
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Zagotavljanje kakovosti programske opreme na primeru

uporabe zunanjih izvajalcev pri razvoju

(Software quality assurance on a case study of outsourced development)

Ime in priimek: Rudi Kovač

Študijski program: Računalnǐstvo in informatika

Mentor: doc. dr. Matjaž Kljun

Somentor: doc. dr. Klen Čopič Pucihar

Delovni somentor: So-Young Kang

Koper, maj 2017

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Rudi KOVAČ

Naslov zaključne naloge: Zagotavljanje kakovosti programske opreme na primeru

uporabe zunanjih izvajalcev pri razvoju

Kraj: Koper

Leto: 2017

Število listov: 38 Število slik: 11 Število tabel: 1

Število referenc: 23

Mentor: doc. dr. Matjaž Kljun

Somentor: doc. dr. Klen Čopič Pucihar

Delovni somentor: So-Young Kang

Ključne besede: testiranje programske opreme, zagotavljanje kakovosti, razvoj z zu-

nanjim izvajalcem, testne procedure

Izvleček:

Diplomsko delo opisuje postopek zagotavljanja kakovosti in testiranja programske

opreme, težave pri testiranju pri vpletenosti zunanjega izvajalca, ter predstavlja pri-

lagojeno vpeljano rešitev v podjetju, ki se je znašlo v opisani situaciji. V diplomskem

delu najprej na kratko predstavimo nekaj najbolj razširjenih standardov za zagotavl-

janje kakovosti in v nadaljevanju opǐsemo uporabljane izraze. V diplomskem delu nato

opǐsemo postopek testiranja programske opreme in ga nato prilagojenega implemen-

tiramo na dejanskem primeru. V postopku podrobno opǐsemo proces testiranja in

podamo analizo različnih vidikov kot so uporabljena orodja, izbira jezika in postopkov,

ki se uporabljajo za opis in izvedbo preizkusov in pravil, ki so bila določena za to, da

bi ohranili pravilen proces testiranja programske opreme. Delo zaključimo s pregledom

vsebine in viri, ki omogočajo bralcu nadaljne izobraževanje na področju.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 III

Key words documentation

Name and SURNAME: Rudi KOVAČ

Title of final project paper: Software quality assurance on a case study of outsourced

development

Place: Koper

Year: 2017

Number of pages: 38 Number of figures: 11 Number of tables: 1

Number of references: 23

Mentor: Assist. Prof. Matjaž Kljun, PhD

Co-Mentor: Assist. Prof. Klen Čopič Pucihar, PhD

Working Co-Mentor: So-Young Kang

Keywords: Software testing, Quality assurance, Outsourced development, testing pro-

cedures

Abstract:

This paper describes software quality assurance and testing, why it is a problem when

the development is outsourced to an external company, and examines a solution by

analyzing the process of a real life company in this specific situation. The thesis starts

by giving a short presentation of some of the most used standards in Quality Manage-

ment in general, and proceeds by briefly introducing some of the most used terms in

the paper. The third chapter tackles software testing specifically, giving an overview

of some of the most used techniques, and describing how each of them relates to the

specific use case examined by this paper. The last chapter describes the testing process

in details, analyzing a variety of aspects such as the tools, language and procedures

used to describe and execute tests, or the rules set in place in order to keep the software

testing operation clean and concise. The work concludes by providing a short overview

of its content, as well as further references for the interested readers.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 IV

Acknowledgement

Thank God it is finally over.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 V

Contents

1 Introduction 1

2 Theoretical Background 4

2.1 Test Artifacts . 6

2.2 Software Testing . 7

3 Software Testing: A Detailed Overview 10

3.1 Test Approaches . 11

3.2 Test Selection . 12

3.2.1 Selection Based on Code . 13

3.2.2 Other Selection Criteria . 13

3.3 Testing Levels . 14

3.3.1 Unit Testing . 15

3.3.2 Integration Testing . 16

3.3.3 Component Interface Testing 16

3.3.4 System Testing . 17

3.4 Testing by Objective . 17

3.5 The reason behind a “custom” approach 20

4 The Provider’s Approach 22

4.1 Asana as the Tool of the Trade . 22

4.1.1 Workspaces . 24

4.1.2 Projects . 24

4.1.3 Sections . 25

4.1.4 Tasks . 25

4.2 Structuring Test Suites . 26

4.3 Designing Test Scenarios and Test Cases 27

4.4 Performing Tests . 29

4.5 Reporting Bugs . 30

5 Discussion and Conclusion 32

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 VI

6 Povzetek naloge v slovenskem jeziku 35

7 Bibliography 37

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 VII

List of Tables

1 Brief description of the four main testing levels 15

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 VIII

List of Figures

1 Quality Management System structure and relation to Software testing 5

2 An example of a test scenario in which a validity of a login module is

tested [22]. 7

3 An example of a test case and its outcome [22]. 7

4 Graphical representation of the hierarchy in Asana. 23

5 Left panel with a list of tasks and right panel with details of the task

highlighted on the left. 23

6 List of Projects inside a Workspace. 25

7 Sample Section with Tasks in Asana. 26

8 Sample task with description view opened. 28

9 Diagram of the procedure before the approach examined in the thesis. 33

10 Diagram of the procedure after the approach examined in the thesis. . 34

11 Diagram of the best approach with an in-sourced development team. . 34

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 IX

List of Abbreviations

i.e. that is

e.g. for example

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 1

1 Introduction

Several models and standards exist for quality management such as ISO 9000, Capa-

bility Maturity Model Integration (CMMI) and Six Sigma. The CMMI is described as

a capability improvement model, which provides guidelines and recommendations for

helping an organization diagnose problems and improve performance at any level of

the organization in any industry. Similarly, the Six Sigma methodology consists of a

set of techniques and tools to provide foundations for eliminating defects and process

improvement “from manufacturing to transactional and from product to service” [8].

Probably the mostly used standard for quality management is ISO 9000 [9]. A

Quality Management System (QMS), as described in ISO 9000:2015, is a predefined

and structured set of policies, processes and procedures required for planning and

delivering the services or products to meet demands and requirements of consumers

and other stakeholders while meeting statutory and regulatory requirements related

to a product or program [13]. It requires the company to set in place detailed work

instructions, quality manuals, written quality policies and other necessary documents

that define expectations as well as actions to fulfill desired quality goals and ensure a

sustainable growth on the market.

QMS has four main components: (i) quality planning, (ii) quality assurance, (iii)

quality control and (iv) quality improvement [rose2006]. While planning, control and

improvement are as important as assurance, this thesis will focus on the later. Quality

assurance (QA) is an intermediate step between planning and control that ensures the

prevention of mistakes or defects in manufactured products or executed services since

control takes place retrospectively.

One part of the quality assurance component is Software Quality Assurance (SQA).

It is described as the process that helps prevent defects, mistakes and other issues in the

final product, and helps to provide confidence that the product delivered to customers

meets specific quality requirements [ISO 9000:2005, Clause 3.2.11]. SQA has a very

important role in mobile software development, as by ensuring the quality of the service

or product it tries to provide a positive user experience while keeping negative feedback

and bad ratings at bay.

This thesis will focus on SQA of a mobile e-learning application designed by the

author of a global mobile e-learning service provider - from hereafter we will refer to

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 2

it as Provider. Its main goal is to offer (and deliver) a service that meets high qual-

ity standards and expectations set by our target customer (mobile e-learning content

providers such as universities and other higher education institutions).

Content providers (lecturers at higher educational institutions) using our service

should have a reliable, stable and easy-to-use platform that gives them the ability to

prepare and spread high quality content among students within the courses. Students

on the other hand should have available fast and cross-platform applications (that can

be used on mobile devices just as easily as on laptops) to follow and complete the courses

provided, interact with each other by sharing their answers or posting questions, and

collect their certificates of completion. Both parties must trust the mobile e-learning

service provider (our company) with their data, and rely on it being always available

and up to date, both while online and offline.

Since our application is available on both major mobile platforms in use today (iOS

and Android), as well as a responsive web application, we (developers) need to make

sure to deliver cross-platform applications that look, feel and perform the same on a

large number of different devices with different specifications (the most important of

them being the screen resolution). This is the reason why we decided to develop a

custom SQA process that allows us to easily verify and confirm that every detail and

feature looks and works the same way on a variety of different devices. The development

process is outsourced and we have no control over it, so our quality assessment process

must start well before the company we outsource to starts developing. We have to make

sure we provide teams with design and functional specifications that are as detailed as

possible and we also have to make sure all of the teams are up to date with all of the

changes or issues that might occur.

This thesis will analyze the above described SQA process in detail. Despite all of the

standards and best practices (e.g. ISO 9000, CMMI and Six Sigma), there are scenarios

in which none of them simply “fit” a particular SQA process. There are factors that

are not taken into consideration when creating standards, like the collaboration with

an external company, or the outsourcing of the development process. For this reasons

our approach to SQA makes an interesting case study and even though the QA of a

deliverable is usually in the domain of the company developing the software, we have

to make sure the software delivered is appropriate.

