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Rajković M. Dynamical Systems with an Application in Mathematical Biology.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2016 II
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Izvleček:

V zaključni nalogi preučujemo lastnosti rešitev navadnih diferencialnih enačb: obstoj,

enoličnost, odvisnost od začetnih pogojev ter asimptotsko obnašanje. Za ta namen

uvedemo pojem dinamičnega sistema avtonomne enačbe kjer gledamo časovno evolucijo

rešitve, ki se začne v določeni točki. Preučujemo stabilnost stacionarnih točk s pomočjo

lokalne linearizacije in metode Ljapunova. Za ravninske dinamične sisteme predstavimo
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rešitev. Teoretične rezultate uporabimo za preučevanje sobivanja dveh uporabnikov na
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1 Introduction

Differential equations represent one of the most important tools in (applied) math-

ematics. They are interesting from both theoretical and applied point of view. An

ordinary differential equation is defined as a functional relation of the form

F (t, x, x(1), . . . , x(k)) = 0 (1.1)

for the unknown function

x = (x1, . . . , xn) ∈ Ck(I,Rn)

and its derivatives

x(j)(t) =

(
djx1(t)

dtj
, . . . ,

djxn(t)

dtj

)
.

The highest derivative appearing in F is called the order of the differential equation.

If F can be written in the form F (x, x(1), . . . , x(k)) = 0, without explicit appearance of

the independent variable t, we say that the differential equation is autonomous.

The function ϕ(t) is said to be a solution of the equation (1.1) on an interval J ⊂ I if

ϕ ∈ Ck(J) and F (t, ϕ(t), . . . , ϕ(k)(t)) = 0, t ∈ J .

Throughout this paper we work with differential equations in the explicit form, i.e. we

suppose that the equation (1.1) can be solved in the highest derivative,

x(k) = f(t, x, . . . , x(k−1)). (1.2)

Differential equations are typically studied by finding their solutions explicitly or by

numerical approximation. However, one does not have to know the solution of the

equation in order to know some of its properties: interval of existence and uniqueness,

dependence on the initial condition and parameters, asymptotic behaviour. In this

paper we mostly focus on these properties.

In Chapter 2 of this paper we introduce the notion of the initial value problem and

study existence, uniqueness and dependence of solutions on the initial conditions and

parameters.

In Chapter 3 we consider a special example of differential equations, linear differential

equations. We give explicit solutions and study their asymptotic behaviour.

In Chapter 4 we introduce another notion of special interest in this paper, a dynamical

system. With the help of the theory developed in Chapter 2 we study a special example
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of a dynamical system, the flow of first order autonomous equations. We introduce the

notion of a fixed point (steady state, equilibrium) as a point where ẋ = 0.

Motivated by the study of asymptotic behaviour of solutions of linear systems and with

the help of the theory developed in Chapter 4, we study in Chapter 5 stability of fixed

points and asymptotic behaviour of solutions of first order autonomous equations.

In Chapter 6 we study dynamical systems in two dimensions by classifying their possible

asymptotic behaviour.

Finally, in Chapter 7 we give an application of the theory developed throughout the

paper on an example from mathematical biology. We are interested in predator–prey

problems, more precisely in competitive exclusion principle.
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2 Initial value problems

The aim of this chapter is to prove basic existence and uniqueness results for ordinary

differential equations. Of special interest is the initial value problem (IVP)

ẋ = f(t, x), x(t0) = x0. (2.1)

We suppose that f ∈ C(U,Rn), U an open set in Rn+1 and (t0, x0) ∈ U .

In addition to having a unique solution, IVP should be continuously dependent on

initial conditions, i.e. small changes in the data should result in small changes of the

solution.

If the IVP satisfies all the above conditions we say that it is well-posed.

For studying these properties we first formulate and prove fixed point theorems.

2.1 Fixed point theorems

For deriving the Banach fixed point theorem we first need some basic notions from real

and functional analysis.

Definition 2.1. Let (X, ∥ · ∥) be a normed vector space. A sequence {xn} converges

to vector x ∈ X if lim
n→∞

∥xn − x∥ = 0. We denote this by xn → x.

A mapping F : (X, ∥ · ∥) → (Y, ∥ · ∥) is called continuous if xn → x implies F (xn) →
F (x).

A sequence {xn} is called a Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N) : (∀m,n > N)∥xm − xn∥ < ϵ.

Definition 2.2. A normed space (X, ∥·∥) is called complete if every Cauchy sequence

inX has a limit inX. A complete normed space is called aBanach space. If a Banach

space (X, ∥ · ∥) is also an algebra and ∥xy∥ ≤ ∥x∥∥y∥ for any x, y ∈ X we call it a

Banach algebra.

For our purposes we mostly use the following example of Banach spaces. Let I be a

closed interval and let C(I) be the set of all real continuous functions on this interval.

They form a vector space with operations defined pointwise. To get a normed space,

we define a norm as: ∥x∥ = sup
t∈I

|x(t)| = max
t∈I

|x(t)|.
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A sequence of functions {xn} converges to x if and only if

lim
n→∞

∥xn − x∥ = lim
n→∞

sup
t∈I

|xn(t)− x(t)| = 0.

Let {xn} be a Cauchy sequence in C(I). For every t ∈ I the sequence {xn(t)} is a

Cauchy sequence in R and by completeness of R a convergent sequence having a limit

x(t). We have

|xn(t)− xm(t)| < ϵ, ∀n,m > Nϵ; t ∈ I

or in the limit

|xn(t)− x(t)| ≤ ϵ, ∀n > Nϵ; t ∈ I

which is the definition of uniform convergence. By the well known result from real

analysis, the uniform limit of continuous functions is again continuous. Hence, every

Cauchy sequence has a limit in C(I) which gives us a Banach space.

To formulate the Banach’s fixed point theorem, we need a special type of a mapping.

Definition 2.3. For a normed space (X, ∥ · ∥) mapping K : X → X is said to be

Lipschitz continuous if there exists a constant L > 0 such that

∥K(x)−K(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X.

If L < 1 then we say that K is a contraction.

We define the iteration of K as: Kn(x) = K(Kn−1(x)), K0(x) = x.

Theorem 2.4. (Banach fixed point theorem or The Contraction principle) Let C be

a nonempty closed subset of a Banach space X and let K : C → C be a contraction.

Then K has a unique fixed point x̄. Moreover, for every x ∈ C we have the estimate

∥Kn(x)− x̄∥ ≤ θn

1− θ
∥K(x)− x∥.

Proof. We first prove uniqueness: let x0 and x1 be two different fixed points. Then by

definition of a contraction we have: ∥x0 − x1∥ = ∥K(x0) − K(x1)∥ ≤ θ∥x0 − x1∥ <
∥x0 − x1∥, which is an obvious contradiction. Hence there can not be two different

fixed points.

Take an arbitrary x = x0 ∈ X and define a sequence xn = Kn(x0). We have

∥xn+1 − xn∥ ≤ θ∥xn − xn−1∥ ≤ · · · ≤ θn∥x1 − x0∥

and by triangle inequality we estimate

∥xn − xm∥ ≤ θm

1− θ
∥x1 − x0∥ (2.2)
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which shows that {xn} is a Cauchy sequence in a Banach space. Therefore, the sequence

has a limit x̄. Furthermore:

0 = lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥K(xn)− xn∥ = ∥K(x̄)− x̄∥

showing that x̄ is a fixed point. By sending n→ ∞ in (2.2) we get the second claim of

theorem.

From the previous proof one can infer that θn can be replaced by any summable

sequence {θn}, giving the next theorem.

Theorem 2.5. (Weissinger) Let C be a nonempty closed subset of a Banach space X.

Suppose that K : C → C satisfies: ∥Kn(x) −Kn(y)∥ ≤ θn∥x − y∥, ∀x, y ∈ C, n ∈ N
with

∑∞
n=1 θn <∞. Then K has a unique fixed point x̄ such that

∥Kn(x)− x̄∥ ≤

(
∞∑
j=n

θj

)
∥K(x)− x∥, ∀x ∈ C.

Proof. Suppose that we have two fixed points x and y. Then we have ∥x − y∥ =

∥Kn(x)−Kn(y)∥ or in the limit: ∥x− y∥ ≤ lim
n→∞

θn∥x− y∥ = 0 since lim
n→∞

θn = 0. To

prove the existence of a solution, fix an arbitrary x0 ∈ C and generate a sequence

xn = Kn(x0). Using the above condition we can estimate

∥xn+1 − xn∥ = ∥Kn(K(x0))−Kn(x0)∥ ≤ θn∥K(x0)− x0∥.

Furthermore, by triangle inequality we have

∥xn − xm∥ ≤

(
n−1∑
i=m

θi

)
∥K(x0)− x0∥ (2.3)

and since sequence {θn} is summable we have that {xn} is a Cauchy sequence in a

closed subset of Banach space and hence it is convergent with a limit x̄ ∈ C. Then we

can write

0 = lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥K(xn)− xn∥ = ∥K(x̄)− x̄∥

showing that x̄ is a fixed point. By sending n→ ∞ in (2.3) we get the second claim of

the theorem.

2.2 The basic existence and uniqueness results

In this section we use results of the previous section to show existence and uniqueness

results for the IVP in (2.1). First we extend the definition of Lipschitz continuous

functions.
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Definition 2.6. Let U be an open set in Rn+1. A function f ∈ C(U,Rn), is called

locally Lipschitz continuous in the second argument, uniformly with respect to the first

argument if for every compact set V ⊂ U we have

L(V ) = sup
(t,x)̸=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y|

<∞

Remark 2.7. Since all the norms in Rn are equivalent, the Lipschitz condition does

not depend on the choice of the norm. For convenience, we denote in the rest of this

chapter the norm |x| = |(x1, . . . , xn)| = max
i=1,...,n

|xi| for x ∈ Rn.

By integration, the IVP (2.1) is equivalent to x(t) = x0 +
∫ t
t0
f(s, x(s))ds since f is

continuous. The initial value x0 can serve as an approximation of the solution for t close

to t0. The next approximation is derived by putting x0(t) into the integral equation.

In general we define

xm(t) = Km(x0)(t); K(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds.

For convenience we take t0 = 0 and t ≥ 0. We want to have K to be a contraction in a

suitable Banach space X and its closed subset C. We put X = C([0, T ],Rn) with the

usual norm, and V = [0, T ]×Bδ(x0) for suitable T . Since V is compact we can define

M = max
(t,x)∈V

|f(t, x)|. Taking T0 = min{T, δ
M
} and C = Bδ(x0) = {x ∈ X, ∥x−x0∥ ≤ δ}

we get the desired spaces since

|K(x)(t)− x0| ≤
∫ t

0

|f(s, x(s))|ds ≤ tM ≤ δ, ∀x ∈ C, t ≤ T0.

Hence, we have K : C → C and by taking L as defined in (2.6) we get

|K(x)(t)−K(y)(t)| ≤
∫ t

0

|f(s, x(s))− f(s, y(s))|ds ≤ Lt sup
0≤s≤t

|x(s)− y(s)|, ∀x, y ∈ C.

In other words, ∥K(x)−K(y)∥ ≤ LT0∥x−y∥, ∀x, y ∈ C. If we take T1 < min{T0, L−1}
we have that K is a contraction and we can apply the contraction principle.

Theorem 2.8. Suppose f ∈ C(U,Rn) where U is an open subset of Rn+1 and (t0, x0) ∈
U . If f is locally Lipschitz continuous in the second argument, uniformly with respect

to the first argument then there exists a unique local solution x̄(t) ∈ C1(I) of the IVP

where I is some interval containing t0.

