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Izvleček:
V zaključni nalogi obravnavamo oblikovanje peptidov, ki se v primernih pogojih spon-
tano prepognejo v poljubne 3D oblike. Natančneje, upoštevamo poseben razred coiled
coil peptidov, za katere obstaja več dobro razvitih algoritmičnih metod za določanje
interakcijske moči med dvema takima peptidoma.
Ker večina algoritmov za sintezo 3D objektov iz teh peptidov zahteva, da veriga poteka
po dvojnem Eulerjevem obhodu “žičnega okvirja” objekta, se osredotočimo na problem
izdelave knjižnjice peptidnih parov, ki jih lahko postavimo na vzporedne povezave
obhoda. Da bi dosegli želeno prepogibanje, ti pari lahko delujejo le vzajemno - takšni
množici rečemo ortogonalna množica. V jeziku teorije grafov ortogonalna množica v
grafu 𝐺 ustreza neodvisni množici linijskega grafa 𝐿(𝐺) grafa 𝐺 z dodatno omejitvijo,
da nobeni dve vozlišči ne delita soseda.
Po uvedbi potrebnega teoretičnega okvira iz teorije algoritemske kompleksnosti
dokažemo, da je problem maksimalne ortogonalne množice NP-poln, kar pomeni, da ni
znane asimptotično učinkovite rešitve. Kljub temu pa predstavimo natančen algoritem,
ki reši naš problem s prevedbo na problem iskanja maksimalne neodvisne množice.
Na koncu predstavimo dve hevristiki za konstrukcijo velikih ortogonalnih množic. Ena
od teh hevristik se ujema z dobro poznanim okvirjem intenzifikacije in diverzifikacije
pri metahevristikah ter nam zagotavlja v literaturi doslej največjo znano ortogonalno
množico.
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Abstract:
In this final project paper, we consider the design of peptides which spontaneously fold
into arbitrary 3D shapes under suitable conditions. More specifically, we consider the
special class of coiled coil peptides, for which there exist several well-developed algo-
rithmic methods for determining the interaction strength between two such peptides.
Since most algorithms for 3D object synthesis from these peptides involve laying them
out along double Eulerian tours of the object wireframe, we focus on the problem of
building a library of peptide-pairs that can be placed on the parallel edges of the tour.
In order to obtain the desired folding, those pairs can interact only mutually – we call
such a set an orthogonal set. In graph-theoretical terms, an orthogonal subset of a
graph 𝐺 corresponds to an independent subset of the line graph of 𝐺, where no two
vertices share a common neighbor.
After introducing the necessary theoretical framework from algorithmic complexity
theory, we prove that the maximum orthogonal set problem is NP-complete, and thus
that there is no known asymptotically efficient solution for it. Nevertheless, we present
an exact algorithm that solves our problem using a reduction to the maximum clique
problem.
Finally, we present two heuristics for building a large orthogonal set from smaller sets.
One of these heuristics fits into the well-known intensification-diversification meta-
heuristics framework, and gives us a state of the art result for the largest orthogonal
set in known literature.
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1 Introduction

During the last decade, after the breakthrough presented in [14], there have been
numerous advances in the field that is now called DNA origami. The goal of the field
is to use one-dimensional DNA chains, in order to construct complex two- and three-
dimensional structures, that can later be used for a variety of purposes: from creating
molecular scaffolds where other molecules can be attached, to highly targeted drug-
and particle-delivery systems.

Recently [9] has achieved similar results by folding a specifically designed polypep-
tide chain into a (three-dimensional) tetrahedron. Using polypeptides has some distinct
advantages over traditional single-stranded DNA origami, such as the ability to syn-
thesize it in-vivo – that is, to make use of the protein-synthesis facilities present in
every living cell. In this final project paper, we present several algorithmic techniques
that are used in the process of designing a polypeptide chain that will eventually fold
into the wireframe of an arbitrary 3D structure.

Specifically, we focus on exploiting the coiled-coil structural motif, since it is one of
the rare examples where we can efficiently determine whether two peptide chains will
bind, given their primary structure. In section 2.2, we discuss the work of [13], as well
as earlier approaches such as [7], that attempt to address this problem.

After that, in chapter 3 we present the mathematical results from [9], about the
types of structures that can be folded from a polypeptide chain, given a large library
of peptides interacting only mutually (orthogonal set).

In chapter 4, we introduce the necessary framework from computational complexity
theory, in order to understand the importance of the NP-completeness of the problem
we are dealing with. In particular, we introduce the complexity classes of P and NP,
and the concept of polynomial reduction between different problems.

In the next chapter, 5, we present our original results from [5], about finding a
maximum orthogonal subset of a given set of peptides. We formally define the problem,
and prove its NP-completeness. In 5.3, we present some heuristics for constructing large
orthogonal sets by exploiting the structure of coiled coils.

Finally, in chapter 6 we present some concluding remarks, and the current state of
experimental validation of our approach.
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2 Biochemical background

2.1 Coiled coils

As mentioned in the introduction, our goal is to describe a method for building arbitrary
three dimensional nanostructures from organic molecules. The first step in that process
is to describe what are the molecular basic building blocks at our disposal. Namely,
all organic molecules found in living systems fall into four major classes:

1. Carbohydrates, which consist exclusively of carbon, hydrogen and oxygen. In
living organisms they serve for the storage of energy, or as structural components.

2. Lipids, a diverse family of hydrophobic compounds, used for energy storage,
signaling, and acting as structural components of cell membranes.

3. Nucleic acids, consisting of a single or a double chain of nucleotides. Depend-
ing on the type of the 5-carbon sugar in the nucleotides, they can be either
ribonucleic (RNA) or deoxyribonucleic (DNA). Being stored in every living cell’s
nucleus, nucleic acids are used as a biological storage medium that contains in-
formation encoded in the sequence of its constituent nucleotides. In particular,
DNA (RNA) are built from 4 different nucleotides: adenine, cytosine, guanine,
and thymine (or, in the case of RNA, with uracil instead of thymine). Moreover,
these nucleotides obey very simple pairing rules, with the only allowed pairings
being between adenine and thymine (or uracil, in the case of RNA), and between
cytosine and guanine. In the case of DNA, these pairings give rise to its double-
helix structure as depicted on Figure 1a. In both cases, information encoded in
DNA and RNA is used for protein synthesis.

4. Peptides, chains of amino acids, fulfill a variety of roles in an organism. In the case
when there are more than 50 amino acids in the chain, we also call them proteins.
When compared to nucleic acids, their monomers are much more diverse (there
exist 20 naturally occurring amino acids), and there exist no simple interaction
rules for them. Moreover, although peptides are described as linear chains, in
reality they fold into complex structures in the 3D space, often combined with
other peptides (Figure 1b). Unfortunately, determining how will a peptide fold,
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given its primary structure (sequence of amino acids) is a computationally hard
problem.