This thesis will focus on software testing, and will start by providing definitions

and short presentations of different testing types, approaches and processes in Chapter

2. It will then propose descriptions of some of the already available quality assurance

methods that are widely used, and describe whether they are, are not, or to what extent,

suitable for our QA needs in Chapter 3. It will continue with a short presentation of

the methods we used before developing the current process, and will end by providing

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 3

a detailed description of the process we have today, describing the tools we use, test

structures we planned and testing methods we follow in Chapter 4.

2 Theoretical Background

The chapter starts by providing the most important definitions and concepts related to

software testing, and describes our own interpretation and approach we have towards

them when applicable.

Software Quality Management (SQM) is defined as “the collection of all pro-

cesses that ensure that software products, services, and life cycle process implemen-

tations meet organizational software quality objectives and achieve stakeholder satis-

faction” [11, 17]. It defines processes, process owners, requirements for the processes,

measurements of the processes and their outputs, and feedback channels throughout

the whole software life cycle.

There are three main quality layers used by Ian Sommerville [15] to describe SQM:

1. The Software Quality Assurance (SQA) layer is defined as a quality guide

that includes standards, directions and various strategies to create and assess

the quality of a software product during its development life cycle. Sommerville

also mentions a knowledge base and tools that help apply the guides mentioned

above.

2. The Software Quality Plan (SQP) layer is a quality plan that describes goals

and possible risks (goal setting and risk management), commits projects to follow

the guides and procedures provided by the SQA layer, as well as presents new

tools and procedures that might arrive from different sources, that are missing

from the layer described above or that are too specific to the project to be de-

scribed elsewhere. The SQP and SQA are usually consistent with each other and

when deviating should have a plausible justification.

3. The Software Quality Control (SQC) layer is the layer that describes activ-

ities that make sure both SQP and SQA guidelines are being followed by devel-

opers. Among other things it provides tools such as standard templates used to

produce good documentation and the know-how required to perform good quality

reviews.

For the purpose of this thesis we are mainly interested in the first layer - Software

Quality Assurance (SQA). SQA is defined also as a collection of activities that “de-

4

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 5

fine and assess the adequacy of software processes to provide evidence that establishes

confidence that the software processes are appropriate for and produce software products

of suitable quality for their intended purposes” [7]. According to ISO/IEC 15504 v.2.5

(also called SPICE - a set of technical standards related to the Software development

Process (SDP)), SQA is defined as a “supporting process that has to provide the inde-

pendent assurance in which all the work products, activities and processes comply with

the predefined plans and ISO 15504” [10]. In other words, these activities are needed in

order to ensure that the final product meets the required quality expectations, and that

the software works as expected, by continuously looking for, and correcting, weaknesses

found in the development process. The collection of SQA activities is also referred

to as the Software Development Processes (SDP). These processes include, but

are not limited to, software design, coding, source code control, code reviews, software

testing and release management. Software Testing is the focus of this thesis as a part

of SQA. The relation of Software testing in respect to Quality Management System

can be seen in Figure 1.

Figure 1: Quality Management System structure and relation to Software testing

Prior to describing software testing and related terms the Provider’s software devel-

opment process is explained. The Provider is outsourcing the development of the mobile

applications (the web platform is developed in the house) to an external company -

which we will refer to as Outsourcee (the party hired by the Provider that provides

outsourcing services). The result is the quality of their products being assessed twice.

The first time the quality is assessed by the developers and quality assessors employed

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 6

by the Outsourcee. When providing their test plans and the results of the tests per-

formed the Provider starts its assessing process. It follows its own SQP and performs

tests described in the test suite that will be described further on. It is worth noting

that the Provider handles most of the SDP, with the exception of coding (managed

entirely by the Outsourcee), and code reviews (executed by both parties).

2.1 Test Artifacts

Before talking about Software Testing it is imperative to define a couple of terms that

will be frequently used throughout this thesis. These terms are categorized as Test

Artifacts by WideSkill [18], which defines them as products developed by the test

team during the software testing life cycle to guarantee that the testing process pro-

ceeds smoothly, and that the communication between the test team and the customer

proceeds without misunderstandings. It is important to notice that in the case of the

Provider some of these artifacts are not only provided by the test team, but also by

the team that designs new features. Although WideSkill examines six of the several

different types of artifacts, this paper will focus on just the three that are most relevant

for our case-study.

The first artifact we will focus on are Test Plans (or Suits). According to Wikipedia,

a test plan is defined as “a document detailing the objectives, target market, internal

beta team, and processes for a specific beta test” [22]. The test plans that will be

executed are known in advance to developers and the management, allowing them to

be more cautious during the development phase or during a code refactor. Various

elements are considered while defining a test plan, and are usually used to determine

things like: (i) the purpose of the tests, (ii) the scope of testing, (iii) a testing approach,

(iv) exit criteria, and (v) possible risks and appropriate mitigation plans. Sometimes

the higher-management of test teams might produce higher-level documents called Test

Strategies, which are the basis for future test planning (e.g. defining the objectives

of testing, testing guidelines, requirements, etc.)

Two other important artifacts are Test Scenarios and Test Cases. Although the

two are commonly used as synonyms, they cover two different aspects of testing. While

the first is usually prepared after reviewing the functional requirements of a software,

and is used to verify particular areas of an application, the latter is essentially a list of

steps (also called actions) to take in order to verify that when given a specific input

the application will return the expected result. Test scenarios can be described by a

single test case or can be a combination of many.

Figure 2 depicts an example of a test scenario, in which testers have to verify the

validity of a login module that might be present on different screens. A single test case

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 7

would not be enough to test such a module, as there are many distinct variables to take

into consideration, such as the current location (URL), locale, types of input fields, etc.

As further discussed in Chapter 5, at the Provider, test scenarios are described in the

description field of tasks separating different application features.

Figure 2: An example of a test scenario in which a validity of a login module is

tested [22].

Figure 3 on the other hand depicts an example of a single test case used to verify

the validity of a single input field, by checking that given a specific input parameter

the response will be the one expected by the tester. Test cases are described by an

introductory user story followed by a step by step guide describing how to execute

them, each in its own task on Asana. This process will be further discussed in Chapter

5.

Figure 3: An example of a test case and its outcome [22].

2.2 Software Testing

SWEBOK v.3 [6, chapt. 4 page 1] defines software testing as a process that “consists

of the dynamic verification that a program provides expected behaviors on a finite set

of test cases, suitably selected from the usually infinite execution domain.” Simply

put, despite all of the test approaches available (mentioned later in Chapter 3.1),

software testing is the only process that, given a limited number of carefully selected

test cases (discussed later in Chapter 3.2), assesses how a software will behave, and

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 8

if it will behave correctly within a target environment, based on a set of predefined

expectations and specifications. It is important to note that software testing has two

main goals: finding and removing bugs and evaluating a specified quality of the software

(performance testing, reliability, usability, etc.)

As already mentioned, one of the primary purposes of software testing is the detec-

tion of possible software failures, so that defects may be discovered and corrected before

delivering the final product to the customer or end users. As the literature [12] puts

it, “testing cannot establish that a product functions properly under all conditions but

can only establish that it does not function properly under specific conditions.” These

conditions are called test cases, and a good tester will try to predict and reproduce as

many of these conditions as possible.

During the development phase of the mobile e-learning application described in

this thesis, a test suite was compiled (and is maintained on a regular basis) that lists

and describes all of the issues encountered during this process. The test cases provide

testers and developers with a short user story (or persona, defined as “a simple story of

the user’s goals, behaviors and pain points” by [16]) followed by a step-by-step process

that helps them reproduce and debug the issues that arose. Additionally, the test suite

has another important role in the development phase, as it allows development teams

working on other platforms to have the same understanding of the problem and a clear

description of the desired functionality, in case it was not clearly understood when

analyzing the functional specification.

Swebok divides software testing into four separate levels (examined in details later in

Chapter 3.3): unit testing, integration testing, component interface testing, and system

testing. These test levels include different kinds of tests grouped together based on

the different situations they tackle during the software development process [6, chapter

2]. Customers on the other hand have a different perspective on software testing and

tend to divide it into two main categories: low-level and high-level testing. The first

one meant to test specific components of the product while the second one meant to

test the overall functionality of the deliverable.

In the business case described in this thesis, the Provider has a specific need to

seamlessly blend different test levels while thinking of and writing test cases. In many

instances, the test cases need to check the functionality of the application, the func-

tionality of the API, and more importantly how the integration of the two affects the

whole system.