More precisely, if V = [t0, t0 + T ] × Bδ(x0) ⊂ U and M denotes the maximum of |f |
on V then the solution exists at least for t ∈ [t0, t0 + T0] and remains in Bδ(x0), where

T0 < min{T, δ/M, 1/L} where L is Lipschitz constant on V .

Remark 2.9. Every f ∈ C1(U,Rn) is locally Lipschitz since ∥f(x)− f(y)∥ ≤ L∥x− y∥
where L = max

τ∈Ω
∥Jf (τ)∥, Jf is the Jacobian matrix of f and Ω ⊂ U a convex set.
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The previously described procedure of finding the solution of IVP is called Picard

iteration. Although it is very useful in proving uniqueness and existence results, it is

not useful in practice since it is often difficult to calculate integrals.

Example 2.10. Applying Picard iteration for IVP: ẋ = ax; x(t0) = x0 we get

x0(t) = x0

x1(t) = x0 +
∫ t
t0
ax0(s)ds = x0 + ax0(t− t0)

x2(t) = x0 +
∫ t
t0
ax1(s)ds = x0 + ax0(t− t0) + a2x0

(t− t0)
2

2
.

By induction we conclude:

xm(t) =
m∑
j=0

(t− t0)
j

j!
ajx0

which is exactly the m′th Taylor’s polynomial of x0e
a(t−t0) and hence x(t) = x0e

a(t−t0).

Using the previous theorem we can prove

Lemma 2.11. Suppose f ∈ Ck(U,Rn), k ≥ 1, where U is an open subset of Rn+1 and

(t0, x0) ∈ U . If x̄ is a local solution of IVP (2.1) then x̄ ∈ Ck+1(I) where I is the

interval of existence.

Proof. For k = 1 we have x̄ ∈ C1 by Theorem 2.8. Moreover, using ˙̄x(t) = f(t, x(t)) ∈
C1 we infer x̄(t) ∈ C2. The rest follows by induction.

There is a classical method for numerical computation of solutions of differential equa-

tions, called Euler’s method, which is based on approximation of the solution by piece-

wise linear functions.

Let IVP be of the form (2.1). If ϕ(t) is a solution, then by Taylor’s theorem we have

ϕ(t0 + h) = x0 + ϕ̇(t0)h+ o(h) = x0 + f(t0, x0)h+ o(h)

To approximate the solution we omit the error term and iterate the procedure:

xh(tm+1) = xh(tm) + f(tm, xh(tm))h, tm = t0 +mh

and use linear interpolation in between.

Euler’s method can be used as a motivation for construction of solutions for an IVP.

We need the following theorem.

Theorem 2.12. (Arzela–Ascoli) Suppose that a sequence of functions {xm(t)} ∈ C(I,Rn),

m ∈ N on a compact interval I is (uniformly) equicontinuous, i.e. for every ϵ > 0

there is δ > 0 (independent of m) such that |xm(t)− xm(s)| < ϵ for |t− s| < δ,m ∈ N.
If the sequence {xm} is bounded then it has a uniformly convergent subsequence.
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Theorem 2.13. (Peano’s theorem) Let ẋ = f(x), x(t0) = x0 be an autonomous IVP,

where f ∈ C(U) for an open, bounded subset U ⊂ Rn. Then there exists a solution

defined for time t0 − D
M

√
n
≤ t ≤ t0 +

D
M

√
n
, where D = dist(x0, ∂U) and M = ∥f∥ =

max
i=1,...,n

|fi| on U .

Proof. Since f is continuous on a compact set, it is uniformly continuous and hence

for a fixed ϵ > 0 there exists δ > 0 such that |f(x)− f(y)| < ϵ for |x− y| < δ. For such

δ we cut U onto δ-blocks. We start in the initial point and make an approximation by

Euler’s method

x(t) = x0 + f(x0)(t− t0).

Let t1 be the time when x(t) hits the boundary of the δ-block. We make a new

approximation using that intersection as the initial condition. We repeat this procedure

until we reach the boundary of U . The obtained piecewise linear curve is called an

Euler polygon. If we travel with maximal velocity in the direction of the nearest

boundary point then

|x(t)− x0| ≤ (t− t0)∥f∥2 ≤ (t− t0)M
√
n ≤ dist(x0, ∂U) = D

and hence we get t − t0 ≤ D
M

√
n
. We apply an analogous procedure for negative time

direction.

For t ∈ [ti, ti+1] we get

x(t) = xi + f(xi)(t− ti) = xi +

∫ t

ti

f(xi)ds

xi = x0 +
i−1∑
k=0

∫ tk+1

tk

f(xk)dt.

We repeat this procedure on all parts of polygonal line and calculate

x(t) = x0 +

∫ t

t0

f(x(s))ds+
i−1∑
k=0

∫ tk+1

tk

(f(xk)− f(x(s))ds+

∫ t

ti

(f(xi)− f(x(s)))ds.

The definition of the polygon gives |f(x(s))− f(xi)| < ϵ and hence

x(t) = x0 +

∫ t

t0

f(x(s))ds+ (t− t0)θ, |θ| < ϵ.

Now we choose a decreasing sequence {ϵn} with limit 0 and consider the corresponding

Euler polygons {xn} which satisfy

xn = x0 +

∫ t

ti

f(xn(s))ds+ (t− t0)θn, |θn| < ϵn.

Since we are on a compact set U all this polygons are bounded by the same constant

and they are equicontinuous i.e. for every ϵ > 0 there exists δ > 0 such that for every
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n ∈ N we have |xn(t) − xn(t
′)| < ϵ for |t − t′| < δ. Hence we can apply Arzela–Ascoli

theorem to obtain a convergent subsequence with limit x. Since |θn| → 0 and f is

uniformly continuous, in the limit we have

x(t) = x0 +

∫ t

t0

f(x(s))ds

and hence x(t) satisfies the IVP as we wanted to show.

Remark 2.14. Continuity of f is enough to guaranty existence of a solution, but not

necessarily uniqueness. As an example of that, take ẋ = |x| 12 , x(0) = 0 on [0, 1], where

we have two solutions x ≡ 0 and x =
t2

4
.

We can further use Weisinger’s theorem to get less strict conditions for existence and

uniqueness of solutions.

Theorem 2.15. Suppose f ∈ C(U,Rn) where U is an open subset of Rn+1 and

(t0, x0) ∈ U and f is locally Lipschitz continuous in the second argument, uniformly

with respect to the first argument. Let δ, T > 0 such that [t0, t0 + T ]×Bδ(x0) ⊂ U . Set

M =

∫ t

t0

sup
x∈Bδ(x0)

|f(s, x)|ds; L(t) = sup
x ̸=y∈Bδ(x0)

|f(t, x)− f(t, y)|
|x− y|

and define T0 = sup{0 < t ≤ T |M(t0 + t) ≤ δ}. Suppose that L1(T0) =
∫ t0+T0
t0

L(t)dt is

finite.

Then the unique solution of IVP is given by

x̄ = lim
m→∞

Km(x0) ∈ C1([t0, t0 + T0], Bδ(x0)).

Proof. Without loss of generality, we can take t0 = 0. Set X = C([0, T0],Rn) and

C = Bδ(x0). Our choice of T0 implies that K : C → C since we have

|K(x)(t)− x0| ≤
∫ t

0

|f(s, x(s))|ds ≤M(t) ≤ δ, t ∈ [0, T0].

In order to apply Weissinger theorem we have to show that

|Km(x)(t)−Km(y)(t)| ≤ L1(t)
m

m!
sup
0≤s≤t

|x(s)− y(s)|.

We prove this by induction. For m = 1 we have:

|K(x)(t)−K(y)(t)| ≤
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

≤
∫ t

0

L(s)|x(s)− y(s)|ds

≤ sup
0≤s≤t

|x(s)− y(s)|
∫ t

0

L(s)ds
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and we use the induction hypothesis and similar technique for the induction step:

|Km+1(x)(t)−Km+1(y)(t)| ≤
∫ t

0

|f(s,Km(x)(s))− f(s,Km(y)(s))|ds

≤
∫ t

0

L(s)|Km(x)(s)−Km(y)(s)|ds

≤
∫ t

0

L(s)
L1(s)

m

m!
sup
r≤s

|x(r)− y(r)|

≤ sup
r≤t

|x(r)− y(r)|
∫ t

0

L′
1(s)

L1(s)
m

m!
ds

=
L1(t)

m+1

(m+ 1)!
sup
0≤r≤t

|x(r)− y(r)|.

We can apply Weissinger theorem since
∞∑
m=0

L1(t)
m

m!
= eL1(t) <∞ by definition of L1 to

get the desired result.

For globally defined functions f which are globally Lipschitz we can say even more.

Corollary 2.16. Suppose [t0, T ]× Rn ⊂ U and
∫ T
t0
L(t)dt <∞, where

L(t) = sup
x ̸=y∈Rn

|f(t, x)− f(t, y)|
|x− y|

.

Then x̄ is defined for all t ∈ [t0, T ]. If U = Rn+1, with
∫ T
−T L(t)dt < ∞ for all T > 0,

then x̄ is defined for all t ∈ R.

Proof. We can apply the previous theorem and since Bδ(x0) = Rn we have δ = ∞ and

existence of solution is guaranteed for all [t0, T ]. If furthermore U = Rn+1, we can put

C = X = C([t0, T ],Rn), T0 = T for all T > 0 to get the global solution.

2.3 Extensibility of solutions

The previous section showed that solutions of IVP might not exists for all t ∈ R
even though the equation is defined everywhere. This section deals with the maximal

interval where the solution of an IVP can be defined.

An extension of a solution can be accomplished by ”glueing” two or more solutions.

We will also consider the maximal interval where solutions coincide.

Suppose that solutions of IVP exist locally and are unique for any (t0, x0) and let

ϕ1 and ϕ2 be two solutions defined on open intervals I1 and I2, respectively. Then

I = I1 ∩ I2 = (t0, t1) where (t0, t1) is the maximal interval where solutions coincide.
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To ”glue” ϕ1 and ϕ2 we define:

ϕ(t) =

{
ϕ1(t) t ∈ I1

ϕ2(t) t ∈ I2.

By repeating this procedure we get the next theorem.

Theorem 2.17. Suppose that IVP (2.1) has a unique local solution. Then there exists

a unique solution defined on maximal interval I(t0,x0) = (T−(t0, x0), T+(t0, x0)).

The solution defined in the previous theorem is called the maximal solution. A

solution defined for all t ∈ R is called a global solution.

The next lemma gives us the sufficient and necessary condition for a given solution to

have an extension.

Lemma 2.18. Let ϕ(t) be the unique solution of IVP defined on an interval (t−, t+),

t+ < ∞. Then there exists an extension (t−, t+ + ϵ) for some ϵ > 0 if and only if

there exists a sequence {tm} ∈ (t−, t+) such that lim
m→∞

(tm, ϕ(tm)) = (t+, y) ∈ U . An

analogous statement holds for (t− − ϵ, t+).

Proof. If an extension exists, by continuity of ϕ the identity holds for any sequence

tm ↑ t. Conversely, suppose that such a sequence exists. Since U is open there is

some δ > 0 such that V = [t+ − δ, t+] × Bδ(U) ⊂ U and M = max
(t,x)∈V

|f(t, x)| <∞.

