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Izvleček:

Glavni predmet magistrskega dela je problem neodvisne množice, optimizacijski prob-

lem, katerega cilj je v danem grafu G poiskati največjo množico paroma nesosednjih

vozlǐsč. V magistrskem delu je ta NP-težek problem formalno definiran in motivirano je

raziskovanje problema v posebnih grafovskih razredih. Predstavljene so številne znane

tehnike za razvoj polinomskih algoritmov v posebnih primerih. Z uporabo tehnike

povečujočih grafov izpeljemo nov rezultat, in sicer dokažemo, da je problem polinom-

sko rešljiv v razredu {P10, C4, C6}-prostih grafov. Predstavljen je razred ekvistabil-
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Title of the thesis: The maximum independent set problem and equistable graphs

Place: Koper

Year: 2017

Number of pages: 63 Number of figures: 8

Number of references: 71

Mentor: Assoc. Prof. Martin Milanič, PhD
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Abstract:

The main topic of the Master thesis is the independent set problem in graphs, an

optimization problem that takes as input a graph G and asks about a maximum set

of pairwise non-adjacent vertices. In the Master thesis we formally define this NP-

hard problem and motivate its research on restricted graph classes. We present several

known techniques for developing polynomial-time algorithms for the problem in special

cases. Using the technique of augmenting graphs we develop a new result. Namely, we

show that the independent set problem is solvable in polynomial time in the class of

{P10, C4, C6}-free graphs. We also present the class of equistable graphs, a linear-time

recognition algorithm for the class of k-equistable graphs, and a proof of the fact that

the weighted independent set problem is NP-hard in the class of equistable graphs.
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1 Introduction

An undirected graph G = (V,E) is an ordered pair where V is a finite set of vertices

of G and E is a set of unordered pairs of distinct elements of V . The set V (G) = V is

called the vertex set of G and the set E(G) = E is called the edge set of G. We say that

two vertices u, v ∈ V are adjacent if there exists an edge e ∈ E such that e = {u, v},
and non-adjacent otherwise. A set I ⊆ V is an independent set (or a stable set) if

every two vertices from I are non-adjacent. An independent set is maximal if it is not

contained in any other independent set and maximum if it is of maximum possible size.

An independent set, originally called internal stable set by Korshunov [38], is sometimes

also called vertex packing. In the Independent Set problem we are given a graph

G as input and the goal is to find an independent set in G of maximum cardinality.

Independent Set was one of the first 21 problems that were proved NP-hard by

Karp [36] in 1972. As such it is one of main problems in theoretical computer science

and combinatorial optimization. The problem finds important applications in a wide

range of practical problems arising in many aspects of human activities, including not

only computer science, but also information theory, biology, transport management,

telecommunications, and finance. More precisely in molecular biology, computer vision,

railways dispatching, coding theory, scheduling in wireless networks, etc. [22]. Several

examples will be described in Section 1.2.

Since solving an NP-hard optimization problem to optimality may be prohibitive

in terms of computational time, we can instead try to obtain an approximate solution

in reasonable time: this brings us to the area of approximation algorithms. Other

approaches for solving NP-hard problem use heuristics, local optimization, more effi-

cient exponential algorithms, approximation algorithms, randomized algorithms, fixed-

parameter tractable algorithms, or polynomial algorithms for special cases of input,

see [22] for a nice overview of these methods. It is known that the Independent Set

problem:

• is NP-hard to approximate within a factor O(n1−ε) for ε > 0 [5],

• is not fixed-parameter tractable unless W [1] = FPT [21],

• admits no subexponential time algorithm under the Exponential Time Hypothesis

[35,44].

1
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These complexity results motivate the study of Independent Set problem on re-

stricted graph classes. Even though the problem is hard in general, it is often possible

to reveal restrictions on the input instances under which the problem can be solved

efficiently, that is, in polynomial time. One goal towards understanding Indepen-

dent Set is to identify cases for which polynomial-time solutions are possible. For

many restricted graph classes the problem becomes polynomial-time solvable. Such

are the class of bipartite graphs [16] or the class of chordal graphs ({C4, C5, . . . }-free

graphs) [25]. Polynomial time algorithms were also developed for graphs of bounded

clique width [18], kK2-free graphs [7], 2P3-free graphs [51], claw-free graphs [59, 68],

{claw +K2}-free graphs [50], and fork-free graphs [49]. It should be noted that results

for {claw +K2}-free and fork-free graphs are different generalizations of the result for

claw-free graphs.

Not all restrictions and properties make the problem polynomially solvable. Inde-

pendent Set remains NP-hard even on planar graphs of maximum degree three [27],

but it admits polynomial-time approximation schemes and as well as subexponential

time exact algorithm and parametrized algorithms [6,42] in the class of planar graphs.

Independent Set problem is NP-hard also for unit disk graphs [15] and for triangle-

free graphs [60].

Many authors tried to classify the properties of graph classes for which the In-

dependent Set problem remains NP-hard. While a complete classification of the

complexity for all hereditary classes of graphs seems out of reach, we can at least hope

to classify the complexity status of the problem for all H-free classes, where H is a

connected graph. For such cases, it was proved by Alekseev [1] that the Independent

Set problem remains NP-hard for H-free graphs unless H is a path or a subdivision of

the claw (K1,3). If H is a P3 then the graphs that are H-free are disjoint unions of com-

plete graphs and Independent Set problem is trivially solvable in polynomial time

in this graph class. The Independent Set problem on P4-free graphs (also known as

cographs) was proven to be polynomially solvable by Corneil et al. [17]. For the class

of P5-free graphs a polynomial algorithm is known but is much more complicated and

we will present the ideas of this algorithm in later chapters. Recently also a polynomial

algorithm for P6-free graphs was announced [32], improving a known quasipolynomial-

time algorithm for P6-free graphs [45]. Regarding other positive results for Pk-free

graphs where k ≥ 7, a subexponential algorithm for Pk-free graphs [13] is known.

Structure of the Master thesis: In the rest of this section we will introduce the

notation and present a few examples of modeling using the independent set problem.

After that we will survey some methods for solving the problem in particular graph

classes. The largest part of the thesis is devoted to such a survey. More precisely, we

will present the method of augmenting graphs and use it to develop a polynomial-time
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algorithm for the Independent Set problem for {P10, C4, C6}-free graphs. This result

is a new contribution and it is the main result of Section 2.1.

We will also present a recent technique that uses particular useful tree decompo-

sition of minimal triangulations of a graph. We will mention how such a technique

is used to obtain polynomial-time algorithms for Weighted Independent Set in

P5-free and P6-free graphs.

Other important results such as modular decomposition, decomposition by clique

separators, and graph transformations will be covered in Sections 2.3-2.6.

The last chapter is devoted to the class of equistable graphs. A linear-time al-

gorithm for recognition of k-equistable graphs is presented [37]. We also show that

Independent Set is NP-hard for equistable graphs [57].

1.1 Preliminaries

In the thesis we consider all graphs as finite, simple and undirected. For a graph

G = (V,E) we denote with V (G) = V the set of vertices and with E(G) = E the set

of edges of G. We will often write uv ∈ E for an edge {u, v} ∈ E. The neighborhood of

a vertex v is the set of vertices NG(v) = {u ∈ V | uv ∈ E}. The closed neighborhood

of a vertex v is NG[v] = NG(v) ∪ {v}. When it is clear from the context to which

graph we are referring to we will write shortly N(v) instead of NG(v) and similarly

for N [v]. The neighborhood of a vertex set W ⊆ V is NG[W ] = ∪v∈WNG[v] and

NG(W ) = NG[W ]\W . We will refer to NG(v) and NG(W ) as the open neighborhood of

a vertex v and a set W , respectively. For simplicity we will write NG(u, v) = NG({u, v})
and NG[u, v] = NG[{u, v}], respectively. Define δG(v) as the subset of vertices of NG(v)

with neighbors outside of NG(v) that is δG(v) = {u ∈ NG(v) | uw ∈ E for some w ∈
V (G) \NG[v]}.

Let S, S ′ be subsets of vertices of a graph G. We say that S dominates S ′ if

S ′ ⊆ N [S] and we say that S is anticomplete to S ′ if there is no edge with one

endpoint in S \S ′ and the other in S ′ \S. To avoid confusion we will usually use terms

“dominates” and “anticomplete to” when referring to disjoint subsets of vertices.

We say that a graph H = (V ′, E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V

and E ⊆ E ′. For a non-empty subset W ⊆ V , the induced subgraph G[W ] is defined as

the graph H = (W,E ∩
(
W
2

)
), where

(
W
2

)
is the set of all unordered pairs in W . The

graph G[V \W ] is denoted with G \W . If the set W = {v} we will write G \ v for

simplicity.

A clique C ⊆ V (G) is a set of pairwise adjacent vertices, and an independent set

I ⊆ V (G) is a set of pairwise non-adjacent vertices. A clique C is maximal if there is no

other clique C ′ such that C is contained in C ′, analogously we say that an independent
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set is maximal if there is no other independent set containing it. We denote with ζ(G)

the family of all maximal cliques in a graph G.

The Independent Set problem is the problem of finding the maximum size of

an independent set in a given graph. The independence number of a graph G is the

maximum size of an independent set, denoted with α(G). A weighted graph is a pair

(G,w) (also denoted by Gw) where G is a graph and w : V (G) → R+ is a weight

function on the vertex set. The Weighted Independent Set problem takes as

input a weighted graph Gw and the task is to find an independent set in G of maximum

weight, where the weight of an independent set I is defined as w(I) =
∑

v∈I w(v). For

a weighted graph Gw, we denote by αw(G) the maximum weight of an independent set.

Independent Set:

Input: A graph G.

Task: Compute α(G).

Weighted Independent Set:

Input: A weighted graph Gw.

Task: Compute αw(G).

A path in a graphG is a sequence of pairwise distinct vertices (v1, v2 . . . , v`) such that

vivi+1 ∈ E for every i ∈ {1, . . . , `− 1}. If those are the only edges in G[{v1, v2, . . . , v`}]
then the path is said to be induced. If v1v` ∈ E for a path (v1, v2 . . . , v`) then this path

is called a cycle and the cycle is induced if removing the edge v1v` from G[{v1, v2 . . . , v`}]
makes the path (v1, v2 . . . , v`) induced. A cycle on at least four vertices is called a hole.

A hole is even (resp. odd) if it contains even (resp. odd) number of vertices.

A graph G is connected if there exists a path connecting every two vertices of G.

We say that G is co-connected if G is connected.

A vertex set S ⊆ V (G) in a graph G is a separator in G if there exist vertices u, v in

different connected components of G\S that belong to the same connected component

of G, and in that case we say that S separates u and v. The separator is minimal

for u, v if no proper subset of S separates u and v. A separator S of G is a minimal

separator of G if it is minimal for some pair of vertices in G. A connected component

C of G \ S is a full component associated with S if N(C) = S. It is easy to see that a

component C of G \S is full if and only if every vertex of S has a neighbor in C. Such

a pair (C, S) is called a block.

Proposition 1.1 (see, e.g., Lokshtanov [43]). S is a minimal separator if and only if

there are at least two distinct full components associated with S.

A tree decomposition of a graph G = (V,E) is a pair (T, χ) where T is a tree and χ

is a function χ : V (T )→ P(V ) satisfying the following:
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• ∀uv ∈ E there exists w ∈ V (T ) with {u, v} ⊆ χ(w),

• ∀v ∈ V the set {w ∈ V (T ) | v ∈ χ(w)} is a non-empty set inducing a connected

subtree of T .

For all w ∈ V (T ) we call the image χ(w) a bag of T . We say that a tree decomposition

(T, χ) is rooted if T is rooted and we denote the root vertex by r(T ).

1.1.1 Graph classes

For a graph G and a family of graphs F we say that G is F -free if graph G does

not contain any graph from F as an induced subgraph. If F = {H} we will write

shortly that G is H-free. We define Free(F) as the class of F -free graphs. It is well

known that a class is Free(F) for some graph family F if and only if it is a hereditary

class [2]. We say that a class of graphs X is hereditary if it is closed under vertex

deletion, or equivalently, if it is closed under taking induced subgraphs, i.e., if the

following implication holds:

G ∈ X,H is induced subgraph of G⇒ H ∈ X .

Many classes of theoretical or practical importance are hereditary, which includes

among others

• forests, i.e., graphs without cycles,

• bipartite graphs,

• graphs of bounded vertex degree,

• planar graphs,

• graphs of bounded treewidth,

• graphs of bounded clique-width,

• chordal graphs,

• perfect graphs,

• interval graphs,

• circle graphs, and

• line graphs.
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Hereditary graph classes are very well studied and many results are known. In the next

chapters we will consider several hereditary graph classes and the Independent Set

problem when input graphs are restricted to belong to one of those graph classes. For

more details on hereditary graph classes we refer to [12].

Recall that a graph G is perfect if for every induced subgraph H of G it holds that

ω(H) = χ(H), where ω(H) is the maximum size of a clique in G and χ(H) is minimum

number of independent sets that form a partition of the vertices of H.

Theorem 1.2 (Strong Perfect Graph Theorem). [Chudnovsky, Robertson, Seymour

and Thomas [14]] A graph G is perfect if and only if G is {C5, C7, C7, C9, C9, . . . }-free.

We say that a graph is even-hole-free if it is {C4, C6, C8, . . . }-free.

1.2 Examples

In the following chapter we show how several more or less (real- world) problems can

be modeled as the Independent Set problem.

1.2.1 Rectangle intersection graphs

One of the well known applications of Independent Set is a problem of automatic

label placement or simply map labeling. In this problem we are given a map together

with names of regions and several possibilities for placement of each name close to its

particular location. We need to place as many names as possible with the condition

that no two names overlap. Formally we are given set of points P = {p1, . . . pn} in

R2 that correspond to actual places on a map. For each pi ∈ P we are given a set

Qi of rectangles with sides parallel to the two axes which correspond to the possible

placements of the name of a place i on the map. For each such instance we can build

a graph G with vertex set V , V = ∪ni=1Qi and for every two pu, pv ∈ V it holds

pupv ∈ E(G) if and only if the two rectangles corresponding to pu and pv intersect.

Under the assumption that every two rectangles in some Qi intersect, the solution to the

starting problem exactly corresponds to finding a maximum independent set in graph

G. We could extend the example further and add a weight to each possible placement

of some regions name (for example, by the ratio of importance and/or the area of label

needed to write the specific name). To solve such an extension we add a weight function

to the vertices of graph G. In this case we want to solve the Weighted Independent

Set problem. Such a problem motivates the study of the Independent Set problem

in so-called rectangle intersection graphs. Such a class of graphs is trivially hereditary

but the Independent Set remains NP-hard [39].



Husić E. The maximum independent set problem and equistable graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 7

A similar problem appeared several times in the practice round of Google Hash

Code competition.

1.2.2 Railways dispatching

During operations, railway dispatcher faces the challenging problem of rerouting and

rescheduling trains in the presence of delays. Once a train is delayed, it might be

in conflict with other trains that are planned to use the same track. The dispatcher

then has to find a new feasible plan. Interestingly enough, these complicated decisions

are carried out mostly by humans today, with only basic computer support such as

graphical monitoring tools. Nevertheless, the dispatching decisions have a considerable

impact on reliability and punctuality as experienced by passengers. Typically, a railway

station is modeled as a graph with vertices representing points on the tracks, and edges

representing track segments that connect such points. In many cases the resulting

graphs are planar, which is the case for many junctions and stations. Hence, conflict

free routes correspond to vertex disjoint paths. Not every route which is physically

feasible is desirable in practice, though. Therefore, railway planners allow for each

train only a small set of alternative paths for each train. For each pair of terminals

(si, ti) of some train i, there exists a set of feasible routes Pi . Then the goal is to find

a maximum number of vertex disjoint paths Pi1 , Pi2 , . . . , Pim , where Pij ∈ Pj.
We construct a conflict graph G = (V,E) as follows. We set V = ∪iPi . Two

vertices u, v are adjacent if u, v belong to the same set Pi for some i or they are two

routes sharing an inner point. Then the problem of finding the maximum number of

vertex disjoint paths is the Independent Set problem in G.