Software testing does not consist of specific step-by-step procedures, but has general

guidelines and rules that can usually be followed in order to perform it well. As

the system gets more and more complex, these guidelines and procedures may not

suffice, and a customized way of testing has to be set in place. This is the case of

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 9

the Provider in this thesis. By developing a system that is quite complex and by

outsourcing the development process to another company, it was not enough to simply

follow the Quality Assessment standards, principles or best practices described by

Swebok and other books that tackle this problem.

This brings us to the next chapter, in which we analyze software testing in general,

inspect some of the most common testing levels and techniques, describe in details

some of the testing methods employed by the Provider, and determine why they are

useful in their case.

3 Software Testing: A Detailed

Overview

Software testing is an important part of the software development life cycle for various

reasons. For one, it guarantees that the product delivered to customers will perform

as expected, and that it will achieve the expected quality standards. Continuous test-

ing during the development phase also ensures that the development speed is quicker,

as the issues that might arise during the beta testing phase (or even worse when the

application is already in production) can get fixed right away, without the need for a

new development iteration. Lastly, it helps protecting the reputation of the company

that issues the product. A curious example is the story of a climate orbiter NASA sent

to Mars in 1999, built and developed by a subcontractor. Due to a silly bug left in

the code by the subcontractor, which had the orbiter use English units instead of the

metric system, the orbiter’s thrusters worked incorrectly and it crashed upon arriving

on Mars. The money loss was assessed to $327 million, but it is also worth noting that

it took about a year for the orbiter to reach the planet (and we all know that time

equals money) [19]

Importance of software testing of the Provider’s applications by the Out-

sourcee’s developers

Performing software tests before deploying a new build is especially important in this

case study due to the fact that the applications are already in production and installed

on more than 5.000 devices. Thoroughly testing new builds before their release to the

general public helps preventing two very important scenarios: (i) new features might

not work as expected, and more importantly (ii) they might break existing function-

alities that customers are already relying on. Additionally, since the application is

multi-platform, tests are also needed to guarantee that the new version on a platform

does not break the applications available on other platforms, even though they are

usually released at the same time, making them aligned feature-wise.

Importance of software testing of the Provider’s applications by the Provider’s

10

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 11

team

Making sure developers deliver high quality builds is still something the Provider has

to verify by itself. The fact remains that the product is theirs and their reputation

depends on it. Personal experience has shown that developers usually do not do a

satisfying job when writing and performing tests, and quality assessors do not usually

test many of the common use cases. Additionally, they usually tend to test best case

scenarios to ease their work. Provider’s employees, on the other hand, thoroughly test

the applications and try to simulate as many scenarios as possible. For example. test-

ing the applications online and offline, simulating situations in which users lose their

network connection (or have a really bad one), exploring cases in which users cancel

specific operations while they are still being executed, or manically tapping on buttons

just to see if such a behavior would break anything.

For the sake of briefness, this chapter will only discuss topics that are relevant to the

Provider, and the experience they acquired in the software testing field while working

with the Outsourcee.

3.1 Test Approaches

During the development life cycle of an application there are two main testing tech-

niques that can be chosen from: the first one is called proactive while the second one

is called reactive. The main difference between the two is the development phase in

which the tests are performed: while the proactive technique initiates the testing pro-

cess as soon as possible, preventing bugs from leaking into actual application builds,

the reactive technique initiates it only after the development (coding) part has been

completed, hence tackling issues in a reactive manner. Due to the way the applica-

tions are developed and delivered to the Provider, its testers are forced to combine

the two techniques: tests are performed after a development build has been deliv-

ered, but before the production build hits the market. An approach like this can (and

unfortunately does) cause a lot of delays during the development life cycle, which in

consequence slows down the time needed to deliver new features.

Depending on the context of the project, one can choose to adopt different ap-

proaches to software testing, including (but not limited to) approaches, that according

to [14] are:

1. Dynamic and heuristic (or experience based) - tests rely on educated guesses

based on past data.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 12

2. Consultative - tests depend on the advice of technical experts outside the test

team.

3. Model-based - tests are designed based on mathematical or statistical models.

4. Methodical - tests depend on a predefined testing method.

5. Standard-compliant - tests are based on externally developed industry standards.

There are, however, several factors to be considered when deciding which approach

to follow as not all of them might suit one’s need due to a number of reasons. Some

examples being:

• Testers might not have the appropriate experience or expertise to work with the

tools proposed by the test approach.

• The development process and test approach might not be compliant with the

internal regulations of a company.

• The proposed approach might simply not fit the nature of the product.

The Provider decided to opt for a combination of the dynamic and methodical ap-

proaches, seeing how their existing versions of the applications are being used numerous

customers, and based on the issues have already been discovered (and fixed) during

their lifetime.

3.2 Test Selection

As mentioned in the introduction of Chapter 3, test selection takes a very important

role in software testing. By carefully crafting a list of the most important and relevant

test cases, many of the issues that might arise while using an application can be pre-

vented beforehand. Furthermore, a list of meticulously selected and well described test

cases will usually save testers a lot of time, which consecutively saves the client a lot

of money. An important thing to remember is that the definition of a good test case

does not actually exist. A particular test that might simulate one particular situation

might not cover all the elements in another one. As discussed in a paper related to

software testing [3], a frequent interpretation of what a good test case is, is the ability

of the test case to detect as many failures as possible, opposed to a test so simple and

generic that will always pass. This is why, even though we have defined different test

approaches, a good practice is to always combine different testing techniques, instead

of focusing on a single one.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 13

3.2.1 Selection Based on Code

“[...] These criteria are also called path-based, because they map each test input to a

unique path p on the flowgraph corresponding to the reference model. The ideal and yet

unreachable target of code-based testing would be the exhaustive coverage of all possible

paths along the program control-flow. The basic test hypothesis here is that by executing

a path once, potential faults related to it will be revealed.” [4]

The selection of tests based on code will be the primary focus of this thesis. Being

the designer of their applications gives the Provider the ability to think and predict

different paths their users will take to access and use new features. Although an aim to

strive for, full path coverage is technically not applicable, but with Provider’s specific

approach and a careful selection of test cases examined in detail in Chapter 4, they

try to cover as many different and relevant paths as possible. Additionally, describing

them in a step-by-step manner helps testers and developers find and reproduce issues

that might otherwise affect end users.

The test suite is always available to all developers as an Asana1 project, and is

constantly updated, either by the designer that writes the specifications of new features,

or by another member of the Provider’s team that handles testing. New test cases are

regularly added to the suite, including in instances like:

• while designing new features,

• while using the application,

• when developers require additional specifications,

• after reproducing issues reported by users, or

• after receiving notifications about crash reports.

When using the application to try and predict possible issues, the Provider tends

to use the destructive testing technique, which is a technique that tests the stability

of the application and tries to find its points of failure by testing it in an uncontrolled

manner (such as sporadic tapping on buttons, turning on and off airplane mode, etc.)

3.2.2 Other Selection Criteria

Error guessing

This is another testing technique extensively used by the Provider. The applications

are tested by skilled employees with a lot of experience in the development sector, as

1A web and mobile application designed to help teams track their work on projects: https:

//asana.com

https://asana.com
https://asana.com

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 14

well as past experiences testing applications with similar capabilities. Their experience,

intuition and skills are crucial in identifying defect that more formal techniques might

have missed. This technique is usually applied at the end of the testing period, when

all of the more formal ones are completed.

Operational Testing

Operational acceptance testing (OAT) is a testing procedure that focuses mainly on

testing the application in an environment that simulates the production environment.

This technique verifies that the product is operationally ready, and is often included as

part of the Software Testing Life Cycle (STLC)2. This technique will not be extensively

discussed in this thesis as the Provider focuses primarily on system tests (described in

Chapters 3.3 and 4) and performs them in a staging environment that mimics the

production one.

Many more testing techniques are available and widely used globally, like the Selec-

tion of tests based on specifications, and Mutation testing, but this thesis will not focus

on those as they are not used by the Provider during the testing phase. Nevertheless,

due to the complex nature of the applications examined in this document, it is not

possible for the Provider to simply focus on a single technique. The testing process

is a combination of several methods (described above) that range from code reviewing

and analyzing to operational testing on copies of the production environment.

3.3 Testing Levels

“Software testing is usually performed at different levels throughout the development

and maintenance processes. Levels can be distinguished based on the object of testing,

which is called the target, or on the purpose, which is called the objective (of the test

level).” [6] In other words, Swebok defines two main testing levels categories: (i) tests

that have specific targets such as modules, groups of modules, or entire systems, and

(ii) tests that have specific objectives, that can aimed at functional properties (e.g.

verifying that the functional specifications were correctly implemented), or at non-

functional properties (e.g. performance and usability tests), discussed in Chapter 3.3.5.