Moreover, after maybe passing to a subsequence, we can assume that tm ∈ (t+− δ, t+),

ϕ(tm) ∈ Bδ(U) and tm < tm+1. We prove that in this case we have lim
t↑t+

ϕ(t) = y. Assume

the contrary. Then we can find a sequence τm ↑ t+ such that |ϕ(τm) − y| ≥ γ > 0.

Without loss of generality we can choose γ < δ and τm ≥ tm. Moreover, by mean value

theorem we can require |ϕ(τm)− y| = γ and |ϕ(t)− y| < δ for t ∈ [tm, τm]. But then

0 < γ = |ϕ(τm)− y| ≤ |ϕ(τm)− ϕ(tm)|+ |ϕ(tm)− y|

≤
∫ τm

tm

|f(s, ϕ(s))|ds+ |ϕ(tm)− y| ≤M |τm − tm|+ |ϕ(tm)− y|,

which is a contradiction since the right hand side converges to 0 as m→ ∞.

To make extension we glue ϕ and ϕ̄ defined as solution of IVP x(t+) = y on (t+−ϵ, t++
ϵ). The new function is continuous by definition and differentiable by Peano’s theorem

since for fixed (t+, y) ∈ U there is a positive minimal time ϵ such that there is solution

defined on (t+ + ϵ, y). Thus we have defined a unique solution on (t−, t+ + ϵ).

As corollary of this lemma we have a criterion that does not require a complete knowl-

edge of solution.
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Corollary 2.19. Let ϕ(t) be solution of IVP defined on interval (t−, t+). Suppose there

is a compact set [t−, t+]×C ⊂ U such that ϕ(tm) ∈ C for some sequence {tm} ∈ [t0, t+)

converging to t+. Then there exists an extension (t−, t+ + ϵ) for some ϵ > 0.

In particular, if such an C exists for every t+ > t0 then the solutions exist for all t > t0.

Analogous statement holds for (t− − ϵ, t+).

Proof. Take tm ↑ t+. By compactness {ϕ(tm)} has a convergent subsequence and the

claim follows from previous lemma.

As the final goal of this section we can prove that there exists a global solution if f has

at most linear growth with respect to x. Before that we state a very useful inequality.

Lemma 2.20. (Generalized Gronwall’s inequality) Suppose α, β, ψ are real valued func-

tions on some interval [0, T ] where β is non-negative, β, ψ are continuous and α is

integrable on given interval. If ψ(t) satisfies

ψ(t) ≤ α(t) +

∫ t

0

β(s)ψ(s)ds, t ∈ [0, T ],

then

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, t ∈ [0, T ]

Proof. Abbreviate ϕ(t) = exp
(
−
∫ t
0
β(s)ds

)
. Then one computes:

d

dt

(
ϕ(t)

∫ t

0

β(s)ψ(s)ds

)
= β(t)ϕ(t)

(
ψ(t)−

∫ t

0

β(s)ψ(s)ds

)
≤ α(t)β(t)ϕ(t).

Integrating this inequality with respect to t, dividing the result by ϕ(t) and finally

adding α(t) on both sides proves the claim.

We mostly use the following corollary of this lemma.

Corollary 2.21. If ψ(t) ≤ α+
∫ t
0
(βψ(s) + γ)ds, t ∈ [0, T ] for given constants α, γ ∈ R,

β ≥ 0 then

ψ(t) ≤ α exp(βt) +
γ

β
(exp(βt)− 1), t ∈ [0, T ]

If β = 0 then ψ(t) ≤ α + γt.

Proof. Use the Generalized Gronwall’s inequality for α, β and ψ̃(t) = ψ(t) + γ
β
.

We are now ready to prove the announced theorem.

Theorem 2.22. Suppose U = R × Rn and for every T > 0 there are constants

M(T ), L(T ) such that: |f(t, x)| ≤ M(T ) + L(T )|x|, (t, x) ∈ [−T, T ] × Rn. Then all

solution are defined for all t ∈ R.
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Proof. Without loss of generality t0 = 0. By the above estimate:

|ϕ(t)| ≤ |x0|+
∫ t

0

(M + L|ϕ(s)|)ds, t ∈ [0, T ] ∩ I.

By applying Corollary 2.21 we get

|ϕ(t)| ≤ |x0|eLT +
M

L
(eLT − 1), t ∈ [0, T ] ∩ I.

Thus, ϕ(t) lies in a compact ball and by Corollary 2.19 we can make extension of the

interval of solution. Since the above holds for every T > 0 we conclude that solutions

exist for all t ∈ R.

Remark 2.23. The above result is true if |f(t, x)| ≤ M(t) + L(t)|x|,∀x ∈ Rn where

M(t), L(t) are locally integrable.

2.4 Dependence on the initial conditions

The aim of this section is to give a criterion for a solution of the IVP to be continuously

dependent on the initial conditions, i.e. the case when small changes in the data will

result in small changes of the solution. Some of the proofs were taken from [7].

Theorem 2.24. Let the function f be continuous and Lipschitz with constant L. Then

the solution of IVP is continuously dependent on the initial conditions. Moreover, by

the results of previous sections we have a unique solution of IVP and hence IVP is

well-posed.

Proof. Without loos of generality, we can suppose t0 = 0. Let y be solution of IVP

with y(0) = x0+h. Integrating the IVP, using the triangle inequality and the Lipschitz

condition we get

|x(t)− y(t)| ≤ |h|+
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

≤ |h|+ L

∫ t

0

|x(s)− y(s)|ds.

Using the Gronwall’s inequality for constant functions α and β we get

|x(t)− y(t)| ≤ |h|eL|t|, t ∈ [−T, T ].

We are now interested in dependence of solutions of IVP

ẋ = f(x, µ), x(0) = y (2.4)

on initial conditions and a parameter µ ∈ Rm. We denote this solution as u(t, y, µ)

and claim that it is as smooth as the function f .
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Theorem 2.25. Let E ⊂ Rn be an open set, f ∈ Ck(E) and x0 ∈ E. Then there exist

a > 0 and δ > 0 such that for every y ∈ B(x0, δ) the IVP (2.4) has a unique solution

u(t, y) ∈ Ck(G) where G = [−a, a]×B(x0, δ). For fixed y we have u(t) ∈ Ck+1([−a, a]).

Proof. If u solves (2.4) it also solves the integral equation u(t, y) = y+
∫ t
0
f(u(s, y(s)))ds.

We use this to estimate

|u(t, y + h)− u(t, y)| ≤ |h|+
∫ t

0

|f(u(s, y + h))− f(u(s, y))ds|

≤ |h|+K

∫ t

0

|u(s, y + h)− u(s, y)|ds

and by using Gronwall’s lemma

|u(t, y + h)− u(t, y)| ≤ |h|eKt, t ∈ [−a, a]. (2.5)

Furthermore, from the above integral equation we see that if the partial derivative ∂u
∂y

exists it satisfies the equation

∂u(t, y)

∂y
= I +

∫ t

0

Df(u(s, y))
∂u(s, y)

∂y
ds.

In other words, it is a solution of matrix IVP

Φ̇ = Df(u)Φ, Φ(0, y) = I.

This IVP has a unique solution since Df(u) is locally bounded and its norm can serve

as the Lipschitz coefficient. We denote this solution by V (t, x). Since we want to show

that it is partial derivative, we calculate

|u(t, y + h)− u(t, y)− V h| ≤
∫ t

0

|f(u(s, y + h))− f(u(s, y))−Df(u(s, y))V h|ds

≤
∫ t

0

|Df(u(s, y))(u(s, y + h)− u(s, y))−Df(u(s, y))V h|ds

+

∫ t

0

|R(u(s, y + h), u(s, y))|ds

≤
∫ t

0

|Df(u(s, y))||u(s, y + h)− u(s, y)− V h|ds+

+

∫ t

0

|R(u(s, y + h), u(s, y))|ds,

where R is remainder of the Taylor expansion of f up to the linear term. Thus for

every ϵ > 0 we can find a δ > 0 such that if |h| < δ we have

|R(u(s, y + h), u(s, y))| ≤ ϵ|u(s, y + h)− u(s, y)|, s ∈ [−a, a]. (2.6)
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Let |Df(u(s, y))| < M1. By using (2.5) and (2.6) we get

|u(t, y+h)−u(t, y)−V h| ≤M1

∫ t

0

|u(s, y + h)− u(s, y)− V h|ds+ϵa|h|eKa, t ∈ [−a, a]

Denote g(t) = |u(t, y + h)− u(t, y)− V h|. Then the above estimate rewrites into

g(t) ≤M1

∫ t

0

g(s)ds+ aϵ|h|eKa.

We again use Gronwall’s lemma and obtain g(t) ≤ ϵ|h|aeKaeM1a, t ∈ [−a, a]
We divide by |h| to obtain that for |h| < δ we have

|u(t, y + h)− u(t, y)− V h|
|h|

≤ ϵaeKaeM1a.

By sending |h| to zero we get that
∂u(t, y)

∂y
= V (t, h) and since V ∈ Ck−1(G) the claim

holds.

We can similarly show the following theorem.

Theorem 2.26. Let U be an open set of Rn+m, f ∈ Ck(U) and (x0, µ0) ∈ U . Then

there exist a > 0 and δ > 0 such that for every y ∈ B(x0, δ) and µ ∈ B(µ0, δ), the IVP

(2.4) has a unique solution u(t, y, µ) ∈ Ck(G) defined on G = [−a, a] × B(x0, δ). For

fixed µ and y we have u ∈ Ck+1([−a, a]).



3 Linear systems of equations

In this chapter we analyze IVPs of the form

ẋ = A(t)x+ b(t), x(0) = x0

where A : R → Rn × Rn, x : R → Rn, b : R → Rn. Such an IVP is called linear.

If b(t) ≡ 0 it is called homogeneous, otherwise it is non-homogeneous. A special

type of homogeneous equations is the one where A is an n×n matrix of real (complex)

numbers:

ẋ = Ax. (3.1)

Applying Picard iteration similar as in (2.10) we get: x(t) =
∞∑
j=0

tj

j!
Ajx0 and hence

x(t) = exp(tA)x0, (3.2)

where we define exp(A) =
∑∞

j=0

Aj

j!
. In this case A can be considered as a linear

operator A : Cn → Cn. The space of linear operators, in this case n dimensional

matrices, denoted by B(Cn), is a Banach algebra with the norm: ∥A∥ = sup∥x∥=1 |Ax|.
From here we see that the space of solutions of (3.1) is an n dimensional vector space.

Lemma 3.1. The sum
∞∑
j=0

Aj

j!
converges for every A ∈ B(Cn) and the matrix expo-

nential is well defined.

Proof. Since B(Cn) is a Banach space it is enough to prove normal convergence:
∞∑
j=0

∥Aj∥
j!

. Since B(Cn) is a Banach algebra, we have: ∥Aj∥ ≤ ∥A∥j and convergence

follows from convergence of the sum:
∞∑
j=0

∥A∥j

j!
= exp(∥A∥).

Full understanding of the matrix exponential comes from the Jordan canonical form.

Before stating this well-known fact from linear algebra we need a definition.

Definition 3.2. A vector x with ∥x∥ = 1 is called a generalized eigenvector of

rank m of the matrix A corresponding to eigenvalue λ if (A− λI)mx = 0 and

(A− λI)m−1x ̸= 0.

16



Rajković M. Dynamical Systems with an Application in Mathematical Biology.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2016 17

Lemma 3.3. (Jordan canonical form) Let A be a complex n × n matrix. Then there

exists a matrix U such that A is transformed into a block diagonal matrix by

U−1AU =


J1

J2
. . .

