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Naslov zaključne naloge: Simplicialni kompleksi, orientacija in klasifikacija ploskev

Kraj: Koper

Leto: 2016
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Mentor: prof. dr. Bojan Kuzma

Ključne besede: simpleks, triangulacija, realizacija, kompaktna ploskev

Math. Subj. Class. (2010): 57Q05, 55U10, 55U05, 57Q15.

Izvleček:

V glavnem delu naloge definiramo geometrijske simplicialne komplekse in obravnavamo

topološke lastnosti simplicialnih politopov. Nato definiramo topološke in abstraktne

simplicialne komplekse, ter dokažemo izrek o realizaciji, s pomočjo katerega naprej

obravnavamo simplicialno orientacijo in orientacijo triangulabilnih ploskev. Kot zgled

pokažemo da je valj neorientabilen in Möbiusov trak neorientabilen. V zadnjem

poglavju dokažemo da je vsaka kompaktna ploskev homeomorfna kvocientnemu pros-

toru nekega poligona v ravnini ter formuliramo izrek o njihovi klasifikaciji.
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1 Introduction

In the final project paper we describe some basic notions about simplicial complexes

and present some of their applications. Specifically, the principal problem of topology

is to determine which spaces are the same up to homeomorphism. The motivation to

introduce simplicial complexes here arises from a common idea in many branches of

mathematics: if possible, we break the space into simpler pieces and consider the way

in which they are put together. Let us give an overview of the topics to be presented:

In Chapter 2 we recall some basic definitions and theorems which are going to be

frequently used in the upcoming chapters.

In Chapter 3 we primarily define geometric simplexes and study topological proper-

ties of simplicial polytopes. Also, explained is a way to subdivide a given geometric

simplicial complex. Furthermore, we define topological and abstract simplexes. The

latter lead us to show the fact that every abstract simplicial complex has a geometric

realization.

In Chapter 4 we define orientation of simplexes, introduce the notion of induced ori-

entation and as an example prove that cylinder is orientable and that Möbius strip is

nonorientable.

In Chapter 5 we prove an important step of classification of compact surfaces, the fact

that each compact surface is a quotient space of some polygon in plane.

Unless otherwise stated, our work in Chapters 2 mostly follows from both [5] and [11],

the main source of Chapter 3 is [5], while Chapters 4 and 5 are concentrated on [7]

and [9], respectively. Figures 6, 7 and 8 are taken from [9], while figure 10 is from [6].
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2 Preliminaries

Definition 2.1. Let K be a field. A vector space (V,+, ·) over the field K is an additive

abelian group, together with a multiplication of elements of V by elements of K, i.e.

an operation · : K× V → V satisfying the following conditions:

1. If 1 is unity of K, then 1v = v for all v ∈ V .

2. If c ∈ K and v, w ∈ V , then c(v + w) = cv + cw.

3. If x, y ∈ K and v ∈ V , then (x+ y)v = xv + yv.

4. If x, y ∈ K and v ∈ V , then (xy)v = x(yv).

Definition 2.2. Subset W of V is said to be subspace of V , if it is subgroup of (V,+)

and if c ∈ K and v ∈ W , then cv ∈ W .

Definition 2.3. Vector space V over K is said to be normed if there exist a map

‖ · ‖ : V → R with the following properties:

1. ‖x‖ = 0 ⇐⇒ x = 0

2. ‖λx‖ = |λ|‖x‖ ∀x ∈ V, ∀λ ∈ K

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V .

Definition 2.4. Subset M of Rn containing elements of form (1 − λ)x + λy where

x, y ∈M and λ ∈ R is called an affine set.

Theorem 2.5. If V is a finite dimensional normed vector space over K, then any two

norms on V are equivalent.

Proof. See [2], page 69.

Theorem 2.6. Subspaces of Rn are precisely those affine sets which contain 0.

Proof. If M is subspace of V , it contains 0 and since it is closed under addition and

scalar multiplication, it is in particular an affine set.

Conversely, suppose M is an affine set containing 0. Pick x, y ∈ M and λ ∈ R
arbitrarily. Firstly, λx = (1 − λ)0 + λx ∈ M . Furthermore, x + y = 2

(
1
2
(x+ y)

)
=

2
(
1
2
x+

(
1− 1

2

)
y
)
∈M . Hence, M is a subspace.
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Theorem 2.7. For each nonempty affine set M ⊆ Rn there exist a unique subspace

W of Rn such that M = W + a, for some a ∈M .

Proof. Choose an arbitrary y ∈ M . Then L̂ = M + (−y) = M − y is an affine set: if

x−y, z−y ∈M−y and λ ∈ R, then (1−λ)(x−y)+λ(z−y) = (1−λ)x+λz−y ∈M−y.

Also, it obviously contains 0. By theorem 2.6, L̂ is subspace of Rn. Since y was

arbitrary, we can create the desired subspace with L = M −M .

For the uniqueness part, take L1 and L2 to be subspaces with such property: L1 +a1 =

M = L2 + a2 for some a1, a2 ∈M . Then L2 = L1 + a, a = a1 − a2 ∈M . Since 0 ∈ L2,

then −a ∈ L1 and consequently a ∈ L1. Hence, L2 = L1 + a ⊆ L1. By symmetry, we

also get L1 ⊆ L2. The uniqueness follows.

Definition 2.8. Let V and W be vector spaces over the same field K. A map A : V →
W is linear if for all x, y ∈ V and each λ ∈ K we have

A(x+ y) = A(x) + A(y)

A(λx) = λA(x)

Definition 2.9. Let M ⊆ Rn be an affine set. A mapping T : M → Rm is an affine

map if T ((1− λ)x+ λy) = (1− λ)T (x) + λT (y) holds for arbitrary x, y ∈M .

Remark 2.10. An inductive argument shows that condition on mapping T in the defi-

nition 2.9 can be stated as

T

(
n∑
i=1

λixi

)
=

n∑
i=1

λiT (xi), with
n∑
i=1

λi = 1, λi ∈ R

Theorem 2.11. A mapping T : Rn → Rm is affine if and only if is of form x 7→ Ax+b,

where A : Rn → Rm is a linear transformation and b ∈ Rm.

Proof. Mapping T : Rn → Rm, T (x) = Ax+ b is indeed an affine mapping:

T ((1− λ)x+ λy) = A((1− λ)x+ λy) + b

= (1− λ)(Ax+ b) + λ(Ay + b)

= (1− λ)T (x) + λT (y)

Conversely, let T : Rn → Rm be an affine map. Set b = T (0) and say A(x) = T (x)− b.
Then A maps from Rn to Rm and we note that it suffices to show that A is linear.

Clearly, A(0) = 0. Also, A is affine:

A((1− λ)x+ λy) = T ((1− λ)x+ λy)− b

= (1− λ)T (x) + λT (y)− b

= (1− λ)(T (x)− b) + b(1− λ) + λT (y)− b

= (1− λ)Ax+ λAy
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Finally, A(λx) = A((1 − λ)0 + λx) = (1 − λ)A0 + λAx = λAx. Also, A(x + y) =

A
(
2
(
1
2
(x+ y

))
= 2A

(
1
2
(x+ y)

)
= 2A

((
1− 1

2

)
x+ 1

2
y
)

= 2
(
1
2
Ax+ 1

2
Ay
)

= Ax +

Ay

Remark 2.12. Note that if affine map T is defined on the entire Rn, then it is automat-

ically continuous. Namely, by theorem 2.11, it is of form x 7→ Ax + b. Furthermore,

since Rn and Rm are normed finite dimensional vector spaces, each linear map between

them is continuous (for a proof, see [2], page 70). So, x 7→ Ax + b is composition of

continuous functions x 7→ Ax and x 7→ x+ b.

The remark 2.12 rises the following question: given an arbitrary affine map, does it

have continuous extension? Also, does there exist an affine space containing certain

points? If it does, is it unique? We will answer these questions soon in the following

series of definitions and theorems:

Definition 2.13. A set of points Hk of Rn is called a k-dimensional hyperplane if

there is a linearly independent set of vectors pi for 1 ≤ i ≤ k, k < n and a vector p0

such that each element h ∈ Hk may be expressed as

h = p0 +
k∑
i=1

λipi, λi ∈ R

Example 2.14. If p0 = (0, 0, . . . , 0), then it is easy to check that Hk is a k-dimensional

vector subspace of Rn. In general, Hk is a translation of some vector subspace.

Proposition 2.15. Vectors p1−p0, p2−p0, . . . pk−p0 ∈ Rn are linearly independent if

and only if no (k−1)-dimensional hyperplane contains all the points p0, p1, . . . , pk ∈ Rn.

Proof. Suppose that p1−p0, p2−p0, . . . , pk−p0 are linearly independent and that there

is a (k − 1)-dimensional hyperplane containing p0, p1, . . . , pk. This is equivalent with

the existence of (k − 1)-dimensional subspace V and x ∈ Rn such that p0 − x, p1 −
x, . . . , pk−x ∈ V . Since V is a vector subspace, pi−p0 = (pi−x)−(p0−x) ∈ V −V = V ;

a contradiction since pi − p0 are linearly independent.

Conversely, suppose that there is no (k− 1)-dimensional hyperplane containing all the

points p0, p1, . . . , pk ∈ Rn and that p1 − p0, p2 − p0, . . . pk − p0 are linearly dependent.

Hence the subspace of Rn spanned by these vectors is of dimension at most k − 1.

Then, after eventually adding some vectors, we get (k − 1)-dimensional subspace V

containing all the vectors p1 − p0, p2 − p0, . . . , pk − p0. But then p0 + V defines the

(k − 1)-dimensional hyperplane which obviously contains p0, p1, . . . , pk.

Remark 2.16. Given k+1 points in Rn. We say that they are geometrically independent,

if they do not generate a (k − 1)-dimensional hyperplane.
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The proposition we have just proved motivates the following important definition:

Definition 2.17. A set P = {p0, p1, . . . , pk} in Rn is affinely independent if vectors

p1 − p0, p2 − p0, . . . , pk − p0 are linearly independent.

Let us show that the choice of p0 in definition 2.17 is not important:

Lemma 2.18. Suppose P = {p0, p1, . . . , pk} is affinely independent set of vectors in

Rn. Then the vectors pi − pj for any j fixed and i 6= j are also linearly independent.

Proof. First suppose that the following equation holds for some real scalars λi:

k∑
i=0
i 6=j

λi(pi − pj) = 0

Then the left hand side can be written in the following way:

k∑
i=0
i 6=j

λi(pi − p0 − (pj − p0)) =
k∑
i=0
i 6=j

λi(pi − p0)−

 k∑
i=0
i 6=j

λi

 (pj − p0)

By the assumption, we have λi = 0 for all i 6= j.

Corollary 2.19. Any subset of affinely independent set P = {p0, p1, . . . , pk} is itself

affinely independent.

Proof. Take an arbitrary subset S of affinely independent set P . By lemma 2.18, it

is not important whether S contains p0 or not. Evidently, as any subset of linearly

independent set is again linearly independent, the statement follows.

Lemma 2.20. The set P = {p0, p1, . . . , pk} in Rn is affinely independent if and only

if the equations
∑k

i=0 λipi = 0 and
∑k

i=0 λi = 0 for pi ∈ Rn and λi ∈ R imply λi = 0

for all 0 ≤ i ≤ k.

Proof. From the given conditions, we notice that

0 =
k∑
i=0

λipi =
k∑
i=1

λipi + λ0p0 =
k∑
i=1

λipi −

(
k∑
i=1

λi

)
p0 =

k∑
i=1

λi(pi − p0)

By definition, pi are affinely independent if pi−p0 are linearly independent. This gives

that λi = 0 for 1 ≤ i ≤ k. But then from
∑k

i=0 λi = 0 we deduce that also λ0 = 0.

The following theorem gives an useful characterization of points in a hyperplane con-

taining the given set of points:
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Theorem 2.21. If P = {p0, p1, . . . , pk} for k ≤ n is an affinely independent set in

Rn, then there is unique k-dimensional hyperplane Hk containing P . Moreover, each

element h ∈ Hk may be uniquely expressed as h =
∑k

i=0 µipi, where
∑k

i=0 µi = 1 and

µi ∈ R.

Proof. Let Hk be the set of vectors, which all can be written in the form

h = p0 +
k∑
i=1

λi (pi − p0) , λi ∈ R

By definition 2.13, Hk is a hyperplane. Furthermore, from the equations

pj = p0 +
k∑
i=0

δij (pi − p0)

it follows that this hyperplane contains the set P . Since the set
{
h− p0 | h ∈ Hk

}
is

a k-dimensional subspace of Rn with basis pi − p0, 1 ≤ i ≤ k, this representation is

unique. Now note that we can rearrange the equations into

h = p0 +
k∑
i=1

λi(pi − p0) =

(
1−

k∑
i=1

λi

)
p0 +

k∑
i=1

λipi

So in fact, we can take µ0 = 1−
∑k

i=1 λi and µi = λi, 1 ≤ i ≤ k to see that both above

written conditions are satisfied. Moreover, since λi’s are unique, so are µi’s.