Levels are generally divided into four categories (see Table 1 for a brief descrip-

tion), based on when they are added in the SDP, or based on their specificity [21]: (i)

unit testing, (ii) integration testing, (iii) component interface testing, and (iv) system

2Software Testing Life Cycle (STLC) is the testing process, which is executed in systematic and

planned manner. In STLC process, different activities are carried out to improve the quality of the

product.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 15

Level name Short description

Unit Testing Used to verify that specific sections of code work,

and that they respond as expected. They are usu-

ally very specific, and an example of a very minimal

unit test could be simply testing the constructor or

destructor of a class.

Integration Testing Used to verify that different components are cor-

rectly integrated into the system, and that they cor-

rectly interact with it. Test cases can include test-

ing procedure calls or the activation of different pro-

cesses.

Component Interface Testing Used to verify that the data is correctly passed be-

tween different units (or subsystems) and processed

by the next component. A simple test could be send-

ing a bogus data package from a component and

verifying that the next one processes it correctly.

System Testing Used to verify that a completely integrated system

meets the requirements specified by the customer.

An example could be testing that the registration

process for a new user works as expected: starting

from the user creation form, to the dispatching of a

welcome email, to the user login form and then user

logout.

Table 1: Brief description of the four main testing levels

testing, with (i), (ii) and (iv) defined as main levels during the development process by

Swebok. Additionally, as previously mentioned in Chapter 2, there are also two levels

of tests from a customer’s perspective, one being low-level (components) testing, and

the other one high-level (whole system) testing.

The rest of the chapter is dedicated to a detailed description of the various testing

levels, and how they fit into the Provider’s software testing procedures.

3.3.1 Unit Testing

Unit tests are not meant to be a replacement for classic Quality Assurance (QA)

processes, but are instead meant to eliminate errors during the coding phase, before a

build is pushed to the next stage (QA), and should be kept up to date (new features

require new unit tests). Their goal is to prevent functions (in the code) from returning

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 16

the wrong responses, increasing the quality and efficiency of the product before it

reaches QA. These tests can be written either before actually producing any code

relevant to the software (and then write the software based on unit tests), or after the

software has been written.

The Provider does not have control over such tests. Based on past experiences this

usually results in buggy software builds delivered to the QA team, that have a lot of

issues that could be easily prevented by unit tests (e.g. the handling of unexpected

values in input fields). This behavior consequently results in a delayed delivering of

application updates (with requested features) to their customers.

3.3.2 Integration Testing

As briefly described above, integration testing is the phase in which multiple compo-

nents (that have previously been unit tested) are combined into groups, and tested as

such. If unit tests prevent specific components from returning invalid data, integration

tests are used to make sure that the aggregation of these components work correctly

and that their output is a correctly integrated system, ready to be passed to the next

phase: system testing.

Same as with unit testing, since integration testing is a process that occurs before

an application is built and passed to the QA team, and since it is built on unit tests,

in the case study examined in this thesis these tests cannot be run by the Provider but

should be performed by the developers.

3.3.3 Component Interface Testing

Component interface testing is a process that succeeds integration testing. The main

focus of these tests is to verify that data (or message packets) passed from one com-

ponent (or a group of components) to the other is valid, instead of being interested

in how the components work. These tests can check the validity of data types passed

between units, the reaction of units when they are passed unusual data, or data with

extremely large values, making sure that the preceding components do not affect the

performance of their successors.

In the case of the Provider’s mobile applications these tests are not performed in

the code but rather by the QA team — only after receiving a new application build.

The testing process is done by hand which makes it much slower, but the QA team

has a wider knowledge of the data (and data types) that is allowed and will be used

by the applications. The latter essentially act mainly as the “view layer” of the whole

platform, and rely on the API provided by the Provider to filter and clean bad inbound

data. A substantial amount of component interface tests are performed as part of the

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 17

API testing process, which is not the topic of this thesis, as it is developed internally

by the Provider.

3.3.4 System Testing

System (also known as end-to-end) testing is the process that verifies that a completely

integrated system meets the requirements set by the functional specification. Tests are

written so that they can confirm that multiple components correctly interact between

them, that their outputs are the expected ones and that the functionality of the system

as a whole correctly processes the requests made by users of the application. An

additional example to the one briefly described in Table n could be the process of

signing into the application using a Single Sign-On3 (SSO) access (e.g. Facebook

login), verifying that the user data is correctly fetched from the local database, posting

something as the user, removing the post, and then logging off.

Based on the description above, we can conclude that system testing is a full suite

of tests, that are usually ran only after all of the other levels have been processed,

as they take a lot of time and manpower to complete. At the Provider’s’, system

tests are executed manually based on the test suite that will be further discussed in

Chapter 4, usually (i) before issuing new features that have a major impact on the

system, (ii) before issuing a major update, or (iii) after a large refactor. The Provider

recently had to rewrite a large portion of the iOS code, updating it from Swift 2.2

to Swift 3, due to a new major iOS version release by Apple. The new iOS version

impacted not only the code written by the developers working on the iOS application,

but also the code produced by other developers that was included in the application

in the form of external components. This was an example of the perfect moment

to perform a complete system checkup, to make sure everything worked as expected,

before declaring that the new version of the application was ready to be rolled out to

users.

3.4 Testing by Objective

“Testing is conducted in view of specific objectives, which are stated more or less explic-

itly and with varying degrees of precision. Stating the objectives of testing in precise,

quantitative terms supports measurement and control of the test process.” [6] Although

Swebok categorizes Testing by Objective as a subcategory of Test Levels, we are going

to discuss them under a separate chapter, as they have an important role in the testing

3Single sign-on (SSO) is a session and user authentication service that permits a user to use one

set of login credentials (e.g., name and password) to access multiple applications.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 18

process at the Provider’s. While Swebok analyses more than ten different types of

tests, this sub-chapter will only discuss those that are used the most by the QA team

verifying the suitability of new builds, and give a short comment as to why those tests

are relevant in their specific case.

The quickest tests performed are called smoke or sanity tests, which are quick

and shallow tests used to determine whether it makes sense to actually proceed with

further, more in depth testing. These tests usually consist of basic operations that cover

the most important functionality of a software, and are the first tests to be performed

when a new build is delivered to the QA team. The failure of these tests will most

likely result in a rejection of the build, which will be returned to the developers. An

example of a smoke test could be to simply run the application and try logging in.

At the Provider’s, when a build with new features is delivered to the QA team, a

couple of pre-defined sanity tests are executed. If those pass, they move on to a more

detailed testing technique. To prevent additional delays during the test phase testers

may choose to continue testing (even though one (or more) of the sanity checks failed)

if they decide that the affected features are not crucial, and do not prevent them to

perform additional tests.

A different type of testing is called Graphical User Interface (GUI) testing,

which is described as the process of verifying and ensuring that the GUI of a software

meets the design specifications that was provided along the specifications of new feature

requests, and usually includes more than a single test case. These tests are especially

important in the case-study examined by this thesis, and a lot of effort is put into

testing this aspect of the two outsourced mobile applications. Considering the mobile

applications are the Provider’s main product, as well as the main tool used on a daily

basis by their users to follow and complete the mobile courses made available to them,

it is very important that they are programmed exactly as they were designed. The

design team invests a lot of time into making sure that the user experience will be as

best as possible, and a lot of effort is put into carefully designing new features and

providing developers with exact blueprints of how the applications should look and

feel. When delivered a new test build, the test team has to make sure that the final

product looks exactly as designed by their colleagues.

Another type of testing is called Regression testing, which is the process that focuses

on detecting issues with existing features after a large code refactor. As Ammann and

Offutt describe in their book, “Regression testing is the process of re-testing software

that has been modified.” [2] Issues could include old bugs and lost or broken features

that used to work before code modifications, and might happen due to a variety of

reasons, one of which could be the collision of parts of code handling the same features.

This type of testing can be performed by e.g. retesting old test cases, or verifying

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 19

that issues that might have been fixed in the past are not present in the new build.

“Regression testing constitutes the vast majority of testing effort in commercial software

development and is an essential part of any viable software development process.” [2]

The Provider gives regression testing an important role in the testing process and a lot

of effort is always put into testing new releases, especially those related to the back-

end, which affects all of their mobile applications. Thoroughly testing the backward

compatibility of their API and other server-side code guarantees that customers and

end users using their mobile applications will never even notice any of the code was

changed, as the applications will continue working without interruptions and other

issues. Regression tests are also performed on their mobile applications before rolling

out a new update, to make sure they still function at least as well as the previous

version.