RNA
Ribonucleic acid

DNA
Deoxyribonucleic acid

Nucleobases

Base pair

Cytosine

Guanine

Adenine

ThymineUracil

Cytosine

Guanine

Adenine

helix of
sugar-phosphates

Nucleobases
of RNA

Nucleobases
of DNA

(a) Structure of DNA and RNA

(b) Protein structure

Figure 1: Various levels of nucleic acid and peptide structure. Source: Wikipedia.

Luckily, at least in the special case of coiled coil proteins, we know their 3D struc-
ture, and, even more importantly, [13] has presented a “good enough” method for
determining whether two peptide (sub)sequences will form a coiled coil. It will be
described in the following section.

The structure of the coiled coils is as follows: Broadly speaking, they look like two
helices coiled around each other like two strands of a rope (Figures 2c, 2d). However,
in order to understand their interactions, we need to describe what happens at the
level of individual amino-acids. Namely, due to the circular arrangement of the amino
acids around their backbone (Figure 2b), we obtain what is referred to as the “knobs
into holes packing”. It turns out that the amino acids participating in the inter-peptide
interface are located on positions that are congruent to a certain fixed set of numbers
modulo 7. That is why we group the amino acids from each peptide into heptads –
groups of 7 consecutive amino acids. We denote the positions within the heptads with
letters A, B, C, D, E, F, G (for one chain), and A’, B’, C’, D’, E’, F’, G’ (for the other).
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(a)
(b)

(c)

(d)

Figure 2: The structure of coiled coils. Source: Wikipedia.

2.2 Scoring function

Given this structure, as well as some experimental data, it was reasonable to assume
that the interactions within a coiled coil will be governed by the residues at positions
A, D, E, G in the heptad, and even then, only if those positions belong to the same,
or neighboring heptads (Figures 2a and 2b). So, [13] described an interaction of two
peptides within a coiled coil using a vector 𝑓 in ℤ𝑛, where each entry represents the
number of specific residue pairs and triplets in a given spatial configuration.

Finally, the authors fitted a linear model based on some experimental data, so we
can compute the interaction score as 𝑠 = 𝑓 · 𝑤, where 𝑤 is the obtained weight vec-
tor. Thus, the interaction score is the weighted linear combination of the components
(“features”) of the feature vector 𝑓 . If we compute the pairwise interaction scores of a
set of peptides, we can represent them as a real-valued square matrix, the interaction
matrix. We will concern ourselves only with peptide sets where every peptide has the
same length. Since the scoring function is symmetric with respect to the ordering of
its arguments, the obtained matrix is symmetric as well. An example of such a matrix
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can be seen on Figure 9a. There, lower (more negative) interaction scores represent
stronger binding, and are indicated by darker colors.

Chemically, the scoring function approximates the base 10 logarithm of the disso-
ciation constant 𝐾𝑑. For a general reaction

𝐴𝑥𝐵𝑦 ⇌ 𝑥𝐴 + 𝑦𝐵, (2.1)

where the complex 𝐴𝑥𝐵𝑦 breaks into 𝑥 𝐴 subunits and 𝑦 𝐵 subunits, the dissociation
constant is defined as

𝐾𝑑 = [𝐴]𝑥[𝐵]𝑦
[𝐴𝑥𝐵𝑦] , (2.2)

where [𝐴], [𝐵], and [𝐴𝑥𝐵𝑦] are the concentrations of 𝐴, 𝐵, and the complex 𝐴𝑥𝐵𝑦,
respectively. In our case we are just dealing with two peptides that might or might
not bind, so 𝑥 and 𝑦 become 1, and the definition reduces to 𝐾𝑑 = [𝐴][𝐵]

[𝐴𝐵] . Now it is
clear that the stronger the binding between the peptides 𝐴 and 𝐵, the closer 𝐾𝑑 is to
0, which implies that the score is more negative for stronger interactions.
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3 Previous results

Now that we have method for determining whether two sequences interact, the next step
is to find a way to fold a long one-dimensional chain into a two- or three-dimensional
shape. The first such method was proposed by [9]. In their paper, Gradišar et al.
described some general results about realizing certain graphs (regarded as a wireframe
of an object), as well as some experimental results about the construction of a single
chain polypeptide tetrahedron, that was built using their algorithmic insights.

In this chapter, we will present some solutions to the following problems:

(i) Define what does it mean for a certain graph to be realizable as a peptide chain.

(ii) Find some classes of graphs that are realizable using a single peptide chain.

(iii) Develop an algorithm for explicitly constructing a peptide chain that will fold
into a given graph.

First of all, the original goal set forth by [9] was to create a rigid 3D object from
a single chain. The easiest way to accomplish this (in terms of the ease of synthesis)
is to have the peptide laid out along the edges of a polyhedron 𝑃 , covering each edge
exactly twice. In graph-theoretical terms, we define the Eulerian tour of an arbitrary
graph 𝐺 = (𝑉, 𝐸) as a walk in 𝐺 that visits each edge in 𝐸 exactly once. Thus, we are
looking for the Eulerian tour of the graph 𝐷(𝑃 ) obtained from the polyhedron graph
𝑃 by duplicating its edges. For brevity, we will sometimes call such a tour the double
trace of 𝑃 . An example of a double trace of the tetrahedron can be seen on Figure 4b).

It turns out that such a setup gives rise to a few additional constraints, which
prevent the polyhedron (i.e. the polypeptide chain along its edges) from “falling apart”.
More precisely, let 𝑇 be the (oriented) Eulerian tour of 𝐷(𝑃 ). Then, the following holds
for every vertex 𝑢 of 𝐷(𝑃 ):

1) After 𝑇 enters 𝑢 from a vertex 𝑣, it does not immediately return to 𝑣.

2) After 𝑇 passes 𝑢 as 𝑤 → 𝑢 → 𝑣, it later neither passes 𝑢 as 𝑣 → 𝑢 → 𝑣 nor as
𝑤 → 𝑢 → 𝑣.

Every vertex 𝑢 satisfying the constraints above is called stable. Since 1) and 2)
are well-defined for the vertices of an arbitrary graph 𝐺 = (𝑉, 𝐸), we say that 𝐺 is
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realizable if there exists a double trace 𝑇 of 𝐺 with respect to which every vertex 𝑣 ∈ 𝑉

is stable.
The forbidden configurations arising from these constraints are also depicted on

Figure 3 below. Although this is not the only way to constrain the “topology” of
the polypeptide chain, we present it here since it is easy to describe and analyze
mathematically, yet good enough for practical applications. The interested reader can
see [11] for a more thorough discussion of constraining double traces.

Figure 3: Forbidden configurations arising from constraints 1) and 2).

Note that in this construction the only segments of the peptide chain that are
allowed to interact are those that are placed along the same edge of 𝑃 . Moreover, we
call two such segments parallel, if both corresponding edges of 𝑇 are oriented in the
same way, and antiparallel otherwise. The whole workflow in the specific case of the
tetrahedron synthesized by [9] is depicted on Figure 4.

