enables us to analyze their dynamics.

Theorem 2.16. (Center manifold theorem [4]) Let ẋ(t) = f(x) and f ∈ Cr.

Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part, j

eigenvalues with positive real part, and m = n− k − j eigenvalues with zero real part.

Then there exists an m-dimensional center manifold W c(0) of class Cr tangent to the

center subspace Ec of Df(0) which is invariant under the flow φ of f .

The existence of central manifold enables to restrict the flow of the system to the

central manifold. On it, we are able to analyze dynamics around the non-hyperbolic

equilibria. We will not state how to restrict the flow. For that, refer to ( [6]).
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3 Bifurcations of equilibria of

vector fields

Consider a parametrized vector field

ẋ(t) = g(x, µ), x ∈ Rn, µ ∈ R, (3.1)

where g ∈ Cr (r will be determined by our need for Taylor expansions). Suppose that

(3.1) has an equilibrium in (x0, µ0), i.e. g(x0, µ0) = 0. What do we know about the

stability of the equilibrium? How does stability change when the parameter µ changes?

To answer these questions, we will observe the vector field obtained by linearization

of (3.1) around the equilibrium (x0, µ0). The linearized vector field is given by

ẏ(t) = Dg(x0, µ0)y. (3.2)

If the equilibrium is hyperbolic, then the stability of (x0, µ0) in (3.1) is determined

by (3.2). We know that g(x0, µ0) = 0 and that Dg(x0, µ0) has no eigenvalues on

imaginary axis, so Dfg(x0, µ0) is invertible. By the implicit function theorem, there

exists a unique Cr function x(µ), s.t.

g(x(µ), µ) = 0

for µ’s that are close to µ0 with x(µ0) = x0. By continuity of the eigenvalues with

respect to parameters, for µ’s close to µ0

Dg(x(µ), µ)

has no eigenvalues on imaginary axis. So, there is a neighborhood of (x0, µ0) in which

the stability of equilibria remains unaffected. The interesting things start to happen

when (x0, µ0) is not hyperbolic, i.e. when Dg(x0, µ0) has some eigenvalues with real

part equal to zero. In that case, for µ’s close to µ0, we can have the qualitative change

in dynamics of our system. The equilibria can be created or destroyed, and new time

dependent behavior, like periodic dynamics, can appear.

In order to analyze non-hyperbolic equilibria, we will use the center manifold theory

to restrict the vector field to its center manifold, on which we will perform further

analysis. Let us turn to our first case, when the linearization gives us system having

one zero eigenvalue. From now on, we assume that (x0, µ0) = (0, 0).
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3.1 A zero eigenvalue

Suppose that Dg(x0, µ0) has a single zero eigenvalue, with other eigenvalues having

non-zero real parts. Then the orbit structure around (x0, µ0), is determined by the

center manifold equation, which we write as

ẋ(t) = f(x, µ), x ∈ R, µ ∈ R, (3.3)

where f ∈ C. The (3.3) satisfies

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 0,

i.e. (0, 0) is non-hyperbolic equilibrium. We will now analyze and derive few specific

examples of bifurcations.

3.1.1 Saddle-node bifurcation

One type of bifurcation that can happen is called a saddle-node bifurcation. We

introduce it with an example. Consider the vector field

ẋ(t) = f(x, µ) = µ− x2, x ∈ R, µ ∈ R. (3.4)

We notice that

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 0. (3.5)

The set of equilibria of (3.4) is given by

µ− x2 = 0,

meeaning we have no equilibria for µ < 0, and for µ > 0, equilibria are given with

±√µ. From there, we conclude that µ = 0 is a bifurcation point. Linearization of (3.4)

gives us Df(x) = −2x, so x =
√
µ is a stable equilibrium, and x = −√µ is an unstable

equilibrium. Hence, as the parameter goes from negative values to positive values, the

system undergoes a saddle-node bifurcation where two equilibria appear; one of them

is stable, the other unstable.