Alpha testing is usually performed at the developer’s site, either by potential users

or a dedicated test team, both of which work in unison with the developers. “During

alpha testing, a serious effort is made to identify and correct problems resulting from

new code by a coordinated effort between the programmers and testers.” [5] When all

alpha tests pass, the software gets promoted into the Beta testing phase, which is

a form of user acceptance testing usually performed by a limited audience of external

users not related to the team of developers (also known as beta testers). Recently, many

large software development companies (such as Google, Microsoft and Apple) started

opening their beta software programs to the general public, increasing the input they

get from their actual users, allowing them to really optimize their products and deliver

high quality versions. Software can include (but is not limited to) web and mobile

applications, video games, desktop software, etc. A good example of a software left in

a perpetual beta (“keeping of software at the beta development stage for an extended or

indefinite period of time” [20]) is Gmail by Google, which finally exited the beta phase

after more than five years of being available to the general public. As expected, alpha

tests on the Provider’s mobile applications are performed by a test team employed by

the company developing the applications. When these pass a new software build is

pushed to the beta testers at the Provider’s, which follow specific test suites to verify

that the build is appropriately developed.

After verifying that an app works as expected while using it for basic operations, the

test team proceeds with a more destructive testing technique, which is a method that

“tries really hard” to crash or cause a software to fail. Examples of this technique could

include (i) voluntarily providing software with bad, invalid or extremely large amounts

of input data, or (ii) quickly tapping on buttons that perform specific operations. At

the Provider’s this type of testing is usually performed by the test team as the software

is primarily mobile, but a lot of free and open-source software dedicated to destructive

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 20

testing can be found online. This testing technique has proven really useful when trying

to find and reproduce issues caused by edge case scenarios.

The last testing technique we are going to discuss is the usability testing tech-

nique. This method is used to verify that a user interface is straightforward and easily

understandable by end users. It usually consists of designers or testers heading out

of the office to meet users in person, in places where they feel comfortable using the

application and expressing their “feelings” using body language while doing so. Ac-

cording to an example from Wikipedia, “ninety-five percent of the stumbling blocks are

found by watching the body language of the users. Watch for squinting eyes, hunched

shoulders, shaking heads, and deep, heart-felt sighs. When a user hits a snag, he will

assume it is ”on account of he is not too bright”: he will not report it; he will hide it”.

They continue by explaining that in circumstances like this the person watching the

struggling user should “not make assumptions about why a user became confused”, but

instead ask him for an explanation, as “learning what the user thought the program was

doing at the time he got lost” could be an invaluable information that would never be

available to them otherwise [23].

3.5 The reason behind a “custom” approach

As already mentioned in the previous chapters, testing is not one size-fits-all solution,

and what works in a specific scenario might not function well in another. The situation

described by this thesis is so specific, that using a single approach would have been

fruitless, and completely trusting the test team employed by the external company

would have been a disaster. This is why the Provider had to think of a not-so-standard

approach that would allow the external and internal teams to be aligned. Since tech-

niques like unit and alpha testing start well before developers deliver new builds to

the beta testers, a system had to be put in place that would try to mitigate the issues

that could arise, and provide developers with user stories and test cases relevant to the

new features they would have to develop. Additionally, seeing how adding, modifying

or removing a feature does not only affect the feature itself, a system like this also

helps by providing an overview of all the features related to the one in discussion. By

working in a tool called Asana (further described in Chapter 4), used as the main

project management tool, the Provider is able to keep a link between relevant test

cases, previously solved issues, or anything else that might be useful during the test

phase. Additionally, they always provide developers with sample API calls they will

need when integrating and testing new features, and although the developers always

perform basic tests to see if new features work as expected, the Provider’s test team

always has to perform additional checks to verify the API behaves as expected on the

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 21

backend, and that the responses returned are the correct ones.

To conclude, it is also important to note that the developers do not usually have

a direct access to the whole infrastructure, which is set up and maintained by the

Provider. There are specific situations or edge cases that can be only correctly tested

by the Provider’s test team, which has a complete overview and understanding of the

whole system, from the data to the view layers. Hence, it is very important that final

tests are always performed by this team, and that the confirmation that a new build

is ready to be deployed to production is issued exclusively by them.

4 The Provider’s Approach

This chapter will provide an insight into the testing methods, tools and procedures

employed by the Provider during the testing phase. It will start by giving a short

presentation of Asana, a project management tool (that has been in this case also used

for the implementation of test plans), and proceed by analyzing their strategy regarding

the structure of test suites and test cases, describe how the Provider tackles the actual

testing, and conclude by briefly describing their approach toward bug reporting.

4.1 Asana as the Tool of the Trade

Asana is a web and mobile application designed by Facebook co-founder Dustin Moskovitz

and ex-engineer Justin Rosenstein whose work has been improving the productivity of

employees at Facebook. Because of the numerous features Asana offers it was first used

as a project management tool by Provider’s team. Its features assist the teams with

their daily work, such as support for quick project duplication, a simple but powerful

user management, a straightforward reorganisation of tasks, facilitating and tracking

communications between team members, the support for file attachments, and many

more. These are also the reasons why the team decided to use Asana as their main

tool for documenting and tracking software testing.

In a nutshell, Asana holds a collection of Projects that reside under different

Workspaces, and a list of tasks grouped by Projects. It features a narrow sidebar

that lists the Projects that belong to the currently active Workspace, while the main

window features a two panel design that perfectly adjusts on screens with different res-

olutions. The left panel displays a list of tasks grouped by Sections (or tasks) that can

be highlighted, while the right panel displays the information of the highlighted task.

Each task has a wide selection of attributes, options, and can have its own subtasks.

A graphic representation of the hierarchy can be seen in Figure 4, and a screenshot of

the actual design is available Figure 5. Each of the features will be further examined

in this chapter along with a short explanation of why it is useful to the Provider.

22

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 23

Figure 4: Graphical representation of the hierarchy in Asana.

Figure 5: Left panel with a list of tasks and right panel with details of the task

highlighted on the left.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 24

4.1.1 Workspaces

A Workspace allows for people to collaborate together on projects and tasks. They

can include as many people as wished and do not require a common company email

domain. This makes them an ideal solution when collaborating with users from differ-

ent organizations that work on the same projects. Administrators can easily manage

accounts and their access rights, making sure that each user sees nothing more than

what it needs in order to finish the job.

The Provider decided to work with a single Workspace accessible by all of its

employees and the employees working on their mobile applications employed by the

Outsourcee. While their employees have access to all of the Projects available in

the Workspace, the teams provided by the Outsourcee only have accesses to specific

Projects relevant to their positions. Such a procedure guarantees a quick but detailed

overview on all of the users working on specific projects and tasks, as well as provides

the administrators with a tool that helps them easily manage users.

4.1.2 Projects

In Asana projects are made of lists of tasks. Project are typically used for a larger

goal while tasks are used for actions needed to be taken in order to achieve that goal.

Projects are one of the main features in Asana. A Project is a list of Tasks that

can be grouped by Sections. Each Project can allow access to different users from

the same Workspace. Projects can easily be duplicated in the same Workspace or

copied to another one. This process also handles the duplication and/or copying of

the Tasks created inside of them. Users using the duplication feature can easily choose

which information to include in the process: the procedure can be as simple as simply

copying the name and description, or it can be as complex as copying every bit of

information, including Task due dates, attachments, project members, etc.

Duplication makes Projects a very powerful tool, and this feature is used a lot by

the Provider during the testing phase, as it allows them to always work on a clean

copy of the test suite while keeping a detailed record of the past test results. Figure 6

depicts a list of projects within a workspace, with a menu showcasing options for one

of the projects.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 25

Figure 6: List of Projects inside a Workspace.

4.1.3 Sections

Sections are usually used to group Tasks that fit into the same categories inside

Projects. Section separators are nothing more than Tasks that have their titles ending

with a colon (:). To make it obvious they are separators they feature a slightly dif-

ferent styling when compared to normal Tasks; they appear with bold and underlined

text. Additionally, they work the same way as Tasks do, and can include a description,

attachments, assignees, a due date, etc.

The Provider makes extensive use of Sections in order to clearly group test cases

targeting specific groups of features as can be seen in Figure 7. Their descriptions

usually include a generic user story and relevant links to other available documentation.

4.1.4 Tasks

Tasks are the basic unit of action in Asana. One can create new tasks, duplicate

existing ones, merge tasks together, print or delete them.

The Provider uses Tasks to describe specific test cases and has defined a set of

guidelines detailing how to write them, which will be analyzed later in this thesis.

Each Task has a set of attributes that can be set, such as the title, a description, a

category, tags, etc. Figure “sections and tasks” shows a group of Tasks belonging to

the same Section, with titles set so that testers know right away what is the feature

they are going to test. An important attribute of Tasks is the current assignee, as it

allows the Provider to keep track of the user that is currently working on the Task.

Another powerful feature is the notification system implemented by Asana: modifying

a Task broadcasts a notification to all of the users that were assigned to the Task at

least once or added as followers. All of the above (i) allows the communication between

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 26

users working on the same Task to be prompt and clear, and (ii) helps the Provider to

optimize the whole process when needed by keeping track of all the changes.

Figure 7: Sample Section with Tasks in Asana.