2 Methods for solving

Independent Set

2.1 Minimal augmenting graphs

For a graph G = (V,E) we define its line graph L(G) as the graph with vertex set

E(G) and two vertices of L(G) being adjacent if and only if they share an endpoint.

An example of a graph G and its line graph is depicted in Figure 1. One can easily

see that an independent set in graph L(G) corresponds to a matching in G. Hence, for

the class of line graphs Independent Set and Weighted Independent Set are

equivalent to finding a maximum matching and a maximum weight matching in the

root graph, respectively. Due to Berge’s idea of augmenting paths [9] and Edmond’s

algorithm for finding augmenting paths in “Paths, trees, and flowers” [23], we know that

the problem of finding a maximum matching in a graph can be solved in polynomial

time. Since we can find in linear time a root graph of a given line graph [40, 67], it

follows that Independent Set is polynomially solvable in the class of line graphs.

a b

cd

e ad

ed

ea

ab

bc

cd

Figure 1: A graph G on the left, and its line graph L(G) on the right.

Generalization of the notion of augmenting paths using augmenting graphs led to

several new polynomial-time algorithms for the Independent Set problem. Aug-

menting graphs were first introduced by Sbihi, to show that the problem is polyno-

mially solvable in the class of K1,3-free graphs [68], where Km,n denotes the complete

bipartite graph with parts of size m and n.

Definition 2.1. For an independent set I ⊆ V (G), an induced bipartite graph H =

(W,B;E) in G is augmenting for I if the following holds:

• W ⊆ I,

8
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• B ⊆ V (G) \ I,

• |W | < |B| and

• N(B) ∩ I ⊆ W .

The following theorem suggests a possible application of augmenting graphs.

Theorem 2.2 (Minty [59]). An independent set I in a graph G is maximum if and

only if there is no augmenting graph for I.

Proof. Let I be an independent set in graph G. If I admits an augmenting graph

H = (W,B;E) then the set I ′ = (I \W ) ∪ B is an independent set and |I ′| > |I|.
Conversely, if I is not a maximum independent set and I ′ is a maximum independent

set then |I ′| > |I|. But then the subgraph induced by (I \I ′)∪ (I ′ \I) is an augmenting

graph for I.

The above theorem suggests the following algorithmic approach for finding a max-

imum independent set. Start with any maximal independent set I, then find an aug-

menting graph for I if one exists. Since the size of an independent set is at most

n = |V (G)|, we will repeat this step at most n − 1 times and obtain a maximum in-

dependent set. It is therefore trivial to conclude that testing whether an independent

set admits an augmenting graph is NP-hard, yet such an approach could give efficient

algorithm for particular classes of graphs. The same approach works even if we restrict

the problem to finding a minimal augmenting graph. We say that an augmenting graph

H is minimal for I if any proper induced subgraph of H is not an augmenting graph

for I. We use the following lemma to characterize minimal augmenting graphs for an

independent set I. Interestingly, the characterizing condition does not depend on I.

Lemma 2.3 (Lozin and Milanič [49]). An augmenting graph H = (W,B;E) is minimal

if and only if

i) |W | = |B| − 1, and

ii) for every non-empty subset A ⊆ W it holds |A| < |N(A)|.

Proof. Let H = (W,B;E) be a minimal augmenting graph for an independent set I.

If |W | < |B| − 1 then the graph induced by W ∪ (B \ {v}), for some v ∈ B, is an

augmenting graph for I. Hence, i) holds. Suppose there exists a subset A ⊆ W such

that A ≥ |N(A)|. Then the set of vertices (W \ A) ∪ (B \ N(A)) induces a proper

subgraph of H, which is furthermore augmenting for I. Hence, ii) holds.

To prove the other direction, let H = (W,B;E) be an augmenting graph for I

satisfying i) and ii). Suppose there exists a proper induced subgraph H ′ = (W ′, B′;E ′)

of H that is also augmenting for I.
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If |W ′| = |W |, then |B′| ≥ |W ′| + 1 = |W | + 1 = |B| implies that H = H ′. We

conclude |W ′| < |W |. Hence, the set A = W \W ′ is non-empty. Since H ′ is augmenting

it follows that N(A) ⊆ (B \B′). This gives |N(A)| ≤ |B \B′| ≤ |W \W ′| = |A| which

contradicts ii).

Corollary 2.4 (Lozin and Milanič [49]). An augmenting graph H = (W,B;E) is

minimal if and only if

i) |W | = |B| − 1,

ii) for every non-empty subset A ⊆ W it holds |A| < |N(A)|, and

iii) H is connected.

Proof. Using Lemma 2.3 it suffices to prove that i) and ii) imply iii). Let H be aug-

menting graph and suppose that i) and ii) hold. Suppose for the sake of contradiction

that H is not connected. Let X be a subset of vertices that induces a connected com-

ponent of H and let Y = V (H)\X. Define WX = X ∩W , WY = Y ∩W , BX = X ∩B,

and BY = Y ∩ B. By ii) it follows that |WX | < |BX | and |WY | < |BY |, but then

|WX |+ |WY | < |BX |+ |BY | − 1. A contradiction with i).

In the following sections we apply the method of augmenting graphs to obtain

a polynomial-time algorithm for {P10, C4, C6}-free graphs. We start by developing

a polynomial-time algorithm for Independent Set in the class of {P9, C4, C6}-free

graphs.

2.1.1 Independent Set in {P9, C4, C6}-free graphs

Let G be a graph and I a maximal independent set. If there exists an augmenting P3,

then by enumerating all P3s, we can find an augmenting one in time O(n3). For the

rest of the section, for any graph G and a maximal independent set I in G, we assume

that I does not admit an augmenting P3.

For a vertex w ∈ I we define KI(w) = {v ∈ V (G) : N(v) ∩ I = {w}} and

KI [w] = KI(w)∪ {w}. When it is clear to which independent set I we are referring to

we will write K(w) and K[w] for simplicity. We will often denote R = V (G) \ I.

Observation 1. Let I be a maximal independent set in a graph G such that I does not

admit augmenting P3. Then for any w ∈ I, KI [w] is a clique.

We will first describe minimal augmenting graphs for even-hole-free graphs and

subsequently show how to detect such minimal augmenting graphs in subclasses of

even-hole-free graphs. Let us introduce some necessary definitions.
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Definition 2.5. We say that a tree T is a black-white tree if its vertex set can be

partitioned into two sets of vertices B and W such that both sets are independent and

every vertex in W has degree exactly 2. We say that vertices in W are white and

vertices in B are black.

For better understanding we state the following easy proposition (without proof).

Later, we show that the minimal augmenting graphs in the class of even-hole-free

graphs are exactly the black-white trees.

Proposition 2.6. A graph T is black-white tree if and only if it can be obtained by

subdividing each edge of a non-trivial tree exactly once.

Lemma 2.7. Let G be a graph and I a maximal independent set. Let H be an aug-

menting tree for I. Then H is a minimal augmenting graph for I if and only if it is a

black-white tree.

Proof. Let H = (W,B;E) be a minimal augmenting tree for I. We will show that

every vertex in part W is of degree 2.

By Lemma 2.3 there exists no white vertex of degree 1. Also by Lemma 2.3 it holds

|B| = |W | + 1 and hence |B| + |W | = 2|W | + 1. Since H is a tree, the latter implies

that it has exactly 2|W | edges. Suppose that there exists a vertex w ∈ W of degree 3

or more. Since every vertex in W has degree at least 2 and W is a part of bipartition

(W,B) of H, we infer that H has strictly more than 2|W | edges, a contradiction.

Suppose that H is a black-white tree. Let us show that H is a minimal augmenting

graph by Lemma 2.3. By definition of a black-white tree H has |W | white vertices and

2|W | edges, hence it has 2|W | + 1 vertices and it holds that |B| = |W | + 1, proving

i). Since every white vertex has degree exactly 2 and every two white vertices have at

most one common neighbor in H, condition ii) holds.

Suppose that G is even-hole-free graph and I a maximal independent set in G.

Then every bipartite induced subgraph of G is a forest. This means that every minimal

augmenting graph for I is a tree by Corollary 2.4. Moreover, by the above lemma it

follows that every minimal augmenting graph for G is a black-white tree. We will use

this fact for developing a polynomial-time algorithm for Independent Set in the

class of {P10, C4, C6}-free graphs.

Definition 2.8. For numbers r, s ∈ N \ {0}, we define a black-white rooted tree Tr,s

as follows. The root of the tree Tr,s is white, it has two children, which are black, and

they have exactly r and s white children, respectively. Recall that each white vertex

has a unique child. All vertices are at distance at most 3 from the root.
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Moreover, we define a black-white tree Ts as a rooted tree, having a black root

vertex, and exactly s white children (and each white vertex has a unique child). All

vertices are at distance at most 2 from the root.

For an example of Tr,s and Ts we refer to Figure 2.

Observe that T1,1 is a P7 and T2 is a P5.

Figure 2: Example of trees T3,2 and T3.

Side note: Let C be a class of graphs. We define Cm to be the class of all graphs

H for which there exists a graph G ∈ C and an independent set I of G such that H is

a minimal augmenting graph for I. If for a class C it holds that Cm is finite, then we

have a trivial polynomial-time algorithm for the Independent Set problem in the

class C. Namely, we can exhaustively check all the subsets of V (G) of size O(1) to see

whether one of them induces a graph augmenting for I.

The following are examples of infinite classes Cm for some hereditary class C:

• the set P of all paths Pk for k odd integer,

• the set T of all trees Ts for s ∈ N, and

• the set K of all complete bipartite graphs Ks,s+1 where s ∈ N.

Moreover, it has been shown that these are the only minimal infinite classes Cm.

Theorem 2.9 (Dabrowski et al. [19]). Let C be a hereditary class of graphs and let Cm
be the class of minimal augmenting graphs of C. If Cm is infinite, then Cm contains

P , T , or K.

When C is the class of even-hole-free graphs Cm contains both P and T since every

graph in P and in T is a black-white tree.

Trees of type Ts have already appeared in the study of augmenting graphs, more

precisely as one of the two classes of minimal augmenting graphs in the class of {P6, C4}-
free graphs [61]. Subsequently they were considered as minimal augmenting graphs

in the class of {banner, S1,2,5}-free graphs [48], where banner is a graph on vertices

a, b, c, d, e such that {a, b, c, d} induce a C4 and e is adjacent only to d.

The following is an easy consequence of Lemma 2.7.
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Observation 2. Let G be an {P9, even-hole}-free graph and I a maximal independent

set in G. Let H be a minimal augmenting graph for I. Clearly, H is a P9-free graph.

Since every maximal induced path in H has black end vertices, it follows that H is

P8-free. If H contains P7, then H is isomorphic to a Tr,s for some integers r and s. On

the other hand, if H is P7-free, then H is isomorphic to a Ts.

In the remaining part of the section we show how to detect graphs Ts and Tr,s.

Lemma 2.10. Let F be a set of graphs, let k ≥ 3 and let C = Free({Pk} ∪ F). Let

G ∈ C be a graph and I a maximal independent set in G. If the Independent Set

problem can be solved in time O(ntk) in the class of {Pk−1∪F}-free graphs, then it can

be tested in time O(ntk+1) whether I admits an augmenting graph of the form Ts.

Proof. We show how to check whether there exists an augmenting Ts with root at x,

for a vertex x ∈ R. Recall that R = V (G) \ I. Fix x ∈ R. We will try to build such

a tree T . By definition of augmenting graph, all vertices in N(x) ∩ I are in T so add

them to T . Set s = |N(x) ∩ I|. Let S =
(
∪w∈N(x)∩IK(w)

)
\N(x). Since we assumed

that no augmenting P3 exists we know that every K(w) is a clique. Therefore, there

exists an augmenting Ts with root at x if and only if there exists an independent set

I∗ in G[S] such that |I∗| = s. Moreover, since S is a union of s cliques the set I∗ is

a maximum independent set in G[S]. The later can be checked in polynomial time by

assumption if we show that the graph G[S] is {Pk−1 ∪ F}-free.

It is trivial to see that G[S] is F -free since G[S] ∈ C. Suppose on the contrary

that G[S] contains an induced Pk−1 with vertices {p1, . . . , pk−2, pk−1}. Denote w a

vertex in N(x) ∩ I such that pk−2 ∈ K(w) \ N(x) and a vertex w′ ∈ N(x) ∩ I such

that pk−1 ∈ K(w′) \ N(x). It may be possible that w = w′. If w = w′ then the set

{p1, . . . , pk−2, w, x} induces a Pk in G. If w 6= w′ then the set {p1, . . . , pk−1, w
′} induces

a Pk in G. A contradiction.

Lemma 2.11. Let F be a set of graphs, let k ≥ 4 and let C = Free({Pk} ∪ F). Let

G ∈ C be a graph and I a maximal independent set in G. If the Independent Set

problem can be solved in time O(ntk−3) in the class of {Pk−3 ∪ F}-free graphs, then it

can be tested, in time O(ntk−3+3) , whether I admits an augmenting graph of the from

Tr,s.

Proof. We show how to test if there exists an augmenting Tr,s with root at v ∈ I.

Fix v ∈ I. If N(v) is a clique, then such a tree with root at v clearly does not exist.

Otherwise, choose b′, b′′ ∈ N(v)∩R such that b′ and b′′ are non-adjacent. We will check

if there exists an augmenting tree T of type Tr,s containing vertices v, b′, b′′ with root

at v. If N(b′) ∩ N(b′′) 6= {v} then such a tree clearly does not exist. For the rest of

the proof, suppose that N(b′) ∩ N(b′′) = {v}. Since b′ and b′′ are black vertices, by
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definition of augmenting graph vertices in N(b′) ∩ I and N(b′′) ∩ I are in T . Denote

s = |N(b′, b′′) ∩ (I \ {v})|. Let S =
(
∪w∈N(b′,b′′)∩I\{v}K(w)

)
\ N(b′, b′′). Similarly as

before, since we assume there is no augmenting P3 it follows that K(w) is a clique.

Therefore, there exists an augmenting Tr,s with root at v containing {b′, b′′} if and only

if there exists an independent set I∗ in G[S] such that |I∗| = s. Moreover, since S

is a union of s cliques, the set I∗ is a maximum independent set in G[S]. The later

can be checked in polynomial time by assumption if we show that the graph G[S] is

{Pk−3 ∪ F}-free.

G[S] is F -free sinceG[S] ∈ C. For the sake of contradiction suppose that there exists

an induced Pk−3 in G[S]. Denote its vertices as {p1, . . . , pk−3}. Denote by w a vertex

in N(b′, b′′)∩ (I \ {v}) such that pk−4 ∈ K(w) \N(b′, b′′) and a vertex w′ ∈ N(b′, b′′)∩ I
such that pk−3 ∈ K(w′) \ N(b′, b′′). Then (depending on whether w = w′ or not)

either the set {p1, . . . , pk−4, w, b
′, v, b′′} or {p1, . . . , pk−3, w

′, b′, v} induce a Pk in G. A

contradiction.

We obtain the following theorem.

Theorem 2.12. The Independent Set problem is polynomially solvable in the class

of {P9, even-hole}-free graphs.

Proof. By Observation 2, the minimal augmenting graphs for the class of {P9, even-

hole}-free are of type P3, Ts, or Tr,s. On the other hand, Independent Set can be

solved in polynomial time in the class of {P8, banner}-free graphs [29], and hence also

in the class of {P8, even-hole}-free graphs (the banner contains a C4, therefore every

{P8, even-hole}-free graph is also {P8, banner}-free). By Lemmas 2.10 and 2.11 we

conclude that the Independent Set problem is polynomial solvable in the class of

{P9, even-hole}-free graphs.

It should be noted that we could devise faster and more direct algorithm for {P9,

even-hole}-free graphs by devising a faster algorithm for Independent Set in the

class of {P8, even-hole}-free graphs, but we focus just on polynomial-time solvability.