For the uniqueness part, suppose that there exists another such k-dimensional hyper-

plane F k containing P . Then there is a linearly independent set B = {b1, . . . , bk} and

a vector b0, such that f lies in F k if and only if

f = b0 +
k∑
i=1

ηibi, ηi ∈ R (2.1)

Since F k contains P , there exist real numbers αij such that

pj = b0 +
k∑
i=1

αijbi, 0 ≤ j ≤ k

From this, we obtain the following system of equations for bi, 1 ≤ i ≤ k:

pj − p0 =
k∑
i=1

(αij − αi0) bi

Since B and pi− p0, 1 ≤ i ≤ k are both assumed to be linearly independent sets, there

exist unique solutions:

bi =
k∑
i=1

βij(pj − p0), 1 ≤ i ≤ k

Plugging in bi, 0 ≤ i ≤ k into the equation 2.1, the conclusion thatHk = F k follows.
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Now we can positively answer on the question on the existence of the continuous

extension of an affine map:

Theorem 2.22. Let P = {p0, p1, . . . , pk} for k ≤ n be an affinely independent set in

Rn, and Hk the unique hyperplane containing P . Then any affine function f : Hk →
Rm has an affine continuous extension f̂ : Rn → Rm.

Proof. Since P = {p0, p1, . . . , pk} is an affinely independent set, the vectors pi−p0, 0 ≤
i ≤ k are linearly independent. Now add ŵk+1, ŵk+2, . . . , ŵn ∈ Rn to get a basis

{p1 − p0, p2 − p0, . . . , pk − p0, ŵk+1, ŵk+2, . . . , ŵn} of vector space Rn.

Introduce wi = ŵi + p0 for k + 1 ≤ i ≤ n and define f(wi) = 0. Now, we construct

a linear function A : Rn → Rm first by giving the images of the basis vectors. A(pi −
p0) = f(pi) − f(p0), 0 ≤ i ≤ k and A(ŵi) = A(wi − p0) = f(wi) − f(p0) = −f(p0).

Furthermore, pick an arbitrary x ∈ Rn. Then it is written uniquely in form

x =
k∑
i=1

λi(pi − p0) +
n∑

i=k+1

λi(wi − p0), λi ∈ R

Finally, the linear map determined by images of basis vector is

A(x) =
k∑
i=1

λiA(pi − p0) +
n∑

i=k+1

λiA(wi − p0)

At the last step, we define f̂ : Rn → Rm by f̂(x) = A(x − p0) + f(p0). As first,

note that f̂ is affine by the theorem 2.11. Hence, it is continuous by remark 2.12.

We easily check that f̂(pi) = A(pi − p0) + f(p0) = f(pi) − f(p0) + f(p0) = f(pi) for

0 ≤ i ≤ k and f̂(wi) = A(wi − p0) + f(p0) = 0. To show that f̂ ≡ f on Hk we pick

an arbitrary point x ∈ Hk. By the definition 2.13 one can write it uniquely in form

x = p0 +
∑k

i=1 λi(pi − p0) for some λi ∈ R. Then

f̂(x) = A(p0 +
k∑
i=1

λi(pi − p0)− p0) + f(p0)

=
k∑
i=1

λiA(pi − p0) + f(p0)

=

(
1−

k∑
i=1

λi

)
f(p0) +

k∑
i=1

λif(pi)

= f

((
1−

k∑
i=1

λi

)
p0 +

k∑
i=1

λipi

)
= f(x)

where in the last line of the equation we use the fact that f is affine on Hk. This

completes the proof.
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For the end of this section, let us recall some basic properties of convex sets:

Definition 2.23. A subset C of Rn is convex if x, y ∈ C and λ ∈ [0, 1] imply (1 −
λ)x+ λy ∈ C.

Smallest convex subset containing C ∈ Rn is called convex hull of C, denoted by co(C).

Proposition 2.24. Let A and B be arbitrary subsets of Rn such that A ⊆ B. Then

co(A) ⊆ co(B).

Proof. Since co(A) is by the previous definition the smallest subset of Rn containing

A, one concludes co(A) ⊆ B. But since also B ⊆ co(B), we have co(A) ⊆ co(B).

In the following lemma, we prove an essential property about convex hulls of finite sets:

Lemma 2.25. Convex hull of a finite set P = {p0, p1, . . . , pk} in Rn is a compact set.

Proof. In Rn compact sets are precisely those which are bounded and closed. Note

also, that by theorem 2.5 we have that all norms on a finite dimensional vector space

are equivalent.

Firstly, let us show that P is bounded. Namely, P ⊆ B(0,M), whereM = max0≤i≤k ‖pi‖.
To prove this, choose an arbitrary x ∈ co(P ). Then it can be written as x =

∑k
i=0 λipi

with
∑k

i=0 λi = 1 and 0 ≤ λi ≤ 1. We estimate the distance between x and 0:

‖x− 0‖ = ‖
k∑
i=0

λipi‖ ≤
k∑
i=0

|λi|‖pi‖ ≤M
k∑
i=0

λi = M

Hence, co(P ) ⊆ B(0,M).

To see that co(P ) is closed, note that it is enough to show that co(P ) ⊆ co(P ). Take

an arbitrary point x ∈ co(P ). Then x is the limit of a sequence {xn}n∈N lying in co(P ).

So, xn =
∑k

i=0 λinpi with
∑k

i=0 λin = 1, 0 ≤ λin ≤ 1.

By passing to a convergent subsequence, we can define µi = limj→∞ λinj
, 0 ≤ i ≤ k.

Since [0, 1] is a closed subset of complete space R, we have 0 ≤ µi ≤ 1 for each µi.

Furthermore, since
∑k

i=0 λin = 1 for each n ∈ N, so it is in the limit:
∑k

i=0 µi = 1.

Finally, as a normed vector space, Rn is also a linear topological space, which means

that vector addition and scalar multiplication are continuous. Again, after passing to

subsequences in each of the sequences λin for 0 ≤ i ≤ k, we have

x = lim
n→∞

xn = lim
n→∞

k∑
i=0

λinpi =
k∑
i=0

µipi

This shows that x ∈ co(P ) and consequently, co(P ) ⊆ co(P ).

Lemma 2.26. Given a continuous bijection f : X → Y , where X is compact and Y is

Hausdorff topological space. Then it is closed map. In particular, f is homeomorphism.
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Proof. A ⊂ X be closed. Then A is compact as well, as a closed subset of compact

set. By continuity, f(A) is also compact. But then, since Y is Hausdorff space, f(A)

must be also closed. For the second part, just note that A closed in X ⇔ f(A) closed

in Y . Hence, f is homeomorphism.

Proposition 2.27. Let U ⊆ Rn, n ∈ N be bounded convex open set and w ∈ U . Then

each ray R from w intersects ∂U , the boundary of U in exactly one point. Moreover,

there is a homeomorphism of U with the unit disk Dn = {y ∈ Rn | ‖y‖ ≤ 1} which

maps ∂U onto ∂Dn.

Proof. (taken from [3])

Let R be a fixed ray from w ∈ U . Clearly, it is a set {w + tp | t ≥ 0} for some unit

vector along R. Since U is bounded, R intersects ∂U in some point x, which can be

written in form x = w + t1p for some t1 > 0.

Suppose that R intersects ∂U in y 6= x. Without loss of generality, we assume that

y = w + t2p, where t2 > t1. Then x = (1 − t)w + ty for t = t1
t2
∈ (0, 1), i.e. x is on a

line segment between w and y. As y ∈ ∂U = U \ U , there is a sequence {yn}n∈N ∈ U
converging to y. But, then the sequence wn = x−tyn

1−t ∈ U converges to w ∈ U . This

gives that x = twn + (1 − t)yn for some t ∈ (0, 1) and wn, yn ∈ U , which implies that

x ∈ U . This is a contradiction, since x ∈ ∂U and ∂U ∩ U = ∅.
For the second part of the statement, assume that w is the origin. Function f :

Rn \ {0} → ∂Dn defined by f(x) = x
‖x‖ is continuous. By the above arguments, f

restricted to ∂U is bijection. Furthermore, since ∂U is compact, f�∂U : ∂U → ∂Dn

is homeomorphism by lemma 2.26. Let g : ∂Dn → ∂U be its inverse. To extend g

bijectively on whole Dn, we map a line segment joining 0 and u ∈ ∂Dn linearly onto a

line segment joining 0 and g(u) ∈ ∂U . Formally, its extension ĝ : Dn → U is defined

by

ĝ(x) =

x · ‖g
(

x
‖x‖

)
‖ x 6= 0

0 x = 0

It is obvious that ĝ is continuous for x 6= 0. So it remains to examine continuity at

x = 0: since g is continuous on compact set, there is a constant M > 0 such that

‖g(x)‖ ≤ M for each x ∈ ∂Dn. Let ε > 0 be an arbitrary real number and choose

0 < δ < ε
M

. If ‖x‖ < δ, then ‖ĝ(x) − ĝ(0)‖ < Mδ < ε and hence, ĝ is continuous at

x = 0.
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3 Geometric, Topological and

Abstract Simplicial Complexes

3.1 Geometric Simplicial Complexes

The theorem 2.21 naturally leads to something one might have already suspected: vec-

tors in Hk, hyperplane containing given affinely independent set P = {p0, p1, . . . , pk}
are uniquely determined by vectors in Rk (as k-dimensional subspaces of Rn are iso-

morphic to Rk). This means that for each (µ1, µ2, . . . , µk)
T in Rk, there is h ∈ Hk such

that h =
∑k

i=0 µipi, where we define µ0 = 1 −
∑k

i=1 µi. It is reasonable to formalize

this idea by coordinates and mappings:

Definition 3.1. Given an affinely independent set P = {p0, p1, . . . , pk} and the unique

k-dimensional hyperplane Hk containing it. Then the real numbers µi, 0 ≤ i ≤ k are

the barycentric coordinates of vector h ∈ Hk with respect to P if

h =
k∑
i=0

µipi and
k∑
i=0

µi = 1.

Proposition 3.2. Let P = {p0, p1, . . . , pk} be an affinely independent set and let Hk

be the unique k-dimensional hyperplane containing it. Then the transformation bP :

Rk → Hk defined for v = (v1, v2, . . . , vk)
T ∈ Rk by

bP (v) =

(
1−

k∑
i=1

vi

)
p0 +

k∑
i=1

vipi

is affine, one-to-one, onto and its inverse is also affine.

Proof. Firstly, for v, w ∈ Rk and arbitrary real number λ an elementary calculation

shows that bP ((1− λ)v + λw) = (1− λ)bP (v) + λbP (w). By definition 2.9, bP is affine

map.

If bP (v) = bP (w) for some v and w, where v, w ∈ Rk. Then we can set v =

(λ1, λ2, . . . , λk)
T and w = (µ1, µ2, . . . , µk)

T for λi, µi ∈ R and straightforward cal-

culation shows
k∑
i=1

(λi − µi) (pi − p0) = 0
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By affine independence of pi, it is concluded that λi = µi for each 1 ≤ i ≤ k. This

means v = w and consequently, bP is one-to-one.

If we pick an arbitrary h ∈ Hk, then by theorem 2.21 it can be uniquely expressed as

h =

(
1−

k∑
i=1

µi

)
p0 +

k∑
i=1

µipi (3.1)

for µi ∈ R, 1 ≤ i ≤ k. So the obvious choice v = (µ1, µ2, . . . , µk)
T satisfies bP (v) = h.

Hence, bP is also onto.

Since bP is bijective, we can define inverse map b−1P : Hk → Rk. Again, we express an

arbitrary h ∈ Hk identically as in the equation and easily define

b−1P

((
1−

k∑
i=1

µi

)
p0 +

k∑
i=1

µipi

)
= (µ1, µ2, . . . , µk)

T

It is a matter of simple calculation to show that b−1P is an affine map.

By the theorem 2.21 and proposition 3.2, the next definition is unambiguous:

Definition 3.3. Let P = {p0, p1, . . . , pk} be the set of k + 1 affinely independent

points in Rn. The k-dimensional geometric simplex, called geometric k-simplex in Rn

generated by P , is the set of all points of the hyperplane Hk containing P having

nonnegative barycentric coordinates with respect to P .

An open geometric k-simplex is defined similarly, except that all barycentric coordi-

nates are required to be positive.

The geometric k-simplex generated by P is denoted by 〈p0p1 . . . pk〉. In general, if

vertices are not given explicitly, it will be denoted by sk.

Remark 3.4. By proposition 3.2, barycentric coordinates with respect to P are unique.