4.2 Structuring Test Suites

As briefly described in the introduction of this chapter, each test suite resides in its

own project, each project is divided into sections that represent a high level structure

of applications, and each section includes a group of tasks that either represent and

describe a single feature, a group of related features, or a whole process.

Single test cases try to cover as many use cases as possible by providing developers

with one or more short user stories (a story for each persona (see Chapter 2.2 Software

Testing) when applicable), and a step-by-step testing procedure. Furthermore, test

cases also include a set of implementation instructions, design guidelines and references

to old issues that might have occurred while developing similar features (or the same

one when doing a code refactor), that are already described in bug reports and have

most likely already been fixed once. While most of the test cases are written while

designing new features, many of them are added or modified by the test teams while

testing new application builds.

Issues encountered during the testing phase are reported inside their appropriate

Asana project based on the platform the application runs on. After being verified and

confirmed by a supervisor, tasks are re-assigned to the leader of team responsible for

that application, which then assigns them to the developer in charge of the feature

causing issues.

As already mentioned, tasks can include references to other relevant tasks, especially

when they are based on the same components or if they are somehow related to each

other. Having these links available has proved to be a useful tool for the developers

during the development phase, as by perceiving features as a part of something bigger

they are more prone to finding and solving issues before delivering a new testing build.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 27

4.3 Designing Test Scenarios and Test Cases

After trying out several widely used methods for writing and structuring test cases,

the test team employed by the Provider decided to try and develop a procedure that

would be ultimately tailored to their specific use case. They ended up with a solution

based on a set of specific guidelines briefly described in this subchapter that has both

helped and allowed them to perform a good job when testing new builds and reporting

issues to the developers.

Sections in Asana have a very important role in this procedure as they are used to

group all tasks related to a specific functionality. As we briefly mentioned in Chapter

2, sections could be also called test scenarios, while tasks could be called test cases.

As can be seen in Figure 7, it is important that their title is always short and as concise

as possible, and that it briefly describes a high-level functionality of the application.

The title itself should give enough information to returning developers and testers

and allow them to understand what the tests will be about by reading just that.

Nevertheless, opening the detailed view of a section should provide a brief overview of

the functionality by providing one (or more) short user stories explaining its use.

The same is true for task titles, which should briefly describe features that the

test cases will verify. However, when describing tasks titles should provide labels of

specific features instead of their high-level description, and these features should be

further described in detail in the description field provided by Asana, as titles alone

could not give developers and testers the overview needed to perform precise tests.

This brings us to the description field, which is used to describe the actual test

case in detail. The first thing that should be provided by the person writing the test

case are relevant user stories [1] that should give a short example of how a feature

is going to be used by the end user. These stories represent an extremely important

part of the test case, as testers and developers can really understand what the feature

is about, and can try to change their mindset into the mindset of the user. This way,

the testing becomes more realistic, simulating a real life experience instead of focusing

on testing exclusively that feature alone. An example could be a user story of the

login functionality of an application: testing a story describing how a user opens the

application, navigates to the login screen, inputs their credentials and taps the login

button can cause issues that could not have been found by simply testing if the action

triggered by tapping on the login button works correctly. Linking relevant tasks and

providing additional documentation has also proven to be a really good strategy,

as this gives developers and testers an overview of what has already been done, an idea

on where they can find relevant code snippets, the information about who was working

on the task, and an insight on issues that might have occurred during the development.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 28

Figure 8 displays a screenshot of a task that includes the details mentioned above..

Figure 8: Sample task with description view opened.

The last two important features we are going to briefly describe in this subchapter

are attachments and comments. Attachments are usually used to provide screen-

shots, sketches or documentation of new features that were not included in the original

designs or functional specification. Additionally, when writing bug reports (explained

in detail further on) attachments are used to provide screenshots that demonstrate the

issue and how it affects the application.

Comments are used as the main communication tool between designers, testers

and developers. Experience has shown that an open communication platform tends

to work against productivity, as the information is usually shared only between the

limited number of participants that joined a conversation. Using comments to commu-

nicate makes all of the information available to everyone involved. Nevertheless, other

communication platforms are also used in specific cases, especially when developers

and testers working remotely are trying to fix issues that would take much longer to

resolve by going through a channel like Asana.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 29

4.4 Performing Tests

Thoroughly testing new features, or verifying that existing features that had their code

refactored still work correctly, has proven to be a task that is much more difficult to

perform well than one could imagine. Especially as the complexity of an application

grows with time. This is why even though the designer (or developer) will always

prepare one or more test cases (as per the guideline set up by the Provider) that will

be executed to make sure the feature works as expected, they will usually serve only as

a guide to the quality assessor (QA), who will have to perform (and document) more

thorough and detailed tests. Use cases described by the designer are used to better

explain the requested functionality, and each of them will usually only describe the

best-case scenario1.

After performing the tests described in the test suite, a good QA will (almost)

always be able provide a fresh selection of test scenarios and test cases (which will be

initially most likely filed as bugs), by using series of different techniques like destructive

and usability testing. Experience has shown that by simply using an application with

the mindset of a power user2 instead using it as an average user (or even worse as a

developer) will almost always cause features to work in unexpected ways, or even worse

cause them to stop working all together. Additionally, QAs must also think outside

the box and try to imagine various edge cases, such as their applications running on

slow or flaky mobile connections (on airplanes, trains, etc.), users having unexpectedly

large amounts of content available, users that love the application and use it daily for

vast amounts of time, or users that dislike it and only use it occasionally. All of the

features that are available to users at any given time should work as expected, and

more importantly should never cause users to lose any data.

The list below includes a couple of guidelines taken directly from the Provider’s

project in Asana and gives some directions that the QA should follow when performing

tests. As previously mentioned, tasks might include links to related tasks, issues, or

links to the original designs when they are available elsewhere, and the QA should take

all of these details into consideration in order to do a thorough job.

• When there are linked tasks in the test procedure, go check them out.

• Always check the Bugs section (at least read the titles), as those are problems

we already had with that feature and had fixed them.

1Being, relating to, or based on a projection of future events that assumes only the best possible

circumstances
2A power user or experienced user is a computer user who uses advanced features of computer

hardware, operating systems, programs, or web sites which are not used by the average user.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 30

• Don’t be afraid to tap everything there is to tap (multiple times), users will

not always follow the same pattern to do something (ex. share - unshare, like -

unlike).

• Don’t be afraid to cancel a process every now and then, the app might crash

while waiting for an API response, an upload to finish, or because of other weird

stuff.

• Don’t be afraid to remove content once it’s there: remove photos, remove

answers, remove journey posts, remove your name.

• Always check InVision3 for design specifications when testing new stuff, and don’t

approximate: follow the design, it’s there for a reason.

This subchapter will conclude with a quote taken from the same project on Asana,

and the thesis will then proceed with the last topic examined: Reporting Bugs.

““Don’t be afraid to improvise, break, or bend the rules, and use the app in ways

the developer and designer did not think of. The main goal is to find all of the bugs

and errors that might happen when using the app heavily, by ’pro’ users. These users

will use the app very quickly, will tap around a lot, and will perform actions that users

that are just starting will not. These users might remove or edit things and will most

definitely use the application while offline or with a bad network connection.””

4.5 Reporting Bugs

The last topic tackled by this thesis is bug reporting. This subchapter will examine

the procedure implemented by the Provider, and describe their interpretation on how

bug reports should be submitted in order to allow developers to easily reproduce them,

subsequently giving them the ability to start working on them without major delays.

When opening a new task in the section dedicated to bug reports, reporters should

make sure to submit issues that are well structured, have a description that explains

the problem as clearly as possible, and possibly even provide a list of steps needed to

reproduce it. Delivering a report like this will give developers the essential information

needed to find the bug, and chances are they will realize right away what went wrong.

The Provider identified the title of the bug report as the most important piece of

information. Their directions are to write short and very concise titles, that should

include the name of the broken feature and use the word “should” to describe the

3InVision is the name of the service the Provider uses to deliver designs to the Outsourcee.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 31

expected behavior - in the least possible amount of words. An example taken from

Asana is the following: “Switching to an open program should put users to 1st session”.

Ideally, the developer should be able to understand what the issue is and locate it by

simply glancing at the title. If the issue needs further explanation, as the amount of

space available in the title is limited, the description field should be used to describe

a short user story, the expected behavior, and obviously why the feature failed the test.

This is also the place to include a step-by-step procedure that the developer and other

testers can use to reproduce the issue. If the issue is only related to specific steps and

not the whole feature, those steps should be clearly marked.

Attachments should be used to provide developers with relevant screenshots, or

even better videos, that clearly display what the issue is, where it is located on the

screen, why it works incorrectly or how the bug affects the content of the application.

Comments should be used as the main communication medium between the bug

reporter and the developer handling the issue, should always try to be on point and

provide as much information as possible when needed by the other party.

