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UDC: 512.542.7(043.2)

Keywords: permutation group, group action, orbit, stabilizer, multiply transitive group,

affine group, Mathieu group

Math. Subj. Class. (2010): 20B05, 20B20, 20B25, 05B07, 05E18

Abstract: A permutation group G acting on a set Ω is k-transitive if any k-tuple of

distinct points can be mapped, by some element of G, to any other k-tuple of distinct

points. A group is called multiply transitive if it is at least 2-transitive. Examples of

multiply transitive groups include the symmetric groups, the alternating groups, the affine

groups, the projective groups and the Mathieu groups. In this master thesis we review first

the basic properties of multiply transitive permutation groups, describe their extensions
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and give several examples. The main part of the thesis is Section 5, where we construct

the Mathieu groups M11 and M12 by working out the assignments 1.9.1 – 1.9.11 of the

book N. L. Biggs and A. T. White: Permutations groups and combinatorial structures,

London Math. Soc. Lecture Notes Series 33, Cambridge University Press, Cambridge

1979 (1.9 Project: Some multiply transitive groups, pages 21-23). Also, we check the

most important properties of the constructed permutation groups such as transitivity,

primitivity and simplicity. In this paper we try to show how useful could be multiply

transitive groups, that is why we have present a bunch of its applications.
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Izvleček: Za permutacijsko grupo G pravimo, da deluje na množici Ω k-tranzitivno,

če vsako k-terico različnih točk lahko, z nekim elementom iz G, preslikamo v poljubno

drugo k-terico različnih točk. Grupa je večkratno-tranzitivna, če je vsaj 2-tranzitivna.

Nekatere grupe seznama večkratno-tranzitivnih grup so simetrične grupe, alternirajoče

grupe, afine grupe, projektivne grupe in Mathieujeve grupe. V tem magistrskem delu na-

jprej pregledamo osnovne lastnosti večkratno tranzitivnih permutacijskih grup, opǐsemo

njihove razširitve in podamo številne primere. Glavni del magistrskega dela je 5. poglavje,
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v katerem konstruiramo Mathieujevi grupi M11 in M12 preko vaj 1.9.1 - 1.9.11 knjige N. L.

Biggs in A. T. White: Permutations groups and combinatorial structures, London Math.

Soc. Lecture Notes Series 33, Cambridge University Press, Cambridge 1979 (1.9 Project:

Some multiply transitive groups, pages 21-23). Poleg tega razǐsčemo najpomembneǰse

lastnosti konstruiranih permutacijskih grup, kot so tranzitivnost, primitivnost in enos-

tavnost. V tem delu skušamo pokazati kako uporabne so lahko večkratno-tranzitivne

grupe, zato pokažemo kopico njihovih konkretnih uporab.
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Chapter 1

INTRODUCTION

In light of the extensive investigations of the combinatorial and geometrical structures

multiply transitive groups became very popular. Their structure underpins many inter-

esting mathematical objects such as the Witt designs, Golay codes and Leech Lattice

[7]. Even outside of pure mathematics, we can find interesting applications of multiply

transitive groups, for example in music [17] or even for creation of new puzzles [10]. The

interest to this topic has started from the question as which groups besides symmetric

and alternating could be multiply transitive? One type of such groups has been found in

1860 by Emile Mathieu, when he published an article about 4- and 5-transitive groups

and in the 1930’s Ernst Witt proved that this groups are also simple. They were first

in the list of simple sporadic groups. In our work we explore Mathieu groups like good

examples of multiply transitive groups.

The aim of this thesis is to construct and investigate the main properties of the Mathieu

groups of small degree. For the construction we use the method of one-point extension,

and then we investigate properties of these groups using simplicity criteria or a theorem

which gives us an upper bound of transitivity of this group.

Our work consist of five chapters:

The first chapter is an introduction to the master thesis.

The second chapter “Basic concept of multiply transitive groups” is a brief introduction

to the theory of permutation group. The section “Basic definitions” gives necessary infor-
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mation from the general theory, which will be used latter. The second section ”Multiply

transitive groups” introduces the concept of a multiply transitive group.

The third chapter “Construction and properties of multiply transitive groups” gives us

a method for this thesis. In the section “Extensions of multiply transitive groups” it is

shown how to construct multiply transitive groups. The second section “Primitivity of

the multiply transitive groups” gives some theorems which could help to determine if a

group is primitive on a set. And the last section “Simplicity of the multiply transitive

groups” presents criteria of simplicity for multiply transitive groups. We try to be careful

with references and chose the best classical literature for the first and the second chapters

of our thesis, such us [18, 8, 21].

In the forth “Examples and applications of multiply transitive groups” we first recall the

classification of all multiply transitive groups and then give more details in the special

cases of the affine groups and the Mathieu groups. Here we also give a couple of examples

and applications of multiply transitive groups.

The last chapter “The construction of the Mathieu groups M10, M11 and M12” is the main

part of the thesis where we construct the Mathieu groups M10, M11 and M12 by working

out the assignments 1.9.1 - 1.9.10 and 1.9.11 of the book N. L. Biggs and A. T. White:

Permutations groups and combinatorial structures, London Math. Soc. Lecture Notes

Series 33, Cambridge University Press, Cambridge 1979 (1.9 Project: Some multiply

transitive groups, pages 21-23). Finally, we check the most important properties of the

constructed permutation groups such as transitivity, primitivity and simplicity.
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Chapter 2

BASIC CONCEPT OF MULTIPLY

TRANSITIVE GROUPS

For the beginning let us review some definitions and theorems from the theory of per-

mutation groups, which will be needed later. Then we will present concept of a multiply

transitive group.

2.1 BASIC DEFINITIONS

In this section we would like to give all necessary information from the theory of permu-

tation groups. We have used such source of information like [1, 13, 18].

Definition 2.1 A bijection (a one-to-one, onto mapping) of Ω onto itself is called a

permutation of Ω.

Example. Let us consider set S = {1, 2, 3, 4, 5, 6, 7}, then permutation of S will be1 2 3 4 5 6 7

1 3 4 5 2 7 6

,

the scheme of permutation is on Figure 2.1.

The set of all permutations of Ω forms a group, under composition of mappings, called
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Figure 2.1: The example of a permutation

the symmetric group of Ω. We will denote it like Sym(Ω) or Sn, where |Ω| = n. The

group of all even permutations of Ω is called the alternating group Alt(Ω) or An.

Definition 2.2 A permutation group is just a subgroup G of the symmetric group Sym(Ω).

Definition 2.3 Let G be a group and Ω be a nonempty set, and suppose that for each

α ∈ Ω and for each g ∈ G we have defined an element of Ω denoted by αg (in other words,

(α, g) 7→ αg is a function from Ω×G into Ω). Then we say that this defines an action of

G on Ω (or G acts on Ω or short notation (G,Ω) or G× Ω) if we have:

• αid = α for all α ∈ Ω (where id denotes the identity element of G);

• (αx)y = αxy for all α ∈ Ω and all x, y ∈ G.

Example. One of the classical example of group action is the dihedral group D8 which

acts on the vertices of a rectangle (Figure 2.2). The elements of the dihedral group are

all symmetries of the rectangle:

D8 = {id, (1234), (1432), (13)(24), (12)(34), (14)(23), (13), (24)}.
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Figure 2.2: Rectangle

Definition 2.4 The homomorphism φ : G → Sym(Ω), given by φ(g) = gα will be called

a permutation representation of G on Ω.

Definition 2.5 Let π be a permutation representation of G on Ω. When Ker(π) = {id}

we say that the representation is faithful; in this case it is convenient to identify G with

its image in Sym(Ω), so we recover the case of a permutation group Ω×G.

Definition 2.6 Orbit of the element α ∈ Ω under the action of a group G is

Orb(α) = {αg : g ∈ G}

Definition 2.7 The set of elements in G which fix an element α ∈ Ω will be called the

stabilizer of α in G and is denoted by

StabG(α) = {g ∈ G : αg = α}.