Example 3.5. We examine some cases to see which object are simplexes of smaller

dimensions: if k = 0 we get 〈p0〉 =
{∑0

i=0 µip0 | µ0 ≥ 0,
∑0

i=0 µi = 1
}

= {p0}. So, we

get only the point p0. For k = 1 we get 〈p0p1〉 =
{∑1

i=0 µip0 | µi ≥ 0,
∑1

i=0 µi = 1
}

=

{(1− µ)p0 + µp1 | µ ≥ 0}, which is usual line segment. Now, for k = 2 we get 〈p0p1p2〉 ={∑2
i=0 µip0 | µi ≥ 0,

∑2
i=0 µi = 1

}
. We show that this is a plane triangle. Take an ar-

bitrary x from this set and assume that x 6= p0. Consider that x =
∑2

i=0 µipi =

µ0a0 + (1− µ0)[
µ1
λ
p1 + µ2

λ
p2] where λ = 1− µ0 which is nonzero, since x 6= p0. Notice

that p = µ1
λ
p1 + µ2

λ
p2 is a point on line segment between p1 and p2 and hence, x is a

point on a line segment between p0 and p. Notice also that 2-simplex is a union of such

segments, i.e. it is a plane triangle. It is similarly shown that for k = 3 we obtain a

tetrahedron.
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If one wants to see what are the geometric open simplex in each of these cases, one

has to only exclude the possibility of having any barycentric coordinate equal to zero.

Indeed, for k = 0 we get a point p0 again. In case k = 1, we get all the points as before

except p0 and p1 - so, we get an open line segment. For k = 2 we get open triangle,

i.e. from the original triangle we obtained we exclude 〈p0〉, 〈p1〉 and 〈p2〉, but also line

segments 〈p0p1〉,〈p1p2〉 and 〈p2p0〉. In case k = 3, obtained is the open tetrahedron in

which are excluded 〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉, line segments 〈p0p1〉, 〈p1p2〉, 〈p2p3〉, 〈p3p0〉 and

also triangles 〈p0p1p2〉, 〈p1p2p3〉, 〈p2p3p0〉 and 〈p0p1p3〉.

Suppose 〈p0p1 · · · pk〉 is geometric k-simplex. Referring to corollary 2.19, it follows that

any nonempty subset of set {p0, p1, . . . , pk} is itself the set of vertices of a geometric

simplex of certain dimension, subsimplex of the initial simplex.

Definition 3.6. Subsimplex of some simplex sk is called a face of sk.

In particular, 〈p0p1 · · · p̂j . . . pk〉 will denote the face of 〈p0p1 · · · pk〉 obtained by deleting

pj from set of its vertices {p0, p1, . . . , pn}.

Example 3.7. Given geometric simplex 〈p0p1 . . . pk〉. From the definition 3.6 we con-

clude that each 〈pi〉, 0 ≤ i ≤ k is a face of it. Also, 〈p0p1 . . . pk〉 is a face of itself.

Remark 3.8. Let sk be an arbitrary k-simplex. To generate a simplex of dimension

0 ≤ i ≤ k, one has to choose i+ 1 points out of given k+ 1 points. Hence, the number

of faces of sk equals to number of ways to do this. By elementary calculation we get

that this number equals to
(
k+1
1

)
+
(
k+1
2

)
+ · · ·+

(
k+1
k+1

)
=
∑k+1

i=0

(
k+1
i

)
− 1 = 2k+1 − 1.

Lemma 3.9. Let x ∈ 〈p0p1 · · · pk〉. Then there exist proper disjoint faces 〈p0p1 · · · pr〉
and 〈pr+1pr+2 · · · pk〉 of it such that x lies on a segment connecting points of them, i.e.

x = λ1x
′ + λ2x

′′ where λ1 + λ2 = 1 with λ1, λ2 ∈ [0, 1] and x′ ∈ 〈p0p1 · · · pr〉, x′′ ∈
〈pr+1pr+2 · · · pk〉 for integer 0 < r ≤ k.

Proof. First, write x in barycentric coordinates x =
∑k

i=0 µipi, where
∑k

i=0 µi = 1 and

0 ≤ µi ≤ 1. Choose an integer 0 < r ≤ k and denote λ1 =
∑r

i=0 µi and λ2 =
∑k

i=r+1 µi.

If one of them is zero, say λ2, then µi = 0 for all r + 1 ≤ i ≤ k and x =
∑k

i=0 µipi =∑r
i=0 µipi, so that we can put x′ =

∑r
i=0 µipi and x′′ = 0. Treatment of the case λ1 = 0

is completely analogous.

In the case that both of them are nonzero real numbers, we can set

x′ =
r∑
i=0

µi
λ1
pi and x′′ =

k∑
i=r+1

=
µi
λ2
pi

to conclude that µi
λ1
, 0 ≤ i ≤ r and µi

λ2
, r + 1 ≤ i ≤ k are barycentric coordinates

of affinely independent sets {p0, p1, . . . , pr} and {pr+1, pr+2, . . . , pk} respectively. And
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then, by separating sums and plugging x′ and x′′, we get x = λ1x
′ + λ2x

′′, with

λ1 + λ2 = 1.

Proposition 3.10. The geometric k-simplex 〈p0p1 · · · pk〉 generated by a set P =

{p0, p1, . . . , pk} of k + 1 affinely independent points is exactly the convex hull of P ,

co(P ).

Proof. Let S be an arbitrary convex set containing P . We claim that k-simplex gen-

erated by P is contained in S. We proceed by induction. For k = 0, it holds trivially.

Suppose it is true up to k−1 and choose x in 〈p0p1 · · · pk〉. By previous lemma applied

on 〈p0〉 and 〈p1p2 · · · pk〉, there exist a point x′′ ∈ 〈p1p2 · · · pk〉, such that x is on a line

segment connecting p0 with x′′. By the induction hypothesis, x′′ ∈ S. Therefore, x as

a point on a segment connecting points from S is also in S, so 〈p0p1 · · · pk〉 ⊆ S. This

means that 〈p0p1 · · · pk〉 ⊆ co(P ).

To see co(P ) ⊆ 〈p0p1 · · · pk〉, we first show that given simplex is convex set. Choose

arbitrary x, y ∈ 〈p0p1 · · · pk〉 and arbitrary λ ∈ [0, 1]. Then

(1− λ)x+ λy = (1− λ)
k∑
i=0

µipi + λ
k∑
i=0

ηipi =
k∑
i=0

((1− λ)µi + ληi)pi

where 0 ≤ µi, ηi ≤ 1 with
∑k

i=0 µi = 1,
∑k

i=0 ηi = 1. But then (1 − λ)x + λy ∈
〈p0p1 · · · pk〉, as 0 ≤ (1− λ)µi + ληi ≤ 1 and

∑k
i=0(1− λ)µi + ληi = (1− λ)

∑k
i=0 µi +

λ
∑k

i=0 ηi = 1. By definition 3.3 we have P ⊆ 〈p0p1 · · · pk〉. Also, by proposition 2.24,

co(P ) ⊆ co(〈p0p1 · · · pk〉) and consequently co(P ) ⊆ 〈p0p1 · · · pk〉.

To investigate more general sets, we must be able to somehow join simplexes. And

if we are able, they will be basic building blocks of polyhedra and spaces which are

geometric realizations of them. To fruitfully work with it, mathematically more precise

definitions of this notions are to be introduced:

Definition 3.11. Two geometric simplexes sm and sn,m ≤ n, both lying in the same

ambient space RN , are properly joined if sm ∩ sn = ∅ or sm ∩ sn = sk for some k ≤ m,

i.e. sm ∩ sn is a common face of sm and sn.

Since joining simplexes will give rise to some more complicated structure, this concept

is formalized in the next definition:

Definition 3.12. A geometric simplicial complex K is finite collection of properly

joined geometric simplexes lying inside RN such that if sn is any simplex of K, then

each face of it also belongs to K.

Dimension of K is defined by dimK = maxs∈K dim s, i.e. it is the maximum dimension

among the dimensions of simplexes contained in it.
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Remark 3.13. Geometric 0-,1- and 2-simplexes contained in an geometric simplical

complex will be called vertices, edges and triangles respectively.

3.2 Topological Simplicial Complexes

Definition 3.14. Let X be a topological space. Topological n-simplex σn is a pair

(A, h) consisting of a topological space A ⊆ X and homeomorphism h : snA → A where

snA denotes some geometric n-simplex. The space A is said to be the carrier of snA.

Notion of face of a topological k-simplex is described naturally:

Definition 3.15. Let σn = (A, h) be topological simplex with h : snA → A. Then the

collection F ⊆ P (A) of all its faces is defined by

Fσn =
{
h(skA) | skA is a face of snA

}
Definition 3.16. Two topological simplexes (A, h) and (B, h′) which lie in the same

ambient space are properly joined if

1. A ∩B is face of both A and B

2. if s1 is the face of sA = h−1(A) and s2 is the face of sB = h′−1(B) then there

exist a linear bijection l : s1 → s2 with the property h�s1 = (h′�s2) ◦ l.

Definition 3.17. A topological complex K is at most countable collection of properly

joined simplexes such that each face of a simplex in K is itself simplex in K.

Remark 3.18. For certain class of spaces called compact surfaces, a topological complex

will consist only of finitely many properly joined simplexes. This theory will be exposed

in chapter 5.

3.3 Topological Properties of Geometric Complexes

Definition 3.19. Let K ⊆ Rn be a geometric simplicial complex. A simplicial poly-

tope, denoted by |K|, is the union of all simplexes in K, i.e. |K| = ∪s∈Ks.
Geometric simplicial complex K is said to be a triangulation of topological space X if

there exist a homeomorphism h : |K| → X.

Theorem 3.20. Let P = {p0, p1, . . . , pk} be the set of k+1 affinely independent points

in Rn. Then an open geometric k-simplex is a relatively open subset in the hyperplane

Hk containing P , with respect to subspace topology.
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Proof. Define H =
{

(λ0, λ1, . . . , λk) |
∑k

i=0 λi = 1, λi ∈ R
}
⊂ Rk+1 and function f :

H ∩ Rk+1
≥0 → co(P ) with

f((λ0, λ1, . . . , λk)) =
k∑
i=0

λipi

where Rk+1
≥0 = {(r0, r1, . . . , rk) | ri ∈ R, ri ≥ 0}. This function is well defined, i.e. maps

onto co(P ) by proposition 3.10. Moreover, by proposition 3.2, it is an affine bijection

and with affine inverse f−1. By theorem 2.22 f is restriction of continuous function to

H ∩ Rk+1
≥0 and hence, it is itself continuous. The same conclusion holds for its inverse.

Thus, function f is homeomorphism of spaces H ∩ Rk+1
≥0 and co(P ).

Now, note that f(Int(H ∩Rk+1
≥0 )) = Int(co(P )). But the left hand side of this equation

equals f(Int(H ∩ Rk+1
≥0 )) = f(Int(H) ∩ Int(Rk+1

≥0 )) = f(H ∩ Rk+1
>0 ). This leads to

f(H ∩Rk+1
>0 ) = Int(co(P )), which implies that open geometric simplex generated by P

coincides with the relative interior in Hk of simplex generated by P .

Proposition 3.21. Each point of |K| lies in the relative interior of exactly one simplex.

Proof. Suppose that s and t are simplexes of complex K whose relative interiors over-

lap. Since their intersection is evidently nonempty, they must intersect in a com-

mon face. Without loss of generality we can write s = 〈a0a1 . . . alal+1 . . . ak〉 and

t = 〈a0a1 . . . albl+1 . . . bn〉 for 0 ≤ l < k ≤ n. If x ∈ Int(s) ∩ Int(t), then

x =
l∑

i=0

µiai +
k∑

i=l+1

µiai =
l∑

i=0

λiai +
n∑

i=l+1

λibi

where
∑k

i=0 µi = 1 and
∑n

i=0 λi = 1 with condition 0 < λi, µi < 1, by theorem 3.20.

But then since {a0, a1, . . . al, al+1, . . . , ak, bl+1, . . . , bn} is affinely independent, λi = µi

for 0 ≤ i ≤ l and λi = 0, µj = 0 for l + 1 ≤ i ≤ k and l + 1 ≤ j ≤ n respectively,

which contradicts the requirement that all λi and µi are positive. So, the only face of

simplex that contains all the points of the relative interior is the whole simplex itself.

Hence s = t.

Example 3.22. Given is the geometric simplicial complex K consisting of two 2-

simplexes s21 and s22 together with their faces. Suppose also that they intersect 0-simplex

〈p〉, their common face. Then p ∈ |K| is in relative interior of 〈p〉.

Theorem 3.23. Simplicial polytope of n-dimensional geometric simplicial complex

K ⊆ RN is compact space.

Proof. Since |K| = ∪s∈Ks is a union of finitely many simplexes in the same ambient

space RN , it is enough to show compactness of only one simplex, as union of finitely

many compact sets is again a compact set. But this fact follows by lemma 2.25, as each

geometrical simplex is by proposition 3.10 a convex hull of finitely many points.
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Before we start discussion about connectedness, recall once again that we sometimes

use vertex, edge, triangle instead of 0-,1- and 2- simplexes respectively.

Definition 3.24. Two geometric simplexes s1 and s2 are edge connected in geometric

simplicial complex K if there exists a chain of edges s1i for 1 ≤ i ≤ k such that:

1) s1 ∩ s11 is a vertex of s1

2) s2 ∩ s1k is a vertex of s2

3) s1i ∩ s1i+1 is a vertex of both of simplexes si and si+1 for all 1 ≤ i ≤ k − 1 .