Figure 4: Rigid tetrahedron being assembled from a polypeptide chain.

It is clear that we have no reason to restrict ourselves to polyhedron graphs, when
discussing their realizability as polypeptide chains. Indeed, for a general graph, we can
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easily see that it can not contain a vertex of degree 1 or 2, since otherwise constraints
1 and 2 are not satisfied, respectively. On the other hand [9] has proved that all cubic
graphs (i.e. graphs where all vertices have degree 3) are realizable. The result is proven
using the following lemma.

Lemma 3.1. Let 𝐺 be a graph, and 𝑇 its double trace, that is, the Eulerian tour of
𝐷(𝐺). Let 𝑢 be a vertex of degree 3 in 𝐺. Then, 𝑢 is stable (with respect to 𝑇 ) if and
only if condition (i) is fulfilled for 𝑢.

The proof of the lemma is straightforward. Now, we can prove the main theorem
in this chapter, giving us a partial solution to problem (ii) from the beginning of this
chapter.

Theorem 3.2. All connected cubic graphs are realizable.

Proof. Let 𝐺 = (𝑉, 𝐸) be a cubic graph with 𝑚 edges, and 𝐺′ = 𝐷(𝐺) its double.
Recall that 𝐺′ is constructed from 𝐺 by adding to 𝐸 a new edge 𝑒′ parallel to 𝑒, for
every 𝑒 ∈ 𝐸. Call consecutive arcs of an Eulerian tour that traverse 𝑒 and 𝑒′ (for some
𝑒 ∈ 𝐸) one after the other a bad pair. By lemma 3.1 we just need to show that 𝐺′

admits an Eulerian tour without bad pairs. In fact, since all vertices of 𝐺′ have an
even degree (6), we know that 𝐺′ does contain an Eulerian tour 𝑇 ,

𝑇 = 𝑣1 → 𝑣2 → · · · → 𝑣2𝑚 → 𝑣1. (3.1)

Let 𝑠 be the number of bad pairs. Without loss of generality, we may assume that
𝑠 ≥ 1, because otherwise there is nothing to be proven. Also, we can label the vertices
of 𝑇 such that 𝑇 starts with 𝑣1 → 𝑣2 → 𝑣3 = 𝑣1 → . . . , i.e. that (𝑣1𝑣2, 𝑣2𝑣3) is the
first bad pair. We know that since 𝑣2 has degree at least 2 in 𝐺, there exists an index
𝑖 ≥ 3 for which 𝑣𝑖 = 𝑣2. Take the smallest such index. Observe also that 𝑖 ≥ 5 and
𝑣𝑖+1 /∈ {𝑣1, 𝑣2}. Now, we can get rid of the bad pair 𝑣1 → 𝑣2 → 𝑣3 = 𝑣1 by defining a
new Eulerian tour 𝑇 ′ with

𝑇 ′ = 𝑣1 → 𝑣2 → 𝑣𝑖−1 → 𝑣𝑖−2 → · · · → 𝑣4 →

→ 𝑣1 → 𝑣2 → 𝑣𝑖+1 → 𝑣𝑖+2 → · · · → 𝑣2𝑚 → 𝑣1.
(3.2)

We also see that the second occurrence of 𝑣1 → 𝑣2 does not form a bad pair with
either of 𝑣2 → 𝑣𝑖+1 or 𝑣4 → 𝑣1. Since these are the only bad pairs we might have
introduced, and we have removed at least one from 𝑇 , it follows that 𝑇 ′ has at most
𝑠 − 1 bad pairs. Repeating this procedure, we obtain an Eulerian tour with no bad
pairs.

Finally, the only remaining question is about the algorithm for explicitly construct-
ing a peptide chain that will actually realize the given graph. As it was mentioned



Silađi D. Computational methods for polypeptide origami design.
Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 9

earlier, for that we need to create many pairs of peptides that will interact only mutu-
ally. Later on, we will call such a set of peptide-pairs an orthogonal set. Once we have
such a set, we can concatenate the peptides in the order orientation determined by the
double trace of the graph. Two methods for constructing such a set will be given in
sections 5.2 and 5.3.
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4 Computational complexity

Before presenting any further algorithms that are directly related to our end goal,
we need to define what makes an algorithm fast and efficient, versus slow, and even
infeasible. The area of mathematics and computer science that addresses this, and
many other questions is called computational complexity theory. In this chapter we will
present a small subset of the theory, needed to understand the complexity classes P,
NP, and their relatives.

The naive way to quantify the efficiency of an algorithm would be to run the algo-
rithm for a certain input, and measure its execution time using a stopwatch. However,
this approach has a many obvious drawbacks: we have no idea how the algorithm would
perform when given any other input, we have no way of predicting how fast would it
run on another machine, we have no way of comparing it to any other algorithm, pos-
sibly running on another machine. . . This clearly implies the need for a framework that
will predict how quickly would the running time increase as a function of the input
size. Of course, the running time is just an example metric, and the theory could be
generalized to others, such as memory usage, or the number of times a certain resource
is accessed.

The starting point of complexity theory is the definition of the Turing machine,
developed by Alan Turing in 1936, in order to formalize the notions of algorithms,
computability and decidability.

Definition 4.1. A Turing machine is a tuple (𝑄, Γ, Σ, 𝑞0, 𝑏, 𝐹, 𝜏), where

∙ 𝑄 is the set of states,

∙ Γ is the set of tape symbols,

∙ Σ ⊂ Γ is the set of input symbols,

∙ 𝑞0 is the initial state,

∙ 𝑏 ∈ Γ∖Σ is the special blank symbol,

∙ 𝐹 ⊂ 𝑄 is the set of accepting states,



Silađi D. Computational methods for polypeptide origami design.
Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 11

∙ 𝜏 : 𝑄 × (Γ ∪ {𝑏}) → 𝑄 × Γ × {𝐿, 𝑅} is the transition function. It is important
to note that 𝜏 can be a partial function, that is, it does not need to be defined
everywhere on 𝑄 × Γ.

Having this definition, we still need to specify how a Turing machine operates: First
of all, the Turing machine has at its disposal an infinite tape of cells, filled with symbols
from Γ. Initially, first 𝑛 cells of the tape are filled with symbols from Σ (this is the
input to the Turing machine), while the remaining cells contain 𝑏. Besides the tape, a
Turing machine is associated with its current state 𝑞 ∈ 𝑄 (which is equal to 𝑞0 at the
beginning), and the position of its read-write head on the tape. Once set up, the Turing
machine performs a (possibly) sequence of steps by reading the current symbol from
the tape, writing a symbol and changing its state based on the transition function, and
finally moving its head left or right, depending on whether the last component of the
transition tuple is 𝐿 or 𝑅.