Jm


where each block is of the form:

J =



α 1

α 1
. . . . . .

. . . 1

α


and where α is some eigenvalue of A and columns of U are the corresponding generalized

eigenvectors of A.

We can calculate:

exp(U−1AU) =
∞∑
j=0

(U−1AU)j

j!
=

∞∑
j=0

U−1AjU

j!
= U−1 exp(A)U

and thus exp(A) = U exp(U−1AU)U−1

Hence, the exponential of A will be represented using generalized eigenvectors of A and

the exponential of its Jordan form.

3.1 Linear autonomous first-order systems

In this section we discuss properties of solutions of the system (3.1). Instead of con-

sidering directly the matrix A we consider its Jordan form. We start by observing

that

exp(tU−1AU) =


exp(tJ1)

exp(tJ2)
. . .

exp(tJm)


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where for a block of dimension n we have

exp(tJ) = eαt



1 t · · · · · · tn−1

(n− 1)!

1 t · · · tn−2

(n− 2)!
. . . . . .

...
. . . t

1


If the corresponding generalized eigenvectors of the Jordan block for the eigenavalue α

are u1, . . . ur(α) then every solution is a linear combination of terms of the type:

eαt
r(α)∑
i=1

i∑
j=1

uj
ti−j

(i− j)!
(3.3)

If a real matrix A has complex eigenvalue α with the corresponding generalized eigen-

vector u then also ᾱ is the eigenvalue with the corresponding generalized eigenvector

ū. To form basis of the space of solutions we use ω = Re(u) and v = Im(u) and get

that components of every solution are linear combinations of the terms u tkeat cos bt and

u tkeat sin bt, where a and b are respectively real and imaginary part of some eigenvalue.

If a < 0 the term converges to zero since exp(at) decays faster than any polynomial. If

a = 0, exp(at) will remain bounded, but if k > 0 the solution diverges. However, in the

case when the number of eigenvectors of rank 1 corresponds to algebraic multiplicity,

there are no polynomial terms. In summary:

Theorem 3.4. A solution of the linear system (3.1) converges to 0 as t → ∞ if and

only if x0 lies in a subspace spanned by the generalized eigenvectors of the matrix A

corresponding to eigenvalues with a negative real part.

A solution remains bounded as t→ ∞ if and only if x0 lies in the subspace spanned by

the generalized eigenvectors of the matrix A corresponding to eigenvalues with a negative

real part and the eigenspaces of generalized eigenvectors of rank one corresponding to

eigenvalues with vanishing real part.

Remark 3.5. To get behavior as t→ −∞ we just switch negative and positive.

We introduce the terminology for the above mentioned behavior of solutions.

Definition 3.6. A linear system is called stable if all solutions remain bounded as

t→ ∞ and asymptotically stable if all solutions converge to 0 as t→ ∞.

We are actually discussing stability of the origin as a fixed point of the system (3.1).

We are generalizing this in Chapter 5.

With this terminology we have
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Corollary 3.7. The linear system (3.1) is stable if and only if all eigenvalues of A

have a non-positive real part and for those with vanishing real part the corresponding

algebraic and geometric multiplicity are equal.

The linear system (3.1) is asymptotically stable if and only if all eigenvalues αj of A

satisfy Re(αj) < 0.

Generalized eigenvectors are a basis for Rn. We decompose Rn in the following way:

E±(eA) = Lin(ui, vi|ui + ivi ∈ Ker(A− λI)n ̸= 0,±Re(λ) < 0)

E0(eA) = Lin(ui, vi|ui + ivi ∈ Ker(A− λI)n ̸= 0, Re(λ) = 0)

The spaces E+, E− and E0 are respectively called the stable, the unstable and the

central space. As we already said Rn = E+(eA) ⊕ E−(eA) ⊕ E0(eA). If the initial

value is in E+(eA) (respectively E−(eA)) only the terms of type (3.3) for Re(α) < 0

(respectively Re(α) > 0) determine solution and we have that x(t) → 0 as t → ∞
(respectively −∞).

Linear autonomous equations of the order n (linear equations with constant coefficients)

can be rewritten into linear autonomous first-order systems. The corresponding system

for equation

x(n) + cn−1x
(n−1) + · · ·+ c1ẋ+ c0x = 0 (3.4)

is given as

A =



0 1

0 1
. . . . . .

0 1

−c0 −c1 · · · · · · −cn−1


, x =


x

ẋ
...

x(n−1)

 .

Properties of the solutions of this system depend on eigenvalues of the matrix A.

Theorem 3.8. Let αj, 1 ≤ j ≤ m, be the zeros of the polynomial

P (z) = zn + cn−1z
n−1 + · · ·+ c1z + c0, associated with the equation (3.4), where aj are

their corresponding multiplicities. Then the functions:

xj,k(t) = tk exp(αjt); 0 ≤ k ≤ aj, 1 ≤ j ≤ m

are n linearly independent solutions of the equation (3.4).

Proof. Let us look at the solution of the corresponding first-order system. By con-

struction, the first component of every solution of the system will solve our n′th order

equation. By collecting functions from each Jordan block this first component must
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be a linear combination of the functions xj,k(t). So the solution space is spanned by

these functions. Since this space is n dimensional, all functions must be present. In

particular, these functions must be linearly independent.

3.2 General linear first-order systems

In this section we return to the analysis of the system

ẋ(t) = A(t)x(t) + b(t); A ∈ C(I,Rn × Rn), b ∈ C(I,Rn).

Regarding the existence of solutions of this system we observe the following:

Theorem 3.9. The above defined system has a unique solution satisfying the initial

condition x(t0) = x0. This solution is defined for all t ∈ I.

Proof. This is a direct consequence of Theorem 2.22 and Corollary 2.16 since we can

take L(T ) = max
t∈[t0,T ]

∥A(t)∥ for every T ∈ I to satisfy the Lipschitz condition.

We will first consider a general linear homogeneous first-order system. These are sys-

tems of the form

ẋ(t) = A(t)x(t), A ∈ C(I,Rn × Rn). (3.5)

We start by observing that linear combinations of solutions are again solutions. Hence

the set of all solutions forms a vector space. This is often referred to as the superpo-

sition principle. In particular, solution for the initial condition x(t0) = x0 is given

by:

ϕ(t, t0, x0) =
n∑
j=1

ϕ(t, t0, δj)x0,j,

where δj is the j
′th canonical basic vector, x0,j the j

′th component of x0 and ϕ(t, t0, δj)

is the value x(t) for x(t0) = δj. Using matrix notation we can write

ϕ(t, t0, x0) = Π(t, t0)x0

where Π(t, t0) = (ϕ(t, t0, δ1), ϕ(t, t0, δ2), . . . , ϕ(t, t0, δn)). The matrix Π(t, t0) is called a

principal matrix solution.

Theorem 3.10. Solutions of the system (3.5) form an n dimensional vector space.

Moreover, there exists a matrix-valued solution Π(t, t0) such that the solution satisfying

the initial condition x(t0) = x0 is given by Π(t, t0)x0.

Since all columns of Π(t, t0) solve (3.5) we conclude:

Π̇(t, t0) = A(t)Π(t, t0); Π(t0, t0) = I
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In general, Ẋ(t) = A(t)X(t) iff all columns of X solve the equation. Taking n solutions

as columns of a matrix we get the Wronski matrix: U(t) = (ϕ1(t), . . . , ϕn(t)). The

determinant of U(t) is called the Wronski determinant

W (U(t)) = det(ϕ1(t), . . . , ϕn(t)).

If detU(t) ̸= 0 then U is called a fundamental matrix solution, i.e its columns are

linearly independent solutions. Every two fundamental matrix solutions U(t), V (t) are

connected by V (t)V (t0) = U(t)U(t0) since a solution is uniquely determined by the

initial conditions.

The next theorem shows that it is enough to check detU(t) ̸= 0 for one t ∈ I, i.e.

solutions are linearly independent everywhere if they are independent at some point.

Theorem 3.11. (Liouville’s formula)

W (U(t)) = W (U(t0)) exp

(∫ t

t0

Tr(A(s))ds

)
.

Proof. To prove this result we need the following lemma

Lemma 3.12. (Jacobi’s formula) For a differentiable map A : R → Rn × Rn we have

d det(A)

dt
= Tr(Adj(A)

dA

dt
).

Proof. We start by observing that
∑

i

∑
j AijBij = Tr(ATB) for any two same dimen-

sional square matrices.

By definition det(A) =
∑n

j=1Aij(AdjA
T )ij for a fixed row i. If we consider the de-

terminant as a function of entries: det(A) = F (A11, . . . , Ann), it will be multilinear

function of n2 independent variables. By chain rule we get

d det(A) =
∑
i

∑
j

∂F

∂Aij
dAij. (3.6)

Furthermore, by the definition of determinant

∂F

∂Aij
=

n∑
k=1

∂Aik(AdjA)
T
ik

∂Aij

where we calculated the determinant by expansion with respect to i′th row. By the

product rule
∂F

∂Aij
=
∑
k

∂Aik
∂Aij

(AdjA)Tik +
∑
k

Aik
∂(AdjA)Tik
∂Aij

.

Since in calculating (AdjA)Tij we do not use i’th row and j’th column of A we have:

∂(Adj(A)T )ik
∂Aij

= 0. Since variables are independent we have
∂Aik
∂Aij

= δjk where δjk is
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Kronecker’s delta. Hence,
∂ det(A)

∂Aij
= (AdjA)Tij and by inserting in (3.6):

d det(A) =
∑
i

∑
j

(AdjA)TijdAij = Tr(Adj(A)dA)

where we used the identity from the beginning of the proof.

For proving Liouville’s formula we will use Jacobi’s formula:

d det(U)

dt
= Tr(Adj(U)

dU

dt
)

= Tr(Adj(U)AU)

= Tr(U Adj(U)A)

= det(U) Tr(A).

Solving this equation gives us the desired identity.

We return to the general system

ẋ(t) = A(t)x(t) + b(t); A ∈ C(I,Rn × Rn), b ∈ C(I,Rn) (3.7)

Since the difference of two solutions of the non-homogeneous system solves the corre-

sponding homogeneous system we conclude that solutions of non-homogeneous systems

form n dimensional affine space over the solutions of the corresponding homogeneous

linear equation. It therefore suffices to find one particular solution. Put:

x(t) = Π(t, t0)c(t); c(t0) = x(t0) = x0.

This method is known as variation of constants. By inserting this into our equation,

we calculate ẋ(t) = A(t)x(t) + Π(t, t0)ċ(t) giving: ċ(t) = Π(t, t0)
−1b(t). Solving this

equation and plugging into the initial yields:

Theorem 3.13. The solution of system ẋ(t) = A(t)x(t) + b(t) corresponding to the

initial condition x(t0) = x0 is given by

x(t) = Π(t, t0)x0 +

∫ t

t0

Π(s, t)−1b(s)ds,

where Π(t, t0) is the principal matrix solution of the corresponding homogeneous system.

The above theory can be used in solving linear equations of order n,

x(n) + qn−1(t)x
(n−1) + · · ·+ q1(t)ẋ+ q0(t)x = 0 (3.8)

where qi(t) are continuous functions. A solution is uniquely determined by initial

conditions: x(i)(t0) = xi and as in case of constant coefficients we rewrite into a linear

system:
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A(t) =



0 1

0 1
. . . . . .