And finally, a very important part of bug reports are the assignees currently

working on them. This feature allows the Provider to stay on top of the current

situation at any time, by simply looking at the profile photos of the users currently

assigned to the tasks. Known faces usually mean tasks are ready to be re-tested, while

the unknown ones mean the tasks are being worked on by the developers.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 32

5 Discussion and Conclusion

Even though several well-defined models and techniques tackling the problem of quality

assurance and more specifically software testing already exist, one should always try to

develop an approach that would best fit their specific case. The approach described in

this thesis is far from perfect and might not be useful in a different set of circumstances,

but it has proven to be useful to the Provider, that has been successfully using it for

the past year. Additionally, due to the ever-changing nature of a software product, the

guidelines have to be constantly kept up to date, making it harder for them to become

obsolete. The important thing to remember is that software testing is not a simple

task, should be approached with an open mind and ready to break features: finding

and fixing issues during the development phase is much better than shipping a product

that will cause pains to users.

By approaching software testing the way it was discussed in Chapter 4, the Provider

is able to always release a stable and reliable product. Additionally, constantly testing

the applications before releasing new versions to the general public allows them to

deliver updates that are at least as good as the application already installed on the

device. It can be argued that the major downside of this approach is definitely the

time needed to deliver updates to customers, as testing has to be performed at least

twice when the Outsourcee delivers a version that is flawless as can be seen in Figure

10. Before employing the method described in this thesis, the testing has been done

by the Provider only (see Figure 9). However, compared to current testing procedure,

the old one took even more time as the product could be returned to the Outsourcee

several times even for the smallest issues that might have been discovered by performing

relatively simple tests. Moreover, the fact that the Provider and the Outsourcee might

be located in different time zones, this process can be further prolonged by the fact

that both parties work out sync. With the new approach the developers first push a

build to their local test team which takes care of the initial testing and, when done,

releases the build to the Provider’s team of testers, that tests the build one last time.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 33

Figure 9: Diagram of the procedure before the approach examined in the thesis.

This system - examined in details in Chapter 4 - has now been in use for over a year

and it has proven to aid developers and testers employed by the Outsourcee to produce

and deliver better builds with fewer issues. Since most tests are already performed

by the Outsourcee, the test team employed by the Provider has a relatively simple

task, which consists mainly of testing with a destructive approach, to make sure the

applications are really stable. Since testing has now been performed by both parties

there are less returns to the Outsourcee. This approach also improved the time needed

to deliver new features to end-users, which dropped for more than 25% per feature.

One might even argue that the Provider now needs to pay the Outsourcee to do the

tests on their side. Even if this is the case, the time saved by testing the application

builds by both parties is (i) saving the Provider’s testing team time, which can be

devoted to other things rather than to writing bug reports for the developers, and (ii)

saving money since features can be rolled out to customers quicker than before.

The approach described in this thesis is far from being perfect. It currently suits

the Provider’s workflow. Nevertheless, it is still regularly being updated and the rules

written in Asana are not set in stone but are instead used as guides that help better

perform a specific task. Test scenarios and test cases have proved to be useful docu-

mentation resources, as they are always available to the whole team when in doubt.

The guidelines defined to better fill bug reports are also a perfect literature for the

business team in contact with the actual end-users, as they are actually the ones that

always encounter real life issues (compared to issues encountered by testing teams) and

feel pain when something does not work as expected.

The diagram in Figure 10 could even be further complicated by the Outsourcee

outsourcing the testing part. As explained earlier, the Outsourcee employs both de-

velopers and testers locally, but in the globalised world this could easily be the case.

However, there is certainly a limit in the number of subcontractors if the software to

be delivered is to be any good since the of communication between the Provider and

the last subcontractor in chain can be distorted.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 34

Figure 10: Diagram of the procedure after the approach examined in the thesis.

The best solution, albeit more expensive for the Provider at the current stage of

company’s development, would definitely be having an in-house team of developers

directly supervised by the Provider, which could constantly work alongside the team

focused on testing, drastically lowering the time needed for feedback to travel between

the two parties, subsequently decreasing the time needed to ship new versions as can be

seen in Figure 11. The reason behind the choice made by the Provider to outsource the

development of their products to an external company was the fact that they started

as a startup company, and the costs were much lower than the alternative (having a

local team of developers).

pov

Figure 11: Diagram of the best approach with an in-sourced development team.

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 35

6 Povzetek naloge v slovenskem

jeziku

V zaključni nalogi so predstavljeni najbolj razširjeni standardi za testiranje programske

opreme, čemer sledi pregled uporabnosti teh standardov v primeru, ko je razvijalec pro-

gramske kode zunanje podjetje ali zunanji izvajalec (v nadaljevanju Izvajalec), ki ga

najame lastnik programskega izdelka (v nadaljevanju Podjetje). Zaradi omenjenega

pregleda, kljub vsem že preverjenim standardom v uporabi v drugih podjetjih in pro-

jektih, so v Podjetju v zadnjem letu razvili lasten sistem za vodenje testnih primerov in

sistem za sledenje poteka testiranja. Sistem sicer črpa iz omenjenih standardov za testi-

ranje programske opreme. a se od teh tudi razlikujeta. Naloga opisuje kako je prirejen

sistem Podjetju omogočil, da je porabljen čas, ki je potreben za razvoj, testiranje in

pripravo novih verzij aplikacij veliko kraǰsi od časa, ki so ga za enako delo porabili

pred tem. Opisan pristop je daleč od popolnega in bi lahko v nekaterih primerih bil

celo neuporaben, vendar se je v tem specifičnem primeru izkazal za zelo koristnega in

je zato v zadnjem letu postal eno najpomembneǰsih orodij Podjetja.

Naloga opisuje tudi kako se morajo zaradi narave programske opreme, ki se

neprestano spreminja in razvija, tudi navodila in postopki, ki so opisani v omenjenem

sistemu, redno osveževati in posodobljati. Kljub temu, da je Podjetje definiralo kar

nekaj smernic in navodil za izdelavo in izvedbo testnih primerov, je eno najbolj pomem-

bnih zapisanih načel to, da je testiranje programske opreme zahtevno opravilo, katerega

se moramo vedno lotiti z odprtim umom. Poleg tega je zapisano tudi to, da nas ne

sme biti strah, da bi karkoli uničili, saj je vsaka napaka, ki jo najdemo med testiranjem

napaka, ki ne bo vplivala na uporabo aplikacije končnega uporabnika.

V zaključni nalogi je v prvem poglavju predstavljena struktura naloge in na kratko

so opisani že obstoječi standardi. V drugem poglavju nadaljujemo s teoretično osnovo

in izrazi, ki so potrebni za razumevanje le-te. V tretjem poglavju natančno predelamo

temo testiranja programske opreme: opǐsemo pristope k testiranju, izbiro pravilnih

tesnih primerov, glavne metode testiranja med samim razvojem, razložimo zakaj in

kako so opisani modeli primerni v našem primeru, in poglavje zaključimo s kratkim

mnenjem o tem, zakaj je bilo potrebno razviti rešitev po meri.

Ker je v v preteklosti Izvajalec večkrat dostavil Podjetju neprimerne izdelke, ki so

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 36

morali biti veliko krat, zaradi malenkosti, vrnjeni razvijalcem (kar je dodatno podalǰsalo

čas potreben za objavo posodobitve), se je Podjetje odločilo, da bo razvilo sistem, ki

vsebuje natančna navodila, s katerimi si lahko tako razvijalci kot preizkuševalci aplikacij

pomagajo pri svojem delu. V preteklosti so razvijalci, preden so izdelke dostavili

Podjetju, le-te samo površno testirali. Podjetje je zato velikokrat zavrnilo izdelek in

ga vrnilo Izvajalcu, saj so po lastnem testiranju našli precej napak. V predstavljenem

prenovljenem sistemu testiranja Podjetje sedaj hrani in posodablja testne primere in

postopke, ki jih morajo pri Izvajalcu izvesti preden dostavijo izdelek. Sistem, kateremu

je Podjetje posvetilo veliko dela in truda, je zunanjemu izvajalcu omogočil, da Podjetju

dostavlja veliko stabilneǰse aplikacije z veliko manj napakami. Detaljno testiranje z

omenjenim sistemom, ki se začne že pri Izvajalcu, je pripomoglo h kraǰsemu času do

objave nove različice aplikacije. Ravno tako se je zmanǰsal obseg dela, ki ga ima testna

ekipa pri Podjetju, saj je večino napak odpravljenih že s strani Izvajalca. Z opisanim

sistemom se je čas, ki je porabljen za razvoj posodobitev zmanǰsal za več kot 25%.

Rešitev, ki je natančneje opisana v četrtem poglavju diplomske naloge, omogoča

Podjetju redno objavo stabilnih in zanesljivih posodobitev ponujenih mobilnih aplikacij.