Suppose ∆ ⊆ Ω, such that ∆ = {α1, · · · , αn}. Then the pointwise stabilizer of ∆ in G is

StabG(α1, · · · , αn) = {g ∈ G : αg = α, α ∈ ∆}

and the setwise stabilizer of ∆ in G is

StabG(∆) = {g ∈ G : ∆g = ∆}.
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Theorem 2.8 (The Orbit-Stabilizer Lemma).

|G| = |StabG(α)| · |Orb(α)| for all α ∈ Ω.

Proof. We determine the length |Orb(α)| of orbit Orb(α).

We have αh = αr if and only if hr−1 ∈ StabG(α), i.e. h ∈ StabG(α)r. Therefore there are

precisely as many points αh as there are distinct right cosets StabG(α)r. However, this

number is |G : StabG(α)| and therefore

|Orb(α)| = |G| : |StabG(α)|,

as asserted. �

Definition 2.9 A group G is acting on a set Ω is said to be transitive on Ω if it has

only one orbit, and so Orb(α) = Ω for all α ∈ Ω or equivalently we could say that G is

transitive if for every pair of points α, β ∈ Ω there exist g ∈ G such that αg = β.

A group which is not transitive is called intransitive.

Definition 2.10 [1] A group G acting transitively on a set Ω is said to act regularly if

StabG(a) = {id} for each α ∈ Ω,and then |G| = |Ω|.

Proposition 2.11 Suppose that G is transitive in its action on the set Ω. Then:

(i) |Ω| divides |G|;

(ii) The stabilizers StabG(α), α ∈ Ω form a single conjugacy class of subgroups of G.

Proof. For (i) the Orbit-Stabilizer Lemma gives us |G| = |Orb(α)| · |StabG(α)|, but

since G acts transitively, Orb(α) = Ω for every α ∈ Ω, hence |G| = |Ω| · |StabG(α)|, hence

|StabG(α)| = |G|
|Ω| , and so |Ω| divides |G|.

Let us prove (ii) by definition. We should show that

g−1StabG(α)g = StabG(β)
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where α, β ∈ Ω. Then:

g−1StabG(α)g = {g−1hg : β(g−1hg) = (αg)(g−1hg) = αhg = β}

= {h′ : βh′ = β} = StabG(β).

�

Definition 2.12 A subset ∆ ⊆ Ω is called a block of G if for any g ∈ G, either ∆g = ∆

or ∆g ∩∆ = ∅. Obviously, Ω itself, ∅ and all singleton subset {α} are blocks of G, which

are called the trivial blocks.

Definition 2.13 Let G acts on Ω transitively. If G does not have any nontrivial blocks,

then G is called a primitive group. Otherwise, it is called imprimitive.

Proposition 2.14 [13, Proposition 6.1.4] Let G ≤ Sym(Ω) be a transitive group and let

r(α) denote the number of orbits of stabilizer StabG(α) on Ω. Then

r(α) = 1
|G|
∑
g∈G
|fixΩ(g)|2.

It follows from the above proposition that if G ≤ Sym(Ω) is transitive, then for α ∈ Ω

the number of orbits r(α) of StabG(α) does not depend on the choice of α. This number

is called the rank of G and denoted by r(G).

2.2 MULTIPLY TRANSITIVE GROUPS

Definition 2.15 The permutation group G× Ω = (G,Ω) is k-transitive (k ≥ 1) if given

any two ordered k-tuples (α1, . . . , αk), (β1, . . . , βk) of distinct elements of Ω, then there

exist some g ∈ G such that

αgi = βi, 1 ≤ i ≤ k.
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Clearly, a k-transitive group is also l-transitive for 1 ≤ l ≤ k. Usually, when we say

that G is k-transitive on Ω we mean that k is the largest integer for which this is so. The

determination and construction of multiply transitive groups is facilitated by the following

lemma.

Lemma 2.16 [1, Lemma 1.3.6] Suppose that G is known to be transitive on Ω. Then G

is k-transitively on Ω if and only if StabG(α) acts (k − 1)-transitive on Ω \ {α}.

Proof. Let us suppose first that StabG(α) is (k − 1)-transitive on Ω \ {α}. Given any

ordered k-tuples (α1, . . . , αk) and (β1, . . . , βk) of distinct elements of Ω, we may select

g1, g2 ∈ G and h ∈ StabG(α) with the properties

g1(α1) = α, g2(β1) = α,

h[g1(αi)] = g2(βi), 2 ≤ i ≤ k.

Then g−1
2 hg1 is an element of G transforming the ordered k-tuples as required.

The converse is straightforward. �

If we apply repeatedly the Orbit-Stabilizer Lemma for a 2-transitive group, we get the

following formula:

|G| = n(n− 1)(n− 2) . . . (n− k + 1)|StabG(α1, α2, . . . , αk)|

where StabG(α1, α2, . . . , αk) is the pointwise stabilizer of {α1, α2, . . . , αk}.

Definition 2.17 [8] A k-transitive group G is called sharply k-transitive if the identity

element is the only permutation fixing k points.

If G is sharply k-transitive and g1, g2 ∈ G are such elements that g1 6= g2 and αg1i =

αg2i = β, 1 ≤ i ≤ k, then g1g
−1
2 ∈ StabG(α1, . . . , αk) and g1g

−1
2 = id. It is easy to

see that there exists a one-to-one correspondence between ordered sets (β1, . . . , βk) and

permutations in G, namely:
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(β1, . . . , βk)↔

α1 α2 · · · αk · · ·

β1 β2 · · · βk · · ·


Thus |G| = n(n− 1) . . . (n− k + 1).

Theorem 2.18 [1, Theorem 1.3.8] The symmetric group Sym(Ω) is sharply n-transitive,

and Alt(Ω) is sharply (n-2)-transitive in their actions on the set Ω = {1, 2, 3, · · · , n},

n ≥ 3.

Proof. The first part is obvious, since Sym(Ω) contains all permutations of the n-set. In

the alternating case, we may proceed by induction. When n = 3, A3 contains (123) and so

it is 1-transitive. The stabilizer of the symbol n in Alt(Ω) = Alt(n) is Alt(n−1) and so by

lemma 1.17 the induction step is valid. It remains to be shown that Alt(n) cannot be more

than (n-2)-transitive. To see this, we remark that the only permutation of 1, 2, 3, . . . , n

which takes the ordered (n-1)-tuple (1, 2, . . . , n− 2, n− 1) to (1, 2, . . . , n− 2, n) is the odd

permutation (n− 1, n), which is not in Alt(n). Thus Alt(n) is not (n-1)-transitive. �

For any permutation group G ≤ Sym(Ω), if αg = αg
′

for g, g′ ∈ G, then g′ ∈ StabG(α)g.

Thus the right coset StabG(α)g is the set of elements g′ ∈ G which map α to αg. Hence,

if G is transitive, we have a coset decomposition as follows:

G = StabG(α) ∪ (∪β 6=αStabG(α)gβ),

where the second union is taken over all representatives gβ of elements which map α

to β.

Theorem 2.19 Let G be a transitive group on Ω with stabilizer StabG(α), α ∈ Ω. Then

G has rank r(α) if and only if G can be decomposed into r(α) distinct double cosets of

StabG(α). Furthermore if G = ∪ri=1StabG(α)giStabG(α), then the orbits of StabG(α) on

Ω are

∆i = {αg : g ∈ StabG(α)giStabG(α)}, i = 1, 2, . . . , r.

In particular, G is 2-transitive if and only if for any g /∈ StabG(α),
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G = StabG(α) ∪ StabG(α)gStabG(α)

.

Proof. Let H = StabG(α) and let αH1 , α
H
2 , . . . , α

H
r be the r distinct orbits of H on Ω with

α1 = α. Since G is transitive, there exist gj ∈ G such that αi = αgi for each i = 1, 2, . . . , r.

Then the orbits are

∆i = αHi = {αg : g ∈ HgiH}, i = {1, 2, . . . , r}.

Now, if i 6= j, then HgiH ∩HgjH = ∅ because ∆i ∩∆j = ∅.