We will now derive the general conditions under which the saddle-node bifurcation

will appear. In order for our system to undergo saddle-node bifurcation, we need the

curve of equilibria to satisfy two properties:

1. To be tangent to the line µ = 0 at x = 0, i.e.,

dµ

dx
(0) = 0. (3.6)
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2. To lay entirely on one side of µ = 0, which will be satisfied if we have

d2µ

dx2
(0) 6= 0. (3.7)

Now, let us consider a general, one-parameter family of scalar fields

ẋ(t) = f(x, µ), x ∈ R, µ ∈ R. (3.8)

By the assumption, we have a non hyperbolic equilibrium at (x0, µ0)=(0,0) i.e.,

f(0, 0) and
∂f

∂x
(0, 0) = 0. (3.9)

If we also have that
∂f

∂µ
(0, 0) 6= 0, (3.10)

then, by implicit function theorem, there exists a unique function

µ = µ(x), µ(0) = 0, (3.11)

defined for x small enough such that f(x, µ(x)) = 0. Now, we want to derive conditions

in terms of derivatives of f at (0,0), so that (3.6) and (3.7) are met. Along with (3.9)

and (3.10), they imply that we have a saddle-node bifurcation at bifurcation point

(0, 0). We can derive (3.6) and (3.7) with derivatives of f at the bifurcation point, by

implicitly differentiating f along the curve of equilibria. From (3.10), we have that

f(x, µ(x)) = 0. (3.12)

If we differentiate (3.12) with respect to x we get

df

dx
(x, µ(x)) = 0 =

∂f

∂x
(x, µ(x)) +

∂f

∂µ
(x, µ(x))

dµ

dx
(x). (3.13)

If we evaluate 3.13 at (µ, x) = (0, 0), we obtain

dµ

dx
(0) = −

∂f
∂x

(0, 0)
∂f
∂µ

(0, 0)
, (3.14)

and from there we see that (3.9) and (3.10) imply that

dµ

dx
(0) = 0,

or that curve of equilibria is tangent to µ = 0 at x = 0. By differentiating (3.13) again

with respect to x we get

d2f

dx2
(x, µ(x)) = 0 =

∂2f

∂x2
(x, µ(x)) + 2

∂2f

∂x∂µ
(x, µ(x))

dµ

dx
(x)

+
∂2f

∂µ2
(x, µ(x))

(
dµ

dx
(x)

)2

+
df

dµ
(µ, µ(x))

d2µ

dx2
(x).

(3.15)



Nježić R. Bifurcations of equilibria of vector fields with applications to predator-prey systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 11

Evaluating (3.15) at (µ, x) = (0, 0) and using (3.14) gives us

∂2f

∂x2
(0, 0) +

∂f

∂µ
(0, 0)

d2µ

dx2
(0) = 0, (3.16)

which is the same as
d2µ

dx2
(0) = −

∂2f
∂x2

(0, 0)
∂f
∂µ

(0, 0)
. (3.17)

Thus, (3.17) is non-zero provided that we have

∂2f

∂x2
(0, 0) 6= 0.

So, the required conditions for saddle-node bifurcation were derived. The simplest form

(more formally called the normal form) of the center manifold for the systems where

it occurs is

ẋ(t) = µ± x2.

The bifurcation diagram for ẋ(t) = µ − x2 is given below. From the diagram we see

that, for the given value of µ we have the following cases:

1. For µ < 0, we have no equilibria.

2. For µ > 0, we have two equilibria ±µ, where the positive equilibrium is stable

and the negative is unstable.

3. µ = 0 is a bifurcation point.

Figure 1: Bifurcation diagram for saddle-node bifurcation (full line - stable equilibria,

dashed line - unstable equilibria).

The saddle-node bifurcation is also known as the blue-sky bifurcation, due to the

sudden (diss)appearance of equilibria at the bifurcation point.
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3.1.2 Transcritical bifurcation

The next bifurcation we will consider is the transcritical bifurcation. Consider the

vector field

ẋ(t) = f(x, µ) = µx− x2, x ∈ R, µ ∈ R. (3.18)

It is easy to see that

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 0. (3.19)

The lines of equilibria of (3.18) are given by

x = 0 and x = µ.

Linearization of (3.18) gives us Df(x) = µ− 2x, so if µ < 0 equilibrium x = 0 is stable

and x = µ is unstable, and if µ > 0 then x = 0 is unstable and x = µ stable. The

equilibria change their stabilities at µ = 0, so µ = 0 is the bifurcation point of our

system.

Now, let us derive the general conditions for transcritical bifurcation. Conditions

needed for the transcritical bifurcation to occur are the following:

1. Two curves of equilibria points passing through (x0, µ0) = (0, 0), one given by

x = µ, and other by x = 0.