Chain of such edges between the vertices 〈v〉 of s1 and 〈w〉 of s2 is called an edge path.

Remark 3.25. Edge connectedness in an equivalence relation on K. The equivalence

classes with respect to relation of edge connectedness between simplexes of complex K

are called combinatorial components. The complex is edge connected if there exist one

combinatorial component.

Lemma 3.26. A geometric simplicial complex K is edge connected if and only if each

simplex s1 ∈ K has at least one common proper face with some simplex s2 ∈ K.

Proof. Assume that K is edge connected and that there exist simplex s1 having no

common proper faces with other simplexes s2, s3, . . . , sm ∈ K. Since K is simplicial

complex, simplexes are properly joined and hence by definition 3.12 we have s1∩si = ∅
for 2 ≤ i ≤ m. But then there is no edge path between any vertex of s1 and any vertex

of si, which contradicts our assumption.

The converse is rather trivial, since if each simplex has at least one common proper face

with some other simplex in K, then one can produce edge path between two arbitrary

vertices in K.

Theorem 3.27. Let K be an arbitrary geometric simplicial complex such that |K| ⊆
RN is connected. Then it is path connected.

Proof. First note that each geometric simplex in K has at least one common proper

face with some other simplex of K. Otherwise we could separate |K| into disjoint union

of nonempty closed proper subsets, which is a contradiction with the assumption that

|K| is connected. By lemma 3.26, we conclude that K is edge connected.

Furthermore, pick an arbitrary u ∈ |K| lying in some simplex s1 of K and define a

nonempty subset Ω1 ⊆ K as follows

Ω1 = {s | there is a path between u and vertex of |s| in |K|}

and say Ω2 = K \ Ω1. Note that both Ω1 and Ω2 are simplicial complexes.
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If |Ω1| ∩ |Ω2| = ∅, then they are at positive distance, i.e. d(|Ω1|, |Ω2|) > 0. But then

|K| = |Ω1| ∪ |Ω2|, with |Ω1| and |Ω2| being nonempty disjoint closed proper subsets of

|K|, which is a contradiction with assumption that |K| is connected.

Now assume |Ω1| ∩ |Ω2| 6= ∅, i.e. that there exists x ∈ |Ω1| ∩ |Ω2|. Then x is in the

interior of a unique simplex s2 by proposition 3.21. If v ∈ |Ω2|, then by convexity we

have path to the vertex of simplex containing v in its interior. Then, we have an edge

path to vertex of simplex s2 and hence, by convexity, we connect it to x. But x ∈ |Ω1|,
so there is a path from x to u. Consequently |Ω2| ⊆ |Ω1|, which implies |K| = |Ω1|,
and hence, |K| is path connected.

For the end of this section, we discuss maps between simplicial complexes and those

between their simplicial polytopes. The general idea is to preserve the simplicial struc-

ture, i.e. to map simplexes onto simplexes and this will motivate us also in work with

abstract simplicial complexes. However, since polytopes of geometric complexes are

topological spaces, we can employ continuity:

Lemma 3.28. Let K and L be geometric simplicial complexes and f : K → L a

function satisfying the condition that if {p0, p1, . . . , pk} generates a geometric simplex

of K, then also {f(p0), f(p1), . . . , f(pk)} generates a simplex of L. Then there is an

induced continuous map f ∗ : |K| → |L|, called simplicial map, defined by setting

f ∗(x) =
k∑
i=0

xif(pi)

where xi are barycentric coordinates of x ∈ |K| with respect to pi in geometric simplex

〈p0p1 . . . pk〉.

Proof. Suppose that |K| is a union of m simplexes and that K is n-dimensional. Let

s1 = 〈p0p1 . . . pk〉 be an arbitrary geometric simplex in complex K. Then first construct

an affine function defined only on simplicial polytope of this particular simplex: f1 :

|〈p0p1 . . . pk〉| → |L| by f1(x) =
∑k

i=0 xif(pi), xi being barycentric coordinates of x

with respect to pi, 0 ≤ i ≤ k. As f1 is by the theorem 2.22 a restriction of an affine

function defined on RN , it is continuous.

Now we do the same procedure and obtain the remaining functions f2, f3, . . . , fm,

continuous on simplicial polytopes of s2, s3, . . . , sm respectively. Consider properly

joined simplexes si and sj for i 6= j intersecting in the proper face of each of them sij.

Then restriction of fi to sij depends only on vertices spanning sij, since barycentric

coordinates with respect to the points not spanning sij are equal to zero. The same

holds for fj, which means that these functions agree on sij.

Finally, define the desired function f ∗ : |K| → |L| as f ∗ = fi on si, 1 ≤ i ≤ m. Since

|K| is the union of simplicial polytopes of si, which are all closed and since all fi agree

on the common intersections of any number of simplexes, f ∗ is continuous.
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Finally, we can define when two simplicial polytopes are the same:

Definition 3.29. Simplicial polytopes of two geometric simplicial complexes K and L

are isomorphic if there exist a one-to-one simplicial map f ∗ : |K| → |L| such that the

inverse mapping is also a simplicial map.

Remark 3.30. With the notation as in lemma 3.28, consider that f(pi), 0 ≤ i ≤ k

are not necessarily distinct. For example, if f(pi) = f(pj), 0 ≤ i < j ≤ k then the

barycentric coordinate of f(x) with respect to the vertex f(pi) is xi + xj.

Loosely speaking, it may happen that we map 2-simplex onto 1- simplex. This map

will preserve simplicial structure, but indeed decrease the dimension.

3.3.1 Barycentric Subdivision

Before diving into further theory, let us briefly show a standard technique to make

triangulation K finer in sense that the number of simplexes is increased. The simplicial

polytope will remain as original, but with decreased diameters of simplexes in it. We

describe the procedure in consecutive definitions:

Definition 3.31. Given an arbitrary geometric simplex sk = 〈p0p1 . . . pk〉. A point of

it with all barycentric coordinates equal,

ṡk =
1

k + 1
(p0 + p1 + · · ·+ pk)

is called a barycenter of sk.

Let s1 and s2 be geometric simplexes and write s1 � s2 if s1 is a (proper) face of s2. Let

K be a geometric simplicial complex consisting only of one simplex sk = 〈p0p1 . . . pk〉.
We describe its first barycentric subdivision, denoted by K1, in the following way:

Consider the set L =
{
ṡ∗ | s∗ � sk

}
of barycenters of all the faces of sk. By the remark

3.8, it is concluded that card(L) = 2k+1 − 1. Note that barycenter of any 0-simplex

〈pi〉 is the point pi itself. We say that a collection of barycenters ṡ∗0, ṡ
∗
1, . . . , ṡ

∗
l ∈ L

where 0 ≤ l ≤ k form the new geometric l-simplex 〈ṡ0ṡ1 . . . ṡl〉 if s∗0 ≺ s∗1 ≺ · · · ≺ s∗l .

So, the first barycentric subdivision of the simplicial complex K =
{
s∗ | s∗ � sk

}
is a

collection

K1 =
{
〈ṡ∗0ṡ∗1 . . . ṡ∗l 〉 | s

∗
i � sk, 0 ≤ i ≤ l and s∗0 ≺ s∗1 ≺ · · · ≺ s∗l , 0 ≤ l ≤ k

}
Lemma 3.32. Given an arbitrary geometric simplicial complex K and let K1 be its

first barycentric subdivision, then each simplex of K1 is contained in a simplex of K.
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Proof. Choose any simplex of the first barycentric subdivision ŝ = 〈ṡ0ṡ1ṡ2 . . . ṡk−1ṡ〉 ∈
K1 where s0 ≺ s1 ≺ s2 ≺ · · · ≺ sk−1 ≺ s. Since each point that generates ŝ is a

barycenter of some face of s, ŝ is contained in s. Therefore, each simplex of K1 is

contained in some simplex of K.

Theorem 3.33. Given an arbitrary geometric simplicial complex K. The previously

described procedure executed on each simplex of K gives a new geometric simplicial

complex denoted by K1, called the first barycentric subdivision of K. Moreover, |K| =
|K1|

Proof. (taken from [1])

Choose an arbitrary geometric simplex ŝ = 〈ṡ0ṡ1ṡ2 . . . ṡk−1ṡ〉 ∈ K1 where s0 ≺ s1 ≺
s2 ≺ · · · ≺ sk−1 ≺ s. Note that each proper face of ŝ is again a simplex of K1, since

each of them is created by deleting some barycenters of s and taking the convex hull

of the remaining points.

Note that in order to show that K1 is complex, it remains to see that its simplexes

are properly joined. This fact, together with |K| = |K1| is proved by induction on the

m, number of simplexes of K. If m = 1, then K consists of only one vertex, which

is a barycenter of itself and the both results are trivially seen to be true. Suppose

these are true also for all complexes which have less than m simplexes and form K,

complex made of exactly m simplexes. Take out simplex of maximum dimension of

it and name the new complex with L, i.e. L = K \ s, where s is a simplex of K for

which dim s = dimK = k. By the inductive hypothesis, L1 is simplicial complex and

|L| = |L1|, so it suffices to check whether the remaining simplexes, those in K1 \ L1,

are properly joined.

So, let u = 〈ṡ0ṡ1ṡ2 . . . ṡk−1ṡ〉 ∈ K1 \ L1, where s0 ≺ s1 ≺ s2 ≺ · · · ≺ sk−1 ≺ s. Note

that v = 〈ṡ0ṡ1ṡ2 . . . ṡk−1〉 forms face v of u with v ∈ L1 and |v| = |u| ∩ |L1|. From this,

we conclude that if u meets simplex in L1, it does it in a face of v, or in other words, in

one of its own faces. Now we check the intersections of the simplexes in K1 \L1: let u

and v be defined as in the preceding case and let u′ ∈ K1 \ L1 and v′ ∈ L1 be another

such pair. Also, suppose that u ∩ u′ 6= ∅, because otherwise, we can immediately say

that they are properly joined. If v∩v′ 6= ∅, they intersect in a common face, since both

of them are simplexes of L1, which is by the hypothesis a simplicial complex. Else if

v ∩ v′ = ∅, then u ∩ u′ = ṡ, again a common face of each. This finishes the induction

argument.

It remains to show the second statement: since any simplex of K1 is by lemma 3.32

contained a simplex of K, we have |K1| ⊆ |K|, so it suffices to consider the reversed

inclusion, under a hypothesis that |L| = |L1|. Choose an arbitrary x ∈ |K| and u, the

unique simplex of K containing x in its relative interior (see proposition 3.21). If x = u̇
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is a barycenter of u, then x ∈ |K1| by definition. Else, join u̇ to x by straight line and

prolong it to intersect proper face v of u in the point y ∈ |L| = |L1|, by the hypothesis.

Hence, there is a t ∈ [0, 1] such that x = (1− t)u̇ + ty and so y ∈ v̂, for some simplex

v̂ in L1. Then vertices of v̂ and the point u̇ make simplex of |K1| containing x by

convexity. Therefore x ∈ |K1| and thus |K| ⊆ |K1|.

Remark 3.34. One can also further subdivide K1 to obtain second barycentric subdivi-

sion of K, denoted by K2, then from this to get K3 and so on. . . Note that if we iterate

the conclusion of the previous theorem, we obtain |K| = |Km| for any m ∈ N.

3.4 Abstract Simplicial Complexes

In this section, we describe complexes abstractly. Given is an arbitrary simplicial

complex K in Rn. Two things characterize it: set of its vertices in Rn and subsets of

Rn containing vertices which generate simplexes. But sometimes it is useful to begin

with a nonempty finite set and a collection of its subsets and realize this pair as a

geometric complex in some Euclidean space. Before starting it, let us define things

that will make our use of language easier.

Definition 3.35. An abstract simplicial complex is a pair {V, S}, where V is a

nonempty finite set of elements called vertices and S ⊆ P (V ) collection of nonempty

subsets of V , called abstract simplexes such that:

1. v ∈ V ⇒ σ = {v} ∈ S

2. σ ∈ S and ∅ 6= τ ⊆ σ ⇒ τ ∈ S.

A set τ ∈ S from the second condition is called a face of abstract simplex σ.

Dimension of abstract simplex σ ∈ S is defined to be dimσ = card(σ)−1. For abstract

simplicial complex {V, S} it is defined as dim {V, S} = maxσ∈S dimσ.

The abstract k-simplex generated by some set σ ∈ S having k + 1 elements and with

vertices given explicitly will be often denoted by σk = 〈v0v1 . . . vk〉.

Remark 3.36. It is easily checked that every geometric simplicial complex K satisfies

the above definition. Namely, one can take the points which generate 0-simplexes

to correspond to elements of set V and simplexes of K to correspond to elements of

collection S. More precisely, for every v in V we have {v} ∈ S, as {v} defines 0-simplex.

Moreover, any subset of s ∈ S is again in S, since any face of each geometric simplex

is itself simplex of geometric simplicial complex K.