If, for a given input, the machine can not perform a transition (i.e. if 𝜏 is not
defined for the current state and tape symbol), we say that it halts. If, additionally,
the machine halts in an accepting state, we say that it has accepted the input. The
set of all inputs accepted by a Turing machine 𝑀 is the language of that machine,
and is denoted by 𝐿(𝑀). From now on, we will only be interested in Turing machines
that halt after a finite number of steps for all possible inputs. In particular, we will
be looking for an upper bound on how quickly that number increases as a function of
input size.

It turns out that such a Turing machine captures the essence of our informal un-
derstanding an algorithm as a finite decision procedure. More specifically, we define a
decision problem for a set 𝐴 ⊆ Σ* (here, Σ* for any set Σ denotes the set of all finite-
length strings composed from elements of Σ) as the problem of determining whether a
given word 𝑤 ∈ Σ* belongs to 𝐴. Then, an algorithm for that problem is just a Turing
machine 𝑀 with 𝐿(𝑀) = 𝐴. In that case we say that 𝑀 decides 𝐴. Sometimes, we
might also treat 𝑀 itself as the characteristic function of 𝐴, that is, as a function
𝑀 : Σ* → {0, 1} for which

𝑀(𝑥) =

⎧⎪⎨⎪⎩1 if 𝑥 ∈ 𝐴,

0 otherwise.
(4.1)

Given the definitions above, now it is a good time to define our first two complexity
classes, DTIME, and P.

Definition 4.2. Let 𝑇 : ℕ → ℕ be some function. A language 𝐿 is in DTIME(𝑇 (𝑛))
iff there is a Turing machine that does at most 𝑐 · 𝑇 (𝑛) steps for some constant 𝑐 > 0
and decides 𝐿.
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Definition 4.3. The class P is defined as

P =
⋃︁
𝑐≥1

DTIME(𝑛𝑐). (4.2)

Although the class of decision problems seems too simple, we can in fact build layers
of abstractions that will allow us to describe complex input objects. For example, first
we decide that we will encode integers as their binary representations, then we use that
to encode sequences and matrices, and finally we represent arbitrary graphs using their
adjacency matrices. We will assume that such an encoding exists for all “interesting”
mathematical objects. The cost of these abstraction incurs at most a polynomial
penalty in the running time. Furthermore, we may extend our basic definition of
the Turing machine with many convenient extensions such as multiple tapes, and these
extensions come again at a polynomial increase in the number of the performed steps [3].
In particular, we can allow a Turing machine to take multiple mathematical objects
as its input, by encoding them as strings from Σ*, and separating them with a single
blank symbol 𝑏 on the input tape. More formally, that Turing machine can now be
regarded as the characteristic function of the set 𝐴1 ×𝐴2 ×· · ·×𝐴𝑘, where 𝐴𝑖 are some
sets whose elements can be encoded as strings from Σ*.

The above reasoning implies that, in fact, the choice of the exact computational
model is largely unimportant, if we are willing to allow a polynomial slowdown. That is
to say that, if a problem is solvable in a polynomial number of steps using some deter-
ministic computational system, it can also be solved by a Turing machine in polynomial
time (i.e. it belongs to P). Finally, it is widely agreed that P is the class of decision
problems with efficient decision procedures. Although it can be argued whether a class
such as DTIME(𝑛100) represents feasible real world computation, very few problems are
known to intrinsically require a high-exponent polynomial solution. One well-known
example of such an algorithm is the original version of the AKS deterministic primal-
ity test, which was originally reported as 𝑂(𝑛12) [2], however it was soon improved to
𝑂(𝑛6) in [12].

In contrast to P, which turned out to be the class of efficiently solvable decision
problems, we will now proceed to define NP, the class of decision problems whose
solutions can (just) be easily verified. Following the definition of P, we will require the
verification process to take at most a polynomial (in the size of the input) amount of
time.

Definition 4.4. A language 𝐿 ⊆ {0, 1}* is in NP if there exists a polynomial 𝑝 : ℕ → ℕ
and a polynomial-time Turing machine 𝑀 (called the verifier for 𝐿) such that for every
𝑥 ∈ {0, 1}*,

𝑥 ∈ 𝐿 ⇔ ∃𝑢 ∈ {0, 1}𝑝(|𝑥|) such that 𝑀(𝑥, 𝑢) = 1 (4.3)
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If 𝑥 ∈ 𝐿 and 𝑢 ∈ {0, 1}𝑝(|𝑥|) satisfy 𝑀(𝑥, 𝑢) = 1, then we call 𝑢 a certificate for 𝑥 (with
respect to the language 𝐿 and machine 𝑀).

It follows trivially that every problem in P is also in NP, since the certificate can be
the empty string, and the verifier the Turing machine that decides that problem. There
also exists an equivalent definition of NP, which uses the concept of a nondeterministic
Turing machine:

Definition 4.5. A nondeterministic Turing machine is a Turing machine 𝑀 = (𝑄, Γ,

Σ, 𝑞0, 𝑏, 𝐹, {𝜏0, 𝜏1}) with two transition functions 𝜏0, 𝜏1 which at every step makes an
arbitrary choice about which transition function to apply.

Consequently, 𝑀(𝑥) = 1 for some input 𝑥, if there exists some sequence of the
choices of the transition function for which 𝑀 accepts 𝑥. Otherwise, if for every
sequence of choices 𝑀 halts without accepting 𝑥, we say that 𝑀(𝑥) = 0.

Analogously to DTIME(𝑇 (𝑛)), we define NTIME(𝑇 (𝑛)) in the following way:

Definition 4.6. For every function 𝑇 : ℕ → ℕ and 𝐿 ⊆ {0, 1}*, we say that 𝐿 ∈
NTIME(𝑇 (𝑛)) if there is a constant 𝑐 > 0 and a 𝑐𝑇 (𝑛)-time nondeterministic Turing
machine 𝑀 such that for every 𝑥 ∈ {0, 1}*, 𝑥 ∈ 𝐿 ⇔ 𝑀(𝑥) = 1.

Finally, we can state the alternative definition of NP:

Definition 4.7.

NP =
⋃︁
𝑐∈ℕ

NTIME(𝑛𝑐). (4.4)

The proof of the equivalence of the two definition stems from the fact that the
sequence of choices between the two transition functions can be regarded as a certificate
in the definition 4.4. In any case, the following are some examples of well-known
decision problems that belong to NP:

Independent set problem This is the set (language) of all pairs (𝐺, 𝑘), where 𝐺 is
a graph containing a subset of at least 𝑘 vertices with no edges between them.
Alternatively, when given an arbitrary graph 𝐺 and a natural number 𝑘, we
interpret the question of language membership as “Does 𝐺 contain a subset 𝑆 of
at least 𝑘 vertices with no edges between them?”. A polynomial size certificate
would be a binary vector 𝑢 of length equal to the number of vertices in 𝐺,
representing characteristic function of 𝑆.