2. Both curves of equilibria existing on both sides of µ = 0.

3. The stability along each curve of equilibria changes after passing through µ = 0.

We consider the same family of scalar fields as in the previous bifurcation, and (x, µ) =

(0, 0) is a non-hyperbolic equilibrium. Since we want to have two curves of equilibria

through the origin, we need to have

∂f

∂µ
(0, 0) = 0, (3.20)

or by implicit function theorem we will have just one line of equilibria through the

origin.

In this example, we require that x = 0 is one curve of equilibria, and therefore our

system is of the form

ẋ(t) = f(x, µ) = xF (x, µ), x ∈ R µ ∈ R, (3.21)

where F is defined as

F (x, µ) :=


f(x,µ)
x

if x 6= 0

∂f
∂x

(0, µ) if x = 0
(3.22)
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Now, we seek under which conditions F has a curve of equilibria through (x, µ) = (0, 0).

These conditions will be expressed with derivatives of F , which can be expressed using

derivatives of f .

By using (3.22), it is easy to see that

F (0, 0) = 0 (3.23)

∂F

∂x
(0, 0) =

∂2f

∂x2
(3.24)

∂2F

∂x2
(0, 0) =

∂3f

∂x3
(0, 0) (3.25)

and
∂F

∂µ
(0, 0) =

∂2f

∂x∂µ
(0, 0). (3.26)

If we assume that (3.26) is not equal to zero, we can use implicit function theorem to

show that there exists a function µ(x), such that F (x, µ(x)) = 0 If we want that our

function is not equivalent to x = 0, and to exist on both sides of µ = 0, we need that

0 <
∣∣∣dµ
dx

(0)
∣∣∣ <∞.

After performing implicit differentiation on F , just like in the case of saddle node

bifurcation, we get
dµ

dx
(0) = −

∂F
∂x

(0, 0)
∂F
∂µ

(0, 0)
(3.27)

By using equations (3.23-3.26), (3.27) becomes

dµ

dx
(0) = −

∂2f
∂x2

(0, 0)
∂2f
∂x∂µ

(0, 0)
. (3.28)

After performing those operations, we have established the required criteria for the

transcritical bifurcation. The normal form for the transcritical bifurcation is

ẋ(t) = µx± x2.

We provide the bifurcation diagram for the µx− x2.
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Figure 2: Bifurcation diagram for transcritical bifurcation (full line - stable equilibria,

dashed line - unstable equilibria).

3.1.3 Pitchfork bifurcation

The last bifurcation of scalar fields is the pitchfork bifurcation. Consider the vector

field

ẋ(t) = f(x, µ) = µx− x3, x ∈ R, µ ∈ R. (3.29)

It is easy to see that

f(0, 0) = 0, and
∂f

∂x
(0, 0) = 0. (3.30)

The equilibria are given by

x = 0 if µ < 0

and

x = 0 and x = ±√µ if µ > 0.

Linearization gives us Df(x) = µ − 3x2. For µ < 0 the equilibrium x = 0 is stable.

For µ > 0, x = 0 is an unstable equilibrim, while the equilibria x = ±√µ are stable.

Again, µ = 0 is a bifurcation point.

Now, let us perform the general analysis. The pitchfork bifurcation will have the

following characteristics:

1. Two curves of equilibria through (µ, x) = (0, 0), one given by x = 0, the other

one by µ = x2.

2. The curve x = 0 exists on both sides of µ = 0, the curve µ = x2 exists on one

side of µ = 0.
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3. The points on the curve x = 0 have different stability types on the opposite sides

of µ = 0, and equilibria of x2 = µ have the same stability type.

We assume that we have the same family of scalar fields, which have the non-hyperbolic

equilibrium at (x, µ) = (0, 0). Like with transcritical bifurcation, we need that

∂f

∂µ
(0, 0) = 0. (3.31)

and since x = 0 is a curve of equilibria, our scalar field has the form

ẋ(t) = xF (x, µ), x ∈ R, µ ∈ R (3.32)

where

F (x, µ) :=


f(x,µ)
x

if x 6= 0

∂f
∂x

(0, µ) if x = 0
(3.33)

To get the second curve, we need that

F (0, 0) = (0, 0) (3.34)

with
∂F

∂µ
(0, 0) 6= 0. (3.35)

Due to the implicit function theorem, for some neighborhood of x exists a unique

function µ(x) such that F (x, µ(x)) = 0. In order for the curve to satisfy the properties

mentioned above, we need that
dµ

dx
(0) = 0 (3.36)

and
d2µ

dx2
(0) 6= 0. (3.37)