As in is the case of geometric simplicial complexes, it is useful to present maps between

different abstract simplicial complexes which preserve simplicial structure.
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Definition 3.37. Given two abstract simplicial complexes {V, S} and {V ′, S ′}. A

function f : V → V ′ such that if 〈v0v1 · · · vk〉 is an abstract simplex of {V, S}, then

〈f(v0)f(v1) · · · f(vk)〉 is an abstract simplex of {V ′, S ′} is called the abstract simplicial

map. Two abstract simplicial complexes {V, S} and {V ′, S ′} are isomorphic if f is

bijection.

3.4.1 Realization Theorem

What we now aim to show is sort of converse of remark 3.36 - the fact that is possible

to realize abstract simplicial complex in some Euclidean space. However, to be precise,

it still remains to precisely define what realization is.

Definition 3.38. A geometric simplicial complex K is realization of an abstract com-

plex {V, S} if there is a bijection f from V onto the set generating 0-simplexes of K,

so that each element σ ∈ S is mapped onto simplex of K generated by images of the

function f restricted to set σ.

Theorem 3.39. Every abstract simplicial complex {V, S} has a realization, geometric

simplicial complex K in some Euclidean space. Pair {V, S} is called a vertex scheme

of K.

Proof. Let {V, S} be abstract simplicial complex with set of vertices V = {v0, v1, . . . , vn}.
Consider standard simplex: given pi ∈ Rn, 0 ≤ i ≤ n such that p0 is point of origin

and pi = (0, . . . , 0, 1, 0, . . . , 0), where only nonzero coordinate is on i-th place. It is ob-

vious that p1, p2, . . . , pn are linearly independent. Since pi− p0 = pi, we have also that

p1−p0, p2−p0, . . . , pn−p0 are linearly independent and hence p0, p1, . . . , pn are affinely

independent. By corollary 2.19, their any subcollection is also affinely independent and

hence it makes geometric simplex, a face of n-simplex in Rn.

We construct the realization K of {V, S} by considering one-to-one correspondence

f : V → {p0, p1, . . . , pn} defined by f(vi) = pi for 0 ≤ i ≤ n:

K = {co(f(σ)) | σ ∈ S}

and saying that co(f(σ)) is realization of abstract simplex σ ∈ S.

As first, let us show that K, defined as above is indeed a simplicial complex. Since

there are only finitely many sets in S, K is also finite. Let σ = {vi0 , vi1 , . . . , vik} ∈
S be an arbitrary abstract simplex in {V, S}. By the above observations, the set

f(σ) = {f(vi0), f(vi1), . . . , f(vik)} = {pi0 , pi1 , . . . , pik} generates k-simplex co(f(σ)) in

Rn. Furthermore, if τ is any nonempty subset of σ, then by definition 3.35 τ ∈ S and

hence, co(f(τ)) ∈ K. This means that realization of any face of abstract simplex σ is

a face of geometric simplex co(f(σ)) in K. It remains to show that simplexes in K are

properly joined. Consider arbitrary ρ, ξ ∈ S.
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• Assume ρ ∩ ξ = ∅. Then also f(ρ) ∩ f(ξ) = ∅, as f is injective. Hence, f(ρ) =

{pi0 , pi1 , . . . , pik} and f(ξ) = {pj0 , pj1 , . . . , pjl}. By assumption pir 6= pjs for

0 ≤ r ≤ k and 0 ≤ s ≤ l. Then we claim that also co(f(ρ))∩co(f(ξ)) = ∅. If this

would not be a case, then there would exist an x ∈ Rn with x ∈ co(f(ρ))∩co(f(ξ))

and we could express it as

x =
k∑
r=0

µirpir =
l∑

s=0

µjspjs

where
∑k

r=0 µir = 1,
∑l

s=0 µjs = 1 and 0 ≤ µir ≤ 1, 0 ≤ µjs ≤ 1. These equations

imply
k∑
r=0

µirpir +
l∑

s=0

(−µjs) pjs = 0

But since f(ρ) ∪ f(ξ) is subset of linearly independent set, it is itself linearly

independent and hence µir = 0, µjs = 0 for all 0 ≤ r ≤ k and 0 ≤ s ≤ l, which

contradicts the assumptions
∑k

r=0 µir = 1 and
∑l

s=0 µjs = 1.

• Assume ρ ∩ ξ = η. Then since η is subset of sets from collection S, then η ∈ S.

Now we have to prove that co(f(η)) = co(f(ρ))∩co(f(ξ)). Since η ⊆ ρ and η ⊆ ξ,

we have f(η) ⊆ f(ρ) and f(η) ⊆ f(ξ) and consequently by proposition 2.24,

co(f(η)) ⊆ co(f(ρ)) and co(f(η)) ⊆ co(f(ξ)), which further implies co(f(η)) ⊆
co(f(ρ)) ∩ co(f(ξ)).

Furthermore, suppose that x ∈ co(f(ρ)) ∩ co(f(ξ)). Say that

f(ρ) =
{
p∗i0 , p

∗
i1
, . . . , p∗im , pim+1 , pim+2 , . . . , pik

}
f(ξ) =

{
p∗i0 , p

∗
i1
, . . . , p∗im , pjm+1 , pjm+2 , . . . , pjl

}
and f(η) =

{
p∗i0 , p

∗
i1
, . . . , p∗im

}
for 0 ≤ m ≤ min {k, l}. Then x can be written in

the following forms:

x =
m∑
r=0

µirp
∗
ir +

k∑
s=m+1

µispis =
m∑
r=0

λirp
∗
ir +

l∑
s′=m+1

λjs′pjs′

provided
∑m

r=0 µir +
∑k

s=m+1 µis = 1 and
∑m

r=0 λir +
∑l

s′=m+1 λjs′ = 1 with

0 ≤ µir , µis , λir , λj′s ≤ 1. But these imply

m∑
r=0

(µir − λir) p∗ir +
k∑

s=m+1

µispis +
l∑

s′=m+1

(
−λjs′

)
pjs′ = 0

Again, by the linear independence of f(ρ)∪f(ξ) we have µir = λir for 0 ≤ r ≤ m

and µis = 0, λjs′ = 0 for m + 1 ≤ s ≤ k and m + 1 ≤ s′ ≤ l, respectively. This

implies that x ∈ co(f(η)), so co(f(ρ)) ∩ co(f(ξ)) ⊆ co(f(η)), which yields the

desired result.
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So, in either case, simplexes in K above defined are properly joined. Hence, by the

definition 3.12, K is a geometrical simplicial complex with vertex scheme {V, S}.

Is realization of abstract simplicial complex unique? The answer is in some sense

positive and written in the following theorem:

Theorem 3.40. Given an abstract simplicial complex {V, S}. Then the simplicial

polytopes of any two realizations of it are isomorphic.

Proof. Let K and L be realizations of vertex scheme {V, S}. Then there exist bijections

f : V → {p0, p1, . . . , pn} and g : V → {q0, q1, . . . , qn}, where {p0, p1, . . . , pn} and

{q0, q1, . . . , qn} are both affinely independent sets. Define h : K → L mapping h(pi) =

qi, 0 ≤ i ≤ n and define h first on some geometric k-simplex 〈pi0pi1 . . . pik〉 by

h(x) =
k∑
r=0

µirqir

where x =
∑k

r=0 µirpir with
∑k

r=0 µir = 1 and 0 ≤ µir ≤ 1. Note that qir , 0 ≤
r ≤ k also generate k-simplex, as realizations of the same abstract simplex. By the

lemma 3.28 there is continuous extension h∗ : |K| → |L|. So, in order to show that

they are isomorphic, it suffices to check that h∗ is one-to-one and that its inverse is

continuous. Pick two arbitrary x, y ∈ |K| lying in the same simplex 〈pi0pi1 . . . pik〉.
Then x =

∑k
r=0 µirpir with

∑k
r=0 µir = 1, 0 ≤ µir ≤ 1 and y =

∑k
r=0 λirpir with∑k

r=0 λir = 1, 0 ≤ λir ≤ 1. If h(x) = h(y) then

k∑
r=0

µirqir =
k∑
r=0

λirqir

which by linear independence means that µir = λir , 0 ≤ r ≤ k and hence x = y.

Define inverse of h, k : L→ K on simplex 〈qi0qi1 . . . qik〉 by

k(x) =
k∑
r=0

µirpir

where x =
∑k

r=0 µirqir with
∑k

r=0 µir = 1 and 0 ≤ µi ≤ 1. Let us check that this is

indeed inverse of h:

h(k(x)) = h

(
k

(
k∑
r=0

µirqir

))
= h

(
k∑
r=0

µirpir

)
=

k∑
r=0

µirqir = x

The case k(h(x)) is analogous. Therefore, k = h−1 and (h−1)∗ : |L| → |K| is continuous

by lemma 3.28.
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4 Simplicial Orientation

Definition 4.1. Let σk = 〈v0v1 · · · vk〉, vi ∈ V be an abstract k-simplex. A (k+1)-tuple

(vπ(0), vπ(1), . . . , vπ(k)), where π is a permutation of {0, 1, . . . , k} is called an ordering of

vertices of σk.

Remark 4.2. There are (k + 1)! orderings of vertices of σk.

Definition 4.3. Let σk = 〈v0v1 · · · vk〉, vi ∈ V be an abstract k-simplex and let two

orderings of its vertices be equivalent if they differ by an even permutation. Orientation

of σk is a choice of fixed ordering, i.e. equivalence class on the set of all (k+ 1)-tuples.

Example 4.4. Observe that since abstract 0-simplex σ0 = 〈v0〉 is generated by only

one vertex, classes of even and odd permutations on the set of orderings of its only

vertex coincide and orientation is unambigously determined in only one way.

For 1-simplex σ1 = 〈v0v1〉 the set of all orderings is {(v0, v1), (v1, v0)}, where each

ordering is in its own equivalence class.

For 2-simplex, we have a set consisting of six orderings, again partitioned into

two equivalence classes: [(v0, v1, v2)] = {(v0, v1, v2), (v1, v2, v0), (v2, v0, v1)} and

[(v0, v2, v1)] = {(v0, v2, v1), (v2, v1, v0), (v1, v0, v2)}.

To orient geometric simplex we follow the remark 3.36 which says that every geometric

simplicial complex K satisfies the definition of abstract simplicial complex. Recall

that we take the points generating 0-simplexes to correspond to elements of set V and

simplexes of K to correspond to elements of collection S. On the other hand, we can

employ the realization theorem 3.39 on the example 4.4 and get orientation of vertex,

edge and triangle. This motivates the following definition:

Definition 4.5. Let sk be a geometric k-simplex. Then its orientation is determined

by the orientation of corresponding abstract simplex σk.

Definition 4.6. An oriented (geometric or abstract) k-simplex is simplex together

with a choice of orientation. If (v0, v1, . . . , vk) is ordering that is chosen, we denote the

oriented simplex with [v0v1 . . . vk].

Equivalence class of even permutations of fixed ordering is positively oriented simplex,

denoted by +σk and equivalence class of odd permutations of this ordering is negatively

oriented abstract simplex, denoted by −σk.
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Remark 4.7. We sometimes loosely speak that we give the positive orientation to a

geometric simplex, as we traverse through all the edges.

In fact, we can formally define the minus operator on arbitrarily chosen equivalence

class of orderings of vertices:

Definition 4.8. Let C be the set of equivalence classes on a set of orderings of vertices

of abstract simplex σk = 〈v0v1 . . . vk〉. Then − : C → C is defined by −[v0, v1, . . . , vk] =

C \ [v0, v1, . . . , vk], i.e. it transforms the chosen orientation into the opposite one.

Example 4.9. We consider abstract 2-simplex σ2. Then [v0v1v2] = [v1v2v0] = [v2v0v1] =

+σ2. On the other hand, [v1v0v2] = [v0v2v1] = [v2v1v0] = −σ2.

Now choose a geometric 2-simplex s2 = 〈p0p1p2〉. Similarly as for abstract simplexes,

[p0p1p2] = [p1p2p0] = [p2p0p1] = +s2. On the other hand, [p0p2p1] = [p2p1p0] =

[p1p0p2] = −s2. So, getting an orientation of s2 = 〈p0p1p2〉 is matter of choosing

positive direction, while passing three edges of it. Roughly speaking, they correspond

to opposite directions of traversing the boundary of s2.

The second part of example 4.9 motivates us to decide what is a natural orientation of

geometric simplex embedded in some Euclidean space:

Definition 4.10. An oriented geometric k-simplex [p0p1 . . . pk] is oriented naturally if

and only if det(p1 − p0, p2 − p0, . . . , pk − p0) > 0.

Proposition 4.11. Notion of natural orientation is well defined.

Proof. We have to prove that the above determinant does not change under even

permutation of the ordering of the vertices of sk (or abstract simplex corresponding to

it). Denote matrix A = (p1 − p0, p2 − p0, . . . , pk − p0). Since sk is geometric simplex,

vectors p1 − p0, p2 − p0, . . . , pk − p0 are linearly independent, so detA 6= 0.