Conversely, if G = ∪ri=1HgiH is a decomposition into r distinct double cosets of H,

then ∆i = αgiH , i = {1, 2, . . . , r} are the r distinct orbits of H on Ω. Since G is transitive,

we have ∪i∆i = Ω. We need show that ∆i 6= ∆j for i 6= j. By way of contradiction

assume that i 6= j and αgiH = αgjH . It follows that αgih = αgj for some h ∈ H. Hence

gihg
−1
j ∈ H, and gi ∈ HgjH, which implies HgiH = HgjH, a contradiction.

The last statement is clear because G is 2-transitive if and only if H is transitive on

Ω \ {α}. So, H has two orbits α and Ω \ {α}. �
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Chapter 3

CONSTRUCTION AND

PROPERTIES OF MULTIPLY

TRANSITIVE GROUPS

3.1 EXTENSION OF MULTIPLY TRANSITIVE GROUPS

Apart from the symmetric and alternating groups, it is not easy to find k-transitive

groups for values of k larger than 3; in fact, only two such 4-transitive groups, and two

5-transitive groups are known. A way to construct k-transitive groups is extension of

multiply transitive groups [8, 1].

Definition 3.1 Let group G act on the set Ω transitively, and let Ω+ = Ω ∪ {∗}, where

∗ is not a member of Ω. We say that (G+,Ω+) is a one-point extension of (G,Ω) if G+

is transitive on Ω+ and the stabilizer (G+)∗ = G.

It follows from Lemma 2.17 that if G is k-transitive on Ω, then G+ is (k + 1)-transitive

on Ω+. Moreover, if G is sharply k-transitive on Ω, then G+ is sharply (k + 1)-transitive

on Ω+.

An obvious example is that Sn+1 is one-point extension of Sn, the new point ∗ being the

symbol (n+ 1). In order to use construction to define multiply transitive groups, we try
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to find a permutation h of Ω+ such that G+ = 〈G, h〉 has the right properties. We should

find such h that ∗h is still in Ω and G+ will be transitive. Also we should remember that

some h will give us to big G+ (when G+ = Sn+1 or G+ = An+1), which is not good.

In order to see what additional conditions h must satisfy, we examine the situation when

an extension is known to exist. Suppose that H acts on Ω+ in such way that the stabilizer

H∗ = G is multiply transitive on Ω, and let α, β be any two distinct points on Ω. Since

H is (at least) 3-transitive, there is some h ∈ H such that h swiches ∗ and α, and fixes β.

Also, since G is (at least) 2-transitive there is some g which switches α and β. It follows

that both (gh)3 and h2 fix ∗, and so they belong to G; also, if f ∈ Gα then hfh fixes ∗

and α, so that hGαh = Gα. We shall show that the existence of h and g, satisfying these

condition, is also sufficient for the existence of a one-point extension.

Theorem 3.2 [1, Theorem 1.5.2] Let (G,Ω) be a k-transitive group with k ≥ 2 and let

Ω+ = Ω∪ ∗. Suppose that we can find a permutation h of Ω+ and an element g ∈ G such

that

(i) h switches ∗ and some α ∈ Ω, h ∈ Gβ;

(ii) g switches α and β;

(iii) (gh)3 and h2 are in G;

(iv) hGαh = Gα.

Then the group G+ = 〈G, h〉 acts on Ω+ as a one-point extension of (G,Ω).

Proof. Since G is multiply transitive and g /∈ Gα, we know from Theorem 2.20 that

G = Gα ∪GαgGα. We shall show that the conditions imply that 〈G, h〉 = G ∪GhG; the

result then follows, since nothing in GhG can fix ∗, and so (G+)∗ = G. It is sufficient to

show that G ∪ GhG is a group. To show that G ∪ GhG is closed under composition, we

need only check that hGh is a subset of G ∪GhG, since than we have

GhGGhG = G(hGh)G ⊆ G ∪GhG.
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Now, h2 fixes α, and h2 ∈ G, so h2 ∈ Gα; thus by (iv) hGα = Gαh. Also (gh)3 ∈ G so

that ghg belongs to

(ghg)−1G = g−1h−1G = g−1hG.

These remark justify the following calculations:

hGh = h(Gα ∪GαgGα)h

= hGαh ∪ hGαgGαh

= Gα ∪Gα(hgh)Gα

⊆ G ∪Gα(g−1hG)Gα ⊆ G ∪Ghg,

as required. Thus G ∪Ghg = 〈G, h〉. �

3.2 PRIMITIVITY OF THE MULTIPLY TRANSI-

TIVE GROUPS

Below we have wrote a few theorems, which determine if a multiply transitive group is

primitive. The information was taken from the books [18, 8].

Theorem 3.3 Every k-transitive (k ≥ 2) group is primitive.

Proof. Suppose that G is imprimitive, and that ∆ is non-trivial block (|∆| ≥ 1) of

G. Then there exist three points α, β, γ such that α, β ∈ ∆, γ /∈ ∆ and α 6= β. Since

G is doubly transitive, the stabilizer StabG(α) is transitive on Ω \ α. Hence there is a

g ∈ StabG(α) such that βg = γ. Since ∆ is block of G and αg = α, we have ∆ ∩∆g 6= ∅,

so ∆g = ∆, which contradicts to the fact that βg = γ. �

The converse of the theorem does not hold in general. For example, the dihedral group

D2p for a prime p is primitive but not even 2-transitive.
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Theorem 3.4 Let G acts transitively on the set Ω. Then G is primitive if and only if,

for each α ∈ Ω, the stabilizer Gα is a maximal subgroup.

Proof. If Gα is not a maximal subgroup, then there is a subgroup H with Gα < H < G.

We will show that αH = {αg : g ∈ H} is nontrivial block; that is G acts imprimitively on

the set Ω. If g ∈ G and αH ∩ (αH)g 6= ∅, then αh = (αh
′
)g for h, h′ ∈ H. Since h−1gh′

fixes α, we have h−1gh′ ∈ Gα < H and so g ∈ H; hence, (αH)g = αH , and αH is a block.

It remains to show that αH is nontrivial. Clearly αH is nonempty. Choose g ∈ G with

g /∈ H. If αH = Ω, then for every β ∈ Ω, there is h ∈ H with αh = β; in particular

αg = αh for some h ∈ H. Therefore g−1h ∈ Gα < H and g ∈ H, a contradiction. Finally,

if αH is a singelton, then H ≤ Gα, contradicting Gα < H. Therefore G acts imprimitivly

on the set Ω.

Assume that every Gα is a maximal subgroup, yet there exists a nontrivial block B in

Ω. Define a subgroup H of G:

H = {g ∈ G : bg = B}.

Choose α ∈ B. If g(α) = α, then x ∈ B ∩ Bg and so Bg = B (because B is a block);

therefore, Gα ≤ H. Since B is nontrivial, there is β ∈ B with α 6= β. Transitivity

provides g ∈ G with αg = β; hence β ∈ B ∩ Bg and so Bg = B. Thus, g ∈ H while

g ∈ Gα; that is, Gα < H. If H = G then Bg = B for all g ∈ G, and hence Ω = B by the

fact that G acts transitively on the set Ω, contradicting that B is nontrivial. Therefore,

Gα < H < G contradicting maximality of Gα. �

3.3 SIMPLICITY OF THE MULTIPLY TRANSI-

TIVE GROUPS

Many of the multiply transitive groups are simple, for example the alternating groups,

the projective unimodular groups or Mathieu groups. In this section we will present some

simplicity criteria, which will be useful in the practical part of our work. For this section

mostly we used [18].
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Theorem 3.5 If Ω is a faithful primitive G-set of degree n ≥ 2, if H CG and if H 6= 1,

then Ω is a transitive H-set.

Proof. The proof of Theorem 3.4 shows that αH is a block for every α ∈ Ω. Since Ω

is primitive, either αH = ∅ (plainly impossible), αH = {α}, or αH = Ω. If αH = {α}

for some α ∈ Ω, then H ≤ Gα. But if g ∈ G, then normality of H gives H = g−1Hg ≤

g−1Gαg = Gα . Since Ω is transitive, H ≤ ∩β∈ΩGβ = 1, for Ω is faithful, and this is

contradiction. Therefore αH = Ω and Ω is transitive H-set. �

Theorem 3.6 [18, Theorem 9.19] Let group G act faithfully and primitively on the set Ω,

and let the stabilizer Gα be a simple group. Then either G is simple or every non-trivial

normal subgroup H of G is a regular normal subgroup.