0 1

−q0(t) −q1(t) · · · · · · −qn−1(t)


and the principal matrix solution is given by

Π(t, t0) =


ϕ1(t, t0) · · · ϕn(t, t0)

ϕ̇1(t, t0) · · · ϕ̇n(t, t0)
...

...
...

ϕ
(n−1)
1 (t, t0) · · · ϕ

(n−1)
n (t, t0)


where ϕj(t, t0) is solution corresponding to the initial condition

(x(t0), ẋ(t0) . . . , x
(n−1)(t0)) = δj.

As a consequence of Theorem 3.13 we have

Theorem 3.14. The solution of a nonhomogeneous equation

x(n) + qn−1(t)x
(n−1) + · · ·+ q1(t)ẋ+ q0(t)x = b(t)

satisfying initial condition x(t0) = x0, ẋ(t0) = x1, . . . , x
(n−1)(t0) = xn−1 is given by

x(t) = x0ϕ1(t, t0) + · · ·+ xn−1ϕn(t, t0) +

∫ t

t0

ϕn(t, s)b(s)ds,

where ϕj(t, t0), 1 ≤ j ≤ n are the solutions corresponding to the initial conditions

(ϕj(t0, t0), . . . , ϕ(t0, t0)
(n−1)) = δj

Having n solutions f1, . . . , fn of (3.8) we define the Wronskian as

W (f1, . . . , fn)(t) = det


f1 · · · fn

ḟ1 · · · ḟn
... · · · ...

f
(n−1)
1 (t) · · · f

(n−1)
n (t)


and Louiville’s formula is W (ϕ1, . . . , ϕn)(t) = W (ϕ1, . . . , ϕn)(t0) exp(−

∫ t
t0
−qn−1(s)ds).



4 Dynamical systems

In this chapter we develop the tools for a different approach to study the behaviour

of solutions of differential equations. We are again interested in the dependence of

solutions on initial conditions. We also study the stability properties of the system. In

order to achieve all this we introduce the notion of a dynamical system.

Definition 4.1. A dynamical system is a triple (T,X,Φ) where T is a time set, X

is the state space and Φ = {ϕt}t∈T is the family of operators

Φ : T ×X → X

(t, x) 7→ ϕt(x)

satisfying

ϕt(ϕs(x)) = ϕt+s(x)

ϕ0(x) = x.

If T is a group we say that the system is invertible. Dynamical systems with T = N0

or T = Z are called discrete dynamical systems. The systems for T = R+ or T = R
are called continuous dynamical systems.

Example 4.2. A typical example of a discrete dynamical system is an iterated map.

Let f be a map of a set I into itself and consider

ϕn(f) = fn = f(fn−1), T = N0

An example of a continuous dynamical system is a homogeneous linear differential

equation ẋ = Ax. We have ϕt := eAt : Rn → Rn i.e.

ϕt(x) = eAtx, t ∈ R.

4.1 The flow of an autonomous equation

In this section we have a closer look at the solutions of an autonomous system

ẋ = f(x), x(0) = x0, (4.1)

24
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where f ∈ Ck(M,Rn), k ≥ 1 and M is an open subset of Rn.

Such a system can be regarded as a vector field on Rn. Solutions are curves inM ⊂ Rn

which are tangent to this vector field at every point. Solutions are called integral curves

or trajectories.

We say that ϕ is an integral curve at x0 if it satisfies ϕ(0) = x0. By Theorem 2.17

there is a (unique) maximal integral curve ϕx at every point x defined on a maximal

interval Ix = (T−(x), T+(x)). We call T+ and T− the positive and the negative lifetime

of x, respectively. We say that x is σ complete (σ ∈ {−,+}) if Tσ = σ∞. If it is both

± complete it is called complete.

By introducing the set

W =
∪
x∈M

Ix × {x} ⊂ R×M (4.2)

we define the flow of our differential equation to be the map

Φ : W →M ; (t, x) 7→ ϕ(t, x), (4.3)

where ϕ(t, x) is the value at time t on the maximal integral curve at x. We will also

use the notation Φt(x) = Φ(t, x).

If ϕ(.) is the maximal integral curve at x then ϕ(.+ s) is the maximal integral curve at

y = ϕ(s) and Ix = s+ Iy = {t|t = s+ t1, t1 ∈ Iy}. Hence, we conclude that for x ∈M

and s ∈ Ix we have

Φ(s+ t, x) = Φ(t,Φ(s, x)), ∀t ∈ Ix − s. (4.4)

In conclusion, we have the following theorem.

Theorem 4.3. Suppose that we have an IVP of the form (4.1). For all x ∈ M there

exists an interval Ix ⊂ R containing 0 and a corresponding unique maximal integral

curve Φ(t, x) ∈ Ck(Ix,M) at x. Moreover, the set W defined in (4.2) is open and

Φ ∈ Ck(W,M) satisfies Φ(0, x) = x and

Φ(s+ t, x) = Φ(t,Φ(s, x)), x ∈M, s, t+ s ∈ Ix.

Proof. Regarding previous observations, we are left to show that Φ ∈ Ck(W,M). Fix

a point (x0, t0) and set γ = Φx0([0, t0]). By Lemma 2.11, since f ∈ Ck(M,Rn), there is

a neighborhood (−ϵ(x), ϵ(x))× U(x) of (0, x) for every point x ∈ γ such that Φ ∈ Ck

on this neighborhood. Since γ is compact we can cover it with finitely many of the

neighborhoods U(x) and by choosing minimal ϵ corresponding to that cover we get

that Φ is defined on (−ϵ, ϵ) × U0 where U0 is open neighborhood of γ. Next we pick

m ∈ N satisfying t0
m
< ϵ and define K : U0 → M,K(x) = Φ( t0

m
, x). Observe that

K ∈ Ck(U0,M) since Φ is locally Ck. By iterating K we get that Kj ∈ Ck(Uj,M), 0 ≤
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j ≤ m,Uj = K−j(U0) ⊂ U0. None of the sets Uj is empty since x0 = K−j(Φ( jt0
m
), x) ∈

γ ⊂ Uj. In summary,

Φ(t, x) = Φ(t− t0,Φ(t0, x)) = Φ(t− t0, K
m(x)) ∈ Ck((t0 − ϵ, t0 + ϵ)× Um,M)

Since (t0, x0) was arbitrary we get that Φ ∈ Ck(W,M).

Furthermore, by taking s = −t and t = −s in (4.4) we get that Φt(.) is a local

diffeomorphism with inverse Φ−t(.). Therefore, Φ is a local one-parameter group of

diffeomorphisms.

If the vector field f is complete then Φ(s, ·) :M →M is an automorphism of M .

The definition of the flow of an autonomous equation allows us to define generalization

of Liouville’s formula from Theorem 3.11.

Theorem 4.4. Let ẋ = f(x) be a dynamical system on Rn with the corresponding

flow Φ(t, x). Let U be a bounded, open subset of Rn. Denote by U(t) = Φ(t, U) =

{Φ(t, x), x ∈ U, t ∈ Ix} the flow on the set U and its volume by V (t) =
∫
U(t)

dx. Then

V̇ (t) =

∫
U(t)

div(f(x))dx. (4.5)

Proof. By the change of variable formula we have

V (t) =

∫
U(t)

dx =

∫
U

det(DxΦ(t, x))dx (4.6)

where DxΦ(t, x) is the Jacobian matrix of function Φ(t, x). Since Φ(t, x) is a solution

of ẋ = f(x) we have f(Φ(t, x)) = Φ̇(x, t) and after differentiation of both sides with

respect to x we have that Πx(t) = Dx(Φ(t, x)) satisfies

Π̇x(t) = Df(Φ(t, x))Πx(t)

and hence DxΦt(x) is a solution of the matrix linear equation Ẋ = Df(Φ(t, x))X. By

Liouville’s formula we have

det(DxΦ(t, x)) = det(DxΦ(0, x)) exp

(∫ t

0

div(f(Φ(s, x)))

)
= exp

(∫ t

0

div(f(Φ(s, x)))

)
since det(DxΦ(0, x)) = I and Tr(Df(x)) = div(f(x)).

By putting this in (4.6) and differentiating we get

V̇ (t) =

∫
U

div(f(Φ(t, x))) det(DxΦ(t, x))dx

Applying the change of variable formula one again yields the desired result.
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4.2 Orbits and invariant sets

In this section we introduce some necessary terminology for studying the flow of an

autonomous system.

Definition 4.5. The orbit of x is defined as γ(x) = Φ(Ix × {x}) ⊂ M . The for-

ward/backward orbit of x are defined as: γ±(x) = Φ((0, T±(x))× {x}).
If γ(x) = {x} then x is called a fixed point (a steady state or an equilibrium).

Otherwise, x is called regular.

Remark 4.6. By Theorem 4.3 if y ∈ γ(x) then γ(x) = γ(y). Hence, two orbits either

coincide or are disjoint.

Away from fixed points all vector fields locally look the same.

Lemma 4.7. (Straightening out of vector fields) Let f(x0) ̸= 0. Then there is a local

coordinate transform y = φ(x) such that ẋ = f(x) is transformed to ẏ = (1, 0, . . . , 0).

Proof. Without loss of generality we can suppose x0 = 0 and f(0) = δ1 = (1, 0, . . . , 0)

since otherwise we can linearly change coordinates to obtain these conditions. The

desired function φ should satisfy

φ(Φ(t, (0, x2, . . . , xn))) = φ(ϕ(t)) = y(t) = (0, x2, . . . , xn) + t(1, 0, . . . )

where ϕ is integral curve at (0, x2, . . . , xn). Hence φ should be the inverse function of

ψ((x1, . . . , xn)) = Φ(x1, (0, x2, . . . , xn)). Using the chain rule we obtain the Jacobian

matrix of
∂ψ

∂x
at x = 0 as

(
∂Φ
∂t
, ∂Φ
∂x2

. . . , ∂Φ
∂xn

)
|t=0,x=0 = I since ∂Φ

∂x
|x=0,t=0 = In and

∂Φ
∂t
|t=0,x=0 = f(0) = δ1.

Jacobian determinant is non-zero and hence by inverse mapping theorem ψ is a lo-

cal diffeomorphism with y = ψ−1(x) Furthermore, we have: ∂ψ
∂x
δ1 = ∂ψ

∂x1
= f(ψ(x))

and finally our vector field in new coordinates satisfies: ẏ = (∂ψ
∂x
)−1|y=ψ−1(x)ẋ =

(∂ψ
∂x
)−1|x=ψ(y)f(x) = δ1.

Definition 4.8. We say that x ∈ M is a periodic point of Φ if there is some T > 0

such that Φ(T, x) = x. The minimal of all such T is called the period of x, that is

T (x) = inf{T > 0|Φ(T, x) = x}. By continuity of Φ we have Φ(T (x), x) = x and by

property of flow Φ(t + T (x), x) = Φ(t, x). Hence, if one point on an orbit is periodic,

than every point is periodic. Such orbits are called periodic orbits.

From the above definition it follows that γ(x) is periodic iff γ−(x) ∩ γ+(x) ̸= ∅ and

hence periodic orbits are also called closed orbits.

As a consequence of Corollary 2.19 we have the following lemma.
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Lemma 4.9. Let x ∈ M and suppose that the forward (backward) orbit lies in some

compact set C. Then x is + (respectively -) complete. A periodic point is complete.

Another notion of special interest is defined in sequel.

Definition 4.10. A set U is called σ ∈ {+,−} invariant if γσ(x) ⊂ U,∀x ∈ U and

invariant if it is both ± invariant.