After performing implicit differentiation of F, we see that properties are satisfied, since

dµ

dx
(0) = −

∂F
∂x

(0, 0)
∂F
∂µ

(0, 0)
= 0 (3.38)

and
d2µ

dx2
(0) = −

∂2F
∂x2

(0, 0)
∂F
∂µ

(0, 0)
6= 0 (3.39)

If we use (3.33) (3.38) (3.39), we can express it in terms of derivatives of f in this form

dµ

dx
(0) = −

∂2F
∂2x

(0, 0)
∂F
∂µ

(0, 0)
= 0 (3.40)

and
d2µ

dx2
(0) = −

∂3f
∂x3

(0, 0)
∂2f
∂x∂µ

(0, 0)
6= 0. (3.41)
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Therefore, we have established the conditions needed for occurrence of the pitchfork

bifurcation. The normal form for the families undergoing pitchfork bifurcation is

ẋ(t) = µx± x3.

We provide the bifurcation diagram for µx− x3.

Figure 3: Bifurcation diagram for pitchfork bifurcation (full line - stable equilibria,

dashed line - unstable equilibria).

3.2 A pure imaginary pair of eigenvalues : Poincare-

Andronov-Hopf bifurcation

We will now turn to the the next possible type of bifurcation, the Poincare-Andronov-

Hopf bifurcation. It received its name from the names of the first mathematicians that

were studying it. After observing the bifurcations of zero eigenvalue, we consider a

system where the linearization around the equilibrium has a pair of pure imaginary

eigenvalues. For this bifurcation, we will only provide partial analysis. Example where

this bifurcation occurs will be provided in the fourth chapter. Let us consider the

following family of vector fields

ẋ(t) = g(x, µ), x ∈ Rn, µ ∈ R (3.42)

and we assume that g is at least C5 around the equilibrium 0 = g(x0, µ0). We want

to know how the orbit structure changes as µ is varied. We assume that the linearized

vector field has a pair of complex eivenvalues, and that the rest of eigenvalues have

non-zero real parts. Since the equilibrium is non-hyperbolic, we don’t have information

about the orbit structure at the equilibrium and the orbit structures of points close to

it. But, by center manifold theory, we know that the orbit structure near (x0, µ0) is

determined by restriction of g to its center manifold. On the center manifold (3.42)
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has the following form (see [6]):[
ẋ(t)

ẏ(t)

]
=

[
Reλ(µ) −Im λ(µ)

Im λ(µ) Reλ(µ)

][
x

y

]
+

[
f̂ 1(x, y, µ)

f̂ 2(x, y, µ)

]
, (3.43)

where (x, y, µ) ∈ R × R × R, f 1 and f 2 are non-linear in x and y and λ(µ), λ(µ) are

the eigenvalues of vector field linearized about the equilibrium. Eigenvalues will be

denoted by

λ(µ) = α(µ)± iω(µ), with α(0) = 0, ω(0) 6= 0. (3.44)

The normal form of (3.43) (see [6]) is

ẋ(t) = α(µ)x− ω(µ)y + (α(µ)x− b(µ)y)(x2 + y2) +O(|x5|, |y5|),

ẏ(t) = ω(µ)x+ α(µ)y + (b(µ)x+ a(µ)y)(x2 + y2) +O(|x5|, |y5|)
(3.45)

In polar coordinates, it is given by

ṙ(t) = α(µ)r + a(µ)r3 +O(r5),

θ̇(t) = ω(µ) + b(µ)r2 +O(r4).
(3.46)

We expand its Taylor series around µ = 0, since we are interested in the dynamics near

that point. Then (3.46) becomes

ṙ(t) = α′(0)µr + a(0)r3 +O(µ2r, µr3, r5),

ω̇(t) = ω(0) + ω′(0)µ+ b(0)r2 +O(µ2, µr2, r4)
(3.47)

where we differentiate with respect to µ and α(0) = 0. By neglecting the higher order

terms , and easing the notation, we get the system

ṙ(t) = dµr + ar3,

θ̇(t) = ω + cµ+ br2,
(3.48)

where d := α′(0), a := a(0), ω := ω(0), c := ω′(0), b := b(0).