Poleg tega, testiranje le-teh pred objavo novih verzij zagotavlja tudi to, da bo nova

različica vsaj tako dobra, kot je trenutno nameščena na napravi uporabnika. Negativna

plat opisanega pristopa (kot tudi celotne situacije, ki je nastala zaradi izbranega načina

izvajanja del) je zagotovo ta, da je čas, ki ga porabijo za razvoj in dostavo novih različic

precej dalǰsi od časa, ki bi ga porabili v primeru, če bi razvojna ekipa bila del Podjetja

(in ne zunanji izvajalec). Eden glavnih razlogov za počasnost je testiranje izdelkov, ki

se mora v najbolǰsem primeru zgoditi vsaj dvakrat, če Izvajalec seveda dostavi popoln

izdelek.

Omenjeni sistem se, kot že omenjeno, redno posodablja z novimi testnimi primeri

in navodili, ki nastajajo med samim načrtovanjem in razvojem novih funkcionalnosti.

Zapisana navodila niso pravila, katerih se mora testna ekipa strogo držati, temveč le

smernice, ki izvajalcem omogočajo lažje in bolǰse izvajanje del. Opisani testni scenariji

in primeri so se prav tako izkazali za odličen vir dokumentacije, ki je na tak način v

vsakem trenutku na voljo celotni ekipi. Zapisane smernice za prijavo napak so odličen

pripomoček za ekipo, ki se ukvarja s končnimi uporabniki, saj so končni uporabniki tisti,

ki se srečujejo z napakami med samo uporabo aplikacij in dober opis le-teh pripomore

k hitreǰsemu reševanju s strani zunanjega izvajalca.

7 Bibliography

[1] Scott Ambler. User Stories: An Agile Introduction. In Agile Modeling. URL:

http://www.agilemodeling.com/artifacts/userStory.htm. (Cited on page 27.)

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing, volume 54.

2008. URL: http://www.amazon.com/Introduction-Software-Testing-Paul-

Ammann/dp/0521880386. (Cited on pages 18 and 19.)

[3] Antonia Bertolino. Software Testing Research and Practice. URL:

http://www.cis.upenn.edu/\simlee/05cis700/papers/Ber03.pdf. (Cited on

page 12.)

[4] Börger Egon and Stärk Robert. Abstract State Machines. Springer-Verlag

Berlin Heidelberg, page 437, 2003. doi:10.1007/978-3-642-18216-7. (Cited

on page 13.)

[5] William D. Goran. Testing Guidelines for GRASS Ports and Drivers. 1989. URL:

http://www.dtic.mil/dtic/tr/fulltext/u2/a221176.pdf. (Cited on page 19.)

[6] IEEE, Pierre Bourque, and Richard E. Fairley. SWEBOK v.3. 2014. doi:10.1234/

12345678. (Cited on pages 7, 8, 14, and 17.)

[7] IEEE Computer Society. IEEE Standard for Software Quality Assurance Pro-

cesses, 2014. doi:10.1109/IEEESTD.2014.6835311. (Cited on page 5.)

[8] ISixSigma. What Is Six Sigma? https://www.isixsigma.com/new-to-six-

sigma/getting-started/what-six-sigma/. (Cited on page 1.)

[9] ISO. ISO 9000. https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en.

(Cited on page 1.)

[10] ISO. ISO/IEC 15504 - Information technology – Process assessment. https:

//www.iso.org/standard/37454.html?browse=tc. (Cited on page 5.)

[11] ISO. Quality management systems - Fundamentals and vocabulary. Technical

report, 2015. (Cited on page 4.)

37

http://www.agilemodeling.com/artifacts/userStory.htm
http://www.amazon.com/Introduction-Software-Testing-Paul-Ammann/dp/0521880386
http://www.amazon.com/Introduction-Software-Testing-Paul-Ammann/dp/0521880386
http://www.cis.upenn.edu/$\sim $lee/05cis700/papers/Ber03.pdf
http://dx.doi.org/10.1007/978-3-642-18216-7
http://www.dtic.mil/dtic/tr/fulltext/u2/a221176.pdf
http://dx.doi.org/10.1234/12345678
http://dx.doi.org/10.1234/12345678
http://dx.doi.org/10.1109/IEEESTD.2014.6835311
https://www.isixsigma.com/new-to-six-sigma/getting-started/what-six-sigma/
https://www.isixsigma.com/new-to-six-sigma/getting-started/what-six-sigma/
https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en
https://www.iso.org/standard/37454.html?browse=tc
https://www.iso.org/standard/37454.html?browse=tc

Kovač R. Software quality assurance on a case study of outsourced development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2017 38

[12] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing computer software.

Dreamtech Press, 1999. (Cited on page 8.)

[13] Bozena Poksinska, Jens Jörn Dahlgaard, and Marc Antoni. The state of ISO

9000 certification: a study of Swedish organizations. The TQM Magazine,

14(5):297–306, oct 2002. URL: http://www.emeraldinsight.com/doi/10.1108/

09544780210439734, doi:10.1108/09544780210439734. (Cited on page 1.)

[14] Pramod. Software Testing Strategies. http://

softwaretestinghome.blogspot.si/2008/08/testing-strategies-

approaches.html. (Cited on page 11.)

[15] Ian Sommerville. Software Engineering. 2010. doi:10.1111/j.1365-

2362.2005.01463.x. (Cited on page 4.)

[16] The Interaction Design Foundation. User Personas. https://www.interaction-

design.org/literature/article/user-personas-for-mobile-design-and-

development-a-winning-technique-for-great-ux. (Cited on page 8.)

[17] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.

Book, page 433, 2007. doi:10.1145/357474.355050. (Cited on page 4.)

[18] WideSkills. 03 - Test artefacts. In Software Testing Tutorial, chap-

ter 3. WideSkills.com. URL: http://www.wideskills.com/software-testing-

tutorial/test-artifacts. (Cited on page 6.)

[19] Wikipedia. Mars Climate Orbiter. https://en.wikipedia.org/wiki/

Mars Climate Orbiter. (Cited on page 10.)

[20] Wikipedia. Perpetual Beta. https://en.wikipedia.org/wiki/Perpetual beta.

(Cited on page 19.)

[21] Wikipedia. Test Levels. https://en.wikipedia.org/wiki/

Software testing#Testing levels. (Cited on page 14.)

[22] Wikipedia. Test Plan. https://en.wikipedia.org/wiki/Test plan. (Cited on

pages VIII, 6, and 7.)

[23] Wikipedia. Usability testing. https://en.wikipedia.org/wiki/

Usability testing#cite note-apple1982-15. (Cited on page 20.)

http://www.emeraldinsight.com/doi/10.1108/09544780210439734
http://www.emeraldinsight.com/doi/10.1108/09544780210439734
http://dx.doi.org/10.1108/09544780210439734
http://softwaretestinghome.blogspot.si/2008/08/testing-strategies-approaches.html
http://softwaretestinghome.blogspot.si/2008/08/testing-strategies-approaches.html
http://softwaretestinghome.blogspot.si/2008/08/testing-strategies-approaches.html
http://dx.doi.org/10.1111/j.1365-2362.2005.01463.x
http://dx.doi.org/10.1111/j.1365-2362.2005.01463.x
https://www.interaction-design.org/literature/article/user-personas-for-mobile-design-and-development-a-winning-technique-for-great-ux
https://www.interaction-design.org/literature/article/user-personas-for-mobile-design-and-development-a-winning-technique-for-great-ux
https://www.interaction-design.org/literature/article/user-personas-for-mobile-design-and-development-a-winning-technique-for-great-ux
http://dx.doi.org/10.1145/357474.355050
http://www.wideskills.com/software-testing-tutorial/test-artifacts
http://www.wideskills.com/software-testing-tutorial/test-artifacts
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Perpetual_beta
https://en.wikipedia.org/wiki/Software_testing#Testing_levels
https://en.wikipedia.org/wiki/Software_testing#Testing_levels
https://en.wikipedia.org/wiki/Test_plan
https://en.wikipedia.org/wiki/Usability_testing#cite_note-apple1982-15
https://en.wikipedia.org/wiki/Usability_testing#cite_note-apple1982-15

	Introduction
	Theoretical Background
	Test Artifacts
	Software Testing

	Software Testing: A Detailed Overview
	Test Approaches
	Test Selection
	Selection Based on Code
	Other Selection Criteria

	Testing Levels
	Unit Testing
	Integration Testing
	Component Interface Testing
	System Testing

	Testing by Objective
	The reason behind a “custom” approach

	The Provider’s Approach
	Asana as the Tool of the Trade
	Workspaces
	Projects
	Sections
	Tasks

	Structuring Test Suites
	Designing Test Scenarios and Test Cases
	Performing Tests
	Reporting Bugs

	Discussion and Conclusion
	Povzetek naloge v slovenskem jeziku
	Bibliography