Proof. If H CG and H 6= 1, then by Theorem 3.5 the group H also acts transitively on

Ω. We have H∩GαCGα for every α ∈ Ω, so that simplicity of Gα gives either H∩Gα = 1

and H is regular or H ∩Gα = Gα; that is, Gα ≤ H for some α ∈ Ω. Since Gα has to be

maximal subgroup of G, so that either Gα = H or Gα = G. The first case cannot occur

because H acts transitively, so that H = G and G is simple. �

Lemma 3.7 Let G act transitively on the set Ω and let H be a regular normal subgroup

of G. Choose α ∈ Ω and let Gα act on H∗ = H \ {id} by conjugation. Then the Gα-sets

H∗ and Ω \ {α} are isomorphic.

Proof. Let us define

f : H∗ → Ω \ {α}

f(h) = αh

If f(h) = f(k) then h−1k ∈ Hα = 1 (by regularity), and so f is injective. Now |Ω| = |H|

(regularity again), H∗ = Ω \ {α}, and so f is surjective. It remains to show that f is a

Gα-map. If g ∈ Gα and h ∈ H∗, denote the conjugate of h by g as hg. Therefore,

f(hg) = f(g−1hg) = αg
−1hg = αhg,
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because g−1 ∈ Gα; on the other hand, f(h)g = αhg, and so f(hg) = f(h)g. �

Lemma 3.8 Let k ≥ 2 and let Ω be a k-transitive G-set of degree n. If G has a regular

normal subgroup H, then k ≤ 4. Moreover:

(i) if k ≥ 2, then H is an elementary abelian p-group for some prime p and n is a power

of p;

(ii) if k ≥ 3, then either H ∼= Z3 and n = 3 or H is an elementary abelian 2-group and

n is power of 2;

(iii) if k ≥ 4, then H ∼= V (Klein four-group) and n = 4.

Proof. We know that Gα-set Ω \ {α} is (k − 1)-transitive for each fixed α ∈ Ω; by the

previous lemma, H∗ is (k − 1)-transitive Gα-set, Gα acts by conjugation.

(i) Since k ≥ 2, H∗ is a transitive Gα-set. The stabilizer Gα acts by conjugation,

which is automorphism, so that all elements of H∗ have the same (necessarily prime)

order p, and H is a group of exponent p. Now Z(H) C G, because Z(H) is a nontrivial

characteristic subgroup, so that |Ω| = |Z(H)| = |H|, for Z(H) and H are regular normal

subgroup of G′(commutator subgroup). Therefore, Z(H) = H, H is elementary abelian,

and Ω is power of p.

(ii) If h ∈ H∗, then it is easy to see that {h, h−1} is a block. If k ≥ 3, then H∗ is a

doubly transitive, hence primitive, Gα-set, so that either {h, h−1} = H∗ or {h, h−1} = {h}.

In the first case, |H| = 3, H ∼= Z3, and n = 3. In the second case, h has order 2, and so

the prime p in part (i) must be 2.

(iii) If k ≥ 4, k−1 ≥ 3 and |H∗| ≥ 3; it follows that both H ∼= Z3 and H2 are excluded.

Therefore, H contains a copy of V ; say, {1, h, k, hk}. Now (Gα)h acts doubly transitively,

hence primitively, on H∗ \ {h}. It is easy to see, however, that {k, hk} is now a block,

and so H∗ \ {h} = {k, hk}. We conclude that H = {1, h, k, hk} ∼= V and n = 4. Finally,

we cannot have k ≥ 5 because n ≤ 4. �

Theorem 3.9 Let Ω be a faithful k-transitive G-set, where k ≥ 2, and assume that Gα

is simple for some α ∈ Ω.
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(i) If k ≥ 4, then G is simple.

(ii) If k ≥ 3 and |Ω| is not power of 2, then either G ∼= S3 or G is simple.

(iii) If k ≥ 2 and |Ω| is not prime power, then G is simple.

Proof. By Theorem 3.6, either G is simple or G has a regular normal subgroup H. In

the latter case Lemma 3.8 gives k ≤ 4; moreover, if k = 4, then H ∼= V and |Ω| = 4. Now

the only 4-transitive subgroup of S4 is S4 itself, but stabilizer of a point is the nonsimple

group S3. Therefore, no such H exists, and so G must be simple. The other two cases

are also easy consequences of Lemma 3.8. �
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Chapter 4

EXAMPLES AND APPLICATIONS

OF MULTIPLY TRANSITIVE

GROUPS

The multiply transitive groups fall into six infinite families, and four classes of sporadic

groups. The following list can be found in [19]. Bellow q is a power of a prime number.

1. Certain subgroups of the affine group on a finite vector space, including the affine

group itself, are 2-transitive.

2. The projective special linear groups PSL(d, q) are 2-transitive except for the special

cases PSL(2, q) with q even, which are actually 3-transitive.

3. The symplectic groups defined over the field of two elements have two distinct actions

which are 2-transitive.

4. The field K of q2 elements has an involution σ(a) = aq, so σ2 = 1, which allows

a Hermitian form to be defined on a vector space on K. The unitary group on V ,

denoted U3(q), preserves the isotropic vectors in V . The action of the projective

special unitary group PSU(q) is 2-transitive on the isotropic vectors.

5. The Suzuki group of Lie type Sz(q) is the automorphism group of a S(3, q+1, q2+1),

an inversive plane of order q, and its action is 2-transitive.
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6. The Ree group of Lie type R(q) is the automorphism group of a S(2, q + 1, q3 + 1),

a unital of order q, and its action is 2-transitive.

7. The projective special linear group PSL(2, 11) has another 2-transitive action re-

lated to the Witt geometry W11.

8. The Higman-Sims group HS is 2-transitive.

9. The Conway group CO3 is 2-transitive.

10. The Mathieu groups M12 and M24 are the only 5-transitive groups besides S5 and

A7. The groups M11 and M23 are 4-transitive, and M22 is 3-transitive.

In the next two sections we will discuss in more details the affine groups and the

Mathieu groups, respectively.

4.1 AFFINE GROUPS

The affine groups arise naturally from affine geometry and can also be defined alge-

braically. Since the geometry does not enter strongly into the smallest numbers of each

family we shall begin with an algebraic introduction to the case of 1-dimensional groups,

in which we follow [8].

If the underlying set on which we are acting is a field, then sets of permutations of certain

natural types form subgroups of the symmetric group. Historically, these examples of

permutation groups arose quite early in the subject; the first examples were given by

Évariste Galois in 1830.

Definition 4.1 Let F be a field. Then it is straightforward to verify that the set A of all

permutations of F of the form

tαβ : ξ 7→ αξ + β, α, β ∈ Fandα 6= 0

constitutes a subgroup of Sym(F ) which is called the 1-dimensional affine group over

F and is denoted by AGL1(F ).
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The higher dimensional affine groups are automorphism groups of affine geometry. The

affine geometry AGd(F ) consists of points and affine subspaces constructed from the vector

space F d of row vectors of dimension d over the field F . The points of the geometry are

simply the vectors of F d. The affine subspaces are the translates of the vector subspaces

of F d. Thus if S is a k-dimensional subspace of F d then

S + β = {α + β : α ∈ S}

is an affine subspace of dimension k for every β ∈ Fd.

An automorphism of the affine space AGd(P ) is a permutation of the set of points which

maps each affine subspace to an affine subspace (of the same dimension). In other words,

an affine automorphism is a permutation of the points that preserves, or respects, the

affine geometry.

Definition 4.2 An affine transformation is an affine automorphism of an especially sim-

ple form. For each linear transformation a ∈ GLd(P ) and vector v ∈ Fd we define the

affine transformation ta,v : F d 7→ F d by

ta,v : u 7→ ua+ v.