How do we analyze the dynamics of this system? In scalar fields, we would just

find the equilibria and study the nature of their stability. But, in (3.47) we proceed

differently. We look for the values of r > 0 and µ such that ṙ = 0, but θ̇ 6= 0, which will

correspond to periodic orbits of (3.47), which will be emphasized in the next lemma.

Lemma 3.1. For −∞ < µd
a
< 0 and sufficiently small µ,

(r(t), θ(t)) =

(√
−µd
a

,

(
ω +

(
c− bd

a

)
µ

)
t+ θ0

)
, (3.49)

is a periodic orbit of 3.47.
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Proof. To show that (3.49) is a periodic orbit, we only need to ensure that θ̇ 6= 0. And

because ω is a constant independent from µ, this immediately follows if µ is sufficiently

small.

Stability questions are interpreted in the next lemma.

Lemma 3.2. The periodic orbit (3.49) is

• Asymptotically stable for a < 0;

• Asymptotically unstable for a > 0.

Proof. The proof is omitted, as it relies on theory which is beyond the scope of our

work.

We notice that because r > 0, (3.49) is the only periodical orbit possible for (3.47).

Regarding the stability of the periodic orbit, and if it exists for µ > 0 or µ < 0, from

(3.49), we observe that we have four possibilities:

Theorem 3.3. Consider the normal form (3.47). We assume that the origin is a

equilibrium which is

stable at µ = 0 for a < 0

unstable at µ = 0 for a > 0.

Then, for different d and a, we distinguish between the following cases:

1. d > 0, a > 0. In this case, the origin is an unstable equilibrium for µ > 0 and

asymptotically stable equilibrium for µ < 0, with an unstable periodic orbit for

µ < 0.

2. d > 0, a < 0. In this case, the origin is an asymptotically stable equilibrium for

µ < 0 and an unstable equilibrium for µ > 0, with an asymptotically stable

periodic orbit for µ > 0.

3. d < 0, a > 0. In this case, the origin is an unstable equilibrium for µ < 0 and

an asymptotically stable equilibrium for µ > 0 with an unstable periodic orbit for

µ > 0.

4. d < 0, a < 0. In this case, the origin is an asymptotically stable equilibrium for

µ < 0 and an unstable equilibrium for µ > 0, with an asymptotically stable

periodic orbit for µ < 0.



Nježić R. Bifurcations of equilibria of vector fields with applications to predator-prey systems.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2018 19

Proof. This proof will use the Poincare-Bendixon theorem. We consider truncated

normal form (3.48) and the second case. In this case, we have a stable periodic orbit

and it exists for µ > 0, and r coordinate is given by r =
√
−dµ
a

. We choose sufficiently

small µ > 0 and we consider the annulus A, given by

A =
{

(r, θ)|r1 ≤
√
−dµ
a
≤ r2

}
.

It is not hard to see, that by (3.48), on the boundary of A, our vector field is

pointing strictly into the interior of A. Therefore, A is a positive invariant set. Also, A

has no equilibria, so by Poincare-Bendixon theorem, A has a stable periodic orbit. But,

our goal is to show that this also holds for the (3.47). Let’s consider now (3.47). If we

take sufficiently small µ and r sufficiently small, the O(µ2r, µr3, r5) terms can be made

so that they are much smaller than the rest of the normal form. So, by again taking

r1 and r2 sufficiently small, A will still be a positive invariant set with no equilibria.

So, by Poincare-Bendixon theorem, A contains a stable periodic orbit. The proof for

the other three cases is similar (when a > 0, we just the time reversed flow).

We state a remark. When a < 0, the periodic orbit can exists for either µ > 0 or

µ < 0, and in both cases, it is asymptotically stable. The same holds when a > 0,

except that the periodic orbit is unstable. So, the value of a tells us if we will have

stable or unstable periodic orbit. The case when a < 0 is referred to as a supercritical

bifurcation, and a > 0 is referred to as a subcritical bifurcation.
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4 Examples from mathematical

biology: predator-prey models

The theory of dynamical systems has a wide range of applications in natural sciences,

such as biology, physics and chemistry. In this chapter we take a look at some of

the well-known models in biology that describe the interactions between a predator

population and its prey. This section is partly based on the book of Edelstein-Keshet

(see [1]). We will start with the famous Lotka-Volterra model (see [5]).