Recall that the {P9, even-hole}-free graphs are exactly the {P9, C4, C6, C8}-free

graphs. We strengthen the result to the class of {P9, C4, C6}-free graph. We show that

there are only finitely many minimal augmenting graphs in the class Free({P9, C4, C6})
that are not Ts and Tr,s. Observe that if a minimal augmenting graphs in the mentioned

class is not a tree, then it contains a hole, more precisely a C8.

Lemma 2.13. Let G be a {P9, C4, C6}-free graph and I a maximal independent set in

G. Let H = (W,B;E) be a minimal augmenting graph for I containing a C8. Then

|V (H)| ≤ 15.
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Proof. Let C be an induced C8 in H. Let v ∈ NH(C). Using the fact that H is

bipartite, it is easy to see that |NH(v) ∩ V (C)| = 1.

Next, observe that C dominatesH (that is, every vertex v ∈ V (H)\V (C) is adjacent

to a vertex in C). Suppose to the contrary that there exists a vertex w ∈ V (H)\V (C)

non-adjacent to a vertex in C. Take a shortest path P from w to C. Then set

V (P ) ∪ V (C) induces a graph that contains a P9.

Denote the vertices of C as v1, . . . v8 such that vivi+1(mod 8) ∈ E for i ∈ {1, . . . , 8}.
Then, w.l.o.g., v1, v3, v5, v7 ∈ W and v2, v4, v6, v8 ∈ B. Observe that NH(v1) \ V (C)

is a set containing only black vertices. Moreover, since H is a minimal augmenting

graph if |NH(v1) \ (V (C))| > 1 we can find an augmenting P3 (which contradicts an

assumption we made in the beginning of the section). Hence, |NH(v1) \ (V (C))| ≤ 1.

Similarly |NH(vi) \ (V (C))| ≤ 1 for i ∈ {3, 5, 7}.
Since NH(vi) ⊆ B and every vertex b ∈ B is adjacent to some vi where i ∈

{1, 3, 5, 7}, we have |B| ≤ 4 + 4. By Lemma 2.3 it follows |W | ≤ 7. Hence, H is one of

finitely many bipartite graphs on 15 vertices.

Remark 2.14. In fact, it is easy to check that there are just a few possible graphs

satisfying conditions of Lemma 2.13.

Theorem 2.15. A maximum independent set in a given {P9, C4, C6}-free graph G can

be found in polynomial time.

Proof. As we said before, every minimal augmenting graph in the class either contains

a C8 or is a tree. By Lemma 2.13 every minimal augmenting graph containing a C8

has at most 15 vertices. For each subset S ⊆ V (G), |S| ≤ 15 check if it induces an

augmenting graph. This can be done in time O(n15) using a brute force approach.

If there is no minimal augmenting graph containing a C8, then the only possible

minimal augmenting graphs are P3, Tr,s and Ts. Using Lemma 2.10, Lemma 2.11 and

a polynomial-time algorithm for Independent Set in {banner, P8}-free graphs [29]

we can check if there exists a minimal augmenting tree in polynomial time.

If, in the above procedure, at any step we find an augmenting graph, we augment

it and start again with the new maximal independent set. We do so, until we obtain a

maximal independent set that admits no minimal augmenting graph. By Theorem 2.2

such an independent set is maximum.

The running time of checking if an independent set I admits a minimal augmenting

graph is bounded by the running time of the first step. Since the size of independent

set is bounded by n, we will consider at most n independent sets with increasing size

at each step. Hence, the total running time is bounded by O(n16).
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2.1.2 Independent set in {P10, C4, C6}-free graphs

In this section we generalize the previous result on {P9, C4, C6}-free graphs to the class

of {C4, C6, P10}-free graphs. First, we need to classify the minimal augmenting graphs.

Next to the already mentioned trees P3, Ts and Tr,s, a minimal augmenting tree can

be a black-white tree that contains an induced P9. It is easy to see that such trees are

exactly black-white trees with a black root and at least two leaves at distance 4 from

the root. An example of such a tree is depicted in Figure 3. Recall that we still keep

the assumption that there is no augmenting P3 for any graph and any independent set

in that graph we consider in this section.

Figure 3: Example of a minimal augmenting graph containing a P9.

Since we already know that Independent Set is polynomially solvable in the

class of {P9, C4, C6}-free graphs, Lemma 2.10 and Lemma 2.11 give us a polynomial-

time algorithm for checking whether a maximal independent set I of G (where G ∈
Free({C4, C6, P10}) admits a minimal augmenting graph Ts or Tr,s. Hence, we need

to show how to test whether an independent set I admits a minimal augmenting tree

containing P9 or an augmenting graph containing a C8 or a C10. Let us start with the

following lemma.

Lemma 2.16. Let G be a {C4, C6}-free graph and I a maximal independent set in G.

Let x ∈ R, Wx = N(x) ∩ I = {w1, . . . , wk}. Define Bi = N(wi) ∩ (R \N [x]). Then we

can decide in polynomial time if there exists a set I∗ ⊆ ∪ki=1Bi such that

• I∗ is an independent set, and

• |I∗ ∩Bi| = 1 for every i ∈ {1, . . . , k}.

Proof. Let B = ∪ki=1Bi. We use the following observation. Let i ∈ {1, . . . , k}. There

exists no induced P3 = ({a, b, c}, {ab, bc}) such that b ∈ Bi and a, c 6∈ Bi. On the

contrary, suppose that such a P3 exists. If a, c ∈ Bj for some j ∈ {1, . . . , k} \ {i}
then {a, b, c, wj} induces a C4. Otherwise, a ∈ Bj and c ∈ Bt for different j, t ∈
{1, . . . , k} \ {i}. Then there exists an induced C6 (on vertex set {x,wj, a, b, c, wt}), a

contradiction.
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Let Γ be a graph obtained from G[B] by completing every Bi to a clique. Recall

that since G is C4-free the sets Bi are pairwise disjoint. Since the additional edges have

both endpoints in a single Bi it follows that, in Γ, there exists no induced P3 such that

the middle vertex is contained is some Bj and the end vertices of P3 are not in Bj.

The set I∗ we want is exactly a maximum independent set in Γ of size k. We

claim that Γ is a perfect graph. For the sake of contradiction suppose that Γ is not

perfect. By Theorem 1.2 G contains either an odd hole or an odd antihole. Suppose

that Γ contains an odd hole C. Since every Bi is a clique in Γ, every Bi contains at

most two vertices of C. Since |C| is odd follows that there exists a bag Bj such that

|Bj ∩ V (C)| = 1. Let {b} = Bj ∩ V (C). Then N [b] ∩ V (C) induces a P3 such that b is

contained in Bj and a, c 6∈ Bj, a contradiction.

Now, suppose that Γ contains an odd antihole A (on at least 7 vertices, since C5 is

self-complementary). Denote vertices in A as v1, . . . vt such that every two consecutive

vertices are non-adjacent. Let v1, v2 be two non-adjacent vertices in A, with v1 ∈ Bi

and v2 ∈ Bj. Since |A| ≥ 7, it follows that |N(v1) ∩ N(v2) ∩ A| ≥ 3. In particular,

vertices v4, v5, v6 are adjacent to v1 and v2. If one of them is a vertex in Bt such that

t 6∈ {i, j} we have reached a contradiction. It follows that, w.l.o.g, v4, v6 ∈ Bi and

v5 ∈ Bj. Observe vertex v3, it is not in Bi since it is non-adjacent to v4 and it is not

in Bj since it is non-adjacent to v2. Hence, {v5, v3, v6} induces P3 that intersects three

different bags.

Since Γ is perfect, we can find a maximum independent set in Γ in polynomial

time [30].

We say that two subsets of vertices S1, S2 of G are complete to each other if every

vertex of S1 is adjacent to every vertex S2. We say that S1 and S2 are anticomplete

to each other if there is no edge with one endpoint in S1 \ S2 and the other in S2 \ S1.

In the rest of the section when using the term anticomplete we will always refer to

disjoint sets. Now, we can show how to check if there exists an augmenting tree in

{P10, C4, C6}-free graphs.

Lemma 2.17. Let G be a {P10, C4, C6}-free graph and I a maximal independent set

in G. It can be tested in polynomial time whether I admits a minimal augmenting tree

H = (W,B;E) containing a P9.

Proof. Let x ∈ R. We show how to check whether there exists an augmenting tree

with root at x and at least two leaves at distance 4 from x, i.e., if x is a middle vertex

of an induced P9. We try to build such a tree T . Set x as the root of T . Define

Wx = N(x) ∩ I and denote vertices in Wx as w1, . . . , wk. Add Wx to T (Wx ⊆ V (T )

by definition of an augmenting graph). For each wi ∈ Wx, let Bi = N(wi) \N [x]. For

every wi, wj ∈ Wx, i 6= j, it holds Bi ∩Bj = ∅ since G is C4-free.
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Figure 4: A scheme for the proof of Lemma 2.17.

Let p, q ∈ {1 . . . , k} such that p 6= q. Let bp ∈ Bp and bq ∈ Bq such that bp and bq are

non adjacent. If such a p, q, bp and bq do not exist, then we conclude that augmenting

tree with the root at x does not exist. We will test whether there exists an augmenting

tree with root at x containing bp and bq such that bp and bq are not leaves of T . Add

bp and bq to T .

For b ∈ Bi let W (b) = N(b) ∩ (I \ {wi}). Note that W (b) ∩ N(x) = ∅ since G is

C4-free. For every bi ∈ Bi and bj ∈ Bj such that i 6= j it holds W (bi)∩W (bj) = ∅ since

G is {C4, C6}-free.

For every w ∈ W (b) remove all vertices from K(w) that are adjacent to x, bp or

bq since they can not be in T . If for some w ∈ W (bp) ∪W (bq) it holds that K(w) is

empty we conclude that desired tree does not exist. For the rest of the proof assume

that W (bp) 6= ∅, W (bq) 6= ∅ and for every w ∈ W (bp) ∪W (bq) it holds that K(w) 6= ∅.
Obviously T has to contain vertices in W (bp) and W (bq) so add these to T . From each

Bi, i ∈ {1, . . . , k} \ {p, q}, remove vertices that are adjacent to bp or bq since they can

not be in T . Moreover, after the removal of such vertices each Bi has to be non-empty.

We consider the following two cases based on the size of Wx.

Case 1: |Wx| = 2. Let S = ∪w∈W (bp)∪W (bq)K(w). Define s = |W (bp) ∪ W (bq)|.
Similarly as in the proofs of Lemmas 2.10 and 2.11 we can finish building our augment-

ing tree if and only if there exists a maximum independent set I∗ in G[S] of size s.

Moreover, we can find such an independent set since G[S] is {P5, C4}-free and using,

e.g., the algorithm given in [61].

Case 2: |Wx| > 2.

Claim 1: If w′ ∈ W (bp) and w′′ ∈ W (bq), then K(w′) is anticomplete to K(w′′).
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Proof of Claim 1. We show how to remove some vertices that cannot possibly be in

T so that the claim holds. Suppose that there exists u ∈ K(w′) adjacent to v ∈ K(w′′).

If K(w′′) ⊆ N(u), we can remove u from K(w′) since in this case we can not complete

tree T . Otherwise let v′ ∈ K(w′′) \N(u).

Let wi ∈ Wx \ {wp, wq} and bi ∈ Bi. There exist such wi and bi since |Wx| > 2.

Suppose that bi is adjacent to u. Then the set {bi, u, w′, bp, wp, x, wq, bq, w′′, v′} where

v′ ∈ K(w′′) \ N(u) induces a P10. Hence bi is non-adjacent to u. Analogously, we

conclude that bi is non-adjacent to v. Then the set {bp, w′, u, v, w′′, bq, wq, x, wi, bi}
induces P10. A contradiction.

Claim 2: Let w′, w∗ ∈ W (bp), w
′ 6= w∗ then K(w′) and K(w∗) are anticomplete.

Proof of Claim 2. On the contrary, suppose that there exist u ∈ K(w′) and v ∈
K(w∗) such that uv ∈ E(G). Then the set {u, v, w∗, bp, wp, x, wq, bq} together with a

vertex w′′ ∈ W (bq) and a vertex in K(w′′) induce a P10.

A statement analogous to Claim 2 holds for every w′, w∗ ∈ W (bq), w
′ 6= w∗. Let

B = ∪i∈{1,...,k}\{p,q}Bi. We show next that B is anticomplete to K(w) for every w ∈
W (bp) ∪W (bq). For the sake of contradiction suppose there exists bi ∈ Bi for some

i ∈ {1, . . . , k}\{p, q} and w′ ∈ W (bp) such that biu ∈ E(G) for some u ∈ K(w′). Then

the set {bi, u, w′, bp, wp, x, wq, bq, w′′, v} induces a P10 for some w′′ ∈ W (bq) and some

v ∈ K(w′′) \N(bi). If K(w′′) \N(bi) = ∅ then bi can not be a vertex of T so we remove

it from Bi.

Cleaning of B. Let i ∈ {1, . . . , k} \ {p, q}. Let bi ∈ Bi. If for some wi ∈ W (bi)

it holds that K(wi) is empty we can easily remove bi from Bi since it can not be part

of a minimal augmenting tree with root at x (we can not finish the tree with white

vertices). Observe that for vertices bi ∈ Bi it is possible that W (bi) = ∅ and we do not

remove such vertices. Do the cleaning for every i ∈ {1, . . . , k}\{p, q} and every b ∈ Bi.

By Lemma 2.16 it follows that we can check in polynomial time if there exists an

independent set I∗ of size k− 2 such that |I∗ ∩Bi| = 1 for every i ∈ {1, . . . , k} \ {p, q}.
If there is no such a set we conclude that the tree T does not exists.

Claim 3: If such a set I∗ is found then we can complete T to a minimal augmenting

tree rooted at x.

Proof of Claim 3: Let bi ∈ I∗ ∩ Bi and bj ∈ I∗ ∩ Bj for different i, j ∈ {1, . . . , k} \
{p, q}. It is obvious that W (bi) ∩ W (bj) = ∅ since starting graph is {C4, C6}-free.

MoreoverW (bi)∪W (bj) ⊆ I by definition. Let wi ∈ W (bi) and let u ∈ K(wi). Similarly

as before we can show that u is anticomplete to K(w) where w ∈ W (bp) ∪W (bq). If

ubj ∈ E(G) then the set {bj, u, wi, bi, wi, x, wp, bp} together with w′ ∈ W (bp) and

a vertex in K(w′) induce a P10, hence ubj 6∈ E(G). The same holds if we swap

i and j. Let wj ∈ W (bj) and v ∈ K(wj) such that uv ∈ E, then again the set
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{v, u, wi, bi, wi, x, wp, bp} together with w′ ∈ W (bp) and a vertex in K(w′) induce a P10,

hence K(wj) is anticomplete to K(wi) for any wi ∈ W (bi) and any wj ∈ W (bj). The

above gives us an obvious way to complete T . For each b ∈ I∗ add the set W (b) to T

and for every w ∈ W (b) add any vertex of K(w) to T (it can be checked that K(w) is

anticomplete to K(w′) for every w′ ∈ W (b′), where b′ ∈ I∗ \ {b}).

Recall that every connected augmenting graph in the class of {P10, C4, C6}-free

graphs is either a tree, or it contains a C8, or it contains a C10 (since these are only

possible holes in a {P10, C4, C6}-free bipartite graph). The following lemma will show

that the last case never happens.

Lemma 2.18. Let G be a graph and I a maximal independent set in G. Let H =

(W,B;E) be a minimal {P10, C4, C6}-free augmenting graph for I. Then H is C10-free.

Proof. We will prove the lemma by contradiction. Let C be an induced C10 in H.

Denote vertices of C as v1, . . . , v10 so that consecutive vertices are adjacent. Since

H is augmenting, there exists a black vertex b ∈ V (H) that is adjacent to some of

V (C) ∩W . If b is adjacent to two vertices in V (C) ∩W then we can easily find an

induced C4 or C6. Hence, b is adjacent to exactly one vertex of C, say vi. Then the

set
(
V (C) \ {vi+1(mod 10)}

)
∪ {b} induces a P10, a contradiction.