Subset sum Given a list of 𝑛 numbers 𝑎1, . . . , 𝑎𝑛 and a number 𝑇 , decide if there is a
subset of the numbers that sums up to 𝑇 . The certificate is the list of members
in such a subset.
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Compositeness testing Given a number 𝑁 decide if 𝑁 is a composite (i.e., non-
prime) number. The certificate are two nontrivial factors of 𝑁 .

Connectivity Given a graph 𝐺 and two vertices 𝑠, 𝑡 in 𝐺, decide if 𝑠 is connected to
𝑡 in 𝐺. The certificate is a path from 𝑠 to 𝑡.

The last two problems in this list (compositeness/primality testing and connectiv-
ity) are also known to be in P. For first two problems, however, it turns out that they
are as hard as the hardest problems in NP, and thus not in P unless P = NP.

The question of whether P = NP is in fact one of the central questions in compu-
tational complexity theory. In fact, many other complexity classes were developed in
order to help us to better understand the relation between P and NP. The two possible
relations are shown on Figure 5. The following definitions will define some of these
classes, and formalize the notion of one problem being at least as hard as some other
problem.

Definition 4.8. A language 𝐿 ⊆ {0, 1}* is polynomial-time Karp reducible to a lan-
guage 𝐿′ ⊆ {0, 1}* (or just “polynomial-time reducible”), denoted by 𝐿 ≤𝑝 𝐿′, if there
is a polynomial-time computable function 𝑓 : {0, 1}* → {0, 1}* such that for every
𝑥 ∈ {0, 1}*, 𝑥 ∈ 𝐿 if and only if 𝑓(𝑥) ∈ 𝐿′.

We say that 𝐿′ is NP-hard if 𝐿 ≤𝑝 𝐿′ for every 𝐿 ∈ NP. We say that 𝐿′ is NP-
complete if 𝐿′ is NP-hard and 𝐿′ ∈ NP.

Informally, we understand that 𝐿 ≤𝑝 𝐿′ means that 𝐿′ is as hard as (if not harder
than) 𝐿. Thus, most often, proving that a language is NP-complete, amounts to
finding a polynomial time verifier to prove that it is in NP, and reducing a known
NP-complete problem to it, in order to prove that it is NP-hard, and, therefore NP-
complete. The original list of NP-complete problems was given by Karp in [10], but it
has been subsequently expanded by [8].
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5 Orthogonal sets

5.1 Definition and NP-completeness

Recall from the end of chapter 3 that we needed to construct a large set of peptide-
pairs that interact only mutually (an orthogonal set). The most straightforward (and
most general) approach is to search for such a set as a subset of some larger set of all
admissible peptides.

Also, since the scoring function (introduced in section 2.2) is just an approximation
of the underlying chemical processes, we need a robust way of defining whether two
peptides interact. In order to do that, we introduce two thresholds for the interaction
score, with a “safety zone” between them. The following definitions formalize these
notions.

Definition 5.1 (Interaction types). Let 𝐴 be a set of peptides (admissible set), and
𝑀 its interaction matrix, as defined in section 2.2. Let 𝑐𝑠 and 𝑐𝑤 be two real numbers
with 𝑐𝑠 < 𝑐𝑤. Then, for a peptide pair 𝑖, 𝑗 ∈ 𝐴 with interaction score 𝑀𝑖𝑗 we have the
following:

a) If 𝑀𝑖𝑗 > 𝑐𝑤, we say that 𝑖 and 𝑗 are not interacting;

b) If 𝑀𝑖𝑗 ≤ 𝑐𝑤, we say that 𝑖 and 𝑗 are interacting;

c) If 𝑖 and 𝑗 are interacting, and 𝑀𝑖𝑗 ≤ 𝑐𝑠, we say that they are strongly interacting.

Definition 5.2 (Interaction graph). Let 𝐴, 𝑀 , 𝑐𝑠, 𝑐𝑤 be as in the previous definition.
The (undirected) interaction graph of 𝐴 with respect to 𝑐𝑠 and 𝑐𝑤 is the 3-tuple 𝐺𝑖 =
(𝑉, 𝐸, 𝐸𝑠), where

i) 𝑉 = 𝐴 (the set of peptides);

ii) 𝐸 = {{𝑖, 𝑗}|𝑀𝑖𝑗 ≤ 𝑐𝑤} (the set of all interacting peptide-pairs)

iii) 𝐸𝑠 = {{𝑖, 𝑗}|𝑀𝑖𝑗 ≤ 𝑐𝑠} (the set of all strongly interacting peptide-pairs/edges)

Definition 5.3 (Orthogonal set). Let 𝐺 = (𝑉, 𝐸) be a graph, and 𝐸𝑠 ⊆ 𝐸. A subset
𝑆 ⊆ 𝐸𝑠 is an orthogonal set if for any two distinct edges 𝑢1𝑣1, 𝑢2𝑣2 ∈ 𝑆 the following
holds:
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i) The two edges are not incident to each other, i.e. {𝑢1, 𝑣1} ∩ {𝑢2, 𝑣2} = ∅.

ii) The two edges are not incident to a common edge, that is,

{𝑢1𝑢2, 𝑢1𝑣2, 𝑣1𝑢2, 𝑣1𝑣2} ∩ 𝐸 = ∅.

iii) Additionally, if 𝑢1 ̸= 𝑣1 (i.e. the edge is not a loop), we require that 𝑢1 and 𝑣1 are
not incident to any loops in 𝐸.

An alternative way to define orthogonal sets uses the notion of a line graph.

Definition 5.4 (Line graph). Let 𝐺 be a graph. The line graph of 𝐺, denoted as
𝐿(𝐺) is the graph whose vertices correspond to edges of 𝐺, and are connected if their
corresponding edges in 𝐺 are incident to each other.

Proposition 5.5 (Alternative definition of an orthogonal set). Let 𝐺 = (𝑉, 𝐸) be a
graph, and 𝐸𝑠 ⊆ 𝐸. Let 𝐿(𝐺) = (𝐸, 𝐹 ) be the line graph of 𝐺. Then, orthogonal sets
in 𝐺 (with respect to 𝐸𝑠) correspond to independent subsets of 𝐸𝑠 in 𝐿(𝐺), where no
two vertices share a common neighbor in 𝐿(𝐺).

In both cases, we see that the orthogonal set is defined with respect to a graph
𝐺 = (𝑉, 𝐸) and a set 𝐸𝑠 ⊆ 𝐸. In our case, we will apply the general results below to
interaction graphs 𝐺𝑖, where 𝐸𝑠 is the set of strongly interacting peptide-pairs.

In accordance to the definition of the maximum independent set, we define the
maximum orthogonal set as an (as there can be more than one) orthogonal set of max-
imum cardinality. Continuing the analogy with independent sets, we will be interested
in determining, or at least approximating, the maximum orthogonal sets. Before doing
that, we will first prove that the maximum orthogonal set problem is NP-complete. In
order to use the framework developed in chapter 4, we need to phrase it as a decision
problem – the orthogonal set problem.