By the above lemma, if C ⊂M is a compact σ invariant set then all points x ∈M are

σ complete.

The next lemma gives some useful properties of σ invariant sets.

Lemma 4.11. Arbitrary intersections and unions of σ invariant sets are σ invariant.

The closure of σ invariant set is σ invariant. If U, V are two invariant sets then U/V

is also invariant.

Proof. The first proposition is obvious from definition. To prove the second take x ∈ U

and a sequence {xn} ∈ U such that xn → x. Fix t ∈ Ix. Since W is open, there exists

a N ∈ N such that t ∈ Ixn for n > N and Φ(t, x) = lim
n→∞

Φ(t, xn) ∈ U . To prove the

third proposition, take x ∈ U/V . Then, if y ∈ γ(x) ∩ V ̸= ∅ by property of orbits and

invariance of V, we have γ(y) = γ(x) ⊂ V which is contradiction with x ̸∈ V . Hence,

γ(x) ∈ U/V .

One of our main aims is to describe the long-time dynamics of solutions. For this we

next introduce the set where an orbit eventually accumulates.

Definition 4.12. The ω±−limit set of x, denoted by ω±(x) is the set of all points

y ∈ M for which there exists a sequence tn → ±∞ such that Φ(tn, x) → y. Clearly,

ωσ is empty unless x is σ complete. If y ∈ γ(x) then ω±(x) = ω±(y) since Φ(tn, y) =

Φ(tn + t, x) for y = Φ(t, x).

Remark 4.13. The ω− set is also called α limit set in some of the literature, whereas

the ω+ set is called ω limit set.

Lemma 4.14. The set ω±(x) is a closed invariant set.

Proof. Take y in closure of ω±(x), meaning that there is yn → y, yn ∈ ω±(x) with

|y−yn| < 1/(2n). Since yn ∈ ω±(x) there is tn → ±∞ such that |Φ(tn, x)−yn| < 1/(2n).

Then, by triangle inequality |Φ(tn, x)−y| < 1/n and we have y ∈ ω±(x). If Φ(tn, x) → y

then Φ(tn + t, x) = Φ(t,Φ(tn, x)) → Φ(t, y), confirming that Φ(t, y) ∈ ω±(x),∀y ∈
ω±(x),∀t ∈ Iy and ω±(x) is invariant.

Lemma 4.15. If γσ(x) is contained in some compact set, then ωσ(x) is non-empty,

compact and connected.
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Proof. By Lemma 4.9, x is σ complete so there exists a sequence Φ(tn, x) with tn → σ∞.

By compactness we have a convergent subsequence and hence ωσ(x) is non-empty. It

is compact as a closed subset of compact set. If it is disconnected, we can split it

into two disjoint closed sets ω1,2. Let δ = dist(ω1, ω2). Taking all points that are on

a distance at most δ/2 from these sets we obtain two disjoint neighborhoods U1,2 of

ω1,2 respectively. Now we choose a strictly monotone sequence tn → σ∞ such that

Φ(t2m+1, x) ∈ U1 and Φ(t2m, x) ∈ U2. By connectedness of Φ((t2m, t2m+1), x) we can

find t2m < t̃m < t2m+1 such that Φ(t̃m, x) ∈ C \(U1∪U2). Since C \(U1∪U2) is compact

we can assume Φ(t̃m, x) → y ∈ C \ (U1 ∪ U2). But y must also be in ωσ(x) which is a

contradiction.

A nonempty, compact, σ invariant set C is called minimal if it contains no proper σ-

invariant subset possessing these three properties. Note that for such a minimal set we

have C = ω+(x) = ω−(x) for every x ∈ C.

4.3 Attracting sets

In this section we generalize the notions of the previous sections to develop the theory

for studying the behaviour of all points starting in some set, which will be important

in study of long-time behavior of the flow of a differential equation. For simplicity, we

assume from now on that the flow is σ complete.

Definition 4.16. Let X ⊂ M . We define γ±(X) =
∪
±t≥0

Φ(t,X) =
∪
x∈X

γ±(x) and

ω±(X) = {y ∈M |∃tn → ∞, xn ∈ X : Φ(tn, xn) → y}.

We observe that γσ(X) is an invariant set, whose closure is a closed invariant set by

Lemma 4.11 and that we have
∪
x∈X

ωσ(x) ⊂ ωσ(X).

We can say more about the set ωσ(X) to get an analogous statement of Lemmas 4.11

and 4.14.

Lemma 4.17. The set ωσ(X) is a closed invariant set given by

ωσ(X) =
∩
σt≥0

Φ(t, γσ(X)) =
∩
σt≥0

∪
σ(s−t)≥0

Φ(s,X).

Proof. We prove only σ = + case. Since Φ(t, .) is a diffeomorphism we have

Φ(t, γ+(X)) = Φ(t, γ+(X)) =
∪
s≥t

Φ(s,X).

To prove that
∩
t≥0Φ(t, γ+(X)) ⊂ ωσ(X) we take y ∈

∩
t≥0 Φ(t, γ+(X)). Then, by

definition, for every n ∈ N we can find some yn = Φ(n + sn, xn) ∈ Φ(n, γ+(X)) such
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that yn → y. Setting tn = n+sn we have found a sequence tn → ∞ with Φ(tn, xn) → y

showing that y ∈ ω+(X).

In the other direction, for y ∈ ω+(X) we have a sequence tn → ∞ and {xn} ∈ X with

yn = Φ(tn, xn) → y. Then yn ∈ Φ(t, γ+(X)) for tn > t and thus y ∈ Φ(t, γ+(X)) for

every t > 0.

We can prove invariance as in the previous section and ωσ is then closed invariant as

intersection of closed invariant sets.

Similar arguments can be used to prove the analogue of Lemma 4.15:

Lemma 4.18. For non-empty set X for which γσ(X) is compact, ωσ(X) is non-empty

and compact. If γσ(X) is in addition connected then so is ωσ(x).

We have finally come to the definition of central importance in this section.

Definition 4.19. For a given invariant set Λ ⊂M the sets

W±(Λ) = {x ∈M | lim
t→±∞

dist(Φ(t, x),Λ) = 0}

are the stable respectively unstable sets of Λ. The invariant set Λ is called attracting

if W+(Λ) is neighborhood of Λ. In this case the set W+(Λ) is called the domain of

attraction for Λ.

Moreover, for any positively invariant neighborhood U we have W+(Λ) =
∪
t<0

Φ(t, U).

In particular, W+(Λ) is invariant and choosing U open we see that it is also open.

We can use theory developed in this section to find attracting sets. We fist introduce

a definition.

Definition 4.20. An open connected set E with compact closure is called a trapping

region for the flow if Φ(t, E) ⊂ E for all t > 0.

Lemma 4.21. Let E be a trapping region. Then Λ := ω+(E) =
∩
t≤0

Φ(t, E) is a non-

empty, invariant, compact and connected attracting set.

Proof. By definition we have Φ(t+ ϵ, E) ⊂ Φ(t, E) ⊂ Φ(t, E) giving us∩
t≥0

Φ(t, E) =
∩
t≥0

Φ(t, E) =
∩
t≥0

Φ(t, γ+(E)) = ω+(E).

Hence, ω+(E) is a non-empty, invariant and compact and connected by Lemma 4.18.

To see that it is attracting suppose there were x ∈ E and a sequence tn → ∞ with

dist(Φ(tn, x),Λ) ≥ ϵ > 0. Then, since Φ(tn, x) stays in compact set E we can suppose

that it converges to some y after passing to a subsequence. But then y ∈ ω+(x) ⊂
ω+(E) which is a contradiction.
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To improve the definition of an attracting set, we must ensure that it can not be divided

into smaller attracting sets. To achieve that we pose the following definition.

Definition 4.22. A closed invariant set Λ is topologically transitive if for any two

open sets U, V ⊂ Λ there is some t ∈ R such that Φ(t, U) ∩ V ̸= ∅.
An attractor is a topologically transitive attracting set.

In this way the attractor can not be split into smaller attracting sets. An example of

an attractor is an attracting set containing a dense orbit.
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5 Stability of fixed points

In Chapter 3 we introduced the notion of stability for linear systems. In this chapter

we introduce the notion of stability of fixed points for autonomous systems with the

help of the newly developed theory. This notion will help us to study the long-time

behavior of dynamical systems.

Definition 5.1. A fixed point x0 of the equation ẋ = f(x) is called stable if for any

given neighborhood U(x0) there exists some other neighborhood V (x0) ⊂ U(x0) such

that every solution starting in V (x0) stays in U(x0) for all t ≥ 0. A fixed point which

is not stable is called unstable.

A stable fixed point x0 is called asymptotically stable if there is a neighborhood

U(x0) such that lim
t→∞

|ϕ(t, x)− x0| = 0, ∀x ∈ U(x0).

Finally, a fixed point x0 is called exponentially stable if there are constants α, δ, C >

0 such that: |ϕ(t, x)− x0| ≤ Ce−αt|x− x0|, ∀x : |x− x0| < δ.

Obviously, exponential stability implies asymptotical stability.

Example 5.2. In the previous chapter we discussed stability of the origin for equation

ẋ = Ax. The condition for stability was that all eigenvalues have non-positive real

parts and for those with real part 0 algebraic and geometric multiplicities are equal.

In this case ∥ exp(tA)∥ ≤ C, t ≥ 0 for some constant C, which corresponds to this new

definition of stability.

For asymptotic stability we needed all eigenvalues to have negative real parts. In this

case, for every α < min{−Re(αj)} there is a constant C(α) such that ∥ exp(tA)∥ ≤
C(α)e−tα, t ≥ 0, showing that in this case we have even exponential stability.

As an example of this, we investigate the most simple autonomous system, the homo-

geneous system of two linear equations,

ẋ = ax+ by

ẏ = cx+ dy

The characteristic polynomial of matrix A =

(
a b

c d

)
has two roots, λ1,2. As we have

shown in Chapter 3, if the matrix has two generalized eigenvectors of rank one, denoted
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by v1,2, the general solution has the form(
x

y

)
= c1v1e

λ1t + c2v2e
λ2t (5.1)

Otherwise, if v1 is of rank one and v2 of rank two, the general solution is of the form(
x

y

)
= [(c1 + c2t)v1 + c2v2] e

λ1t (5.2)

We consider the phase portrait of the system in several cases.

1. We first examine the case when both eigenvalues are real and non-zero.

• λ1 < λ2 < 0

In this case the origin is asimptotically stable by Corollary 3.7 and we say

that the origin is a stable node. The phase portrait is depicted on Figure

1 on the left.

• 0 < λ2 < λ1

In this case the origin is unstable and it is said to be an unstable node.

The phase portrait is the same as on Figure 1 on the left, only the arrows

point in different direction.

• λ1 = λ2 < 0

If we have two eigenvectors of rank one, from (5.1) we see that solutions are

rays passing through the origin and approaching to it as t→ ∞.

If there is only one eigenvector of rank one, from (5.2) we see that the

solution approach to the origin along eigenvector of rank two.

In both cases we have a stable node.

• 0 < λ1 = λ2

We have similar observation as in the previous case, only that in this case

solutions going away from the origin as t → ∞ and we have an unstable

node.

• λ1 < 0 < λ2

From the general solution (5.1) we see that for c2 = 0 the exponential

term decreases and the solution approaches to the origin. Otherwise, the

exponential term by c2 increases and to solution goes away from the origin.