By the above lemma, we know that in the class of {P10, C4, C6}-free graphs an

augmenting graph H is either a black-white tree or H contains a C8. We have already

showed how to detect black-white augmenting trees so for the rest of the section we

focus our attention to augmenting graphs that contain C8. We start with necessary

definitions.

x

y

f

W x

W y

a = 2

b = 3

c = 3

Figure 5: A 2, 3, 3-satellite.
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Definition 2.19. For non-negative integers a, b, c with c ≥ 2 an a, b, c-satellite is a

graph H that can be built from two disjoint trees of type Tr, say T and T ′, in the

following way (see Figure 5):

• T is isomorphic to Ta+c and T ′ is isomorphic to Tb+c.

• Exactly c leaves of T are identified with c leaves of T ′.

• We name the root of T as x and the root of T ′ as y. We say that x and y are root

vertices of H. We denote by W x the set of white vertices of T whose children are

identified with some leaves of T ′. Similarly for W y.

• There are c− 1 additional vertices in H, each of which is adjacent to exactly one

vertex in W x∪W y and no vertex in W x∪W y is adjacent to two of the additional

vertices.

• A set of c − 1 indentified leaves (out of c) is chosen and for each such vertex,

one of its two neighbors in W x ∪W y is choosen and is adjacent to an additional

vertex.

Lemma 2.20. There exist two graphs F1 and F2 such that the following holds:

Let G be a {P10, C4, C6}-free graph and I a maximal independent set in G that

admits nither an augmenting P3 nor an augmenting P5. Let H = (W,B;E) be a

minimal augmenting graph for I that contains a C8. Then H is either F1, F2, or an

a, b, c-satellite.

Proof. Let C be the set of vertices inducing a C8 in H and denote vertices in C as

v1, . . . , v8 so that vertices with odd index are in W and consecutive vertices (modulo

8) are adjacent. Let v ∈ N(C)∩ V (H). Then |N(v)∩C| = 1 or otherwise we can find

an induced C4 or an induced C6. Also observe that every vertex v ∈ V (H) \ C is at

distance at most 2 from C or there exists a P10.

Claim: C dominates either W or B.

Proof of Claim: Suppose that C does not dominate W . Then there exists a white

vertex w at distance 2 from C. Observe that by Lemma 2.3 we have |N(C)∩N(w)| ≥ 2.

Let b′, b′′ ∈ N(C) ∩N(w) be two different vertices. W.l.o.g. assume that b′v1 ∈ E(H).

It is straightforward to check that N(b′′) ∩ C = {v5}. For the sake of contradic-

tion assume that there exists a vertex b ∈ V (H) at distance 2 from C. Let w′ ∈
N(b) ∩ N(C). W.l.o.g. N(w′) ∩ C = {v8}. Then it is easy to check that the set

{b, w′, v8, v1, b
′, w, b′′, v5, v4, v3} induces a P10, a contradiction.

Case 1: C dominates both W and B. Let vi ∈ {v2, v4, v6, v8}. We will show

that N(vi) ∩ (W \ {vi−1, vi+1}) = ∅. Suppose on the contrary that there exists w ∈
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N(vi)∩ (W \ {vi−1, vi+1}). By Lemma 2.3 there exists a vertex b ∈ N(w)∩B different

from vi. As we deduced in the beginning of the proof b 6∈ C. Hence, b ∈ N(vj) for some

j, but this is a contradiction with the fact that H is {C4, C6}-free. Hence, |W | = 4

and |B| = 5. It is now easy to see that H is unique up to isomporphism and we can

set F1 = H.

Case 2: C dominates B but not W . Let w ∈ W be a vertex at distance 2 from

C. Let b′, b′′ ∈ N(w) ∩ N(C) ∩ B be two different vertices. Such vertices exist by

Lemma 2.3 and are non-adjacent since they are both black. Let vi be unique vertex

in N(b′) ∩ C and vj be a unique vertex in N(b′′) ∩ C. Trivially both vi and vj are in

W . It is easy to check that it has to be i ≡ j (mod 4). We may assume without loss

of generality that i = 1 and j = 5. Now, suppose there exists w∗ ∈ N(b′) \ {v1, w}.
Similarly as for w, there exists a black vertex b∗ adjacent to w∗ and to C. As before

it has to be b∗v5 ∈ E(H). Then {b′, w∗, b∗, v5, b
′′, w} either contains a C4 or induces a

C6. Hence, N(b′) = {v1, w} and analogously N(b′′) = {v5, w}.
Suppose there exists a vertex w̃ ∈ N(C) ∩ W . We may assume without loss of

generality that w̃v2 ∈ E(H). Moreover by Lemma 2.3 there exists a vertex b̃ ∈ B

such that w̃b̃ ∈ E(G). Since every black vertex is dominated it holds b̃ ∈ N(C). Let

vj ∈ N(b̃)∩C, then shortest path between vj and v2 in C together with {b̃, w̃} induces

either a C4 or a C6. Hence, all vertices in W \ C are at distance 2 from C.

Let w′ ∈ W \ {w} be a vertex at distance 2 from C. Similarly as before there

exist two distinct vertices b1, b2 ∈ B such that N(w′) ∩ N(C) = {b1, b2}. Suppose

b1 6∈ {b′, b′′}. If b1v3 ∈ E(H), then {w′, b1, v3, v4, v1, b
′, w, b′′, w5, w6} induces a P10. On

the other hand, if b1 ∈ {b′, b′′} then we can easily find either an induced C4 or an

induced C6. Hence, w.l.o.g. N(b1) ∩ C = {v1} and N(b2) ∩ C = {v5}.
Let k = |W \ C|. By the above we deduce that for every z ∈ W \ C there exist

two unique vertices bz1 and bz2 such that zbz1, b
z
1v1, zb

z
2, b

z
2v5 ∈ E(G). Hence, |B \ C| ≥

2|W \ C| = 2k. By Lemma 2.3 |B| = |W |+ 1 = k + 4 + 1, which gives us k + 1 ≥ 2k.

Hence k = 1, |W | = 5, and |B| = 6. Again, it that such a graph is unique up to

isomorphism and we set F2 = H.

Case 3: C dominates W but not B. W.l.o.g. N(v2) \ C 6= ∅. For every vi ∈
{v2, v4, v6, v8} define W (vi) = N(vi) \ C. Since G is {C4, C6}-free, N(vi) ∩ N(vj) = ∅
if i 6= j. Moreover since C dominates W , the vertices in W ∩C and in ∪i∈{1,...,4}W (vi)

are all white vertices in H and we just need to describe the rest of black vertices of H.

See Figure 6

Claim: W (v4) ∪W (v8) = ∅.
Proof of Claim: For the sake of contradiction assume that W (v4) (say) is non-

empty. Let b̃ ∈ W (v4). Let w ∈ W (v2). By Lemma 2.3 there exists u ∈ N(w) \
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s7

K(v1)

v1
v2

v3

v4

v5

v6

v7

v8 b̃

s3

S = {s3, s7}

w

u ∈ K(w)

W (v6)

W (v2)

K(v5)

Figure 6: A scheme for the proof of Lemma 2.20, Case 3.

{v2}. Due to {C4, C6}-freeness u is anticomplete to C. Then b̃u ∈ E(H) or the set

{b̃, v4, v5, v6, v7, v8, v1, v2, w, u} induces a P10. But then {b̃, v4, v3, v2, w, u} induces a C6.

Thus W (v4) = ∅; similarly, W (v8) = ∅.
Next, we describe all black vertices dominated by C. Let vj ∈ {v1, v3, v5, v7}.

Clearly all black vertices not in C but dominated by C have to be in some K(vj). Recall

that for a vertex w in an independent set I it holds K(w) = {b ∈ I : N(b)∩ I = {w}}.
Let S ⊆ K(v1)∪K(v3)∪K(v5)∪K(v7) be an independent set such that S ⊆ B. Then

|S| ≤ 2. Suppose that there exist three different vertices in S, say S = {s3, s5, s7}
such that s3 ∈ K(v3), s5 ∈ K(v5) and s7 ∈ K(v7). Then {s3, v3, v4, v5, s5} induces an

augmenting P5. The same argument shows that there are at most two black vertices

at distance 1 from C.

Let b be a black vertex of H at distance 2 from C. If N(b) ∩ N(C) = {w},
then exactly one of the following holds: w ∈ W (v2) or w ∈ W (v6). Moreover, since

I does not admit an augmenting P3, we have N(w) \ {v2, v6} = {b}. Similarly, if

N(b)∩N(C) = {w′, w′′} then it holds, w.l.o.g., w′ ∈ W (v2) and w′′ ∈ W (v6). Thus, in

any case we have 1 ≤ |N(b) ∩N(C)| ≤ 2.

Let b, b′ be two different black vertices at distance 2 from C, each with exactly two

white neighbors. Then |N(b)∩N(b′)| ≤ 1. The latter follows since G is C4-free graph.

Now, by counting and applying the claims analogous to the already proved ones it

is not hard to conclude that H is an a, b, c-satellite.

Let H be an a, b, c-satellite. Then by definition there exists a unique vertex f ∈
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N(W x) ∩ N(W y) in H non-adjacent to any of the additional c − 1 vertices. We say

that the vertex f is the flat vertex of H.

Lemma 2.21. Let G be a {P10, C4, C6}-free graph and I a maximal independent set

in G. Let a, b be non-negative integers and c an integer larger than 1. We can test in

polynomial time if I admits an augmenting a, b, c-satellite.

Proof. Let us try to construct such an augmenting graph H. First, since by definition

of an a, b, c-satellite it holds that c ≥ 2 it follows that every a, b, c-satellite contains

an induced cycle on 8 vertices. Let C be such a cycle with |C ∩ I| = |C ∩ R| = 4,

where R = V (G) \ I. Denote vertices of C as {v1, . . . , v8} such that {v1, v3, v5, v7} ⊆ I.

W.l.o.g. fix v2 and v6 as root vertices of H. Also, without loss of generality, we can

assume that v8 is the flat vertex of H. Moreover, fix an additional vertex s3 that has

a unique neighbor v3 in H. See Figure 7.

v2

v3

v4

v5

v6

v7

v8

v1

s3

w′′

K(w′′) K2(w) = K2(w
′)

w′

K(w′)

W (v2)

W (v6)

Figure 7: Testing for an augmenting a, b, c-satellite.

We will test if there exists an augmenting a, b, c-satellite that contains C ∪ {v3}
such that v2 and v6 are the root vertices and v8 is the flat vertex of H. So in the

rest of the proof it suffices to consider only the vertices that are non-neighbors of

{v1, v3, v4, v5, v7, v8, s3} and the vertices adjacent to v6 or v2 that are contained in I.

Define W (v6) = N(v6)∩ (I \ {v5, v7}) and W (v2) = N(v2)∩ (I \ {v1, v3}). Observe

that if for some w′ ∈ W (v2) and some w′′ ∈ W (v6) it holds that N(w′) ∩ N(w′′) 6= ∅
then for all w̃ ∈ W (v6) \ {w′′} it holds that N(w′) ∩ N(w̃) = ∅ since G is C4-free.

Similarly if w̃ ∈ W (v2) \ {w′}.
For each w ∈ W (v2) define K2(w) = N(w) ∩N(W (v6)). Define analogously K2(w)

for each w ∈ W (v6). By the above paragraph, for each w′ ∈ W (v2) with K2(w′) 6= ∅
there exists a unique vertex w′′ ∈ W (v6) such that K2(w′) = K2(w′′) and for every

other w̃ ∈ W (v6) it holds K2(w′)∩K2(w̃) = ∅. We will say that such a w′′ corresponds

to w and vice versa.
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Now, using the cycle C and the fact that G is P10-free it is easy to conclude the

following statements for every w′, w′′ ∈ W (v2) ∪W (v6).

• K2(w′) is anticomplete to K2(w′′).

• K2(w′) is anticomplete to K(w′′).

• K(w′) is anticomplete to K(w′′).

Using the above statements it follows that in order to find an augmenting a, b, c-

satellite it suffices to check if there exist

• c− 2 non-empty sets of type K2,

• a non-empty sets K(w′′) for w′′ ∈ W (v6), and

• b non-empty sets K(w′) for w′ ∈ W (v2).

The lemma follows.

We obtain the following theorem.

Theorem 2.22. The Independent Set problem is solvable in polynomial time for

the class of {P10, C4, C6}-free graphs.

Proof. Let G be a {P10, C4, C6}-free graph and I a maximal independent set. We

need to find a minimal augmenting graph or certify that there is no such graph. By

Lemma 2.18 we know that the only minimal augmenting graphs in the class are either

black-white trees or an augmenting graph containing a C8. First, we check if there

exists an augmenting P3 or an augmenting P5. Then we test if there exists a minimal

augmenting graph containing a C8. By Lemma 2.20 we know that a minimal aug-

menting graph is either one of two specific graphs or an a, b, c-satellite. We can check

in polynomial time if there exists an augmenting F1 or F2. By Lemma 2.21 we can

check in polynomial time if there exists an augmenting a, b, c-satellite and hence we can

check if there exists a minimal augmenting graph that contains a C8. By Lemma 2.10,

Lemma 2.11, and Theorem 2.15 it follows that we can test in polynomial time if there

is augmenting tree of type Ts or Tr,s. So the only possible augmenting graph that we

did not test is a black-white tree containing a P9, but we can test efficiently if one

exists by Lemma 2.17. Since we can test in polynomial time if there exists a minimal

augmenting graph for a given independent set in a graph from the class the theorem

is proved.
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2.2 Minimal triangulations

It is known that the Weighted Independent Set problem is efficiently solvable in

the class of chordal graphs [25]. There are several algorithms for Weighted Inde-

pendent Set and Independent Set for chordal graphs. We consider the following

approach based on tree decomposition. Such an approach will allow us to generalize

it and show that the independent set problem is polynomially solvable in the class of

P5-free graphs, based on special tree decomposition, of a triangulation of G. Before we

start, let us introduce some definitions.

For clarity we first give an intuitive explanation of the approach. Later we show

the simpler version of the approach for the class of chordal graphs and then extend it

step by step to the class of P5-free graphs.

The idea is to find a maximum-weight independent set using dynamic programming

on a specific tree decomposition of a graph G. Let I be a maximal independent set of

G unknown to the algorithm. Since I is independent, it is not hard to see that there

exists a tree decomposition of the graph where every bag has at most one element

of I (we will call such a tree decomposition I-sparse, see Definition 2.25). If such

a tree decomposition was given to us, for some maximum-weight independent set I,

then we are able to find I (or an independent set of the same weight) using dynamic

programming on the tree decomposition, in polynomial time. Roughly, a state of the

dynamic program is formed by a bag of the decomposition and at most one of its

elements. The element of such a bag can be seen as the intended intersection of the

bag with the already constructed independent set.

A problem of such an approach is that we are not given such a useful tree decompo-

sition. To solve the issue, the authors show that it is possible to compute a sufficiently

rich family of candidates for bags. The idea is that for some tree decomposition that

can be used to find a maximum-weight solution, its bags will be included in the family.

Then a similar dynamic programming procedure, which intuitively tries to assemble all

possible tree decompositions using given candidate bags, computes a maximum-weight

independent set. Such a family should be rich enough so that all bags of some useful

decomposition are contained in order to compute a maximum weighted independent

set. On the other hand, it should also be small enough so that the algorithm runs in

polynomial time.

We proceed with the formal proof. A graph H = (V,E ∪ F ) is a triangulation of

graph a G = (V,E) if every cycle of length at least four in H has a chord, i.e., H is

a chordal graph such that G is a subgraph of H. The edges in F are called fill edges.

A triangulation H is minimal if there is no triangulation H ′ = (V,E ∪ F ′) such that

F ′ is a proper subset of F . A potential maximal clique of G is a set Ω ⊂ V (G) such
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that Ω is a maximal clique in some minimal triangulation of G. We denote by Ω(G)

the set of potential maximal cliques of G. It is easy to see that if G is chordal then

Ω(G) is exactly the set of all maximal cliques of G. For a vertex set Ω ⊆ V (G) we

denote by C(Ω) = {C1, . . . , Ct} the set of connected components of G \ Ω. We denote

∆(Ω) = {N(Ci) : 1 ≤ i ≤ t}. Then for a subset of vertices Ω the set ∆(Ω) is the set

of all minimal separators of G that are subsets of Ω. Recall that we denote with ζ(G)

the family of all maximal cliques in a graph G.