Each of these mappings ta,v is an automorphism of the affine geometry AGd(F ). The

set of all ta,v(a ∈ GLd(F ), v ∈ Fd) forms the affine group AGLd(F ) of dimension d ≥ 1

over F . It is easy to verify that AGLd(P ) is a 2-transitive subgroup of Sym(F ). The

group AGLd(F ) is a split extension of a regular normal subgroup T , consisting of the

translations tl,v (v ∈ Fd) by a subgroup isomorphic to GLd(P ). Since this group has a

normal regular subgroups it is not simple and it is primitive, because it is 2-transitive.

Another type of affine automorphism is the permutation of F d defined by tσ : u 7→ uσ,

where σ ∈ Aut(F ) and σ acts componentwise on the vector u. All mappings tσ (σ ∈

Aut(F )) form a subgroup of Sym(F d) isomorphic to Aut(F ). This subgroup together

with AGLd(F ) generate the group AΓLd(F ) of affine semilinear transformations.
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4.2 THE MATHIEU GROUPS

Mathieu groups were discovered by French mathematician Emile Mathieu (Figure 4.1)

and described in 1861 and 1873 in two papers in the Journal de Mathematiques Pures et

Appliquees [14, 15].

Figure 4.1: Emile Mathieu

The five Mathieu groups, M11, M12, M22, M23, M24, are truly remarkable set of finite

groups, because they are the first five of the list of 26 sporadic simple groups, and these are

the only known finite 4- and 5-transitive groups which are not alternating or symmetric.

Moreover, all the five Mathieu groups are subgroups of M24.

The group M12 is sharply 5-transitive of degree 12 and its point stabilizer is M11. The

group M11 in turn is the unique sharply 4-transitive group on 11 points with point stabi-

lizer M10. Some mathematicians do not count M10 among the Mathieu groups because it

is not simple, but any way it is important to know, that M10
∼= A6 · 2.

4.2.1 Steiner System

The Mathieu groups are most simply defined as automorphism groups of certain Steiner

systems [8].
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Definition 4.3 A Steiner system S = S(Ω, B) is a finite set Ω of points together with a

set B of subsets of Ω called blocks such that, for some integers k and t, each block in B

has size k, and each subset of Ω of size t lies in exactly one block from B.

We call S an S(t, k, v) Steiner system where v = |Ω|. The parameters are assumed to

satisfy t < k < v to eliminate trivial examples. It is important that this use of the term

”block” should not be confused with the earlier use in reference to imprimitive groups.

Below we give a couple of the nice and classical examples of a Steiner system.

Example. The Fano Plane (Figure 4.2) is an example of an S(2, 3, 7) Steiner System.

We have a set Ω of v = 7 points, together with a set B of 3-element blocks - represented

by 7 lines in the plane. We can see that every pair of points belongs ta a unique line, i.e.

every 2-element subset of Ω is in exactly one block as required.

Figure 4.2: The Fano Plane: S(2,3,7)

Example. (Affine space as a Steiner system [8]). Take Ω to be the vector space of

dimension d over the field Fq for some prime power q. Take the set B of blocks to be the

affine lines of the space, that is, the translates of 1-dimensional subspaces. Then there

are v = qd points in the space and each block has k = q points on it. Any two distinct

points are joined by a unique line so lie together in just one block. Thus we have an



Klymenko A., Multiply transitive permutation groups via the small Mathieu groups
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 23

S(2, q, qd) Steiner system. The group AΓLd(q) (which was present in Section 4.1) is the

automorphism group of this Steiner system.

An automorphism of a Steiner system S(Ω, B) is a permutation of Ω which permutes the

blocks among themselves. Many interesting permutation groups, not least the Mathieu

groups, arise as automorphism groups of Steiner systems. This gives a means of construct-

ing the groups as well as a concrete tool to study the structure of the groups. The study

of Steiner systems and other combinatorial geometries is a lively area of combinatorics

that is why the investigation of the Mathieu groups are very needed now.

We complete this section by the list of parameters of Steiner systems which admit the

Mathieu groups as their automorphism groups [20].

Table 4.1: The Mathieu groups as automorphism groups of some Steiner Systems

Mathieu group Steiner system

M10 S(3, 4, 10)

M11 S(4, 5, 11)

M12 S(5, 6, 12)

M22 S(3, 6, 22)

M23 S(4, 7, 23)

M24 S(5, 8, 24)

4.2.2 Other application of the Mathieu groups

In this section we propose to reader to relax a little bit and have some fun with Mathieu

groups.

The Mathieu group M12 in music

First we would like to present the project of Emma Ross - “Mathematics and Music:

The Mathieu Group M12” [17]. She examined how the French composer Oliviér Messiaen

(Figure 4.3) used the permutations of M12 to compose his music. Specifically she explored
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the 4th piece of his Quatre études de rythme (Four studies in rhythm) titled Île De Feu 2

(Island of Fire).

Figure 4.3: Olivér Messiaen

The earliest known example of mathematics appearing in musical composition comes from

French mathematician and music theorist Marin Marsenne’s 1636 work “Harmonie Uni-

verselle” where he refers to arranging the order and distribution of notes via simple com-

binatorial mathematics. It was in the early 20th century when the practice became more

popular however. This time saw the revolution of atonal music which inspired the use of

new musical scales which, unlike the conventional, featured equal length intervals between

each note. Lacking the features of the classic musical scales useful in forming melody and

structure, alternative methods for organizing notes into a piece were needed. This opened

the door for avant-garde approaches to harmonic organization - the symmetric nature of

the scales allowing permutations to be employed in composition. Olivér Messiaen, Igor

Stravinsky and Béla Bartók all composed using these innovative compositional notions -

avoiding conventional harmonic structure and progression [2].

Emma Ross described in detail how Messiaen applied group theory to writing new com-

positions. First of all he has numbered the twelve notes in such way like we show on

Figure 4.4.
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Figure 4.4: Assigning integer labels to each musical note

Assigning numbers to the notes makes spotting the working of modulo 12 arithmetic in

the musical scale a much simpler task. Progressing rightwards along the scale in Figure

4.4 the notes become higher in pitch but having reached note 11 we return to 0 in the

numbering and start again. This reflects a key property of our musical scale; the note 0 is

equivalent to note 12, as well as to note 24 and so on (likewise in the negative direction).

Notes equivalent in modulo 12 arithmetic are distinguishable only by pitch - that is note

12 is simply a higher pitched version of 0 while 24 is doubly higher in pitch compared

to 0 and so on. It is natural then to consider permutations of these twelve classes of

”equivalent” notes and hence the group M12. Numbering the notes as in Figure 4.4, we

consider the permutation of a set of 12 integers which generate different orderings of notes

to give new melodic phrases. The first labeling shown (A) gives emphasis to the musical

convention of considering note C (numbered 0) to be the central note in the scale. The

second one (B), looks like random choice by the first glance, but let us check

BPO = {11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10}(0,6,9,1,5,3,4,8,10,11)(2,7) =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = A,

now it is clear that the composer picked such numbering of notes because it is obtain

from A by applying P−1
O . We do not know why he did that, but probably it sounds more

nice.

To create melody Messiaen uses two permutations PO = (0, 6, 9, 1, 5, 3, 4, 8, 10, 11)(27)

and PI = (0, 5, 8, 1, 6, 2, 4, 3, 7, 9, 10)(11) (which of course generate whole M12). Diaconis,

Graham and Kantor discovered that M12 was generated by PO ana PI , this permutations

they called Morgean shuffles [16]. They can be visualized as follows Figures 4.5 - 4.6 .
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Figure 4.5: Permutation PO

Figure 4.6: Permutation PI

The Mathueu puzzles M12 and M24

Second interesting application of Mathieu groups was described in the article of Igor

Kriz and Paul Siegel “Simple groups at play” [10]. The scientists constructed puzzles

on the multiply transitive groups M12 and M24. Those puzzles, like Rubik’s cube, are

permutation puzzles. Let us consider these puzzles.

To solve M12 puzzle we need a sequence of numbers from 1 to 12, arrange in a row. Only

two moves are allowed, but they can be applied any numbers of times in any sequence. The

goal of the puzzle is to put the scrambled arrangement back into the ordinary numerical

order (1, 2, 3, ..., 12) . On Figure 4.7 we have showed the scheme of the work of M12 puzzle.