4.1 Lotka-Volterra model

During and after the World War I, Italian biologist Umberto D’Ancona was observing

the structure of fish population in the Adriatic sea. During his observations, he noticed

an unexpected phenomena: that in the years during the World War I, when there was

less fishing, the population of predator fish increased. Struck by that, he wrote to

the famous Italian mathematical Vito Volterra. Volterra answered by using simple

mathematical model in form of the system of differential equations. A few years later,

Alfred Lotka independently formulated and analyzed the same model in a different

context. Before we start with the analysis, in this chapter we will mark derivatives

with prime instead of dot notation.

If we denote with y(t) the size of the predator population at time t and by x(t) the

size of the population of the prey, we can describe the Volterra’s assumptions in the

following way:

1. In absence of predators, population grows exponentially, i.e. ẋ(t) = ax, for a > 0.

2. Prey is needed for the survival of the predators: in absence of prey the predator

population falls exponentially, i.e. ẏ(t) = −dy, for d > 0.

3. The amount of prey a predator catches in time unit is proportional with the size

of the prey’s population; bx for some b > 0.

4. Caught prey is reflected in the growth of the predator population such that,

with some proportionality constant, the caught prey is directly converted to new

predators.
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The amount of prey a predator catches in time unit is called the functional response.

The numerical response gives us the number of newborn predators for one predator

in one time unit, usually as a function of the amount of prey that predator catches.

The functional responses are generally classified as Holling type I, II and III functional

responses, from the work of C.S. Holling ( [2]). In the Lotka-Volterra model, we use

the Holling type I response, i.e. the linear functional response.

The assumptions of Volterra lead to the following system:

ẋ(t) = ax− bxy

ẏ(t) = cxy − dy
(4.1)

The equilibria are

(x1, y1) = (0, 0) (x2, y2) =
(d
c
,
a

b

)
.

Linearization of (4.1) has the form

D(x, y) =

(
a− by −bx
cy cx− d

)
. (4.2)

The linearizations around equilibria are given by

D(x1, y1) =

(
a 0

0 −d

)
and D(x2, y2) =

(
0 − bd

c
ac
b

0

)
.

We see that for any positive values of a, b, c, d, (x1, y1) is a saddle (unstable equilibrium),

whereas (x2, y2) is a center. Hence we do not observe any bifurcations in the

Lotka-Volterra system. We plot the orbits and the predator-prey population graph for

the parameters a = 8, b = 5, c = 5, d = 1.

0 1 2 3 4 5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4: Orbits of the Lotka-Volterra system for parameters a = 8, b = 5, c = 5, d = 1.
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Figure 5: Graph of predator prey functions of Lotka-Volterra system for parameters

a = 8, b = 5, c = 5, d = 1 (prey-blue, predator-orange).

The Lotka-Volterra model incorporates very simple assumptions regarding the

dynamics of the two populations and predicts as model solutions an infinite family

of closed curves (see [1]). This family of closed curves is destroyed as soon as more

realistic assumptions are considered. In this sense, the model of Lotka-Volterra is not a

convincing model of predator-prey interactions. In the following two sections, we take

a look at two slightly more realistic models.

4.2 The predator-prey model with logistic growth

and Holling type I functional response

We now assume that, in absence of predators, the prey population grows logistically

with intrinsic growth rate r (r > 0) and with carrying capacity K > 0, meaning that

in absence of predators

ẋ(t) = rx
(
1− x

K

)
.

Keeping the other assumptions the same as in the Lotka-Volterra model, we will

therefore consider the following model:

ẋ(t) = rx
(

1− x

K

)
− bxy

ẏ(t) = cxy − dy.

There are three equilibria, two of them have no predator population present,

(x1, y1) = (0, 0) and (x2, y2) = (K, 0),

and one with both populations present is(
x3, y3

)
=
(d
c
,
r

b

(
1− d

cK

))
.
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We see that (x3, y3) is biologically meaningful when K > d
c
. Linearization around first

two equilibria gives us

D(x1, y1) =

(
r 0

0 −d

)
and D(x2, y2) =

(
−r −bK
0 −d+ cK

)

meaning that (x1, y1) is always a saddle point. The steady state (x2, y2) is a saddle if we

have a biologically meaningful third equilibrium, and is LAS otherwise. Linearization

around (x3, y3) is given by

D(x3, y3) =

(
−rx3 −bx3
cy3 0

)
.

Whenever (x3, y3) is biologically meaningful, the trace of D(x3, y3) is negative and

its determinant of positive, meaning that (x3, y3) is LAS whenever it is biologically

meaningful.