In this case we say that the origin is a saddle node. Phase portrait is

depicted on Figure 1 on the right.
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Figure 1: The origin as a stable node (left) and as a saddle node (right)

2. We proceed to the case of complex eigenvalues: λ1 = α+ iβ, λ2 = α− iβ, β ̸= 0

If v = u + iω is the eigenvector corresponding to λ1 we have that solution is of

the form (
x

y

)
= eαt{c1(u cos βt− ω sin βt) + c2(u sin βt+ ω cos βt)}

For the corresponding values of r1,2 and δ1,2 this can be rewritten into(
x

y

)
= eαt

(
r1 cos(βt− δ1)

r2 cos(βt− δ2).

)
(5.3)

The vector on the left hand side is a periodic function of t and it represent a

closed curve around the origin.

• In case of α < 0 the exponential term decreases the distance of the curve

from the origin. In this case the origin is asimptotically stable and it is said

to be a stable focus or a sink. Phase portrait is depicted on Figure 2.

• In case of α = 0 we have closed curves as solutions and the origin is said to

be a center.

• In case of α > 0 the exponential term increases the distance of the curve

from the origin. In this case the origin is unstable and it is said to be an

unstable focus or a source. Phase portrait is the same as on Figure 2

only the arrows point in different direction.
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Figure 2: The origin as a stable focus

3. We are left with cases when the determinant of the matrix is equal to zero.

• λ1 = 0, λ2 > 0

In this case from 5.1 we see that solutions are rays starting on v1 and having

the direction v2. For t→ ∞ the solution approaches to c1v1 and every fixed

point of the system is asimptotically stable.

• λ1 = 0, λ2 > 0

We have similar observations as before, only in this case solutions are going

away from the starting point and every fixed point is unstable.

• λ1 = λ2 = 0

In this case the matrix A is similar to the matrix B =

(
0 1

0 0

)
and from

solution of the system ẋ = Bx we see that in this case we have lines parallel

to the x−axis as solutions. Stationary point are all points on x-axis and

they are unstable. In general example, solutions are parallel lines and fixed

point are points on the lines passing through the origin.

5.1 Local behaviour near fixed points

Our aim in this section is to show that a lot of information on the stability of a flow

near a fixed point can be inferred from the linearization of the system around the fixed
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point. On these linearized systems we will be able to apply the results from Section

3.1.

We start with an autonomous system

ẋ = f(x) (5.4)

where f ∈ Ck(M,Rn) for k ≥ 1 and M is an open subset of Rn.

By Taylor’s theorem, every function f ∈ C1 can be written in some neighborhood of

some point x0 as:

f(x) = f(x0) + A(x− x0) + o(|x− x0|)

where A is the Jacobian matrix of f at x0. If x0 is a regular point of (5.4) we can

straighten out the vector field near x0 by Lemma 4.7 to get some information on the

flow near this point. If x0 is a fixed point we can write f(x) = A(x− x0) + o(|x− x0|)
and first observe the linear autonomous system

ẋ = Ax. (5.5)

However, most of our results will hold only for systems for which none of the eigenvalues

of matrix A has a zero real part. Such systems are called hyperbolic and fixed points

are hyperbolic fixed points.

The first result that connects the starting system with its linearization is:

Lemma 5.3. Let x0 be a fixed point of the autonomous system in (5.4) and A its

Jacobian matrix at x0 which gives the linearized system in (5.5). Then we have one of

the following cases:

(i) If (5.5) is asimptoticaly stable then x0 is an asimptoticaly stable fixed point of

(5.4).

(ii) If there is some eigenvalue of matrix A with a positive real part then x0 is an

unstable fixed point.

(iii) If all eigenvalues of matrix A have non-positive real parts and there is at least

one with vanishing real part, we do not have information on stability of x0 from

linearization.

Motivated by the linear case we can define for the fixed point x0 of equation (5.4) the

stable and the unstable set as the sets of all points converging to x0 for t → ∞ and

t→ −∞, respectively.

W±(x0) = {x ∈M | lim
t→±∞

|Φ(t, x)− x0| = 0}.
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Both sets are obviously invariant under the flow.

Furthermore, motivated by existence of stable and unstable manifolds for linear first

order autonomous systems defined in Section 3.1 we will define their counterparts for

general autonomous system.

Since our result is of local nature we fix a neighborhood U(x0) of x0 and define:

M±α(x0) = {x|γ±(x) ⊂ U(x0) ∧ sup
±t≥0

e±αt|Φ(t, x)− x0| <∞}

to be the set of all points which converge to x0 with some exponential rate α > 0 as

t → ±∞. This is the counterpart of E±α: the space spanned by all eigenvectors of A

corresponding to eigenvalues with real part smaller/larger than α.

Definition 5.4. We define the local stable and respectively unstable manifolds of a

fixed point x0 to be the set of all points which converge exponentially to x0 as t→ ∞
and t→ −∞, respectively:

M±(x0) =
∪
α>0

M±α(x0)

Both sets are ± invariant under the flow by construction.

The relation between above defined notions for system (5.4) and its linearization (5.5)

is given in the following theorem.

Theorem 5.5. Consider a system of the form (5.4) with x0 as a fixed point for its flow

and its linearization (5.5). With notation as introduced above, we have:

(i) M±(x0) are smooth manifolds

(ii) E± is tangent to M±(x0) at x0

(iii) if x0 is a hyperbolic fixed point then M±(x0) = W±(x0).

Finally, we state the theorem that shows the real nature of similarity of a local flow

near a fixed point for hyperbolic systems and the flow of its linearization near origin:

Theorem 5.6. (Hartman–Grobman) Suppose f is a differentiable vector field with 0

as a hyperbolic fixed point. Denote by Φ(t, x) the corresponding flow and by A the

Jacobian matrix of f at 0. Then there is a homeomorphism φ(x) = x + h(x) with

bounded function h such that

φ ◦ etA = Φt ◦ φ

in a sufficiently small neighborhood of 0.

This shows that the orbits near a hyperbolic fixed point are locally just continuously

deformed versions of their linear counterparts.

Proofs of Theorem 5.5 and 5.6 can be found in [10].



Rajković M. Dynamical Systems with an Application in Mathematical Biology.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2016 38

5.2 Liapunov method

In this section we present a very useful method to determine stability of a fixed point.

It is based on the observation that for stable fixed points the distance to every orbit

starting in some region is bounded and for asimptotically stable point it even converges

to zero. This raises the idea of finding a function which has opposite direction from

function f on solution curves:

grad(L)(ϕ(t, x))f(ϕ(t, x)) = grad(L)(ϕ(t, x))ϕ̇(t, x) =
d

dt
L(ϕ(t, x)) ≤ 0.

Hence we are looking for a function that will be non-increasing along solution curves.

This condition will suffice even in case when we cannot calculate the gradient.

Definition 5.7. For a fixed point x0 of (5.4) and its open neighborhood U(x0), a

Liapunov function L : U(x0) → R is a continuous function such that: L(x0) =

0, L(x) > 0, x ̸= x0 and L(ϕ(t0)) ≥ L(ϕ(t1)), t0 < t1, ϕ(tj) ∈ U(x0)/x0 for any solution

ϕ(t). It is called a strict Liapunov function if equality never occurs.

To make use of Liapunov functions we work with its sublevel sets. Let Sδ be the

connected component of {x ∈ U(x0)|L(x) ≤ δ} containing x0.

Lemma 5.8. If Sδ is closed, then it is positively invariant.

Proof. Suppose ϕ(t) leaves Sδ at t0 with x = ϕ(t0). Since Sδ is closed x ∈ Sδ ⊂ U(x0)

and since U(x0) is open there is a ball Br(x) ⊂ U(x0) such that ϕ(t0+ϵ) ∈ Br(x)/Sδ for

some ϵ > 0. Then, since Sδ is full connected component we have L(ϕ(t0+ϵ)) > δ = L(x)

since otherwise we could extend Sδ by adding ϕ([t0, t0 + ϵ]). This contradicts to non-

increasing property.

Moreover, Sδ is a neighborhood of x0 which shrinks to a point when δ → 0.

Lemma 5.9. For every δ > 0 there is an ϵ > 0 such that: Sϵ ⊂ Bδ(x0) , Bϵ(x0) ⊂ Sδ.

Proof. If the first claim were false, for every n ∈ N we would have xn ∈ S1/n such that

|xn − x0| ≥ δ. Since S1/n is connected we can take |xn − x0| = δ and by compactness

of Bδ(x0) we have convergent subsequence xnm → y. Then by continuity L(y) =

lim
m→∞

L(xnm) = 0, implying y = x0. This contradicts |y − x0| = δ.

If the second were false we could find a sequence xn such that |xn − x0| ≤ 1/n and

L(xn) ≥ δ. But then δ ≤ lim
n→∞

L(xn) = L(x0) = 0 which is an obvious contradiction.

As a simple consequence of the above lemma we have:

Theorem 5.10. (Liapunov) A fixed point x0 for which there exists a Liapunov function

L is stable.
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Proof. By the above lemma, for any given neighborhood V (x0) we can find an ϵ > 0

such that Sϵ ⊂ V (x0) is closed (if it shares common boundary with V (x0) we can

decrease ϵ) and hence positively invariant.

Under some additional conditions we can claim asymptotic stability.

Theorem 5.11. (Krasowski-LaSalle Principle) A fixed point x0 of (5.4) for which

there exists a Liapunov function L which is not constant on any orbit lying entirely in

U(x0)/{x0} is asymptotically stable. Moreover, every such orbit converges to x0.

Proof. Take x such that ϕ(t, x) ∈ U(x0), t ≥ 0. Then the limit lim
t→∞

L(ϕ(t, x)) = L0(x)

exists by monotonicity. For y ∈ ω+(x) we can take tn → ∞ such that ϕ(tn, x) → y.

Then by continuity of L: L0(x) = lim
n→∞

L(ϕ(tn, x)) = L(y) giving that L(y) is constant

for y ∈ ω+(x), for arbitrary x. Since L is not constant on any orbit and x0 is stable,

we have that ω+(x) = x0 for any x such that ϕ(t, x) ∈ U(x0), t ≥ 0.

We can use the same proof for generalization.

Theorem 5.12. Let L : U → R be continuous and bounded from bellow. If for some

x we have γ+(x) ⊂ U and L(ϕ(t0, x)) ≥ L(ϕ(t1, x)), t0 < t1, then L is constant on

ω+(x) ∩ U .

Function L satisfying above conditions is also called Liapunov function.

Most of Liapunov functions are differentiable. For these functions we can rewrite non-

increasing condition the expression from start of section:

d

dt
L(ϕ(t, x)) = grad(L)(ϕ(t, x))ϕ̇(t, x) = grad(L)(ϕ(t, x))f(ϕ(t, x)) ≤ 0.

The expression gradL(x)f(x) is called the Lie derivative of L along the vector field

f . A function for which the Lie derivative vanishes is constant on every orbit and is

hence called a constant of motion. We also note that in case of a strict Liapunov

function its level sets are smooth manifolds by the implicit function theorem.
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6 Planar Dynamical Systems

In this chapter we focus on dynamical systems in R2. We state certain results that

explain why solutions in R2 behave quite regularly and allow us to classify the possible

ω−limit sets for planar systems.

6.1 The Poincaré map

In this section we present a useful method to study dynamical systems based on in-

tersections of a periodic orbit with lower-dimensional subspace, called a Poincaré

section. More precisely, one considers a periodic orbit with initial conditions within

a section of the space, which leaves that section afterwards, and observes the point at

which this orbit first returns to the section. We map first point to second with a map

called Poincaré map or First recurrence map.