As said, we start from chordal graphs, and will use the following proposition.

Proposition 2.23 (Gavril [28]). A graph G is chordal if and only if there exists a tree

decomposition (T, χ) of G such that every bag is a maximal clique of G.

Such a tree decomposition is called a clique tree and it is known that a clique

tree can be found in time O(m + n) for a given chordal graph with n vertices and m

edges [10].

Proposition 2.24 (Gavril [28]). Let (T, χ) be a clique tree of a chordal graph G and

S ⊆ V (G). Then S is minimal separator if and only if S = χ(u)∩χ(u′) for some edge

uu′ ∈ E(T ).

Let G be a chordal graph with a weight function w on vertices of G. Let us devise a

polynomial-time algorithm for the Weighted Independent Set problem based on

the above theorem using dynamic programming on a tree decomposition (T, χ) of G.

Let I be an independent set in G. It is obvious that every bag χ(x), where x ∈ V (T ),

can contain at most one vertex of I, i.e., |I ∩ χ(x)| ≤ 1. This nice property of chordal

graphs can be used for dynamic programming. To achieve our goal, we define the

following recursive function f . The function f takes as input a vertex x ∈ V (T ), a

vertex v ∈ χ(x) and a component C ∈ C(χ(x)) and returns the maximum weight of

an independent set I ⊆ χ(x) ∪ C such that I ∩ χ(x) = {v}. It can be verified that

function f satisfies the following recurrence:

f(v, x, C) = w(v) + max
x′∈V (T )\{x}
v′∈χ(x′)

w(v′) +
∑

C′∈C(χ(x′))
C′⊆C

(f(v′, x′, C ′)− w(v′))

 ,

where the maximum is taken over all x′ and v′ such that χ(x′) ⊆ χ(v) ∪ C and {v, v′}
is independent. If such v′ and x′ do not exist we set f(v′, x′, C) = −∞. In order to

find a maximum independent set we could evaluate function f for every triple (v, x, C),

but this is not necessary. We will show how to modify function f to obtain the result

directly. Let x ∈ V (T ) and X ⊆ χ(x), |X| ≤ 1. Then modified function f takes as

input a vertex x ∈ V (T ), a subset X ⊆ χ(x) of size at most one, and a component
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C ∈ C(χ(x)) and returns the maximum weight of an independent set I ⊆ χ(x) ∪ C
such that I ∩χ(x) = X. The only difference is that function f now can take the empty

set as input. The following recurrence holds:

f(x,X,C) = w(X) + max
x′∈V (T )
X′⊆χ(x′)

w(X ′ \X) +
∑

C′∈C(χ(x′))
C′⊆C

(f(x′, X ′, C ′)− w(X ′))

 ,

where the maximum is taken over all x′ and X ′ such that χ(x′) ⊆ C, |X ′| ≤ 1,

χ(x) ∩ χ(x′) ∩X = χ(x) ∩ χ(x′) ∩X ′ and X ∪X ′ is independent in G.

In the following steps we tend to extend the approach for a “nice” tree decomposi-

tion of any graph. Let us introduce necessary definitions.

Definition 2.25 (Lokshtanov et al. [43]). For an independent set I ⊆ V (G), a tree

decomposition (T, χ) of G is called I-sparse if for every bag B we have |B ∩ I| ≤ 1.

Definition 2.26 (Lokshtanov et al. [43]). Let G be a graph and (T, χ) a rooted tree

decomposition of G. We say that (T, χ) is simple if

a) no bag B is subset of any other bag B′, and

b) for every edge uv ∈ V (T ) where v is descendant of u, there exists a component

C ∈ C(χ(u)) such that χ(v) ⊆ χ(u) ∪ C.

Observe that for a chordal graph such a simple tree decomposition exists by Propo-

sition 2.23. Moreover, the same proposition shows that for any minimal triangulation

G′ of G we can find a simple tree decomposition of G′. We proceed to our goal with

the following lemma.

Proposition 2.27 (Bouchitté and Tondinca [11]). Let G be a graph. If Ω ⊆ V (G) is

a potential maximal clique of G, then for every connected component C of G \ Ω, the

set NG(C) ⊆ Ω is a minimal separator of G.

Lemma 2.28 (Lokshtanov et al. [43]). Let G be a graph with n vertices and m edges

and Π a list of vertex sets in G. There is an algorithm running in time O(|Π|2n4m)

that outputs the weight of the maximum weight independent set I for which there exists

an I-sparse tree decomposition (T, χ) of G such that χ(v) ∈ Π for all v ∈ V (T ). If no

such independent set exists, the algorithm returns −∞.

We will again modify the function f and use it to prove the above lemma. The

function f takes as input a set B ∈ Π, a set X ⊆ B such that |X| ≤ 1 and a component

C ∈ C(B). It returns the weight of a maximum weight independent set I ⊆ B ∪ C
such that I ∩B = X and such that there exists an I-sparse simple tree decomposition

(T, χ) of G[B ∪ C] where all the bags of (T, χ) are in Π and for root vertex r of t it

holds χ(r) = B. If no such independent set exists, the function returns −∞.
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Lemma 2.29. Function f satisfies the following recurrence

f(B,X,C) = w(X) + max
B′∈Π
X′⊆B′

w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(f(B′, X ′, C ′)− w(X ′))


where the maximum is taken over all sets B′ ∈ Π and X ′ ⊆ B′ such that

i) B′ ⊆ B ∪ C,

ii) N(C) ⊆ B′,

iii) B′ ∩ C 6= ∅,

iv) |X ′| ≤ 1,

v) B ∩B′ ∩X = B ∩B′ ∩X ′, and

vi) G[X ∪X ′] is independent.

If no such pair of sets exists we set f(B,X,C) = −∞.

Proof. We prove the two inequalities. First, we show that

f(B,X,C) ≥ w(X) + max
B′∈Π
X′⊆B′

w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(f(B′, X ′, C ′)− w(X ′))

 .

If the right hand side is equal to −∞ then the inequality follows trivially. Consider

a pair B′, X ′ satisfying i) − vi). For C ′ ∈ C(B′) let IC′ be an independent set of

weight f(B′, X ′, C ′) such that IC′ ∩ B = X ′ and let (TC′ , χC′) be an IC′-sparse tree

decomposition of G[B′ ∪ C ′] such that for the root r′ of TC′ it holds χC′(r
′) = B′.

Define

I =
⋃

C′∈C(B′)
C′⊆C

IC′ ∪X .

Then I is an independent set since the set B′ is a separator of C \ B′ and B \ B′
whenever C \B′, B \B′ 6= ∅. Let us calculate the weight of I:

w(I) = w(X) + w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(f(B′, X ′, C ′)− w(X ′)) .

We still need to build an I-sparse tree decomposition (T, χ) of B ∪ C. We do this by

identifying roots r′ of every tree decomposition (TC′ , χC′) at a new vertex r and setting

χ(r) = B. For all other non-root vertices v ∈ V (T ) it holds that v is a vertex in some
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TC′ for some C ′ ∈ C(B′) with C ′ ⊆ C and we set χ(v) = χC′(v). From construction it

follows that (T, χ) is an I-sparse tree decomposition of G[B ∪C] with all bags from Π.

Hence,

f(B,X,C) ≥ w(I) .

Let us show the ≤ inequality. If the left hand side is −∞ then there is nothing

to prove. Otherwise, let I be an independent set in G[B ∪ C] achieving f(B,X,C)

such that I ∩ B = X. Let (T, χ) be an I-sparse tree decomposition of G[B ∪ C]

with root r and χ(r) = B. Let us show that r has a unique child. For the sake of

contradiction assume the opposite. Let v1 and v2 be two children of r in T . Since

(T, χ) is simple tree decomposition no bag is subset of another bag and since χ(r) = B

it follows that χ(v1) ∩ C 6= ∅ and χ(v2) ∩ C 6= ∅. The latter contradicts the fact

that the set {v ∈ V (T ) : χ(v) ∩ C 6= ∅} induces a connected subtree of T (since

χ(r) ∩C = ∅). Denote the unique child of r by r′. Define B′ = χ(r′) and X ′ = I ∩B′.
It is straightforward to check that B′ satisfies conditions i) − vi). For a connected

component C ′ ∈ C(B′) define IC′ = I ∩ (B′ ∪ C ′). Observe that

w(I) = w(X) + w(X ′ \X) +
∑

C′∈C(B′)
C′⊆C

(w(IC′)− w(X ′)) .

Hence, to complete the proof it suffices to prove that for every connected component

C ′ ∈ C(B′) such that C ′ ⊆ C it holds f(B′, X ′, C ′) ≥ w(IC′). We define VC′ as the

set of vertices of T that contain some vertices of C ′, or formally VC′ = {v ∈ V (T ) :

χ(v) ∩ C ′ 6= ∅}. By definition of tree decomposition, VC′ induces a connected subtree

of T . Furthermore, since (T, χ) is a simple tree decomposition, it follows that for every

vertex v ∈ VC′ all vertices of χ(v) are in the same connected component of G \ B′,
hence χ(v) ⊆ C ′. Then a tree decomposition (T [VC′ ], χ) is an (IC′ ∩ C ′)-sparse tree

decomposition of G[C ′]. All bags are trivially in Π. Let r∗ be a vertex in VC′ closest

to r in T . Let us show that N(C ′) ⊆ χ(r∗). Let a ∈ N(C ′). Then, there exists

a vertex b ∈ C ′ such that ab ∈ E(G). The bag closest to the root of T containing

b is either χ(r∗) or χ(u) where u is descendant of r∗. By definition of C ′ it follows

that a ∈ B′ = χ(r′). Since the set of vertices of T whose corresponding bags contain

a induce a connected subtree and there exists a bag containing ab it follows that

a ∈ χ(r∗). Hence N(C ′) ⊆ χ(r∗). Let (TC′ , χC′) be a tree decomposition of G[B′ ∪ C ′]
obtained by attaching new root node r̂ to tree decomposition (T [VC′ ], χ) and making r′

the unique child of r̂. Moreover, define χC′(r̂) = B′ and χC′(v) = χ(v) for all v ∈ VC′ .
It is clear that (TC′ , χC′) is an IC′-sparse tree decomposition of G[B′ ∪ C ′] using only

bags from Π. Hence f(B′, X ′, C ′) ≥ w(IC′).

We can now prove Lemma 2.28.
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Proof. Observe that the maximum weight of an independent set I for which there exists

an I-sparse tree decomposition (T, χ) is

max
B,X

w(X) +
∑

C∈C(B)

(f(B,X,C)− w(X))

 (2.1)

where the maximum is taken over all B ∈ Π and X ⊆ B with |X| ≤ 1. Hence it suffices

to compute f(B,X,C) for every choice of B,X, and C as in Lemma 2.29. By recurrence

equation for function f , we know that for computing the value f(B,X,C) we only need

to find the values of f(B′, X ′, C ′) for choices of B′, X ′ and C ′ with |C ′| < |C|. Thus it

suffices to process the triples (B,X,C) sorted by the size of C. Once we compute the

value f(B,X,C) for each triple, we compute the maximum value of an independent

set I for which there exists I-sparse tree decomposition of G by already mentioned

recurrence. The correctness follows by Lemma 2.29.

Let us estimate the running time of the algorithm. The most time consuming step is

to compute values f(B,X,C) for each triple (B,X,C). There are exactly |Π| possible

choices for B, and for each B we have at most |B| + 1 ≤ n + 1 choices for X and at

most n choices for C. Hence there are at most O(|Π|n2) possible triples.

Let (B,X,C) be a triple. Then we can compute f(B,X,C) in O(|Π|nm) with

O(|Π|n2) look-ups of the already computed values. Hence the total running time is

bounded by O(|Π|2n4m).

Now by Lemma 2.28 the next theorem follows.

Theorem 2.30. Let G be a graph and Π a list of potential maximal cliques in G. Then

in time O(|Π|2n4m) we can find the maximum weight of an independent set I for which

there exists a minimal triangulation H of G, such that every maximal clique C of H is

in Π and |C ∩ I| ≤ 1. If no such an independent set exists, the algorithm outputs −∞.

We have presented the approach as in [43], but the authors stated there that such

a statement was previously implicitly proved in [24]. In fact Fomin and Villanger

in [24] present the result where the list Π is exhaustive, but as we have seen this is not

necessary. In the following section we will describe the idea of how Theorem 2.30 was

used for developing a polynomial-time algorithm for the class of P5-free graphs.

2.2.1 Weighted Independent Set in P5-free and P6-free graphs

As we already hinted, the algorithm for Weighted Independent Set in the class of

P5-free graphs relies on Theorem 2.30. Hence, the goal is to construct a suitable family

of potential maximal cliques of G. Moreover, Π has to be constructed so that for every

independent set I of G there is a minimal triangulation H such that every maximal
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clique of H intersects I in at most one vertex. In fact, it is known (Lemma 2.32) that

for any maximal independent set I of G there exists some minimal triangulation H of

G such that every maximal clique C of H satisfies |C ∩ I| ≤ 1.

This means when Π is the list of all potential maximal cliques the algorithm will

return the maximum weight of independent set, but in this case the algorithm could

run in exponential time. The goal is to find a list Π that is polynomially big in n and m

and that for a maximum weight independent set I of G there is a minimal triangulation

H of G such that every maximal clique of H is on the list Π and every maximal clique

intersects I in at most one vertex.

Lokshtanov et al. [43] used the structure of P5-free graphs and showed that in the

case of P5-free graph a desired list Π can be found in polynomial time. We will present

in detail the construction of Π, omiting most proofs.

Definition 2.31. Let G be a graph and I an independent set of G. We say that a

triangulation H is I-good if every vertex v ∈ I satisfies NG[v] = NH [v].

Lemma 2.32. Let G be a graph and I an independent set of G. There exists an I-good

minimal triangulation H of G.

Proof. Let H ′ be a graph obtained from G by turning V (G) \ I into a clique. Then

graph H ′ is a split graph, i.e., V (H ′) can be partitioned into a clique and an independent

set. Since every split graph is also chordal it follows that H ′ is I-good triangulation of

G. Now take a minimal subgraph H that is still a triangulation of G. Since H ′ is an

I-good minimal triangulation, so is H.

Observe now that if H is an I-good triangulation of a graph G for an independent

set I of G, then every maximal clique of H intersects I in at most one vertex. The

aim is to design a polynomial-time algorithm that for a given P5-free graph G outputs

a family Π such that |Π| is polynomial in n and for a maximal independent set I there

exists some I-good minimal triangulation of G such that ζ(H) ⊆ Π. The family Π is

built in two steps as Π = Π1 ∪ Π2.

Π1 : Define δG(v) as the subset of vertices of NG(v) with neighbors outside of NG(v)

that is δG(v) = {u ∈ NG(v) | uw ∈ E for some w 6∈ NG[v]}. For a graph G and every

pair u, v ∈ V (G) of non-adjacent vertices define the graph Guv as the graph obtained

from G by turning δG(u) and δG(v) into cliques, and let Huv be a {u, v}-good minimal

triangulation of Guv. In the rest of this section, unless stated differently, let G = (V,E)

be a P5-free graph. Define the family Π1 as follows:

Π1 =
⋃

u,v∈V,uv 6∈E

ζ (Huv[NG[u, v]]) .
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Π2 : It has been shown that Π1 contains every maximal clique Ω of an I-good

minimal triangulation H of a graph G such that Ω ⊆ NH [u, v] for some u, v ∈ I. Hence

the family Π2 has to contain every maximal clique Ω of an I-good minimal triangulation

H of G such that Ω is not a subset of NG[u, v] for any u, v ∈ I.

Π2 is defined as follows:

Π2 = {Ω ∈ Ω(G) | ∆(Ω) ⊆ ∆2} .