To discuss the bifurcations in our system, let us fix all the parameters but K. We

observe that at K = d
c

a transcritical bifurcation occurs where equilibria (x2, y2) and

(x3, y3) exchange stability. To demonstrate this with an example, let r = 2, b = 1, c =

3, d = 6. The system goes through a transcritical bifurcation at K = 2. For K < 2, the

predator population goes extinct, while the two populations can coexist for K > 2.

In Figure 4.2 we provide a bifurcation diagram for y3 as the function of K.

Figure 6: Bifurcation diagram for y3 as the function of K for parameter values r =

2, b = 1, c = 3, d = 6 (full line - stable equilibria, dashed line - unstable equilibria).
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4.3 The Rosenzweig-MacArthur model

In the next model, we use the Holling II functional response,

g(x) =
bx

1 + bβx
.

We set the numerical response to be proportial to the functional response. Keeping

the other assumptions from previous system, we get the following system:

ẋ(t) = rx
(

1− x

K

)
− bxy

1 + bβx

ẏ(t) =
cxy

1 + bβx
− dy,

(4.3)

which is called the Rosenzweig - MacArthur model.

Let us perform the analysis of isoclines and stability analysis of (4.3). The x−isoclines

are given by

x = 0 or y =
r

b

(
1− x

K

)(
1 + bβx

)
,

meanwhile y−isoclines are given by

y = 0 or x =
d

c− dbβ
.

We have two equilibria with no predators present, namely

(x1, y1) = (0, 0) and (x2, y2) = (K, 0),

and one with both populations present is

(x3, y3) =
( d

c− dbβ
,
r

b
(1− x3

K
)(1 + bβx3)

)
.

When is (x3, y3) biologically meaningful? For that to occur, we first of all need that

d

c− dbβ
> 0.

The second condition is that x3 < K.

In order analyze the stability of equilibria, we will perform the linearization on our

system. We set that f(x) = rx
(
1− x

K

)
and g(x) = bx

1+bβx
. In that form,

D =

(
f ′(x)− yg′(x) −g(x)

γyg′(x) γg(x)− d

)
.

Then

D(x1, y1) =

(
r 0

0 −d

)
and D(x2, y2) =

(
−r − bK

1+bβK

0 cK
1+bβK

− d

)
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The first equilibrium is always a saddle. The second is a saddle whenever cK
1+bβK

−d > 0

and is LAS whenever cK
1+bβK

− d < 0. Linearization around (x3, y3) gives us

D(x3, y3) =

(
f ′(x3)− y3g′(y3) −g(x3)

γy3g
′(x3) 0

)
The determinant of D(x3, y3) is equal to γy3g(x3)g

′(x3), which is positive. The trace

value depends on f ′(x3)−g′(x3)y3. Now, let us observe y = f(x)
g(x)

. It is also the x-isocline.

We see that

y′ =
f ′g − fg′

g2
=
f ′ − yg′

g
,

implying that (x3, y3) is LAS whenever it is on the declining part of x-isocline. We see

that when trace becomes equal to zero, we will have a pair of imaginary eigenvalues.

To discuss bifurcations, we fix all the parameters but K. In the following example,

we set the parameters as : r = 1.1, b = 1, c = 0.9, d = 0.5, β = 0.8. By varying the

parameter K, we notice that (x3, y3) goes from LAS to unstable equilibrium. Because

we get a pair of imaginary eigenvalues when trace becomes equal to zero, our system

goes through Poincare-Andronov-Hopf bifurcation. We provide a bifurcation diagram

for y as a function of K. The point at which Poincare-Andronov-Hopf bifurcation

occurs is marked with a circle.

Figure 7: Bifurcation diagram for y as a function of K for parameter values r =

1.1, b = 1, c = 0.9, d = 0.5, β = 0.8 (full line - stable equilibria, dashed line - unstable

equilibria).

From the graph, we notice that the stability of y changes for the values of K = 1

and K = 3.25. When K = 3.25, the value of y is 1.37, and at that moment trace
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of the Jacobian of (4.3) at (x3, y3) becomes zero, (x3, y3) becomes unstable and our

system undergoes Poincare-Andronov-Hopf bifurcation. At K = 1, (x3, y3) goes from

unstable to stable equilibrium. At the same time, (x2, y2) goes from stable to unstable

equilibrium, meaning that our system undergoes transcritical bifurcation. So, the

bifurcation points of our system our K = 1 and K = 3.25. In the figure given below,

we will show phase portraits with topologically different dynamics for two different

values of K, before and after (x3, y3) goes from stable to unstable. From the portraits,

we see that Poincare-Andronov-Hopf bifurcation is supercritical.