Figure 4.7: The scheme of the work of M12 puzzle
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The hint of the solution is the fact that the Mathieu group M12 is 5-transitive, i.e., it is

possible to move any five of the numbers to any five of the 12 positions in the row. Once

that is done, all the remaining numbers fall into position; the puzzle is solved. The reason

is that the group M12 is also sharply 5-transitive, that is why it has 12 · 11 · 10 · 9 · 8 or

95040 permutations, which happens to be exactly the number of ways of selecting any five

of the 12 numbers and placing each of them somewhere in the sequence. The fact that

the entire permutation is specified by fixing the positions of five numbers implies that it

is pointless to search for a sequence of moves that would shift only a few numbers, except

identity permutation. In other words, every nontrivial sequence of moves must displace

at least eight of the twelve numbers. You can find the visualized version of the puzzle on

the web-page [11] and Figure 4.8 is one screenshot of it.

Figure 4.8: Computer game of puzzle M12

The second presented puzzle is M24 puzzle, which includes 23 numbers arranged in the

circle, as if on the face of a clock and a 24th number placed just outside of circle at 12

o’clock (Figure 4.9). As in M12 puzzle just two moves are allowed. One move rotates the

circle one “notch,” sending the number in position 1 to position 2, the number in position

2 to 3, and so forth. The number in position 23 is sent to position 1, and the number

outside the circle does not move. The second move simply switches the pairs of numbers

that occupy circles having the same color.

LikeM12, M24 is sharply 5-transitive with some combinations of two moves, it is possible to

manipulate the arrangement until any five of the 24 positions. Because of 5-transitivity

our hint for solving the M12 puzzle helps in solving M24 as well: devise moves that

return the number 1 through 5 to their proper position without disturbing the numbers

already on the places. But this time the solver is not quite done. The group M24 has
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Figure 4.9: Computer game of puzzle M24

24 · 23 · 22 · 21 · 20 · 48 or 244823040 elements; thus, even after the number 1 through 5

are returned to their proper places, the other 19 numbers can still be distributed around

the circle in 48 different ways.
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Chapter 5

THE CONSTRUCTION OF THE

MATHIEU GROUPS M10, M11

AND M12

In this chapter let us apply all knowledge from the earlier part of the thesis to solve

the assignments 1.9.1 – 1.9.9 and 1.9.11 from the book [1] and eventually construct the

Mathieu groups M10, M11 and M12.

When the group G acts on a set Z it also permutes the subsets of Z, and so there

are permutation representations of G induced in this way. It is convenient to say that

an element g ∈ G fixes Y ⊆ Z pointwise if y ∈ Y implies yg = y, and setwise if y ∈ Y

implies yg ∈ Y . We will construct some multiply transitive groups starting from such a

representation. Let Z = {a, b, c, d, e, f} and let us write S6 = Sym(Z). Let X denote the

set of the 10 partitions of Z into two three-sets. Label the members of X as follows:

0 = abc|def 5 = ace|bdf

1 = abd|cef 6 = acf |bde

2 = abe|cdf 7 = ade|bcf

3 = abf |cde 8 = adf |bce

4 = acd|bef 9 = aef |bcd.

Each element g ∈ S6 induces a permutation of the partitions in X. We denote this
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permutation by ĝ, and for any subgroup G ≤ S6 write Ĝ = {ĝ : g ∈ G}. The mapping

g 7→ ĝ defines a permutation representation of S6 which we denote below by ϕ.

5.1 SETWISE AND POINTWISE STABILIZERS

Question 5.1 [1, 1.9.1] Check that ϕ is a faithful representation and that Ŝ6 acts transi-

tively on X. Find also the orders of

(i) the pointwise stabilizer of abc in S6;

(ii) the setwise stabilizer of abc in S6;

(iii) the stabilizer of 0 in Ŝ6.

Solution. Let us check that permutation representation is faithful. By definition, this

means that

Kerϕ = {g ∈ S6 : ĝ = îd} = {id}.

In fact, the above kernel is the intersection of all stabilizers in Ŝ6 in this action on X.

However, the element ĝ ∈ Ŝ6 which fixes all elements from the set X must be the identity,

so

Kerϕ = ∩9
i=0StabG(i) = {îd}.

Now, we will check if the group Ŝ6 acts transitive on the set X by finding the orbit

OrbŜ6
(9):

9(ab)̂ = 4,

9(acb)̂ = 1,

9(abcd)̂ = 7,

9(cf )̂ = 5,

9(ec)̂ = 6,

9(df )̂ = 7,
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9(ed)̂ = 8,

9(eb)(cf )̂ = 0,

9(bf )̂ = 2,

9(be)̂ = 3,

9id̂ = 9.

We obtain that OrbŜ6
(9) = X, and so Ŝ6 acts transitively on the set.

We answer next questions (i)-(iii): The pointwise stabilizer of {a, b, c} is given as

StabS6(a, b, c) =
{
id, (fed), (fde), (df), (de), (fe)

}
;

while the setwise stabilizer of {a, b, c} is given as

StabS6({a, b, c}) =
{
id, (fed), (fde), (df), (de), (fe),

(abc), (acb), (ab), (ac), (bc), (abc)(fed),

(abc)(fde), (abc)(df), (abc)(de), (abc)(fe),

(acb)(fed), (acb)(fde), (acb)(df), (acb)(de), (acb)(fe),

(ab)(fed), (ab)(fde), (ab)(df), (ab)(de), (ab)(fe),

(ac)(fed), (ac)(fde), (ac)(df), (ac)(de), (ac)(fe),

(bc)(fed), (bc)(fde), (bc)(df), (bc)(de), (bc)(fe)
}
.

And so |StabS6({a, b, c})| = 36.

Since Ŝ6 acts transitively, we could use the Orbit-Stabilizer Lemma:

|Ŝ6| = |OrbŜ6
(0)| · |StabŜ6

(0)|,

and from this

|StabŜ6
(0)| = 720

10
= 72.

�

5.2 THE GROUP Ŝ6 IS 2-TRANSITIVE

Question 5.2 [1, 1.9.2] By considering (abc)̂ and (def )̂, show that Ŝ6 is 2-transitive on

X.
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Solution. To prove that Ŝ6 is 2-transitive we should show that StabŜ6
(0) is transitive on

the set X \ {0}. The permutations (abc)̂ and (def )̂ decompose into disjoint cycles as:

(abc)̂ = (194)(285)(376) and (def )̂ = (123)(456)(798).

Now,

1(194)(285)(376) = 9 and 1(123)(456)(798) = 2.

We obtain quickly the following images:

1id̂ = 1, 1(abc)̂ = 9, 1(acb)̂ = 4,

1(def )̂ = 2, 1(def)(abc)̂ = 8, 1(def)(acb)̂ = 5,

1(dfe)̂ = 3, 1(dfe)(abc)̂ = 7, 1(dfe)(acb)̂ = 6.

The stabilizer StabŜ6
(0) acts transitively on the set X\{0}, therefore Ŝ6 acts 2-transitively

on the set X.

�

5.3 THE GROUP Ŝ6 IS NOT 3-TRANSITIVE

Question 5.3 [1, 1.9.3] How many elements of Ŝ6 fix both 0 and 1. Find them. Deduce

that Ŝ6 is not 3-transitive on X.

Solution. Recall that 0 = (abc|def) and 1 = (abd|cef). Then we can write that

(ab)̂, (ef )̂ ∈ StabŜ6
(0, 1), and also (ae)(bf)(cd)̂ ∈ StabŜ6

(0, 1). The last what we should

do is to determine the group generated by these elements:

StabŜ6
(0, 1) =

{
id̂, (ab)̂, (ef )̂, (ab)(ef )̂, (afbe)(cd)̂,

= (aebf)(cd)̂, (ae)(bf)(cd)̂, (eb)(af)(cd)̂
}
.

|StabŜ6
(0, 1)| = 8.