Definition 5.6 (Orthogonal set problem). Given a graph 𝐺 = (𝑉, 𝐸), a set 𝐸𝑠 ⊆ 𝐸,
and an integer 𝑘, determine whether there exists an orthogonal set of size at least 𝑘.
We denote an instance of the orthogonal set problem as the 4-tuple (𝑉, 𝐸, 𝐸𝑠, 𝑘).

From this definition, we immediately obtain the fact that the orthogonal set problem
is in NP, since, given any set we can verify in polynomial time whether it is orthogonal,
and has cardinality at least 𝑘. Once we show that this problem is NP-hard, we will get
that it is NP-complete.

Theorem 5.7. The orthogonal set problem is NP-hard.
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Proof. We will prove this by reducing the maximum independent set problem to the
maximum orthogonal set problem. Let 𝐺 = (𝑉, 𝐸) be a graph in which we want to
determine whether it has an independent set of size at least 𝑘. Construct a new graph
𝐺′ = (𝑉 ′, 𝐸 ′) from 𝐺 by adding to 𝑉 a new vertex 𝑣′ (the “copy” of 𝑣) for every 𝑣 ∈ 𝑉

and connecting each 𝑣 ∈ 𝑉 to its corresponding copy 𝑣′.
Now, let (𝑉 ′, 𝐸 ′, 𝐸 ′, 𝑘) be an instance of the maximum orthogonal set problem (i.e.

until the end of the proof, 𝐸𝑠 = 𝐸 ′). We will prove that the obtained maximum
orthogonal set 𝑆 consists exactly of edges of the form 𝑣𝑣′, where 𝑣 ∈ 𝑉 and 𝑣′ is the
copy of 𝑣.

Assume the opposite, i.e. that there exists a pair 𝑢1𝑣1 ∈ 𝑆 which is not of the
form 𝑤𝑤′ for 𝑤 ∈ 𝑉 . Then for all 𝑢2𝑣2 ∈ 𝑆 we have 𝑢1𝑢2 /∈ 𝐸 ′, 𝑢1𝑣2 /∈ 𝐸 ′, 𝑣1𝑢2 /∈ 𝐸 ′

and 𝑣1𝑣2 /∈ 𝐸 ′. Thus, we can remove 𝑢1𝑣1 from 𝑆 and replace it with 𝑢1𝑢
′
1 and 𝑣1𝑣

′
1

to obtain a larger orthogonal set. Therefore, we have obtained an orthogonal set with
more than |𝑆| elements, which is a contradiction.

Using this, we can prove that there exists an independent set 𝐼 in 𝐺 with |𝐼| ≥ 𝑘

if and only if there exists an orthogonal set 𝑆 in 𝐺′ with |𝑆| ≥ 𝑘 as follows.

(⇒) Let 𝐼 be an independent set of size 𝑘 in 𝐺. Then it is easy to see that 𝑆 =
{𝑣𝑣′|𝑣 ∈ 𝐼} is an orthogonal set of the same size in 𝐺′.

(⇐) Let 𝑆 be an orthogonal set of size 𝑘 in 𝐺′. Then there exists a maximum orthog-
onal set 𝑆max in 𝐺′, with size at least 𝑘. Since 𝑆max consists only of edges of the
form 𝑣𝑣′, 𝑣 ∈ 𝑉 , we can construct an independent set 𝐼 = {𝑣|𝑣𝑣′ ∈ 𝑆max}, for
which |𝐼| ≥ |𝑆max| ≥ |𝑆| = 𝑘.

The argument above completes the reduction of the independent set problem to the
orthogonal set problem, and therefore the orthogonal set problem is NP-hard.

5.2 Exact algorithm

Although the previous section gave us a proof that we can not hope (unless P = NP)
to have an efficient algorithm for determining the maximum orthogonal set in a given
graph, we can still look for practically efficient algorithms. It turns out that such an
algorithm exists, and is based on the line graph definition of an orthogonal set.

We start with a graph 𝐺 = (𝑉, 𝐸) and a set 𝐸𝑠 ⊆ 𝐸 with respect to which we want
to determine the maximum orthogonal set. First, from 𝐸𝑠 remove all pairs 𝑢𝑣 where
𝑢 ̸= 𝑣 and 𝑢 or 𝑣 is incident to a loop. Then, form a new graph 𝐺′ = (𝐸𝑠, 𝐸 ′), where
we connect two vertices 𝑢1𝑣1 and 𝑢2𝑣2 if they can not be together in an orthogonal
set, i.e. if they do not satisfy the conditions from definition 5.3. Finally, we find the



Silađi D. Computational methods for polypeptide origami design.
Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 19

maximum independent set in 𝐺′, which is, by construction the maximum orthogonal
set in 𝐺.

Alternatively, since 𝐺′ is sparse, we might leverage the state of the art maximum
clique algorithms such as [6], [15], or [16] to find the maximum clique in the complement
of 𝐺′. The algorithm we used was from [6], and it is based on greedily coloring the
subgraphs of the given graph, as a means of determining the upper bound for the size
of the maximum clique in those subgraphs.

Now that we have described the algorithm, in order to apply it to our case of
interaction graphs, we need to describe how to obtain 𝐴, the set of all admissible
peptides. Also, we need to determine 𝑐𝑤 and 𝑐𝑠, the thresholds that will be used for
constructing the interaction graph.

The answer to the latter is straightforward: Since the scoring function approximates
the logarithm of the dissociation constant, we may simply fix the difference 𝑐𝑤 − 𝑐𝑠 to
1, since that gives us a 10-fold difference in the dissociation constants for the on- and
off-target interactions. This amount was suggested by our experimental collaborators,
and it can be tuned at the time of synthesis. Furthermore, our own experiments have
indicated that the size of the maximum orthogonal set is robust with respect to small
changes in 𝑐𝑤 − 𝑐𝑠.

Once we fix the difference, use the following algorithm to determine the best cutoffs.

1. Let 𝑀 be the interaction matrix of 𝐴, and 𝑐min and 𝑐max its minimum and maxi-
mum entries, respectively. Choose Δ as a small number, relative to |𝑐max − 𝑐min|.

2. For 𝑐𝑠 in {𝑐min, 𝑐min + Δ, 𝑐min + 2Δ, . . . , 𝑐max} run the orthogonal set algorithm
on the interaction graph of 𝐴 with respect to the thresholds 𝑐𝑠 and 𝑐𝑤 = 𝑐𝑠 + 1.
If the algorithm exceeds a predetermined time limit, interrupt it after the time
has expired. In any case, save the best obtained results for every pair of cutoffs.