Consider interchanging two vertices in ordering (v0, v1, . . . , vk). If we interchange two

vertices different than v0, it will change the sign of detA, as it acts like switching

of two rows. Otherwise, if we interchange v0 and vi for i > 0, then we get Â =

(p1 − pi, p2 − pi, . . . , p0 − pi, . . . , pk − pi) and proceed as follows: multiply the i-th row

with −1, which changes the sign of det Â and add it to each other row, which does not

change its sign, to get original matrix A. Thus, a transposition of two arbitrary vertices

in ordering (v0, v1, . . . , vk) change the sign of detA and so, an arbitrary permutation

of ordering (v0, v1, . . . , vk) changes the sign of detA if and only if it is odd, i.e. it is

invariant under even permutation of chosen ordering.

The rest of this section is dedicated to orientation of (abstract or geometric) simplicial

complexes. To produce a good definition of orientation of given k-dimensional simplicial

complex, we first determine the orientation of (k−1)-dimensional faces of k-simplexes:
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Definition 4.12. Given an arbitrary oriented (abstract or geometric) k-simplex σk =

[v0v1 . . . vk], the induced orientation of its (k− 1)-dimensional face is defined as τ k−1i =

(−1)i [v0v1 . . . v̂i . . . vk], where vertex vi, 0 ≤ i ≤ k is deleted from the vertex set.

Proposition 4.13. The notion of induced orientation is well defined.

Proof. We need to show that induced orientation is not changed under even permu-

tation of ordering of vertices in σk from the previous definition. Since each per-

mutation s can be written as a product of transpositions, it suffices to check that

induced orientation changes when two adjacent vertices are switched. In case that

neither of those two is vertex vi, then it is clear that orientation changes. Other-

wise, if we change vi with vi−1 or vi+1, then τ̂ k−1i = (−1)i−1[v0v1 . . . vi−1vi+1 . . . vk] or

τ̂ k−1i = (−1)i+1[v0v1 . . . vi−1vi+1 . . . vk] respectively, which clearly changes the orienta-

tion. Therefore, induced orientation of (k − 1)-dimensional face of σk changes only

under odd permutation of ordering of vertices in σk.

Definition 4.14. Let K be an arbitrary (abstract or geometric) k-dimensional simpli-

cial complex with the property that every (k−1)-simplex is a face of no more than two

k-simplexes. Given oriented simplexes σk1 and σk2 having simplex τ k−1 in common, we

say that their orientations are consistent if they induce opposite orientations on τ k−1.

An orientation on K is a choice of orientation on each of k-simplexes in such a way that

any two simplexes that intersect in (k − 1)-dimensional face are consistently oriented.

If K admits orientation, it is said to be orientable. Its simplicial polytope |K| is said

to be orientable if K is orientable.

Lemma 4.15. Let σk be an oriented abstract k-simplex with k ≥ 3. Then every two

(k − 1)-faces, with orientation induced from σk, are oriented consistently, i.e. they

induce opposite orientation on their common (k − 2)-dimensional faces.

Proof. Let τ ki , τ
k
j for 0 ≤ i < j ≤ k be two arbitrary (k − 1)-dimensional faces of

σk with their induced orientations. So, we can write τ ki = [v0v1 . . . v̂i . . . vk] and τ kj =

[v0v1 . . . v̂j . . . vk]. Denote their common face (k − 2)-dimensional face by τ ki ∩ τ kj =

〈v0v1 . . . vi−1vi+1 . . . vj−1vj+1 . . . vk〉. If τ ki ∩ τ kj induces an orientation by τ ki , then τ ki ∩
τ kj = (−1)i+j−1 [v0v1 . . . vi−1vi+1 . . . vj−1vj+1 . . . vk], since after deleting i, j is in the

(j − 1)-th place. On the other hand, if it induces an orientation by τ kj , then τ kj ∩ τ kj =

(−1)i+j [v0v1 . . . vi−1vi+1 . . . vj−1vj+1 . . . vk], since the place of vertex i after deleting

vertex j is unchanged. These orientations of τ kj ∩ τ kj are opposite, since i + j − 1 and

i+ j are of different parity. Hence, they induce opposite orientations on their common

(k − 2)-dimensional faces.
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Remark 4.16. Given oriented k-simplex σk, with k ≥ 3, we cannot consistently orient

its faces of dimension less or equal to (k−2). Namely, by the lemma 4.15 we have that

(k−2)-dimensional faces induce opposite orientation by (k−1)-dimensional face of σk.

Example 4.17. In the figure 1 we illustrate the consistent and inconsistent orientations

on a simple example of properly joined 2-simplexes:

Figure 1: Consistent and inconsistent orientations of 2-simplexes

4.1 Cylinder versus Möbius strip

In this section we aim to use the theory about abstract simplicial complexes and orien-

tation we developed until now. The general idea is to construct an abstract simplicial

complex such that simplicial polytope of geometric realization K is homeomorphic to

the object we want to study. Triangulations were taken from [3].

4.1.1 Cylinder

Cylinder is standardly obtained by the following procedure: Take for instance rectangle

R = {(x, y) ∈ R2 | 0 ≤ x ≤ 3, 0 ≤ y ≤ 1}. We employ an equivalence relation on R and

say that (x, y) ∼ (z, w) if and only if these two points are identified. Cylinder is

obtained in partition into two types of sets:

1. Sets containing points of form (0, y) and (3, y) for 0 ≤ y ≤ 1;

2. Singletons consisting only of point (x, y) for some x and y satisfying 0 < x < 3

and 0 ≤ y ≤ 1.

To examine its orientability, we use the realization theorem established in subsection

3.4.1. Construction is illustrated in the figure 2: given is the rectangle, opposite sides

of which were identified. Abstract simplex generated by points c and d is identified

with simplex generated by a1 and b1 and so c ∼ a1 and d ∼ b1.
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Figure 2: Abstract cylinder

The explicit abstract simplicial complex {V, S} we are going to study is given as follows:

V = {a0, a1, a2, b0, b1, b2}

S = {{a0} , {a1} , {a2} , {b0} , {b1} , {b2} , {a0, a1} , {a1, a2} , {a0, a2} , {b0, b1} ,

{b1, b2} , {b0, b2} , {a0, b1, b0} , {a0, a1, b1} , {a1, b1, b2} , {a1, a2, b2} , {a0, a1, b1} ,

{a0, a2, b2} , {a0, b0, b2}}

Note that {V, S} is indeed an abstract simplicial complex. V is finite and it is checked

that any nonempty subset of A ∈ S is again an element of S. Hence the theorem

3.39 applies. Realization K is 2-dimensional, compact and is of single combinatorial

component - it is edge connected as geometric complex. Consider that also each 1-

simplex of it is a face of no more than two 2-simplexes.

Regarding the orientation, observe the figure 3: if we have chosen oriented simplex

[cda0], then we have to choose [b0a0d], in order simplexes 〈cda0〉 and 〈b0a0d〉 to induce

opposite orientation on their common edge 〈a0d〉. We continue in this fashion and get

oriented 2-simplexes [a0b0b2], [a0b2a2], [a2b2a1], [a1b2b1] and it is easily checked that

induced orientation on edges 〈a0b0〉, 〈a0b2〉, 〈b2a2〉, 〈b2a1〉 are opposite. Also, simplexes

[cda0] and [a1b2b1] induce opposite orientation on 〈a1b1〉 = 〈cd〉, the edge along which

they are glued.

Note that no matter what simplex we choose at first and no matter which orientation

prescribe on it, every other simplex can be oriented in consistent manner. Thus, K

is orientable. If we embed K in some big enough ambient space, then we see that

it is homeomorphic to cylinder, by the very construction of cylinder described in the

beginning. This shows that cylinder is indeed orientable.

4.1.2 Möbius strip

Möbius strip is obtained in a similar way like cylinder, as a quotient space of rectangle.

Start again with R = {(x, y) ∈ R2 | 0 ≤ x ≤ 3, 0 ≤ y ≤ 1} and introduce equivalence

relation on it, such that equivalence classes are sets of two types:
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Figure 3: Cylinder is orientable

1. sets consisting of points of the form (0, y) and (3, 1− y),

2. singletons containing only (x, y) for some x and y satisfying 0 < x < 3 and

0 ≤ y ≤ 1.

In other words, what is done is that we flip one of the vertical edges and attach to

the second one. Other points remain the same. Question about its orientation is again

translated into the language of abstract simplicial complexes.

Figure 4: Abstract Möbius strip

The figure 4 shows one way of triangulating rectangle and consequently, after identify-

ing vertical edges in opposite direction, so that c ∼ a0 and d ∼ a3, its quotient space,

Möbius strip. Pair {V, S} is composed in the following way:

V = {a0, a1, a2, a3, a4, a5}

S = {{a0} , {a1} , {a2} , {a3} , {a4} , {a5} , {a0, a1} , {a0, a2} , {a0, a3} , {a0, a4} ,

{a0, a5} , {a1, a2} , {a1, a4} , {a1, a5} , {a2, a3} , {a2, a5} , {a3, a4} , {a4, a5} ,

{a0, a1, a4} , {a0, a2, a3} , {a0, a2, a5} , {a0, a3, a4} , {a1, a2, a5} , {a1, a4, a5}}

Again, since V is finite and since subset of A ∈ S is again an element of S, {V, S}
is indeed an abstract simplicial complex and theorem 3.39 applies. Realization L is

2-dimensional, compact and connected as a complex. Notice that also each 1-simplex

is a face of no more than two 2 simplexes.
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Orientation of its simplicial polytope, surface homeomorphic to Möbius strip by its very

construction, can be studied on abstract complex {V, S}, after unfolding it - passing

to the rectangle, opposite sides of which were identified.

Figure 5: Möbius strip is nonorientable

In the figure 5, there is an unsuccessful attempt of giving consistent orientation on L.

Suppose that Möbius strip is orientable. Then, no matter which 2-simplex we choose at

first and no matter which orientation we prescribe on it, every other 2-simplex should

be oriented in a consistent manner. For example, choose oriented simplex [cda4]. Then

we have to prescribe [ca4a1], in order simplexes 〈cda4〉 and 〈ca4a1〉 to induce opposite

orientation on their common edge 〈ca4〉. If we continue in this fashion, we obtain

oriented 2-simplexes [a1a4a5], [a1a5a2], [a2a5a0], [a2a0a3] and it is easily verified that

induced orientation on edges 〈a1a4〉, 〈a1a5〉, 〈a2a5〉, 〈a2a0〉 are opposite. Now note that

simplexes [cda4] and [a2a0a3] induce the same orientation on 〈a0a3〉 = 〈cd〉, the edge

along which they are glued.

Thus, L is nonorientable. If we embed L in some big enough ambient space, then we

see that it is homeomorphic to Möbius strip, by its construction described in the very

beginning. Hence, Möbius strip is nonorientable surface.
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5 Classification Theorem

Now we are ready to classify surfaces. We begin in general setting, but follow geometric

intuition and theory developed, which will guide us to restrict to something nicer and

more manageable at the moment. Recall that vertex, edge and triangle stand for 0-,1-

and 2- simplexes. Let us first extend some definitions given in chapter 3:

Definition 5.1. An infinite geometric simplicial complex K ⊆ RN is a countable col-

lection of properly joined geometric simplexes such that there is a simplex of maximum

dimension, each point of RN intersects at most finite number of simplexes, and K is

locally finite, i.e. each vertex is a face of finitely many simplexes.

Dimension of K is defined by dimK = maxs∈K dim s. A simplicial polytope, denoted

by |K|, is the union of all simplexes in K, i.e. |K| = ∪s∈Ks. A topological space is

triangulable if there is a homeomorphism h : X → |K|.

To reveal what spaces are triangulable, we first define spaces which are locally Eu-

clidean:

Definition 5.2. An n-dimensional manifold, n ∈ N is a Hausdorff topological space

such that each point x of it has an open neighbourhood homeomorphic to n-dimensional

Euclidean unit ball Bn = {y ∈ Rn | ‖y‖ < 1}.

Are all manifolds triangulable? Unfortunately, the answer is negative already in di-

mension four. Example is given in 1980 by Michael H. Freedman in [4]. Moreover, a

research paper [8] in 2016 by C. Manolescu showed the existence of nontriangulable

n-manifolds for n ≥ 5. But what we can surely visualize are 2-manifolds. We do not

require to much if we impose that they are also connected.

Definition 5.3. Connected 2-dimensional manifold is called a surface.

Theorem 5.4. Every compact surface is homeomorphic to a polytope of some 2 -

dimensional geometric simplicial complex.

Proof. The first proof is given by Tibor Radó in 1925. For an outline of the proof, one

can consult [10], Chapter 8.

Remark 5.5. Theorem 5.4 reveals that each compact surface is triangulable. Moreover,

the triangulation is of dimension 2.
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Given a finite simplicial complex of dimension two, by theorem 3.23 we have that its

simplicial polytope is compact. If we could prove the converse of it, we will benefit,

since in this case we obtain surfaces which have triangulations out of finitely many

triangles, which will be easier to control, as we have already examined their properties.

Theorem 5.6. Surface is compact if and only if its any triangulation is composed of

finitely many triangles.