Then

(ab)̂ = (49)(58)(67), (ef )̂ = (23)(56)(78), (afbe)(cd)̂ = (2934)(5876),
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(aebf)(cd)̂ = (2439)(5678), (ab)(fe)̂ = (23)(57)(68)(49),

(eb)(af)(cd)̂ = (24)(39)(68), (ae)(bf)(cd)̂ = (29)(34)(57).

We see that the elements in StabŜ6
(0, 1) map 2 to 2, 3, 4 or 9. Thus StabŜ6

(0, 1) is not

transitive on the set X \ {0, 1}, which implies that Ŝ6 is not 3-transitive on X. �

5.4 THE GROUP Â6 IS 2-TRANSITIVE

Let H = Â6 be the group of permutations of X induced by even permutations of Z.

Question 5.4 [1, 1.9.4] Verify that H is 2-transitive on X and that StabH(0, 1) is a cyclic

group of order 4 generated by θ = (afbe)(cd)̂ = (2934)(5876).

Solution. We show first that the group H is transitive on the set X. To show this we

calculate the orbit OrbH(0):

0(abcde)̂ = (abc|def)(abcde)̂ = (bcd|eaf) = 9,

0(aedcb)̂ = (abc|def)(aedcb)̂ = (aeb|cdf) = 2,

0(cf)(ed)̂ = (abc|def)(cf)(ed)̂ = (abf |dec) = 3,

0(bd)(ef )̂ = (abc|def)(bd)(ef )̂ = (adc|bef) = 4,

0(be)(df )̂ = (abc|def)(be)(df )̂ = (aec|dbf) = 5,

0(bf)(de)̂ = (abc|def)(bf(de)̂ = (afc|deb) = 6,

0(be)(cd)̂ = (abc|def)(be)(cd)̂ = (aed|cbf) = 7,

0(bd)(cf )̂ = (abc|def)(bd)(cf )̂ = (adf |bec) = 8,

0(cd)(ef )̂ = (abc|def)(cd)(ef )̂ = (abd|cef) = 1,

0id̂ = 0.

We can conclude that OrbH(0) = X, so H is transitive on the set X.

Observe that, (abc)̂ and (def )̂ ∈ H, then using Section 5.2 we can see that, H is also

a 2-transitive group on the set X.
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Finally, we find by §5.3 that

StabH(0, 1) =
{

(aebf)(cd)̂, (afbe)(cd)̂, (ab)(fe)̂, id̂
} ∼= Z4.

�

5.5 THE STABILIZER OF 0 IN Â6

Question 5.5 [1, 1.9.5] Show that StabH(0) is generated by θ, φ1 = (abc)̂ and φ2 = (def )̂.

Use the fact that H is primitive on X to deduce that H is generated by θ, φ1, φ2, and any

element ψ of H \ StabH(0).

Solution. We know that H acts transitively on the set X, then by the Orbit-Stabilizer

Lemma, |StabH(0)| = 36. We know that (abc)̂ and (def )̂ are in StabŜ6
(0), and by §5.4

that 〈θ〉 = StabÂ6
(0, 1).

StabH(0) =
{
id̂, (abc)̂, (def )̂, (acb), (dfe)̂,

(abc)(def )̂, (acb)(def )̂, (abc)(dfe)̂, (acb)(dfe)̂,

(afbe)(cd)̂, (ab)(fe)̂, (aebf)(cd)̂,

(ae)(bdcf )̂, (bf)(adce)̂, (be)(dafc)̂, (dbec)(af )̂,

(dbfc)(ea)̂, (bdce)(af )̂, (adcf)(be)̂, (daec)(fb)̂,

(df)(ab)̂, (de)(ab)̂, (bc)(fe)̂, (ac)(fe)̂,

(aebd)(fc)̂, (aecf)(bd)̂, (fceb)(ad)̂, (adfb)(ce)̂,

(bc)(df )̂, (bc)(de)̂, (ac)(df )̂, (ac)(de)̂,

(afce)(bd)̂, (adbe)(fc)̂, (afbd)(ce)̂, (cfbe)(ad)̂
}
.

|StabH(0)| = 36

Since H is 2-transitive on X, it must be primitive. This is implies that the stabilizer

StabH(0) is a maximal subgroup in H, hence
〈
StabH(0), ψ

〉
= H for any element ψ ∈

H \ StabH(0), and so H is indeed generated by θ, φ1, φ2 and ψ. �
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5.6 THE CONSTRUCTION OF THE NEW GROUP

M10

Take ψ to be the permutation

ψ = (ab)(cd)̂ = (01)(49)(56)(78).

Then by Section 5.5, H = 〈θ, φ1, φ2, ψ〉. Define the permutation λ of X, which is not in

H, by

λ = (2735)(4698).

Question 5.6 [1, 1.9.6] Show that the conjugate of each generator of H by λ is an element

of H and that λ2 ∈ H. Deduce that there are just two cosets of H in 〈H, λ〉.

Solution. The generators of H are as follows:

θ = (afbe)(cd)̂ = (2934)(5876),

φ1 = (abc)̂ = (194)(285)(376),

φ2 = (def )̂ = (123)(456)(798),

ψ = (ab)(cd)̂ = (01)(49)(56)(78).

We obtain their conjugates by λ as

λθλ−1 = (2735)(4698)(2934)(5876)(2537)(4896) = (2439)(5678),

λφ1λ
−1 = (2735)(4698)(194)(285)(376)(2537)(4896) = (247)(359)(168),

λφ2λ
−1 = (2735)(4698)(123)(456)(798)(2537)(4896) = (269)(348)(157),

λψλ−1 = (2735)(4698)(01)(49)(56)(78)(2537)(4896) = (29)(34)(01)(68).

As we know epimorphisms preserve the orders of elements, i.e. images and preimages

have the same orders. Using this fact we could show that all conjugates above are in H.

Suppose that λθλ−1 = x̂ where x ∈ A6. Then x is of order 4, thus its cyclic structure

must be as (∗ ∗ ∗∗)(∗∗). We can also use the fact that x̂ fixes both 0 and 1. Now, using

§5.4, we find that our x is equal to (aebf)(cd)̂.
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Step-by-step we will find x also for the permutations φ1, φ2 and ψ. Using the same

fact about orders we can see, that λφ1λ
−1 = x̂ where x could be of cycle structure (∗ ∗ ∗)

or (∗ ∗ ∗)(∗ ∗ ∗) and also we know that x̂ ∈ StabH(0), then there are only 8 possible x.

That is why we easily figure out x = (acb)(dfe)̂ . In the similar way we have find that

λφ2λ
−1 = (acb)(def )̂. So we can conclude that both elements λφ1λ

−1 and λφ2λ
−1 is inside

A6. The x of λψλ−1 is equal to element from A6, which is (ab)(ef )̂.

For λ2 we get that

λ2 = (2735)(4698)(2735)(4698) = (23)(57)(49)(68) = (ab)(ef )̂.

Now we would like to notice that in group 〈H, λ〉 exist just two cosets of H, they are

H and λH, and this follows from the fact that the group H is of index 2 in 〈H, λ〉 . �

Definition 5.7 The group M10 = 〈H,λ〉 is called the Mathieu group on 10 symbols.

5.7 THE GROUP M10 IS SHARPLY 3-TRANSITIVE

Question 5.8 [1, 1.9.7] Verify that the Mathieu group M10 is sharply 3-transitive on X.

Solution. By the Definition 2.18 we know that if G is k-transitive, and the identity is the

only permutation fixing k points, then G is said to be sharply k-transitive, and its order

is exactly

|G| = n(n− 1) · · · (n− k + 1).

Since the order of the group M10 is 720, which is exactly 10 · 9 · 8, it remains to prove

that M10 is 3-transitive.

We will prove it by Lemma 2.17, in other words we will show that StabM10(0, 1) acts

transitively on the set Ω \ {0, 1}. Let us take the elements λ, θ ∈ StabM10(0,1) from the

previous section. Then λ and θ generate the following elements:

〈λ, θ〉 = {id, (2735)(4698), (2934)(5876), (2537)(4896), (2439)(5678),

(2735)(4698)·(2735)(4698) = (23)(75)(49)(68),

(2735)(4698)·(2934)(5876) = (2638)(7459),

(2537)(4896)·(2934)(5876) = (2836)(4795), ...}.
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Now we could see that StabM10(0, 1) acts transitively on the set Ω\{0, 1}, because 2 could

be map into any other point:

2id = 2,

2(23)(75)(49)(68) = 3,

2(2439)(5678) = 4,

2(2537)(4896) = 5,

2(2638)(7459) = 6,

2(2735)(4698) = 7,

2(2836)(4795) = 8,

2(2934)(5876) = 9.