3. Choose the cutoffs that gave the largest orthogonal set size in the previous step.

Once the best such thresholds are chosen, the algorithm is rerun without time
limits. We call the threshold chosen in this way the recommended threshold. From now
on, we will assume that the used threshold is the recommended one, unless otherwise
stated. This approach is reasonable, since although we might interrupt the orthogonal
set/maximum clique search before it finds the maximum clique, our experimental data
suggests that the size of the clique found after a fixed time is a strong indication for
the size of the maximum clique. An example of this process can be seen on Figure 6.

The answer to the former question (about choosing the right set of admissible pep-
tides) turned out to be an unexpected bottleneck. Since the number of all peptides of a
given length grows exponentially with the length, we need to devise a good strategy for
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Figure 6: Orthogonal set sizes for different values of 𝑐𝑠, with 𝑐𝑤 − 𝑐𝑠 = 1 and Δ = 0.05.

reducing the search space, while still having a good sample. The first approach was to
determine a suitable set of heptads, and let the initial set be the set of all concatenated
𝑘-tuples of these heptads. Unfortunately, this approach quickly becomes infeasible for
longer peptides and larger heptad sets. Namely, if we have ℎ heptads, there are obvi-
ously ℎ𝑘 𝑘−heptad peptides that can be built from them. In our algorithm, every pair
of peptides can possibly belong to the orthogonal set (ℎ2𝑘 pairs), and every two pairs
have to be checked for mutual interaction (ℎ4𝑘 interactions). Therefore, even when we
ignore the cost of the maximum clique computation, and restrict ourselves to 4 or 5
heptads, we see that the approach above is only feasible for very small initial heptad
sets.

Although the reasoning above rules out the set of natural heptads (i.e. the set
of 1176 heptads occurring in natural coiled coils), the insight from [13] and earlier
work permits us to consider a set of just 8 “synthetic” heptads that cover for the
most significant variations observed in nature. The resulting initial set has 84 = 4096
peptides, and the clique search is ran on 1650 vertices (peptide pairs). Using the
recommended threshold, we obtain a 35-peptide orthogonal set with 23 homodimers
and 12 heterodimers. Their interaction matrix can be seen on Figure 7. In particular,
note the dark (block-)diagonal, which represents strong interactions between peptides
– in each row and column there exists exactly one such field.

5.3 Heuristics for building orthogonal sets

As it can be seen from the previous sections, finding an orthogonal set as a subset of
a larger set quickly becomes infeasible for long peptides.

On the other hand, since the orthogonal subsets seem to be relatively small when
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Figure 7: The orthogonal set of the synthetic 4-heptad set.

compared to the sets of all corresponding peptide-pairs, we can conclude that it might
be reasonable to try to algorithmically construct a smaller initial set which is likely to
be “almost orthogonal”. If we had such an algorithm, we could start constructing our
set from a more convenient (from a biological point of view) set of heptads, such as
the set of natural heptads.

5.3.1 Greedy building

The first heuristic that comes to mind is to generate many pairs of strongly mutually-
interacting chains, and hope that we will be able to find a large orthogonal set among
them. This was done in the following way:

1. Choose a set of heptads (e.g. natural heptads) and the number of heptads (𝑘) in
all chains.

2. Repeat the following steps to generate as many peptides as needed:

(a) Choose a random strongly-interacting pair of heptads (i.e. order the heptad-
pairs by interaction strength, and choose a pair from the 75th percentile).
Those two heptads will be the first heptads of their respective chains.

(b) Greedily append a heptads to each chain, so as to maximize the interaction
strength between them. With a small probability, we may replace these
heptads with a random pair of heptads.
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Figure 8: Interaction matrix for the greedily constructed peptides.

Unfortunately, as it can be seen from Figure 8, the interactions are too noisy –
instead of a clearly pronounced diagonal (desired interactions), we see many large values
all around the matrix (undesired interactions). Unsurprisingly, our algorithm is unable
to find a nontrivial orthogonal subset of this subset, since the obtained interaction
graph was too sparse.

5.3.2 Building from a short orthogonal set

The second heuristic is to use an already-determined orthogonal set in order to build a
larger orthogonal set. It turns out that it fits nicely into the intensification-diversification
metaheuristics framework presented in [4]. In order to be more formal, we need the
following definitions:

Definition 5.8. Let 𝐴 and 𝐵 be peptide sets. Then, their product 𝐴 · 𝐵 is defined
as {𝑎 · 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, where 𝑎 · 𝑏 denotes the concatenation of sequences 𝑎 and 𝑏.
Moreover, we write 𝐴𝑘 for 𝐴 · 𝐴 · · · 𝐴⏟  ⏞  

𝑘 times

Definition 5.9. The length of a peptide set 𝐴, denoted as ‖𝐴‖, is the length of each
peptide in 𝐴 (recall from section 2.2 that we are only considering peptide sets where
all peptides have the same length).

Note that the product defined above is equivalent to the usual Cartesian product
of two (or more) sets, where additionally the elements of each tuple are concatenated.
Moreover, from the definition of set length, we obtain ‖𝐴 · 𝐵‖ = ‖𝐴‖ + ‖𝐵‖.
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Thus, the idea is to take an orthogonal set 𝑆0, multiply it with another set 𝐻1

(extension set), and compute the orthogonal subset 𝑆1 of 𝑆0 · 𝐻1. The tradeoff here is
that although 𝑆 · 𝐻1 does not contain all peptides of length ‖𝑆0 · 𝐻1‖, we hope that
having the product sequences start with an element of an orthogonal set will result in
greater interaction specificity. Then, we proceed iteratively, by defining 𝑆𝑘+1 as the
orthogonal subset of 𝑆𝑘 · 𝐻𝑘+1, until we obtain an orthogonal set of desired length.
Thus, the step 𝑆𝑘 → 𝑆𝑘 · 𝐻𝑘+1 can be regarded as a diversification step (that explores
our search space), whereas 𝑆𝑘 · 𝐻𝑘+1 → 𝑆𝑘+1 as an intensification step (that exploits
the properties of the explored space), in the context of [4].

One special case of this algorithm is the set squaring method, in which 𝐻𝑘 = 𝑆𝑘−1,
that is, 𝑆𝑘+1 is the orthogonal subset of 𝑆2

𝑘 . An example can be seen on Figure 9. In
it, we started with 𝑆0 being the orthogonal subset of 𝐻2

𝑟 , where 𝐻𝑟 is the restricted
set of 78 natural heptads that have been observed to occur in at least 4 different
natural peptides. After that, one round of squaring is performed, to obtain 𝑆1, the
4-heptad orthogonal set of 𝑆2

0 . These specific sets were chosen for their length, as
we will compare the end result (4 heptads) to the 4-heptad orthogonal set obtained
from synthetic heptads. Unfortunately, it turns out that the starting orthogonal set 𝑆0

contains only 13 peptides (Figure 9a). Consequently, 𝑆2
0 contains only 169 peptides,

and its orthogonal set 𝑆1 contains only 12.
Despite the disappointing results when compared to the synthetic 4-heptad set, two

important insights can be made:

1. The size of 𝑆1 is small most likely due to lack of diversity, achieved by prematurely
restricting our building blocks to just 13 orthogonal diheptads.