Proof. (taken from [6])

Suppose that compact surface S has triangulation of which simplicial complex K is

infinite. By locally finitness of K, there are only finitely many triangles meeting at

each vertex. Hence, if there are infinitely many triangles, there are infinitely many

vertices as well. Now label these vertices by vi and put them in a sequence {vi}∞i=1. By

compactness, this sequence has a limit point in v ∈ S.

If v is in relative interior of some triangle, then it has a neighbourhood completely

contained in triangle, so neighbourhood containing no other vertices. If v is on some

edge, it has neighbourhood taken from two triangles and not containing any vertices.

Else, if v is a vertex, it has a neighbourhood taken out of finitely many triangles and

containing no other vertices. In each case, we have a contradiction with the definition

of limit point. As we have said, the other implication follows from theorem 3.23.

Now we give a more systematic approach for compact surfaces. The following definition

summarizes useful concepts developed until now:

Definition 5.7. A triangulation T of compact surface S ⊆ RN is a finite family

{(Ti, ϕi) | 1 ≤ i ≤ n} with n ∈ N, such that S = ∪ni=1Ti, where each Ti ⊆ RN is a

closed subset and each ϕi a homeomorphism ϕi : T ′i → Ti for 1 ≤ i ≤ n, T ′i ’s being

triangles in R2. Moreover, Ti are also called triangles and subsets of Ti that are images

of vertices and edges of T ′i under ϕi are called vertices and edges as well. Additionally,

it is required that any two triangles Ti and Tj are either disjoint, have a single vertex

in common, or have an entire edge in common.

Proposition 5.8. Let S be a compact surface with triangulation T consisting of n ∈ N
triangles. Then we can label triangles T1, T2, . . . , Tn in such a way that each Ti has an

edge ei common with at least one of the triangles T1, T2, . . . , Ti−1, 2 ≤ i ≤ n.

Proof. Label any of the given triangles with T1. For T2 choose any triangle having

edge in common with T1, for T3 choose any triangle having edge in common with

T1 or T2. If we could not continue the process at some stage, then we would have

sets {T1, T2, . . . , Tk} and {Tk+1, Tk+2, . . . , Tn} such that no triangle of first set has an

edge with any of the triangles in the second. But then ∪ki=1Ti and ∪ni=k+1Ti are both
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nonempty and closed sets (as finite union of closed sets). By construction, they are

also disjoint and hence partition S. This contradicts the fact that S is connected.

To show an important property of triangulation of compact surfaces, we recall the

famous Jordan’s curve theorem:

Definition 5.9. Simple closed curve is a continuous path J : [0, 1]→ R2 with J(0) =

J(1) and property that J�[0,1) is injective.

Theorem 5.10. The image of a simple closed curve J : [0, 1] → R2 separates the

plane, i.e. R2 \ J([0, 1]) = A ∪ B,A ∩ B = ∅, where both A and B are connected, A

bounded and B unbounded, with the property ∂A = J([0, 1]) = ∂B.

Proof. See [10], Chapter 4.

Proposition 5.11. Each edge in a triangulation of some compact surface S is face of

at most two triangles.

Proof. Suppose that there is a triangulation |K| of S such that there exist an edge e,

which is a face of k triangles, where k ≥ 3. Take a point x ∈ Int(e). Then e separates

B3
x ∩S for each sufficiently small ball B3

x containing x in k connected components. On

the other hand, since S is a 2-manifold, there exist a homeomorphism F : B3
x → U

with U ⊆ R3 such that F (B3
x∩S) = (R2×{0})∩U and denote C = (R2×{0})∩U . In

particular, choose ball B2
F (x) ⊂ R2×{0} around F (x) sufficiently small that B2

F (x) ⊂ C.

If necessary, make B3
x smaller to have B3

x ∩ S ⊆ F−1(B2
F (x)). Note that after these

adjustments e still separates B3
x ∩S into k connected components, while we claim that

F (B3
x∩S) ⊆ B2

F (x) ⊂ C is separated by F (e∩B3
x) into exactly 2 connected components:

Notice that set e ∩ B3
x is a curve. So, F (e ∩ B3

x) is also a curve parametrized by

α : [0, 1]→ F (B3
x∩S). Since e intersects ∂B3

x in exactly two points ŷ and ẑ, also α([0, 1])

intersects ∂F (B3
x ∩ S) in two points y = α(0) and z = α(1) and ∂F (B3

x ∩ S) \ {y, z} is

a union of exactly two curves parametrized by α1 and α2 with α1(0) = α2(0) = z and

α1(1) = α2(1) = y. Now introduce two new curves

βi(t) =

α(2t) 0 ≤ t ≤ 1
2

αi(2t− 1) 1
2
≤ t ≤ 1

for i = 1, 2, i.e. we add a lower and upper arc of ∂F (B3
x ∩ S) to a curve α, in order to

obtain two simple closed curves. Application of theorem 5.10 on simple closed curves

β1 and β2 gives that F (e ∩ B3
x) separates F (B3

x ∩ S) into two components. This is a

contradiction, as number of connected components is a topological invariant.
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The finiteness and nice combinatorial properties of triangulations of compact surfaces

motivate us to glue triangles in R2 to obtain usual polygons, as simple models of them.

Before facing a remarkable result about this connection, let us see some technical facts:

Definition 5.12. Subset D of R2 is called a topological disc, if it is homeomorphic to

the unit disk D2 = {(x, y) ∈ R2 | ‖(x, y)‖ ≤ 1}. Arc α is a subset of ∂D homeomorphic

to interval [0, 1].

Lemma 5.13. A homeomorphism between two topological disks sends boundary to

boundary.

Proof. Suppose we have h : D1 → D2 and that h(x) ∈ Int(D2) for x ∈ ∂D1. Then

h induces a homeomorphism ĥ : D1 \ {x} → D2 \ {h(x)}. Now, note that D1 \ {x}
is simply connected, but ĥ(D1 \ {x}) is not. This is a contradiction, since simply

connectedness is a topological invariant.

Lemma 5.14. Let D1 and D2 be topological disks and assume that f : ∂D1 → ∂D2

be an arbitrary homeomorphism between their boundaries. Then there is a homeomor-

phism f̂ : D1 → D2 with f̂ = f on ∂D1.

Proof. (taken from [1]):

Assume D ⊆ R2 is a unit disk. Since D1 and D2 are topological disks, there exist

homeomorphisms h1 : D1 → D and h2 : D2 → D. Observe a homeomorphism g =

h2◦f ◦h−11 : ∂D → ∂D. If we are able to extend g to homeomorphism ĝ : D → D, then

f̂ = h−12 ◦ ĝ ◦ h1 : D1 → D2 would extend f . Thus, it suffices to extend g : ∂D → ∂D.

Define

ĝ(x) =

‖x‖ · g
(

x
‖x‖

)
x 6= 0

0 x = 0

Hence, ĝ maps circles of radius r > 0 onto themselves, ĝ : D → D and ĝ = g on

∂D. Since g is one-to-one, so is ĝ. For x 6= 0, it is obvious that ĝ is continuous, so it

remains to examine continuity at x = 0. Since g is continuous on compact set, there is

a constant M > 0 such that ‖g(x)‖ ≤ M for each x ∈ ∂D. Let ε > 0 be an arbitrary

real number and choose 0 < δ < ε
M

. If ‖x‖ < δ, then ‖ĝ(x) − ĝ(0)‖ < Mδ < ε and

hence, ĝ is continuous at x = 0.

Let us recall some properties about quotient topology:

Definition 5.15. A map f : X → Y is a quotient map if it is onto and if U ⊆ Y is

open if and only if f−1(U) ⊆ X is open.

In particular, note that any onto function f : X → Y gives rise to a partition of X.

Namely, say that a ∼ b if and only if f(a) = f(b). This is an equivalence relation on X



Bartulović I. Simplicial Complexes, Orientation and Classification of Compact Surfaces.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2016 35

and hence partitions it into the set of equivalence classes X|∼ = {[x] | x ∈ X}, where

[x] = {f−1(y) | y ∈ Y }.

Theorem 5.16. Let q : X → X|∼ be a quotient map. If g : X → Z is a continuous

map such that a ∼ b if and only if g(a) = g(b) for all a, b ∈ X, then there exists a

unique continuous map f : X|∼ → Z such that g = f ◦ q, i.e. the diagram

X
q
//

g
!!

X|∼
∃!f
��

Z

commutes.

Proof. See [1], page 67.

Lemma 5.17. Quotient space of two topological disks glued along a pair of arcs in

their boundaries is homeomorphic to a topological disk.

Proof. (taken from [1])

Let D be a unit disk and D1 and D2 be arbitrary topological disks. Denote the arcs

along which we glue by γ1 ⊂ D1 and γ2 ⊂ D2. Choose an arbitrary homeomorphism

h : γ1 → γ2 and determine the identification by relation p ∼ q if h(p) = q.

First define f : γ1∪γ2 → {0}×[−1, 1]. Say that f on γ2 is an arbitrary homeomorphism

onto {0}×[−1, 1] and for p ∈ γ1, define f(p) = f(h(p)). Consider that p ∈ γ1 and q ∈ γ2
then f(p) = f(q) if and only if p ∼ q. Namely, if f(p) = f(q), then f(h(p)) = f(q).

Since f is injective, we have h(p) = q and hence p ∼ q. Conversely, if p ∼ q, then

h(p) = q for homeomorphism h : γ1 → γ2 and f(q) = f(h(p)) = f(p).

Now, we consider α = ∂D1 \ γ1 and β = ∂D2 \ γ2, i.e. the complements

of γi in ∂Di having no endpoints. So, we can map α to {(x, y) ∈ ∂D | x > 0}
and β to {(x, y) ∈ ∂D | x < 0}. We obtained homeomorphisms f1 : γ1 ∪ α →
{(x, y) ∈ ∂D | x ≥ 0} and f2 : γ2 ∪ β → {(x, y) ∈ ∂D | x ≤ 0}. By lemma 5.14 we

are able to extend these maps with f̂1 : D1 → {(x, y) ∈ D | x ≥ 0} and f̂2 : D2 →
{(x, y) ∈ D | x ≤ 0}.
Finally, define the map q : D1 ∪D2 → (D1 ∪D2)|∼ by

q(x) =

f̂1(x) x ∈ D1

f̂2(x) x ∈ D2

Obviously, q is onto. It is continuous, as f̂1 and f̂2 are continuous on closed sets D1

and D2, respectively. Hence, q is a quotient map. Consider now a continuous map

g : D1 ∪ D2 → D is a continuous function with p ∼ q if and only if g(p) = g(q). By
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theorem 5.16, there exists a unique continuous function f : (D1∪D2)|∼ → D such that

g = f ◦ q. Also, since D1 ∪D2 is compact, then also (D1 ∪D2)|∼ is compact. Notice

also, that D is a Hausdorff space, so by lemma 2.26, we have that f is closed map and

consequently a homeomorphism. Thus, the statement has been proven.

Theorem 5.18. Every compact surface S can be represented as a polygon with even

number of vertices whose edges are identified in pairs.

Proof. Since S is a compact surface, there exists its triangulation {(Ti, ϕi) | 1 ≤ i ≤ n},
Ti’s and ϕi’s being denoted exactly as in definition 5.7. Firstly, by proposition 5.8, we

can use such reordering of the indices, that each Ti has an edge ei with one of the

triangles T1, T2, . . . , Ti−1 for 2 ≤ i ≤ n.

Furthermore, we may assume that triangles T ′i ⊂ R2 are disjoint. Namely, consider

simplex s generated by points p0 = (0, 0), p1 = (1, 0), p2 = (0, 1), i.e. and say T ′i =

〈qi0qi1qi2〉 with qi0, q
i
1, q

i
2 being affinely independent points for each 1 ≤ i ≤ n. Then

functions fi : s → T ′i defined by f(λ0p0 + λ1p1 + λ2p2) = λ0q
i
0 + λ1q

i
1 + λ2q

i
2 with∑2

j=0 λj = 1 and 0 ≤ λj ≤ 1 are by proposition 3.2 affine bijections. Moreover, fi

and their inverses f−1i are continuous, as restrictions of continuous function on affine

sets and hence fi’s are all homeomorphisms. Now denote T̂ ′i = 〈ti0ti1ti2〉, where ti0 =

p0+(2(i−1), 0), ti1 = p1+(2(i−1), 0) and ti2 = p2+(2(i−1), 0) for 1 ≤ i ≤ n. Obviously,

T̂ ′i ∩ T̂ ′j = ∅ for i 6= j and we replace the given triangulation (Ti, ϕi) with triangulation

(Ti, ϕ̂i) where ϕ̂i : T̂ ′i → Ti are homeomorphisms defined with ϕ̂i = ϕi ◦ fi ◦ h−1i and

hi : s→ T̂ ′i are translation maps defined with hi(λ0p0+λ1p1+λ2p2) = λ0t
i
0+λ1t

i
1+λ2t

i
2

with
∑2

j=0 λj = 1 and 0 ≤ λj ≤ 1.