Hence the Mathieu group M10 is sharply 3-transitive. �

5.8 THE CONSTRUCTION OF THE MATHIEU GROUP

M11

We are going to construct a one-point extension of the group M10 using Theorem 2.2. For

this purpose let

G = M10, ∗ = T, h = (0T )(47)(59)(68), g = ψ.

Question 5.9 [1, 1.9.8] Show that G0 = 〈θ, φ1, φ2, λ〉 and verify that all conditions (i)-(iv)

of Theorem 2.2 hold, so that 〈M10, h〉 is sharply 4-transitive on the set X ′ = {0, 1, ...9, T}.

Solution. The elements g and h decompose as

g = (01)(49)(56)(78) and h = (0T )(47)(59)(68).

We verify that all conditions (i)-(iv) of Theorem 3.2 hold:

(i): Taking α = 0, obviously, the element h = (0T )(47)(59)(68) switches ∗ and α.

(ii): Taking β = 1, obviously, the element g = (01)(49)(56)(78) switches α and β.
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(iii): h2 = (0T )(47)(59)(68) · (0T )(47)(59)(68) = id, so h2 ∈ G. We also have to prove

that (gh)3 ∈ G. It is true since g · h = (01T )(458)(697), hence (gh)3 = id ∈ G.

(iv): The last condition is hG0h = G0. Since we know a generator set of G0 we could

directly check this property:

hφ1h = (0T )(47)(56)(68)(194)(285)(376)(0T )(47)(56)(68) = (483)(715)(926) = λφ2λ
−1

hφ2h = (0T )(47)(56)(68)(123)(456)(798)(0T )(47)(56)(68) = (456)(798)(123) = φ2,

hθh = (0T )(47)(56)(68)(2934)(5876)(0T )(47)(56)(68) = (4896)(7253) = λ−1,

hλh = (0T )(47)(56)(68)(2735)(4698)(0T )(47)(56)(68) = (4392)(7856) = θ−1.

For all elements s from the generating set S = {φ1, φ2, θ, λ}, hsh is again in G0, and

this proves that hG0h = G0.

We can conclude that 〈M10, h〉 is sharply 4-transitive since the order of this group is

|〈M10, h〉| = 11 · |StabG(0)| = 11 · |M10| = 11 · 10 · 9 · 8 = 7920.

�

Definition 5.10 The group M11 = 〈M10, h〉 constructed above is called the Mathieu group

on 11 symbols.

5.9 THE CONSTRUCTION OF THE MATHIEU GROUP

M12

Using Theorem 2.2 once more, we are going to construct a one-point extension of the

group M11. For this purpose let

G′ = M11, ∗ = E, g′ = h = (0T )(47)(59)(68).

Question 5.11 [1, 1.9.9] Find a permutation h′ of {0, 1, ...9, T, E} such that 〈M11, h
′〉 is

sharply 5-transitive.
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Solution. We are going to show that by the choice

h′ = (ET )(49)(56)(78)

all conditions (i)-(iv) of Theorem 3.2 hold. Take α = T and β = 0. Conditions (i) and

(ii) hold obviously. Let us check condition (iii): (h′)2 = id ∈ G′, and

g′h′ = (0T )(47)(59)(68) · (ET )(49)(56)(78) = (0ET )(485)(967),

hence (g′h′)3 = id′ ∈ G′, and so (iii) holds too.

Condition (iv) requires that

h′G′Th
′ = G′T = M10 = 〈H, λ〉 = 〈θ, φ1, φ1, λ, ψ〉.

Then

h′θh′ = (ET )(49)(56)(78) · (2934)(5876) · (ET )(49)(56)(78) = (4392)(5678) = θ−1

h′φ1h
′ = (ET )(49)(56)(78) · (194)(285)(376) · (ET )(49)(56)(78) = (491)(538)(762)

h′φ2h
′ = (ET )(49)(56)(78) · (123)(456)(798) · (ET )(49)(56)(78) = (478)(596)(123)

h′λh′ = (ET )(49)(56)(78) · (2735)(4698) · (ET )(49)(56)(78) = (4795)(6283)

h′ψh′ = (ET )(49)(56)(78) · (01)(49)(56)(78) · (ET )(49)(56)(78) = (01)(49)(56)(78) = ψ.

Since it is not obvious that elements h′φ1h
′, h′φ2h

′, h′λh′ are in G′T we used program

package Magma [3] to check it.

That 〈M11, h
′〉 is sharply 5-transitive follows in the same way as in §5.8.

|M12| = 12 · |StabM12(E)| = 12 · |M11| = 12 · 11 · 10 · 9 · 8 = 95040.

�

Definition 5.12 The group M12 = 〈M11, h
′〉 constructed above is called the Mathieu group

on 12 symbols.
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5.10 THE SIMPLICITY OF THE GROUPS M11 AND

M12

In this section we prove that the two Mathieu groups M11 and M12 are simple. Let us

prove this first for M11.

Theorem 5.13 The Mathieu group M11 is simple.

Proof. Towards a contradiction let us assume that N E M11 is proper and nontrivial.

Since M11 is doubly transitive it is primitive. By Theorem 3.5, N is transitive and so 11

divides |N |. Let P be a Sylow 11-subgroup of N and s11 the number of Sylow 11-subgroups

in M11. From Sylow’s third Theorem we have that

s11 =
11 · 10 · 9 · 8
|NM11(P )|

and s11 ≡ 1(mod 11).

This implies that s11 = 144 and |NM11(P )| = 55. Now since P < N E G and all Sylow

11-subgroups are conjugates, N contains all 144 Sylow 11-subgroups. Using Sylow’s third

Theorem again we obtain

|N | = 144 ·NN(P ) = 11 · 2 · 9 · 8.

Note that, NN(P ) contains exactly 11 elements since it contains P .

Furthermore, |N ||Na| = 11 yields |N ∩M10| 6= 1, where M10 < M11 is a point stabilizer of

M11. Now, N ∩M10 E M10. The group M10 acting on Ω+ \ {∗} = Ω is primitive since

is it is doubly transitive. This yields that 10 divides |N ∩M10|, implying that 10 divides

also |N |, a contradiction. �

Question 5.14 [1, 1.9.11] Is M10 simple? Assume that M11 is simple, and show that M12

is simple.

Solution. The Mathieu group M10 is not simple, because it has a subgroup Â6 of index

2, hence Â6 is a normal subgroup of the group M10.
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Since M11 is simple, Lemma 3.6 implies that M12 is simple or contains a regular normal

subgroup. But M12 is a 5-transitive group, then by Theorem 3.9 we can state that M12

is simple. �
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Chapter 6

SUMMARY

In the master work we have constructed Mathieu groups of the small degree (M10, M11,

M12), using methodology of extension, and examined theirs properties. We realized that

M10, M11, M12 are all primitive groups, because they are all more then 2-transitive. Also

we have checked if the groups are simple by simplicity criteria and concluded that M10

is not simple, since it has normal subgroup A6, but M11 and M12 are simple k-transitive

where k ≥ 4. All these properties are very important, because automorphism groups of

many combinatorial and geometrical structures are Mathieu groups, so we could get some

useful information from these results.

In general during investigation of multiply transitive groups we have concluded that they

are very interesting object for research and also excellent tool for study others areas of

mathematics. We tried to show this fact by chapter 3, where we have write some unusual

applications of affine and Mathieu groups. For example Mathieu group M12 could be

used by composers like Olivér Messiaen, he got new melodies by applying permutations

from the M12 to the 7 notes and 5 diesis. Young mathematician Paul Siegel constructed

permutation puzzle by using multiply transitive groups M12, M24 and Co0. And finally

classical application of multiply transitive groups like automorphism group of Steiner

system.
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