Figure 8: Phase portraits for K = 2 and K = 4.
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5 Conclusion

In this final project paper, we studied the bifurcations of equilibria of vector fields with

applications to predator-prey systems. We were mostly following the book by Wiggins

(see [6]), for theoretical part, and Edelstein-Kershet’s book (see [1]) for applications

part. We studied dynamical systems in a form of parametrized system of non-linear

differential equations

ẋ(t) = f(x, µ), x ∈ Rn, µ ∈ R.

In the preliminary section, we presented the main results from the theory of dynamical

systems that are needed in the subsequent chapters.

In the third chapter, we wanted to answer two question: how is the stability of

equilibria affected as the parameter value changes, and how can we determine the

stability of systems around the non-hyperbolic equilibria? To answer our question, we

applied center manifold theory. We analyzed and derived conditions for four different

bifurcations: saddle-node, transcritical, pitchfork and Poincare-Andronov-Hopf.

The theory developed in the fourth chapter was applied in three examples of

predator-prey dynamics. We started from the simplest example of Lotka-Volterra,

and moved to more realistic models. We have analyzed the stability of system’s

equilibria and performed bifurcation analysis by fixing all but one parameter. From all

of the work we performed, we were able to deduce, at least for some cases, how shifts

in the value of the parameters can lead to change in the dynamics of the system.
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6 Povzetek naloge v slovenskem

jeziku

Teorija bifurkacij je področje matematike, ki se ukvarja z spremembami kvalitativnih

ali topoloških struktur vektorskih polj in ostalih dinamičnih sistemov. V tej nalogi smo

študirali bifurkacije ravnovesnih točk vektorskih polj z uporabo v sistemih plenilec-plen.

Študirali smo dinamične sisteme podane v obliki parametriziranih sistemov nelin-

earnih diferencialnih enačb,

ẋ(t) = f(x, µ), x ∈ Rn, µ ∈ R.

Osredotočili smo se na ravnovensne točke takih sistemov, torej točke (x0, µ0) za

katere velja f(x0, µ0) = 0. Dinamično gledano, ravnovesne točke niso zanimive. Ampak,

ravnovesne točke nam pomagajo spoznati več o dinamiki sistemov, ki imajo začetna

stanja v bližini ravnovesnih točk. Da bi spoznali več o dinamiki teh sistemov, smo

predstavili različne pojme stabilnosti ravnovesnih točk ter princip linearizacije sistema

okoli ravnovesne točke. Povedali smo, v katerih primerih nam linearizacija da popolno

informacijo o stabilnosti ravnovesne točke nelinearnega sistema in predstavili nekaj

rezultatov za ravninske sisteme.

V tretjem poglavju smo odgovarjali na vprašanje, kako se dinamika spreminja ko

spreminjamo vrednosti parametra µ. Motivacijo za to vprašanje smo dobili iz

modeliranja naravnih procesov (na primer, kako se spreminja velikost populacije rib

glede na intenziteto ribǐstva). Pokazali smo, da se dinamika kvalitativno ne

spreminja okrog hiperboličnih ravnovesnih točk, do kvalitativnih sprememb pa pride,

ko so ravnovesne točke nehiperbolične. Predstavili smo transkritično, sedelno-vozelno

in viličasto bifurkacijo in za vsako od njih izpeljali pogoje, ki omogočajo njihov

nastanek. Nato smo analizirali vektorska polja, pri katerih linearizacija poda matriko

s parom imaginarnih lastnih vrednosti. Predstavili smo Poincare-Andronov-Hopfovo

bifurkacijo.

V zadnjem poglavju smo uporabili teorijo na treh modelih dinamike plenilec-plen.

Začeli smo z modelom Lotka-Volterra in nato predstavili še dva bolj realistična mod-

ela; model z logistčno rastjo plena ter funkcionalnim odzivom Holling I in model

Rosenzweig-MacArthur. Za vse tri modele smo naredili stabilnostno analizo
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ravnovesnih stanj, študirali bifurkacije v modelih ter predstavili bifurkacijske diagrame.
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