Recall that ∆(Ω) = {N(Ci) : 1 ≤ i ≤ t} and C(Ω) = {C1, . . . , Ct} is the set of all

connected components of G \ Ω for Ω ⊆ V (G). The set ∆2 is defined as follows.

Definition 2.33. Let G be a graph. We define ∆2 ⊆ P(V (G)) as the family of all sets

of the form NG(Ĉu) such that there exists a triple (u, v, w) where

• {u, v, w} is an independent set in G,

• Cw is connected component of G \NG[u, v] containing w,

• Ĉu is the connected component of G \NG[Cw] containing u.

It is not hard to see that both Π1 and Π2 are of polynomial size. Moreover, it has

been shown that they can be found in polynomial time and that for every maximal

independent set I there exists an I-good minimal triangulation H such that every

maximal clique is in Π.

Recently, Grzesik et al. used the same approach to solve the Weighted Independent

Set problem in the class of P6-free graphs. In fact, they prove the following theorem.

Theorem 2.34 (Grzesik et al. [32]). Given a P6-free graph on n vertices, one can in

polynomial time compute a polynomial-size family Π of vertex subsets with the following

property: for every maximal independent set I in G, there exists an I-good triangulation

H of G such that Π contains all maximal cliques of H.

The proof of the above theorem is the main contribution of the paper of Grzesik et

al. [32]. Such a theorem easily gives a polynomial-time algorithm for P6-free graphs.1

Let G be a P6-free graph. By Lemma 2.32 we know that for any maximal inde-

pendent set I of G there exists an I-good minimal triangulation. By Theorem 2.34

we can in polynomial time find a polynomially sized family Π that for each maximal

independent set I contains all bags of some I-good triangulation H of G. Then by

Theorem 2.30 it follows that the Weighted Independent Set problem is polynomialy

solvable for P6-free graphs.

Theorem 2.35. [32] The Weighted Independent Set problem can be solved in

polynomial time for P6-free graphs.
1It should be noted that at the time of this writing the result has not yet been peer reviewed.
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2.3 Modular partition

One of the techniques for solving the Weighted Independent Set problem on a

specific graph class is the so called modular decomposition or modular partition. The

ideas of modular partition were used in obtaining a quasipolynomial-time algorithm for

the Weighted Independent Set problem for P6-free graphs, as well as in several

other algorithms. More precisely, an algorithm running in time nO(log2 n) [45] was

developed for the class of P6-free graphs. A linear-time algorithm was achieved for the

class of cographs graphs using this technique.

Given a graph G, a set of vertices M ⊆ V (G) is called a module if every vertex not

contained in M is either adjacent to all vertices of M or to none of them. A module

M is trivial if M is the whole vertex set of G, {v} for a vertex v, or the empty set. It

is obvious that every graph contains trivial modules. If graph G does not contain any

non-trivial module, then G is said to be a prime graph.

An important property of modules is the following.

Proposition 2.36 (Gallai [26]). If G and its complement are both connected, then

maximal modules are pairwise disjoint. Moreover, if both M and M ′ are maximal

modules then either M dominates M ′ or M is anticomplete to M ′.

Using the above proposition we conclude that the set of all maximal non-trivial

modules of a connected and co-connected graph G forms a partition of V (G). This

property can be used for a reduction rule for Weighted Independent Set on G.

The reduction consists in finding maximal modules of G and contracting them to

single vertices to obtain a graph G0. We say that two sets of vertices X and Y of G

are adjacent if there exists an edge xy with x ∈ X and y ∈ Y .

It is important to observe that graph G0 constructed at step 9 is an induced sub-

graph of G since each Mi is a module in G. Algorithm 1 is a recursive algorithm.

The root of recursion tree is graph G. At each step we decompose graph G until we

reach a graph on a single vertex. Observe that at the step 10 graph G0 is either an

edgeless graph, a complete graph, or a prime graph and we only solve Weighted

Independent Set problem on such graphs. Since we can easily solve Weighted

Independent Set problem on edgeless graphs and complete graphs, it follows that

modular decomposition reduces the problem from a graph to its induced prime graphs.

If we are able to solve the problem for the class of all prime induced subgraphs of the

input graph, Algorithm 1 will give us a polynomial-time algorithm for the starting class

also.
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Algorithm 1: Alpha(G,w)

Input: A graph G and a weight function w : V (G)→ R.

Output: A maximum weight independent set I.

1 if |V (G)| = 1 then

2 set I = argmax{w(V (G)), w(∅)} and goto 11;

3 if G is disconnected then

4 partition V (G) into vertex sets of connected components M1, . . .Mk;

5 if G is disconnected then

6 partition V (G) into vertex sets of connected components M1, . . . ,Mk of G;

7 if G and G are connected then

8 partition V (G) into maximal modules M1, . . . ,Mk;

9 Construct a weighted graph (G0, w0) such that V (G0) = {M1, . . . ,Mk} and two

vertices M,M ′ of G0 are adjacent if and only if they are adjacent in G. Set

w0(M) = w(Alpha(G[M ], w)) for every M ∈ V (G0);

10 Find a maximum weight independent set I0 in (G0, w0) and set

I = ∪M∈I0Alpha(G[M ], w);

11 return I;

Theorem 2.37 (Lozin and Milanič [49]). Let C be a class of graphs and let C∗ be the

class of all prime induced subgraphs of the graphs in C. If for a constant p ≥ 1, the

maximum weight independent set problem in the class C∗ can be solved in time O(np),

then the same problem is solvable in time O(np +m) for the class C.

Proof. Let G ∈ C. Denote n = |V (G)| and m = |E(G)|. It has been shown by

McConnell and Spinrad in [54] that the recursive decomposition of Algorithm 1 can be

performed in time O(n + m). Such a decomposition finds the recursion tree T (G) of

G. Every leaf of T (G) corresponds to a vertex of G and every internal leaf corresponds

to an induced subgraph of G on at least two vertices.

Let U be an internal node of T (G) and let GU be the induced subgraph of G

corresponding to U . In this case, the children of U in T (G) correspond to the graphs

G[M1], . . . , G[Mk], where {M1, . . . ,Mk} is the partition defined as in the steps 3-8 of

the algorithm. If GU or GU is disconnected then we can trivially find a maximum

weight set in G0
U (step 10) in time O(|V (G0

U)|). On the other hand, if both GU and

GU are connected then G0
U is a prime graph, i.e., G0

U ∈ C∗. Hence, by assumption we

can do step 10 in time O(|V (G0
U)|p). Summing over all vertices of T (G) we infer that

the total running time of the algorithm is bounded by O(
∑

U∈V (T (G)) |V (G0
U)|p). One

can easily show by induction that the total number of vertices in all G0
U corresponding
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to the internal vertices of T (G) is exactly equal to number of edges in T (G). Since

there are exactly n leaves in T (G), there are at most n − 1 internal vertices in T (G)

and |V (T (G))| ≤ 2n− 1. Hence

∑
U∈V (T (G))

|V (G0
U)|p ≤

 ∑
U∈V (T (G))

|V (G0
U)|

p

≤ (2|V (T (G))|−2)p ≤ (2n−2)p = O(np).

Adding the term O(n + m) necessary for the recursive decomposition we obtain the

claimed time complexity.

Modular decomposition was used in the development of several polynomial-time

algorithms for Weighted Independent Set problem in hereditary classes. An easy

example of a linear-time algorithm for the maximum weight independent set can be

obtained for the class of cographs (P4-free graphs). It is known that for every cograph

G on at least two vertices either G or G is disconnected graph [17]. Hence the only

induced prime graphs of a cograph considered in Algorithm 1 are graphs on a single

vertex. Therefore, Theorem 2.37 guarantees the existance of a linear-time algorithm

for the problem.

Several other polynomial-time algorithms were developed for subclasses of P5-free

graphs and fork-free graphs. More generally, a polynomial-time algorithm for the whole

class of fork-free graphs [49] and a quasipolynomial-time algorithm for the class of P6-

free graphs [45] rely on modular decomposition.

It is worth noting that modular decomposition is used for many other algorithmical

and structural results. In fact the first algorithm for recognition of comparability graphs

uses modular decomposition and this is the first appearance of modular decomposition

in the literature [26]. Similarly, modules play an important role in the Lovász’s proof

of perfect graph theorem [46].

2.4 Decomposition by clique separators

We say that a subset S ⊆ V (G) is a separator if G\S is disconnected graph. Moreover,

if S is a clique we say that S is a clique separator. If a graph G does not admit a clique

separator, we say that a graph G is an atom. It is well-known that the Weighted

Independent Set problem can be reduced in polynomial time to graphs without a

clique separator. Such an approach is known as the decomposition by clique separators.

It was originally developed by Whitesides [71], and later generalized by Tarjan [69] and

Alekseev [3] (for the unweighted case).

Let C be a hereditary class of graphs. If Weighted Independent Set can be

solved in polynomial time for the graphs in C that have no clique separator, i.e., atoms,
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then the same problem is polynomially solvable for the class C. We recall the following

recursive method described by Tarjan.

Algorithm 2: Decomposition by Clique Separators

Input: A graph G and a weight function w : V (G)→ R.

Output: α(G).

1 Let {A,B,C} be a partition of V (G) such that C is a clique separator and

G[A ∪ C] is an atom.;

2 for v ∈ C do

3 Find a maximum weight of an independent set I(v) in G[A \N(v)];

4 Find a maximum weight independent set I ′ in G[A];

5 for v ∈ C do

6 Redefine the weight of v as w(v) + w(I(v))− w(I ′);

7 Find a maximum weight independent set I ′′ in G[B ∪C] with respect to the new

weights;

8 Define

I =

{
I(v) ∪ I ′′ if v ∈ I ′′ ∩ C ;

I ′ ∪ I ′′ if I ′′ ∩ C = ∅ .

return I;

Similarly, the decomposition by clique separators can be used for many other clas-

sical graph problems such as coloring and maximum clique problem. Moreover, clique

separators are often used in structural description of hereditary graphs classes. As an

example, we consider the following proposition without the proof.

Proposition 2.38 (Dirac [20]). Let G be a chordal graph. Then G has a clique sepa-

rator or G is complete.

Such a proposition not only allows for the developlment of a linear-time algorithm

for coloring chordal graphs, but also provides a more space efficient implementations

of a coloring algorithm for chordal graphs than the one obtained using the so called

perfect elimination scheme [33].

2.5 Graph transformations

In this chapter we present several simple graph transformations that can be used to

decrease the size of an instance for the Independent Set problem. Observe that
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such transformations could be used in combination with other techniques very often

for development of new polynomial-time algorithms. Furthermore such transformations

can be performed mostly in linear or quadratic time. As such, they are a nice tool for

solving particular instances of a problem in real life, by repeatedly reducing the instance

and then solving the problem.

For an exact polynomial-time algorithm in a particular graph class, usually the

goal it to make several graph transformations and reduce an instance G to an instance

G′ for which we already know a polynomial-time algorithm. We present an overview

following Lozin [47].

Let v be a vertex of degree one in a graph G and let u be its unique neighbor. Let

I be any maximal independent set in G. If I contains u then v 6∈ I and if that is the

case, then we can define an independent set I ′ = (I \ {u}) ∪ {v}. Obviously |I| = |I ′|.
Hence α(G) = α(G \ {u, v}) + 1. We can repeatedly make such a transformation until

we obtain a graph without vertices of degree one. In particular, for trees, this reduction

gives us an efficient algorithm for Independent Set. Reduction of vertices of degree

one can be generalized in several ways.

2.5.1 Simplicial vertex reduction

A vertex v of G is said to be simplicial if N(v) is a clique. Trivially, every vertex of

degree one is simplicial. Now, let us design a similar reduction as before. Let I be an

independent set and v ∈ V (G) a simplicial vertex. If N(v)∩ I 6= ∅ then, there exists a

unique vertex u ∈ N(v) such that u ∈ I. Again, observe that for the independent set

I ′ = (I ∪ {v}) \ {u} it holds that |I| = |I ′|. Hence, α(G) = α(G \N(v)) + 1.

Such a reduction can be done in polynomial time. Moreover, in any non-complete

graph that contains a simplicial vertex there exists a clique cutset and in this case we

could reduce the graph also by using the decomposition by clique separators.

2.5.2 Neighborhood reduction

Let uv be an edge of G. Define the following sets

• Cu = N(u) \N [v],

• Cv = N(v) \N [u],

• Cuv = N(v) ∩N(u), and

• C0 = V (G) \N [{u, v}].

Then {Cu, Cv, Cu,v, C0} is a partition of V (G) \ {u, v}. Suppose that Cv = ∅. Then

for any independent set I containing u, the set I ′ = (I \ {u})∪{v} is also independent
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set. Therefore, it holds α(G) = α(G \ {u}). Observe that in case when Cuv is a clique

then this reduction is equivalent to a simplicial vertex reduction.

2.5.3 Removal of constantly many vertices

In the following, we show a technical lemma useful for removal of constantly many

vertices. The idea of such an approach, is that for every graph G in a class C we can

remove a set of constantly many vertices to obtain a graph G′ such that G′ ∈ C ′ and

we already know a polynomial-time algorithm for maximum weight independent set in

C ′.

Theorem 2.39. Let C be a class of graphs such that there exists a constant p and a

hereditary class C ′ such that

• Weighted Independent Set is solvable in polynomial time in class C ′,

• for each graph G ∈ C we can find, in polynomial time, a subset of vertices U such

that |U | < p and G \ U ∈ C ′.

Then Weighted Independent Set problem can be solved in polynomial time for

graphs in C.

Proof. Let G ∈ C. We show how to find a maximum weight independent set in G.

First we find a subset U such that |U | < p and G \ U ∈ C ′. Then, we enumerate in

constant time all independent sets (not necessarily maximal) {I1, . . . , It} of G[U ]. For

each i ∈ {1, . . . t} we find a maximum weight independent set I ′i in G\(U∪N(Ii)). Such

a procedure can be done in polynomial time and clearly the solution of Weighted

Independent Set problem is given by the maximum weight of Ii ∪ I ′i where i ∈
{1, . . . t}.

Observe that if C ′ is a hereditary class for which the recognition problem is poly-

nomially solvable, it suffices just that a subset U as above exists. Such a theorem was

used in [56].

It should be noted that the removal of constantly many vertices is not a proper

graph transformation, in a sense that we are allowed to perform it only once (or at most

constantly many times), while other graph transformations can be done polynomially

many times.

2.6 Other techniques

Graphs of bounded width parameters: Due to Courcelle’s theorem, we know

that every problem expressible in Monadic Second Order Logic (with quantifier over



Husić E. The maximum independent set problem and equistable graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 40

both vertex- and edge-subsets) can be solved in linear time on graphs of bounded

treewidth [4]. This means that for a class of graphs C for which there exists k ∈ N
such that for every G ∈ C it holds tw(G) ≤ k, Independent Set is solvable in linear

time when the input is restricted to C.
On the other hand, a result due to Courcelle et al. [18] shows that every problem

expressible in Monadic Second Order Logic with quantifiers only over vertex subsets,

can be solved in linear time for graphs of bounded clique width. For a graph G the

clique width cw(G) is the minimum number of labels such that a vertex-labeled graph

isomorphic to G can be constructed using the following four operations:

• Creation of a new vertex v with label i.

• Disjoint union of two labeled graphs H and H ′.

• Joining by an edge every vertex labeled i to every vertex labeled j for i 6= j.

• Renaming label i to label j.

Since Independent Set is expressible in Monadic Second Order Logic with quan-

tifies over vertex subsets only, we conclude that the problem is polynomially time

solvable for any class of graphs of bounded clique width. Observe that for every graph

such that tw(G) ≤ k we have cw(G) ≤ 3 · 2k−1 [34]. Hence, every graph class of

bounded treewidth has also bounded clique width, but it can be easier to prove that

a certain graph class has bounded treewidth. Together with modular decomposition,

this technique was used to solve efficiently the problem in some subclasses of fork-free

and P5-free graphs [22].

Another graph parameter that is often considered is so called rank-width. The

notion of rank-width, denoted by rwd(G), is defined by Oum and Seymour [62] so as

to yield an approximation algorithm for clique-width. They also showed that rank-

width and clique-width are in a sense equivalent; more precisely, for any graph G the

following inequalities holds:

log2(cw(G) + 1)− 1 ≤ rwd(G) ≤ cw(G) .