2. The entries on the block-diagonal represent the peptides whose first two heptads
are interacting, whereas the entries on the sub- and super-diagonals represent
the peptides whose last two heptads are interacting in 𝑆0. In other words, we
do in fact see the positive effects of composing our peptides from elements of an
orthogonal set.

Luckily, there is a way to remedy the poor results obtained by set squaring. Instead
of just squaring the set at each step, we let 𝐻𝑖 := 𝐻 for all 𝑖, where 𝐻 is some large
set of short peptides (for example, the set of all natural heptads). In this way, we can
obtain an orthogonal set composed of arbitrarily long peptides, and reintroduce some
diversity at each step, by appending peptides from 𝐻. This result turned out to be
the best among the ones listed, and for example a 104 peptide 6-heptad orthogonal set
can be seen on Figure 10. To our knowledge, this is most likely the largest constructed
orthogonal set in published literature.
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(a) Interaction matrix of orthogonal subset
of the natural diheptad set.
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Figure 9: Squaring the orthogonal set.
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Figure 10: An orthogonal set built using the iterative building procedure, from the
reduced set of natural heptads.
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6 Results and conclusions

In this paper we presented the significance and theoretical underpinnings of coiled coil
peptide origami, as well as novel theoretical results for constructing orthogonal sets of
coiled coil dimers. In order to perform a theoretical analysis of our problem, we at-
tempted to introduce some mathematical formalism to the field, as well as clarified the
definition of an orthogonal set to include the corner case of homodimeric interactions.

The main results are the algorithm for determining the maximum orthogonal subset
of a given peptide set, as well as the iterative algorithm for building large orthogonal
sets of arbitrary size. In fact, the latter enabled us to construct the largest orthogonal
set of any length in known literature. Some of these orthogonal sets are currently
undergoing experimental validation. It also turns out that the set-building algorithm
can be described using the intensification-diversification framework for combinatorial
optimization metaheuristics [4]. That result suggests that possibly even better results
can be obtained by applying other metaheuristics adhering to this framework.

Apart from their practical significance, the algorithms presented can also be used in
a purely theoretical setting, as heuristics for determining the distance-𝑑 independent
sets (first defined in [1]) in certain product graphs. This area still remains to be
explored in future research.
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7 Povzetek naloge v slovenskem
jeziku

V zadnjih nekaj desetletjih smo dosegli pomemben napredek v našem razumevanju
(bio)kemijskih procesov v živih organizmih. Posledično je vse večje povpraševanje
laboratorijev za sintetiziranje bolj zapletenih organskih molekul. Takšne molekule se
nato lahko uporabijo kot podlaga za pritrditev drugih molekul ali pa kot visoko ciljno
usmerjeni sistemi za dostavo delcev.

Leta 2006 so v članku [14] pokazali metodo zgibanja DNA niti v 3D obliko zgolj z
določitvijo nukleotidnega zaporedja. To se naredi z oblikovanjem zaporedja, tako da
se nekatere njegove regije povezujejo med seboj in po pregibanju tvorijo »žični okvir«
objekta. Čeprav bi bilo zaradi bioloških razlogov koristno ponoviti slednjo konstrukcijo
z uporabo zaporedij aminokislin (peptidov, polipeptidov ali beljakovin, odvisno od
njihove dolžine), pa ni znanega nobenega računsko učinkovitega načina določanja, ali
in kako bodo peptidi v splošnem medsebojno delovali. Na srečo so v članku [13] v
posebnem primeru zvitih zvitkov (ang. coiled coil peptidov) predstavili algoritem za
določanje, kako močna je interakcija med dvema takšnima peptidoma. Po drugi strani
pa so v [9] predstavili eksperimentalne in teoretične rezultate o razredih grafov, ki jih
lahko konstruiramo iz peptidne verige.

Njihov algoritem predvsem zahteva, da veriga poteka po dvojni (Eulerjevi) poti
grafa. Slednje porodi potrebo po veliki množici parov kratkih peptidov (ki bodo
nameščeni vzdolž povezav grafa), ki delujejo le vzajemno. Takšni množici rečemo
ortogonalna množica. Za dani interakcijski graf 𝐺 = (𝑉, 𝐸), kjer peptidi predstavljajo
vozlišča, povezave pa opisujejo prisotnost interakcije med njimi, je ortogonalna množica
𝑆 ⊆ 𝐸 množica z naslednjima lastnostima:

{𝑢1, 𝑣1} ∩ {𝑢2, 𝑣2} = ∅,

{𝑢1𝑢2, 𝑢1𝑣2, 𝑣1𝑢2, 𝑣1𝑣2} ∩ 𝐸 = ∅

za vse povezave 𝑢1𝑣1, 𝑢2𝑣2 ∈ 𝑆. Z drugimi besedami, 𝑆 je neodvisna množica linijske-
ga grafa 𝐿(𝐺) grafa 𝐺 z dodatno omejitvijo, da nobeni dve vozlišči ne delita soseda.
S prevedbo problema iskanja maksimalne ortogonalne množice v posebnem grafu na
problem maksimalne neodvisne množice pokažemo, da je iskanje maksimalne ortogo-
nalne množice grafa NP-težek problem. Podobno s prevedbo na problem maksimalne
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neodvisne množice pokažemo, da je naš problem tudi v NP, in zato NP-poln. Poleg tega
podamo natančen algoritem, ki se ga lahko uporabi za določanje maksimalne ortogo-
nalne podmnožice množice peptidov, kjer so peptidi podani z njihovimi aminokislin-
skimi zaporedji. Algoritem je modificirana različica algoritma za iskanje maksimalne
klike, predstavljenega v [6].

Prav tako predstavimo nekaj hevristik, ki izkoriščajo strukturo problema (to pomeni,
da grafi, ki jih obravnavamo, niso splošni grafi, ampak so zgrajeni iz uteženih pep-
tidnih interakcijskih grafov) za konstrukcijo večje ortogonalne množice. Natančneje,
predstavljena sta dva požrešna pristopa:

1. neposredna konstrukcija parov po možnosti močnejših interakcijskih verig in
določitev njihove maksimalne ortogonalne podmnožice in

2. iterativna razširitev manjše ortogonalne množice z alternativno uporabo njenega
kartezijskega produkta z drugo množico in določitev maksimalne ortogonalne
podmnožice (še zmerno velikega) dobljenega produkta.

Opozorimo, da slednji pristop porodi ortogonalne množice, ki so 3 do 10 krat večje od
tistih, ki jih dobimo z natančnimi metodami kot podmnožice manjših množic. Dobljeni
rezultati so za zdaj med najboljšimi v literaturi.

Nazadnje omenimo še možne uporabe nove od spodaj navzgor zasnovane hevristike
za reševanje problema maksimalne ortogonalne množice na splošnih grafih.
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