So, by the above argument we assume that T ′i are disjoint and denote T ′ = ∪ni=1T
′
i .

T ′ is compact as a union of compact sets. Also, define ϕ : T ′ → S with ϕ �Ti= ϕi.

Obviously, it is onto. It is also continuous, as each ϕi is continuous on T ′i , 1 ≤ i ≤ n.

By lemma 2.26, ϕ maps closed sets in T ′ to closed sets in S. This fact implies that S

has quotient topology induced by ϕ.

The polygon we wish to obtain will be constructed inductively as a quotient space of

T ′. First, by proposition 2.27 we have that T ′1 is a disk. Furthermore, there exists a

triangle, denoted by T ′2, which has an edge e′2 that is identified to an edge e′1 of T ′1,

since otherwise we would get a separation of a surface S. We will identify two points

x ∈ e′1 and y ∈ e′2 if and only if ϕ1(x) = ϕ2(y). However, T ′2 is also a disk and since we

glue disks along their arcs, the resulting quotient space (T ′1 ∪ T ′2)|∼ is by lemma 5.17

homeomorphic to a disk. Now, by connectedness of surface S, we again find a triangle

T ′3 which has an edge e′3 to be glued on to an edge of either T ′1 or T ′2 other than e′1

and e′2, since otherwise we get a contradiction with the proposition 5.11. Continue this

procedure until the end, when we get D = (∪ni=1T
′
i )|∼. Note that D is homeomorphic
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to a disk, as a space created by consecutively gluing finitely many disks along their

arcs.

The map ϕ : T ′ → S induces an onto map ψ : D → S and S. Since D is compact

as a quotient of compact space, and S is Hausdorff, ψ is closed. So, S has quotient

topology determined by ψ, i.e. it is homeomorphic to D. Finally, we get the statement

of the theorem by noticing that disk is by proposition 2.27 homeomorphic to closure

of any bounded convex set.

Now we review basic building blocks to form all compact surfaces:

Definition 5.19. Let S1 be a unit circle in R2. Then, 2-dimensional sphere, denoted

by S2 is a space obtained by identifying points (x, y) and (x,−y) for each (x, y) ∈ S1.

Define T = [0, 1] × [0, 1]. 2-dimensional torus is a space obtained first by identifying

ordered pairs (x, 0) and (x, 1) for each x ∈ [0, 1], and then also (0, y) and (1, y) for each

y ∈ [0, 1].

The real projective plane is a space obtained by identifying points (x, y) and (−x,−y)

for each (x, y) ∈ S1.

Figure 6: Sphere and projective plane schematically

Remark 5.20. From the definition for sphere and projective plane, we see that (−1, 0)

and (0, 1) are fixed by identification. So we can illustrate it by 2-gons, as in figure 6.

Since both S1 and K are compact and connected, their quotient spaces are so as

well. So sphere, projective plane and torus are compact surfaces. We emphasize those

three compact surfaces, because they will be our basic building blocks in classification

theorem.

Last sentence of remark 5.20 arises a question: How can one connect two of those

surfaces?

Definition 5.21. Given disjoint compact surfaces S1 and S2. Choose disks D1 ⊂ S1

and D2 ⊂ S2 and denote S ′i = Si \ Int(Di), i = 1, 2. Choose also a homeomorphism

h : ∂D1 → ∂D2. Connected sum of S1 and S2, denoted by S1#S2 is the quotient space

obtained by identifying the points x and h(x) for each x ∈ ∂D1.
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Remark 5.22. Intuitively speaking, we cut out the disk from each of the surfaces and

then glue them together along the boundaries.

1. Let us see how to make the connected sum of two tori: Represent them first as

a squares with opposite sides identified as in definition, then for convenience we

cut the circular holes as in shaded regions and proceed as in Figure 7.

Figure 7: Connected sum of two tori

If we continue inductively, it can be seen that sum of n tori can be represented

by 4n-gon and with arrows set with the same pattern as above.

2. Suppose we want to make connected sum of two projective planes. We analo-

gously cut out the circular holes, make necessary identifications to get a 4-gon as

shown in figure 8.

Figure 8: Glueing two projective planes

Again, if we continue inductively, it can be seen that sum of n projective spaces

can be represented by 2n-gons.
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3. If we again look at 8 and switch the arrows in the way as spheres should be

identified, we easily deduce that sum of spheres is again a sphere. Inductively,

no matter how many spheres we sum, we again get only one.

Except for the geometric convenience of diagrams, they suggest us to write down the

necessary identifications algebraically. Label edges of n-polygon with ai, 1 ≤ i ≤ n.

Observe a1 in the diagram and traverse in chosen direction. If the next edge arrow

agrees with the previous one, write down a+1
2 , or in simpler form a2. Otherwise, write

a−12 . Summary of this notation for the basic surfaces from above is:

• The sum of n-tori: a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 . . . anbna

−1
n b−1n

• The sum of n-projective planes: a1a1a2a2 . . . anan

• The sphere: aa−1

Now we introduce an application of this notation and concepts we introduced:

Definition 5.23. Given K = [0, 1]× [0, 1] be a compact subset of R2. The Klein bottle

is a space obtained by identifying ordered pairs (x, 0) and (x, 1) for each x ∈ [0, 1], and

then also (0, y) and (1, y) for each y ∈ [0, 1].

Remark 5.24. Since K is compact, its quotient space, Klein bottle, is a compact surface.

Moreover, it is nonorientable, as it contains the Möbius strip.

Lemma 5.25. Sum of two projective planes is equal to Klein bottle.

Sketch of the proof. The figure 9 suggests a way to get a desired result in terms of the

presented notation:

Figure 9: Sum of two projective planes
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The following lemma is useful in the proof of the classification theorem:

Lemma 5.26. Connected sum of torus and projective plane is equal to sum of three

projective planes.

Sketch of the proof. (taken from [6])

The figure 10 suggests a way to get the desired result in terms of the presented notation:

Figure 10: Sum of torus and projective plane

Finally, we can state the classification theorem:

Theorem 5.27. Each compact surface is either homeomorphic to a sphere, or con-

nected sum of tori, or connected sum of projective planes. Moreover, these are pairwise

nonhomeomorphic.

Proof. Proof of the theorem can be found in [9], Chapter 1.
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6 Conclusion

In this project paper we presented basic notions and results about simplicial complexes.

Given an affinely independent set P in Rn, there is a unique hyperplane Hk containing

it. Geometric simplex generated by P is a set of points having nonnegative barycentric

coordinate with respect to P . We also defined a notion of subsimplex called face.

Two simplexes are properly joined if they are disjoint or meet in a common face. A

geometric simplicial complex is a finite collection of properly joined simplexes.

Simplicial polytope |K| of geometric simplicial complex is compact space. If |K| is

connected, then it is path connected. Introduced are maps between geometric simplicial

complexes K and L, which have property that image of set of vertices spanning a

simplex in K is a set of vertices spanning some simplex in L. It is shown that such map

has a continuous extension between their simplicial polytopes. Barycentric subdivision

of K is a simplicial complex K1 having more simplexes than K, but with the same

polytope, i.e. |K| = |K1|.
Motivated to approach simplicial orientation abstractly, we defined abstract simplicial

complexes, given by pair {V, S}, where V is a set of vertices in complex and S is a

collection of all simplexes in it. The realization theorem gives us a way to transform

an abstract complex into a geometric one.

Choose an arbitrary (abstract or geometric) simplex and consider the set of orderings of

its vertices. Say that two orderings are equivalent if they differ by an even permutation.

Orientation is a choice of equivalence class with respect to this relation. Simplicial

complex K is orientable if simplexes of maximum dimension are consistently oriented,

i.e. if they induce opposite orientations on their common faces.

Each compact connected 2-dimensional manifolds, also called compact surface is home-

omorphic to a polytope of some 2-dimensional simplicial complex such that each 1-

simplex is a face of at most two 2-simplexes. Finally, they admit a polygonal presenta-

tion, i.e. each compact surface is homeomorphic to a quotient space of some polygon

having even number of sides. A reader interested particularly in this topic is referred

to [9].

For further reading see [5] and [7]. For a geometric insight and motivation [1] and [6]

were especially useful.
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7 Povzetek naloge v slovenskem

jeziku

Glavno vprašanje topologije je določiti, ali sta dva topološka prostora homeomorfna.

Na to vprašanje je v splošnem težko odgovoriti, vendar če se omejimo na dovolj lepe

prostore, lahko dobimo kakšen rezultat. Cilj naloge je bil predstaviti simplicialne kom-

plekse, eno od koristnih orodij algebraične topologije. Pri tem smo predpostavljali, da

bralec pozna osnove linearne algebre in splošne topologije.

V uvodnem poglavju definiramo hiperravnine, afine množice in afine preslikave.

Pokažemo, da za vsako afino neodvisno množico P = {p0, p1, . . . , pk} ⊂ Rn obstaja

natanko ena hiperravnina Hk ki jo vsebuje, tako da vsako točko x ∈ Hk enolično

zapǐsemo kot x =
∑k

i=0 µipi, kjer
∑k

i=0 µi = 1, µi ∈ R. Pri tem številom µi rečemo

baricentrične koordinate točke x glede na množico P . Dokažemo tudi, da je vsaka afina

preslikava na hiperravnini zožitev afine preslikave, definirane na celotnem prostoru Rn

in posledično je avtomatično zvezna. Na koncu poglavja si ogledamo osnovne pojme

in rezulate o konveksnih množicah.

Naj bo P = {p0, p1, . . . , pk} ⊂ Rn afino neodvisna množica. Geometrijski simpleks je

množica točk, kjer so vse baricentrične koordinate glede na P pozitivne. Izkaže se, da

je geometrijski simpleks konveksna ogrinjača množice P . Definiramo tudi njegova lica,

simplekse generirane z nepraznimi podmnožicami množice P . Simpleksa, vložena v

isti ambientni prostor RN sta pravilno združena, če sta bodisi disjunktna, bodisi imata

skupno lice. Simplicialni kompleks K je končna družina pravilno združenih simpleksov,

ki so vsi vloženi v isti ambientni prostor RN , njegov simplicialni politop |K| pa je unija

vseh simpleksov, ki ležijo v K. Pokazali bomo, da je simplicialni politop |K| vedno

kompakten in če je povezan, potem je tudi s potmi povezan. Topološki prostor je trian-

gulabilan, če je homeomorfen simplicialnem politopu nekega simplicialnega kompleksa.

Ogledali smo si tudi preslikave med različnimi kompleksi K in L, ki slikajo množice

oglǐsč, ki generirajo simplekse v K, v množice oglǐsč, ki generirajo simplekse v L. Vsaka

taka preslikava ima zvezno razširitev f ∗ : |K| → |L|, ki se imenuje simplicialna pres-

likava. Definirali smo tudi baricentrično subdivizijo K1 podanega kompleksa K. Ta

sestoji iz več simpleksov kot prvotni simplicialni kompleks, medtem pa je |K| = |K1|.
Nato še definiramo topološke in abstraktne simplicialne komplekse. Naj bo {V, S} dan
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abstraktni simplicialen kompleks, kjer je V množica oglǐsč, S pa množica abstraktnih

simpleksov. Potem ga vedno lahko realiziramo v geometrijski simplicialni kompleks.

Ideja je v tem, da si ogledamo bijekcijo f med V in poljubno afino neodvisno množico

v Rn, kjer je n = card(V ) in definiramo K = {co(f(σ)) | σ ∈ S}, njegovo realizacijo.

Da lahko definiramo orientacijo abstraktnega k-simpleksa, si bomo ogledali množico

vseh urejanj vozlǐsč, ki ga generirajo in na njej vpeljali ekvivalenčno relacijo, tako da

sta dva urejanja enaka, če se razlikujeta za sodo permutacijo. Orientacija je izbira ekvi-

valenčnega razreda glede na to relacijo. Definirali bomo tudi inducirano orientacijo nje-

govega (k−1)-dimenzionalnega lica. Simplicialni kompleks je orientabilen, če poljubna

dva simpleksa maksimalne dimenzije inducirata nasprotno orientacijo na skupnemu

licu. Kot zgled bomo pokazali, da je valj orientabilen in da Möbiusov trak ni ori-

entabilen.

V zadnjem poglavju preučujemo kompaktne povezane 2-mnogoterosti, t.i. kompak-

tne ploskve. Najprej opazimo, da lahko definiramo simplicialne komplekse kot števne

družine simpleksov, pri čemer zahtevamo da so lokalno končni, t.j. da ima vsako oglǐsče

lice kvečjemu končno simpleksov. Privzamemo, da so kompaktne ploskve triangulabilne

in pokažemo, da je vsaka taka triangulacija sestavljena iz končno trikotnikov. V nalogi

je tudi pokazano, da je vsaka kompaktna ploskev homeomorfna kvocientnemu prostoru

nekega poligona v ravnini, kjer paroma zlepimo njegove stranice. Na koncu formuliramo

izrek o njihovi klasifikaciji: vsaka kompaktna ploskev je homeomorfna sferi, povezani

vsoti torusov ali povezani vsoti projektivnih ravnin.
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