Thus, a set of graphs of bounded rank-width is also of bounded clique-width and vice

versa. Hence, the same as before, Independent Set is polynomially solvable for any

classs of graph of bounded rank-width.

Several other techniques were developed for Independent Set and Weighted

Independent Set in special graph classes and we will just list a few of them here.

• Using network flow techniques Weighted Independent Set can be solved in

the class of bipartite graphs [16].
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• Semidefinite programming was used to solve Weighted Independent Set for

perfect graphs [31].

• Special dynamic programming approaches have been designed for graphs in par-

ticular classes, based on their structural properties and characterizations. Exam-

ple include interval graphs [66] and distance-hereditary graphs [8].



3 Equistable graphs

Closely related to the Independent Set and Weighted Independent Set prob-

lems is the class of equistable graphs. We say that a graph G is equistable if there

exists a function ϕ : V (G)→ R+ such that for every subset of vertices I it holds that

ϕ(I) = 1 if and only if I is maximal independent set. Equivalently, G is equistable

if and only if there exists a positive integer t and a weight function w : V (G) → N
such that I ⊆ V (G) is a maximal independent set if and only if w(I) = t. Such a

function w is called an equistable function of G, while the pair (w, t), is called an equi-

stable structure. The class was introduced by a French mathematician Charles Payan

in 1980 [64].

Let us show that the above two defintions are indeed equivalent. It suffices to show

that if a graph is equistable with respect to a function ψ : V (G) → R+, then there

exists an equistable structure for G.

Suppose that a graph G = (V,E) with V = {1, . . . , n} admits non-negative real

weights ϕ(x), for x ∈ V , such that a subset of vertices is of ϕ-weight 1 if and only if it is

a maximal stable set. Partition the non-empty subsets of V that are not maximal stable

sets into two parts: a set is either light or heavy depending on whether its ϕ-weight is

smaller than or greater than 1.

The weight function ϕ can be seen as a vector in Rn that satisfies the following

system of linear equations and inequalities (with variables x1, . . . , xn):

• xi ≥ 0 for all i ∈ S

• ∑i∈S xi = 1 for every maximal stable set S of G,

• ∑i∈T xi < 1 for every light set of vertices T ,

• ∑i∈T xi > 1 for every heavy set of vertices T .

Let ε > 0 be any positive rational number such that

ε < min

{∑
i∈T

xi − 1 | T is a heavy set

}
and

ε < min

{
1−

∑
i∈T

xi | T is a light set

}
.

42
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Notice that such an ε exists, since both minima above are positive. Then, the weight

function ϕ satisfies the following system of linear equations and inequalities (with

variables x1, . . . , xn):

• xi ≥ 0 for all i ∈ S

• ∑i∈S xi = 1 for every maximal stable set S of G,

• ∑i∈T xi ≤ 1− ε for every light set T ,

• ∑i∈T xi ≥ 1 + ε for every heavy set T .

Considering ε as fixed, this system of linear equations and inequalities (over the vari-

ables x1, . . . , xn) can be transformed into an equivalent system of a form Az ≤ b, where

A and b are a matrix and a vector of suitable dimensions have only rational coefficients.

Since the original system has a feasible solution (namely, ϕ), so does the transformed

system.

This system defines a non-empty bounded polyhedron P . Since all coefficients in

the inequalities defining P are rational, each vertex of P has only rational coordinates.

Let z∗ be any vertex of P . We can transform z∗ back to a feasible solution of the

system

• xi ≥ 0 for all i ∈ S

• ∑i∈S xi = 1 for every maximal stable set S of G,

• ∑i∈T xi ≤ 1− ε for every light set of vertices T ,

• ∑i∈T xi ≥ 1 + ε for every heavy set of vertices T .

This gives an equistable weight function of G with rational weights, and by scaling we

can obtain integer weights.

Payan defined the class of equistable graphs as a generalization of threshold graphs.

Recall that a graph G is threshold if there exists a weight function w : V (G)→ N on the

vertices of G and a threshold t such that a subset of vertices S ⊆ V (G) is independent

if and only if w(S) ≤ t. Threshold graphs are a well-known and well-studied class of

graphs [52].

Theorem 3.1 (Payan [64]). Threshold graphs are equistable.

Proof. Let G be a threshold graph. We prove the lemma by induction on |V (G)|.
It is known that every threshold graph contains a vertex v that is either an iso-

lated vertex or a dominating vertex (i.e., a vertex adjacent to every other vertex in a
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graph) [52]. Recall also that the class of threshold graphs is hereditary. Denote with

(w′, t′) an equistable structure of G \ {v}.

Case 1: v is an isolated vertex. Then a subset of vertices S ⊆ V (G) is maximal

independent set in G if and only if v ∈ S and the set S ′ = S \ {v} is a maximal

independent set in G \ {v}. And conversly, a set S ′ ⊆ V (G) \ {v} is a maximal

independent set in G \ {v} if and only if S ′ ∪ {v} is a maximal independent set in

G. Then integer t = 2t′ + 1 and the function w defined as w(u) = 2w′(u) for every

u ∈ V (G) \ {v} and w(v) = 1 form an equistable structure of G.

Case 2: v is a dominating vertex. An independent set S ⊆ V (G) is maximal in G

if and only if either S = {v}, or v ∈ S and S is a maximal independent set in G \ {v}.
And conversly, a set S ′ ⊆ V (G) \ {v} is a maximal independent set of G \ {v} if and

only if it is a maximal independnet set of Gx. Then function w defined as w(u) = w′(u)

for every u ∈ V (G) \ {v} and w(v) = t′ and t′ form an equistable structure of G.

Besides threshold graphs, equistable graphs generalize the class of cographs and

general partition graphs [55]. We say that a graph G is a general partition graph if

there is some set U and an assignment of non-empty subsets Ux ⊆ U to the vertices of

G such that two vertices x and y are adjacent if and only if Ux ∩ Uy 6= ∅ and for every

maximal independent set I the set {Ui : i ∈ I} is a partition of U .

A clique in a graph is a strong clique if it has non-empty intersection with each

maximal independent set of the graph. Moreover, a collection of cliques is a clique

cover of G if for every edge of G there is a clique in the collection that contains both

its endpoints. Finally, a clique cover is a strong clique cover if all of its cliques are

strong cliques.

Theorem 3.2 (McAvaney et al. [53]). A graph G is a general partition graph if and

only if there is a strong clique cover of G.

It is worth to notice that the class of equistable graphs is not hereditary. The later

follows trivially from the following proposition.

Proposition 3.3. Let G be a graph. Then G is an induced subgraph of some equistable

graph H.

Proof. Let G be a graph. We construct a graph H from G as follows. For every

maximal clique C of G we add a new vertex vC . Furthermore we connect the new

vertex with the vertices of G so that N(vC) = C. We denote the graph obtained this

way by H. Clearly G is an induced subgraph of H. Since every general partition

graph is equistable, it suffices to prove that H is a general partition graph. We use

Theorem 3.2. Let us show that H has a strong clique cover. It follows from construction
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that every maximal clique in H is a union of a maximal clique C in G and the singleton

{vC}. Furthermore, such a clique is strong since vC is adjacent exactly to C. Hence

the set of all maximal cliques in H is a strong clique cover of H. The proof follows.

In fact, the above proof shows that any graph is an induced subgraph of some

general partition graph.

The complexity status of recognizing equistable graphs is still open. It is not even

known if the problem is in NP. Furthermore, no combinatorial characterization of

equistable graphs is known. Orlin conjectured in 2009 [55] that the class of equistable

graphs is in fact the class of general partition graphs, but this was recently disproved

by Milanič and Trotignon [58]. Given a graph G and a weight function w : V (G)→ N
it is co-NP-complete to determine if w is an equistable function of G [57]. On the

other hand, the recognition of k-equistable graphs can be done in linear time. For

a positive integer k, a graph G is said to be k-equistable if it admits an equistable

function w : V → {1, . . . , k}. Such a function is called a k-equistable function, and the

corresponding structure (w, t) is a k-equistable structure of G.

For a positive integer t, we say that a graph G is target-t equistable if it admits an

equistable function w : V (G)→ N with equistable structure (w, t). Observe that every

target-t equistable graph is also t-equistable, but the other direction does not hold. In

Section 3.1 we will show that recognition of k-equistable graphs can be done in linear

time.

It was proved by Levit et al. that for every fixed k there is a polynomial-time

algorithm to test if a given graph is k-equistable.

Theorem 3.4 (Levit et al. [41]). For every fixed k, there is an O(n2k) algorithm to

decide whether a given n-vertex graph G is k-equistable. Furthermore, in case of a

positive instance, the algorithm also produces a k-equistable structure of G.

The above result was further improved by Kim et al. [37] and we will present a

part of their work here. In fact, they introduced the notion of target-t equistable

graphs and using it obtained the mentioned linear-time algorithm for the recognition

of k-equistable graphs.

We say that two vertices u and v of a graph G are twins if they have the same

open neighborhood. Clearly, the relation of being twins in a graph is an equivalence

relation.

Lemma 3.5 (Levit et al. [41]). Let G = (V,E) be a graph. The twin relation is an

equivalence relation and every equivalence class is either a clique or an independent

set.
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We refer to an equivalence class of the twin relation as a twin class. Moreover we

will refer to twin classes that are cliques as clique classes and similarly for independent

set classes. We will denote the set of all twin classes as Π(G) and call it the twin

partition of G. The number of twin classes of a graph G is denoted with π(G). Since

the twin relation is an equivalence relation, it follows that any two distinct twin classes

are either complete or anticomplete to each other. The later allows us to define the

quotient graph Q(G) having the vertex set Π(G), two twin classes being adjacent if

and only if they are complete to each other. Also, given a graph G, it is possible to

find in linear time the twin partition Π(G) and the quotient graph Q(G) [37].

The following lemmas show the importance of twin partition in the study of equi-

stable graphs.

Lemma 3.6 (Levit et al. [41]). For every equistable function w of G and for every

i ∈ N, the set of the form V w
i = {x ∈ V : w(x) = i} is a subset of a twin class of G.

In particular, if G is a k-equistable graph, then π(G) ≤ k.

Lemma 3.7 (Levit et al. [41]). For every equistable function w of an equistable graph

G and for every clique class C there exists an i such that V w
i = C.

3.1 Recognizing k-equistable graphs

Parametrized Complexity. Rather than speaking about a linear-time algorithm for

recognizing k-equistable graph, we will consider the problem of recognizing equistable

graphs parametrized by k. We say that a problem is fixed-parameter tractable (FPT)

when parametrized by solution size k, if there is an algorithm running in time O(f(k)nc)

for some function f and some constant c. More generally, a problem is fixed-parameter

tractable (FPT) with respect to parameter k (e.g., solution size, tree width, ...) if for

any instance of size n it can be solved in time O(f(k)nc) for some fixed c. One of

the main tools to design such algorithms is the so-called kernelization technique. A

kernelization is a polynomial-time algorithm that transforms an instance (I, k) of a

parameterized problem into an equivalent instance (I0, k0) of the same problem such

that the size of I0 is bounded by g(k) for some computable function g and k0 is bounded

by a function of k. The instance I0 is said to be a kernel of size g(k). It is known

that a parameterized problem is fixed-parameter tractable if and only if it admits a

kernelization.

Usually we consider whether a problem is FPT if the problem is NP-hard. In that

case the function f is not bounded by a polynomial, unless P 6= NP . In other words,

for fixed-parameter tractable problems the difficulty of a problem is not in input size,

but rather in the size of solution (parameter). In our case the parameter is a number
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k and we are asking if a given graph is k-equistable. It is still not known if recognizing

equistable graphs is NP-hard, but it seems plausible that this is the case.

In fact, we consider two different problems.

k-Equistability:

Input: A graph G.

Parameter: k.

Output: true if and only if G is k-equistable.

Target-t Equistability:

Input: A graph G.

Parameter: t.

Output: true if and only if G is target-t-equistable.

The main idea for fixed-parameter tractable algorithm for Target-t-Equistability

relies on the idea of r-clique reduction.

r-Clique Reduction: If a clique class C of the twin partition of G contains more

than r vertices, we remove all but r vertices.

Lemma 3.8 (Kim, Milanič, and Schaudt [37]). Let G be a graph, T ⊂ N a finite set,

C a clique class of G with |C| > r where r = max T and k a positive integer. Then, for

every t ∈ T , graph G is target-t k-equistable if and only if G′ is target-t k-equistable,

where G′ is graph obtained from G after the r-Clique Reduction has been applied to a

clique class C of G.

Proof. Let t ∈ T . Assume that G is target-t k-equistable. Let (w, t) be a k-equistable

structure for G. It is immediate by definition of r-Clique Reduction that the restriction

w′ of w to V (G′) yields a k-equistable structure (w′, t) of G′. Therefore G′ is target-t

k-equistable.

Let us show the other direction. Assume that G′ is target-t k-equistable. Let (w′, t)

be a k-equistable structure of G′. We define a function w : V (G) → {1, . . . , k} by

extending w′ to the set V (G). Indeed, we simply put w(u) = w′(u) for all u ∈ V (G′),

and w(u) = w(v) for all u ∈ C\V (G′) where v ∈ C∩V (G′). The choice of v ∈ C∩V (G′)

is arbitrary, since w′ is constant on C ∩ V (G′) by Lemma 3.7. We claim that (w, t)

is an equistable structure of G. To show this, pick an arbitrary maximal independent

set I of G. Then |I ∩ C| ≤ 1, and so we may assume that I ⊆ V (G′). Clearly, I is a

maximal independent set of G′ , and so w′(I) = t. Therefore w(I) = t. Conversely, let

I ⊆ V (G) be a set with w(I) = t. Since w(I ∩ C) ≤ w(I) = t, we have |I ∩ C| ≤ t.

As w is constant on C and |C| > maxT ≥ t, we may assume w.l.o.g. that I ⊆ V (G′).

Hence, w′(I) = w(I) = t, and so I is a maximal independent set of G′ . Thus, I is a

maximal independent set of G, which completes the proof.
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Using the above lemma we will show that Target-t-Equistability admits a

kernel with at most t2 vertices.

3.1.1 A kernel for the Target-t-Equistability

Theorem 3.9 (Kim, Milanič and Schaudt [37]). The Target-t-Equistability prob-

lem admits a kernel of at most t2 vertices, computable in linear time.

Proof. Let G be a graph. As said before, we can find Π(G) and consequently π(G)

in linear time. If π(G) > t , then we conclude that G is not target-t equistable, by

Lemma 3.6. Similarly, if there exists an independent set class S with |S| > t, then we

conclude that G is not target-t equistable since such an independent set has size more

than t. Also, we can apply r-Clique Reduction rule with parameter t, to every clique

class, in linear time. So the obtained graph is a graph with at most t twin classes each

of which is an independent class on at most t vertices. Hence, the graph has at most

t2 vertices, which proves the theorem.

Using the above theorem and the algorithm given by Theorem 3.4 we obtain an

FPT algorithm for Target-t-Equistability, but it is possible to improve the running

time of such an algorithm as shown in [37].

3.1.2 A kernel for k-Equistability

We will show the main proof idea of the following theorem.

Theorem 3.10 (Kim, Milanič and Schaudt [37]). The k-Equistability problem ad-

mits an O(k2)-vertex kernel, computable in linear time.

Proof. We may assume that the input graph G satisfies π(G) ≤ k, since otherwise G is

not k-equistable, by Lemma 3.6. The following claim is the main step of kernelization

and we use it without the proof.

Claim 1: If there exist two distinct twin classes X and Y such that one of them

is a independent set and min{|X|, |Y |} ≥ k(k + 1), then G is not k-equistable.

We consider the following two cases.

Case 1. Every twin class X with |X| ≥ k(k+1) is a clique class. In this case, every

independent set class has less than k(k+ 1) vertices, which implies that every maximal

independent set of G contains at most k(k+1) vertices from each twin class and is thus

of total size at most k2(k + 1). Hence for every k-equistable structure (w, t) of G, we

have t ≤ k3(k + 1). We now perform r-Clique Reduction rule with r = k3(k + 1). By

Lemma 3.8 applied with T = {1, . . . , r} and k, the application of r-Clique Reduction-
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rule is a valid operation. When the rule can no more be applied, we have a graph

G′ with at most k twin classes, each of size at most k3(k + 1). We are done since

|V (G′)| = O(k5).

Case 2. There exists an independent set twin class X with |X| ≥ k(k + 1). By

Claim 1, we may assume that X is the unique twin class of size at least k(k+ 1) (since

otherwise G is not k-equistable). Note that V (G)\X contains at most k−1 twin classes,

each containing less than k(k + 1) vertices, hence |V (G) \X| ≤ (k − 1)k(k + 1) ≤ k3.

Suppose first that X corresponds to an isolated vertex in the quotient graph Q(G). If

|X| < k5 , then |V (G)| < k5 + k3 = O(k5) and we are done. So suppose that |X| ≥ k5.

Claim 2: G is k-equistable if and only if it admits a k-equistable function that is

constant on X.

We use Claim 2 without giving a proof. Using the claim, it suffices to test if G

is k-equistable by considering all possible functions w : V (G) → {1, . . . , k} that are

constant on X, and test for each of them whether it is a k-equistable function. Before

that, we reduce size of X. For this, we compute a graph G′ from G by deleting all

but k4 many vertices from X. Note that, since X is a twin class, G′ is unique up to

isomorphism.

Claim 3: G is k-equistable if and only if G′ is k-equistable.

Again, we omit the proof. By Claim 3, it suffices to check whether G′ is k-equistable.

Since |V (G′)| ≤ k + k3 = O(k3), we are done.

Now, suppose that X corresponds to a non-isolated vertex in the quotient graph

Q(G). Then, there exists a twin class Y that is complete to X. Let I be a maximal

independent set of G containing a vertex of Y . Then, I ⊆ V (G)\X. Since |V (G)\X| ≤
k3 , we have in particular that |S| ≤ k3. If |X| > k|S|, then for every k-equistable

function w of G and every maximal independent set S ′ , such that X ⊆ S ′ , we

have w(S ′) ≥ |X| > k|S| ≥ w(S), hence G is not k-equistable. If |X| ≤ k|S|, then

|V (G)| ≤ (k + 1)k3 = O(k4). The proof follows.

3.2 Independent Set in equistable graphs

In this section we will mention several hardness results for the Independent Set

and Weighted Independent Set problems in the class of equistable graphs. Recall

that the class of equistable graphs is not hereditary. Moreover, the class of equistable

graphs is not contained in any non-trivial hereditary class nor contains any hereditary

class of graphs for which the problems are known to be NP-hard.
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The following theorem shows that Weighted Independent Set is NP-hard in

the class of equistable graphs. With some extra work in the same paper it has been also

showed that Independent Set is also NP-hard. Recall that if the problem is APX-

hard there is no algorithm running in time O(f(ε) · p(n)) where p(n) is a polynomial

that returns a solution that is not worse than 1− ε times the optimal value, unless P

6= NP [63]. It is clear that if a problem is APX-hard that it is also NP-hard.

Theorem 3.11 (Milanič, Orlin, and Rudolf [57]). Finding a maximum weight indepen-

dent set in a vertex weighted equistable graph is APX-hard, even if the graph is given

together with an equistable structure.

We will present the proof as given by Milanič et al. [57].

Proof. The results is proved using a reduction from the Independent Set problem

in general graphs to the same problem in an equistable graphs. Recall that the In-

dependent Set problem is APX-hard for general graphs [5]. Let G = (V,E) be a

graph. Denote its vertex set as {1, . . . , n}. An equistable graph G′ = (V ′, E ′) is formed

as follows:

• V ′ = {v1, . . . , vn} ∪ {w1, . . . , wn} ∪ {ue : e ∈ E} ,

• for each j ∈ {1, . . . , n} there is an edge vjwj in E ′, and

• for every edge e = ij in G, there are edges vivj, viue and vjue in G′.

For an example of such a construction see Figure 8.

1

2

3

4 5

v1

v2

v3

v4 v5

w1

w2

w3

w4 w5

u12

u23

u34

u35

G : G′ :

Figure 8: An example construction for the proof of Theorem 3.11.

Property 1: A set I ⊆ {1, . . . , n} is an independent set in G if and only if the set

V ′ = {vj : j ∈ I} ∪ {wj : j 6∈ S} ∪ {uij : i 6∈ I ∧ j 6∈ S} is a maximal independent set

in G′.

The above property states that there is a one-to-one correspondence between inde-

pendent sets of G and maximal independent sets of G′.
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Let us now assign a weight to each vertex in G′ in order to obtain an equistable

function for G′ and show that G′ is an equistable graph.

Let b1, . . . , bn and {ae : e ∈ E} be integers. For a vertex vj we define w(vj) =

bj + 3
∑

ij∈E aij. We say that bj is the V -cost of vj and 3
∑

ij∈E aij is the E-cost of vj.

For a vertex wj we define w(wj) = bj + 2
∑

ij∈E aij. We say that bj is the V -cost of

wj and 2
∑

ij∈E aij is the E-cost of wj.

For uij we define w(uij) = aij and we call aij the E-cost of uij.

We set t =
∑n

i=1 bi + 5
∑

e∈E ae.

Claim 1: For a maximal independent set I ′ in G′ we have w(I ′) = t.

Observe that I ′ contains either vi or wi but not both for every i. Thus the sum of

the V -costs of all vertices in I ′ is exactly
∑n

i=1 bi. Similarly, for each ij ∈ E it follows

that I ′ will contain exactly one of the following:

• vi, wj, or

• wi, vj, or

• wi, wj, uij.

Now, it is easy to see that E-cost of any option is exactly 5aij. Thus the total E-cost

of I ′ is
∑

ij∈E aij and by definition of t it follows that w(S ′) = t.

We will now explicitly set the values bi and aij. Denote m = |E|. We have to define

n + m values. For i ∈ {1, . . . , n} let bi = 8i. Order the integers corresponding to the

edges arbitraril y. To the j-th integer (edge) assign the value 8n+j. Let us prove the

following claim.

Claim 2: A subset I ′ ⊆ V ′ has weight t if and only if it is a maximal independent

set in G′.

By Claim 1, it suffices to prove that every set of vertices that has weight t is a

maximal independent set. We say that a subset of vertices I ⊆ V ′ is vertex maximal

if for every j, it contains vj or wj but not both. We say that I is edge maximal if for

every edge ij ∈ E, S contains one of the following:

• vi and wj,

• wi and vj,

• wi, wj and uij.

Similarly as before we conclude that a set I is maximal independent set if and only if

it is both vertex maximal and edge maximal.
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Let I be a subset of V ′. Suppose that w(I) = t. By considering values modulo

8j+1 , one can show that I must contain exactly one of vj and wj; therefore, I is

vertex maximal. Now, consider an edge ij ∈ E, and suppose it is the k-th edge. The

contribution due to edge ij in any vertex maximal subset S is either 4aij , 5aij , 6aij or

7aij. By considering values modulo 8n+k+1 , one can show that the contribution of the

edge ij must be 5aij, and thus I has edge maximality with respect to the j-th edge.

Hence I is edge maximal and thus also a maximal independent set.

Therefore G′ is an equistable graph. An equistable structure for G′ is (w, t) defined

as above.

Let us complete the proof. Consider the following weight function w′ for G′. For

each vj we set w′(vj) = 1 and for the other vertices we set the weight to zero. As we

said in the beginning of the proof, finding a maximum weight independent set in G′

(with respect to w′) is equivalent to the finding a maximum independent set in G. The

later problem is APX-hard. The proof is thus complete.



4 Conclusion

The Independent Set problem is NP-hard, but when the input is restricted to a

particular class of graphs there is hope that the problem could become polynomially

solvable. A big goal would be to classify all hereditary graph classes with respect

to whether the Independent Set is NP-hard or not. Such a goal might be too

ambitious. A good starting point are the methods for developing polynomial-time

algorithms for Independent Set in special graph classes. We presented some of

them in Chapter 2. Moreover, using the techinques of augmenting graphs we showed

that the problem is polynomially solvable if the input is restricted to {P10, C4, C6}-
free graphs. This is a novel result. Regarding {Pk, C4, C6}-free graphs, it was known

that the problem is polynomially solvable in the class of {P8, C4, C6}-free graphs, since

the problem is polynomially solvable in the class of {P8, banner}-free graphs [29]. It

follows from a result of Alekseev [1] we know that Independent Set is NP-hard in

the class of C4-free graphs. The problem also remains NP-hard if we forbid {C4, C6},
that is, the condition on P10-freeness is needed. Another way to see that the problem

is NP-hard in the class of {C4, C6}-free graphs is to use an observation by Poljak [65]

that α(G′) = α(G) + 1, where a graph G′ is obtained from G by replacing a single

edge with a P4 (subdividing it twice). On the other hand, we still do not know if the

Independent Set is polynomially solvable in the class of {P9, C4}-free graphs.

A trivial corollary of the results for {P10, C4, C6}-free graphs is that the Indeped-

nent Set problem is polynomially solvable in the class of {P10, even-hole}-free graphs.

The question is whether a similar approach could be used to devise a polynomial-time

algorithm for even-hole-free graphs. Such a question remains open and is very inter-

esting due to its connections with perfect graphs. For more on even-hole-free graph we

refer to [70] and references therein.

A second important question is to determine the complexity of the problem in the

classes of Pk-free graphs. As we mentioned before, the problem is polynomially solvable

for classes of Pk-free graphs where k ≤ 6 [32]. The results for P5- and P6-free graphs

are both obtained using minimal triangulations as presented in Section 2.2.

We also presented the class of equistable graphs in Chapter 3. We showed that the

problem of recognizing k-equistable graphs is solvable in linear time, while it remains

an open question whether the problem of recognizing equistable graphs is efficiently

53
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solvable. Related to the previous problem is the problem of finding a combinatorial

characterization of equistable graphs.
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5 Povzetek naloge v slovenskem

jeziku

Naj bo G = (V,E) graf. Za množico vozlǐsč I pravimo, da je neodvisna, če nobeni

dve vozlǐsči v množici nista sosednji. Problem neodvisne množice je poiskati neodvisno

množicno največje velikosti v danem grafu. To je eden izmed prvih problemov, za

katere je bilo pokazano, da je NP-težek [36]. Problem neodvisne množice se uporablja

za modeliranje problemov z različnih področij kot so: računalnǐstvo, teorija informa-

cij, upravljanje prometa, telekomunikacije in finance. Natačneje, problem se pojavi

v molekularni biologiji, računalnǐskem vidu, teoriji kodiranja in pri razporejanju v

brezžičnih omrežjih [22].

Razširjeno je prepričanje, da NP-težkih optimizacijskih problemov ni moč učinkovito

rešiti do optimalnosti. Verjame se torej, da ne obstaja polinomski algoritem za problem

neodvisne množice v grafih. Še več, pri podobnih predpostavkah za problem ne obstaja

polinomski algoritem, ki bi aproksimiral rešitev znotraj faktorja n1−ε za poljuben ε ∈
(0, 1), kjer je n število vozlǐsč danega grafa. Tovrstni rezultati o računski zahtevnosti

problema neodvisne množice motivirajo študij problema na grafih z dodatnimi omejit-

vami. Problem tako pogosto študiramo v kontekstu hereditarnih razredov grafov. V

številnih posebnih primerih postane problem polinomsko rešljiv. Najbolj znani razredi

grafov, za katere je problem rešljiv v polinomskem času, so dvodelni grafi [16], tetivni

grafi [25], popolni grafi [30] in grafi omejenih širinskih parametrov [4, 18].

Problem seveda ne postane polinomsko rešljiv za poljuben netrivialen hereditaren

razred grafov. Znano je, da je problem neodvisne množice NP-težek za ravninske

grafe največje stopnje kvečjemu tri [27], za grafe enotskih diskov [15] in za grafe brez

trikotnikov [60].

V poglavju 2 predstavimo nekatere najpogosteje uporabljene metode za razvoj

polinomskih algoritmov za problem neodvisne množice v posebnih razredih. Najprej

je predstavljena metoda povečujočih grafov. Ideja metode izhaja iz znane metode

povečujočih poti, s katero je bil rešen problem največjega prirejanja. Podobno kot

pri prirejanjih se lahko dokaže, da je dana neodvisa množica največja možna če in

samo če graf nima nobenega povečujočega grafa za to neodvisno množico. Če torej

dana neodvisna množica ni največja, potem zanjo obstaja nek povečujoč graf. Na ta
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način problem prevedemo na problem iskanja povečujočega grafa za dano neodvisno

množico. Od tod zlahka izpeljemo, da je problem iskanja povečujočega grafa NP-težek.

Kljub temu pa v posebnih primerih ta pristop vodi do polinomskih algoritmov. Metoda

povečujočih grafov je uporabljenja v poglavjih 2.1.1 in 2.1.2 v razvoju polinomskega

algoritma za problem neodvisne množice v razredu {P10, C4, C6}-prostih grafov, kar je

nov rezultat.

Nadalje je predstavljena noveǰsa metoda, ki je zasnovana na “dobrih” triangulacijah

danega grafa. Ideja je zasnovana na enem od pristopov za reševanje problema v razredu

tetivnih grafov (triangulacija tetivnega grafa je kar isti graf). Idejo se nato posploši

in namesto ene same triangulacije upoštevamo več “dobrih” triangulacij. Ta metoda

je uporabljena za razvoj polinomskega algoritma v razredu P5-prostih grafov [43] in

kasneje v razredu P6-prostih grafov [32].

V preostanku poglavja 2 so predstavljene bolj klasične metode, kot so modularna

dekompozicija, dekompozicija glede na prerezne klike in transformacije grafov.

Tesno povezan s problemom neodvisne množice je razred ekvistablnih grafov. Prav-

imo, da je graf G ekvistabilen, če obstaja taka funkcija ϕ : V (G) → R+, da za vsako

podmnožico vozlǐsč I velja ϕ(I) = 1 natanko tedaj, ko je I maksimalna neodvisna

množica. Ekvivalento, graf G je ekvistabilen natanko tedaj, ko obstajata tako naravno

število t in taka funkcija w : V (G) → N, da je w(I) = t če in samo če je I neodvisna

množica. Tako funkciji w rečemo ekvistabilna funkcija, paru (w, t) pa ekvistabilna

struktura grafa G.

Določitev računske zahtevnosti problema prepoznavanja ekvistabilnih grafov je še

vedno odprt problem. Prav tako ni znano, ali je problem v razredu NP. Vemo pa,

da je problem prepoznavanja k-ekvistabilnih grafov rešljiv v linearnem času. Za dani

graf G rečemo, da je k-ekvistabilen natanko tedaj ko obstaja ekvistablina funckija

w : V (G) → {1, . . . , k}. Algoritem linearne časovne zahtevnosti za prepoznavanje k-

ekvistabinih grafov je predstavljen v poglavju 3.1 kot FPT algoritem s parametrom k.

Dokaz NP-težkosti problema utežene neodvisne množice v razredu ekvistabilnih grafov

je obravnavan v poglavju 3.2.
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[39] Jan Kratochv́ıl and Jaroslav Nešetřil. Independent set and clique problems in

intersection-defined classes of graphs. Commentationes Mathematicae Universi-

tatis Carolinae, 31(1):85–93, 1990. (Cited on page 6.)

[40] Philippe GH Lehot. An optimal algorithm to detect a line graph and output its

root graph. Journal of the ACM (JACM), 21(4):569–575, 1974. (Cited on page 8.)
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[70] Kristina Vušković. Even-hole-free graphs: a survey. Applicable Analysis and Dis-

crete Mathematics, pages 219–240, 2010. (Cited on page 53.)

[71] Sue Hays Whitesides. An algorithm for finding clique cut-sets. Information Pro-

cessing Letters, 12(1):31–32, 1981. (Cited on page 36.)