We start with the following definition.

Definition 6.1. A set Σ ⊂ Rn is called a submanifold of codimension one (i.e.

its dimension is n− 1), if it can be written as Σ = {x ∈ U |S(x) = 0} where U ⊂ Rn is

open, S ∈ Ck(U) and ∂S
∂x

̸= 0 for all x ∈ Σ.

Σ is said to be transversal to the vector field f if ∂S
∂x
f(x) ̸= 0 for all x ∈ Σ.

Since ∂S
∂x

is orthogonal to the tangent plane of Σ at every point, the direction of f does

not lie in this plane on any point and since f is continuous it does not change direction

with respect to Σ.

The next lemma proves existence of Poincaré map.

Lemma 6.2. Suppose x ∈M and T ∈ Ix. Let Σ be a submanifold of codimension one

transversal to f such that Φ(T, x) ∈ Σ. Then there exists a neighborhood U of x and

τ ∈ Ck(U) such that τ(x) = T and Φ(τ(y), y) ∈ Σ for all y ∈ U .

Proof. Consider the equation S(Φ(t, y)) = 0 which holds for (T, x). By transversality

of S to f we have: ∂
∂t
S(Φ(t, y)) = ∂S

∂x
(Φ(t, y))f(Φ(t, y)) ̸= 0, for (t, y) in a neighborhood

I × U of (T, x). Then, by implicit function theorem, there is a mapping τ ∈ Ck(U)

such that for all y ∈ U we have S(Φ(τ(y), y)) = 0 i.e. Φ(τ(y), y) ∈ Σ.

We finally define the Poincare map.
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Definition 6.3. If x is periodic and T = T (x) is its period, then PΣ(y) = Φ(τ(y), y)

is called the Poincare map. It maps Σ into itself and every fixed point corresponds to

a periodic orbit.

6.2 The Poincare–Bendixson Theorem

In this section we explain regular behavior of solutions in R2 and classify the possible

ω−limit sets for planar systems. We first present an important fact that differs R2

from Rn, for n ≥ 3.

Theorem 6.4. (Jordan curve theorem) Every Jordan curve J (i.e. homeomorphic

image of the circle S1) dissects R2 into two regions.

Let M ⊂ R2 and f ∈ C1(M,R2) be given. By an arc Σ ⊂ R2 we mean a submanifold

of dimension one given by a smooth map t 7→ s(t) with ṡ(t) ̸= 0. Using this map Σ can

be ordered. For each regular x ∈M , we can find a small arc Σ containing x transversal

to f .

Given a regular point x0 ∈ Σ we can define the point of subsequent intersection of

γσ(x0) with Σ by xn = Φ(tn, x0), n ∈ N0. This set can be finite or infinite but if

it is infinite we have tn → Tσ(x0). Otherwise, if tn → T ̸= Tσ(x0) we have that

y = lim
t→T

Φ(t, x) is finite and regular and hence we can straighten the vector field near

y to get that the difference between two consecutive points does not converge to 0,

giving us a contradiction.

Lemma 6.5. Let x0 be a regular point and Σ a transversal arc containing x0. Denote

by xn = Φ(tn, x), ordered according to tn, the sequence of intersections of γσ(x0) with

Σ. Then {xn} is monotone with respect to order of Σ. In other words, all points xn are

from the same side of x0 and xn+1 is on the opposite side of xn from xn−1.

x1

x0
Σ

M1

M2

Figure 3: Proof of the Lemma 6.5
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Proof. It is enough to consider σ = + case. If x0 = x1 we are done. Otherwise,

consider the curve J from x0 to x1 along γ+(x0) and part of Σ̃ ⊂ Σ from x1 to x0, as it

is depicted in Figure 3. This is the image of a continuous bijection from S1 and hence

it is a Jordan curve giving M/J =M1 ∪M2, where M1,M2 are connected. Because of

transversality, f never changes sign on Σ̃. So, γ+(x1) enters either M1 or M2 and stays

there since it can not cross neither Σ̃ neither the orbit from x0 to x1, since x0 is not

periodic.So, either γ+(x1) ⊂ M1 or γ+(x1) ⊂ M2, i.e. either x0 < x1 and γ+(x1) stays

in the component with points x > x1, or x0 > x1 and γ+(x1) stays in the component

with points x < x1. Iterating this procedure proves the claim.

Next, we can approximate every y ∈ Σ ∩ ωσ(x) by a sequence x̃n ∈ Σ ∩ γσ(x). In fact,

choose tn → σ∞ such that xn = Φ(tn, x) → y. Then

x̃n := Φ(tn + τ(xn), x) = Φ(τ(xn), xn) → Φ(τ(y), y) = y

by continuity of Φ and τ and Φ(τ(xn), xn) ∈ Σ, where τ(x) is constructed as in Lemma

6.2 for x = y, T = 0.

Corollary 6.6. Let Σ be a transversal arc. Then ωσ(x) intersects Σ in at most one

point.

Proof. Suppose there exist two such points y1, y2 ∈ Σ∩ωσ(x). Then there are sequences

x1,n, x2,n ∈ Σ∩γσ(x) converging to y1, y2, respectively. However, both of these sequences

are monotone by Lemma 6.5 and hence we have a contradiction.

Corollary 6.7. Suppose ωσ(x) ∩ γσ(x) ̸= ∅. Then x is periodic and ω−(x) = ω+(x) =

γ(x).

Proof. By assumption there is an y ∈ ωσ(x) ∩ γσ(x). Then γ(x) = γ(y) = ωσ(x) by

property of orbits and invariance of ωσ(x). If y is fixed then γ(x) = {y}, thus x = y

and x is fixed, i.e. periodic. If y is regular, we pick a transversal arc containing y,

together with a sequence xn ∈ Σ ∩ γσ(x) ⊂ Σ ∩ ωσ(x) converging to y. Then by the

previous lemma xn = y constantly and γ(x) is periodic.

Corollary 6.8. A minimal compact σ−invariant set C is a periodic orbit.

Proof. Take x ∈ C. Then ωσ(x) = C by minimality and hence ωσ(x) ∩ γσ(x) ̸= ∅.
Therefore x is periodic by the previous corollary.

Now we are ready to prove the first important fact about ωσ sets.

Lemma 6.9. (Poincare–Bendixson Theorem) If ωσ(x) ̸= ∅ is compact and contains no

fixed points, then it is a regular periodic orbit.
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Proof. Let y ∈ ωσ(x) and take z ∈ ωσ(y) ⊂ ωσ(x) which is not fixed by assumption.

Then there exists a transversal arc σ containing z and yn → z with yn ∈ Σ∩ γσ(y). By
invariance of ωσ(x) we have yn ∈ Σ ∩ γσ(y) ⊂ Σ ∩ ωσ(x) = {z} by Corollary 6.6 and

hence yn = z and hence ωσ(x) is a regular periodic orbit.

We now give few lemmas to generalize the above proposition.

Lemma 6.10. Suppose ωσ(x) is connected and contains a regular periodic orbit γ(y).

Then ωσ(x) = γ(y).

Proof. If ωσ(x)/γ(y) ̸= ∅ then by connectedness there is a point ȳ ∈ γ(y) such that we

can find a point z ∈ ωσ(x)/γ(y) arbitrarily close to ȳ. Since γ(y) is a regular orbit we

can pick a transversal arc Σ containing ȳ. By Lemma 6.2 we can find τ(z) such that

Φ(τ(z), z) ∈ Σ. In that case we have Φ(τ(z), z) ∈ Σ ∩ ωσ(x) = {ȳ} by Corollary 6.6,

thus z ∈ γ(y), contradicting our assumption.

Lemma 6.11. Let x ∈ M and suppose ω±(x) are compact. Let x± ∈ ωσ(x) be two

different fixed points. Then there exists at most one orbit γ(y) ⊂ ωσ(x) with

ω±(y) = x±.

Proof. Suppose there are two such orbits γ(y1), γ(y2). Since lim
t→±∞

Φ(t, yi) = x± we can

extend Φ(t, yi) to the continuous function on R ∪ {±∞} by Φ(±∞, yi) = ±x. Hence

the curve J from x− to x+ along γ(y1) and back from x+ to x− along γ(y2), as in

Figure 4, is a Jordan curve. Writing M/J = M1 ∪M2 we can suppose x ∈ M1. Pick

two transversal arcs Σ1,Σ2 containing y1, y2, respectively. Then γσ(x) intersects Σi in

some points zi. Now consider the Jordan curve from y1 to z1 to z2 to y2 to x+ and

back to y1 (along Σ1, γσ(x), Σ2, γ(y1), γ(y2)). It dissects M1 into two parts N1 and

N2 such that γσ(z1) or γσ(z2) must remain in one of them, say N2. But then γσ(x) can

not return close to points of γ(yi) ∩N1, contradicting our assumption.

In other words, this lemma says that there cannot be two different orbits with same

ωσ limit sets represented by two different fixed points. However, it allows possibility of

having two orbits γ(y1) and γ(y2) and two different fixed points x± with

lim
t→±∞

Φ(t, y1) = x±, lim
t→±∞

Φ(t, y2) = x∓.

On the other hand, for two different fixed points x± there can be a solution ϕ(t)

satisfying limt→±∞ = x±. Such solution is called a heteroclinic orbit. If x− = x+

then the solution is called a homoclinic orbit.

These preparations now yield the following theorem.
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Figure 4: Proof of the Lemma 6.11

Theorem 6.12. (generalized Poincare–Bendixson) Let M be an open subset of R2 and

f ∈ C1(M,R2). Fix x ∈ M , σ = ± and suppose ωσ(x) is compact, connected and

contains finitely many fixed points. Then one of the following cases holds:

(i) ωσ(x) is a fixed point,

(ii) ωσ(x) is a regular periodic orbit,

(iii) ωσ(x) consists of finitely many fixed points {xj} and non-closed orbits γ(y) such

that ω±(y) ∈ {xj}.

Proof. If ωσ(x) contains no fixed points it is a regular periodic orbit by Theorem 6.9.

If it contains at least one fixed point, but no regular points, we have ωσ(x) = {x1}
since fixed points are isolated and ωσ(x) is fixed.

Now let us suppose that it contains both fixed and regular points. Let y ∈ ωσ(x). We

will prove that ωσ(y) does not contain regular points. Let z ∈ ωσ(y) be regular. Take

a transversal arc Σ containing z and a sequence yn → z, yn ∈ Σ ∩ γ(y). By Corollary

6.6 γ(y) ⊂ ωσ(x) can intersect Σ only in z. Hence yn = z and γ(y) is regular periodic.

Now Lemma 6.10 implies γ(y) = ωσ(x) which is impossible since ωσ(x) contains fixed

points.

Using the invariance of the domain bounded by a periodic orbit, one can show that the

interior of every periodic orbit, contains at least one fixed point.

Of special interest are periodic orbits which attract other orbits. Such orbits are called

ωσ limit cycles (depending on whether they are positive or negative limit sets). The

above presented theory allows us to tell something about such orbits in planar systems.

Lemma 6.13. Let γ(y) be an isolated regular periodic orbit (such that there are no

other periodic orbits within a neighborhood). Then every orbit starting sufficiently close

to γ(y) will have either ω+ = γ(y) or ω− = γ(y).
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Proof. Choose a neighborhood N of γ(y) that does not contain other periodic orbits

and a transversal arc Σ containing y. Consider x0 ∈ Σ outside of N1, the domain

bounded by γ(y). If this point is sufficiently close to y, then by continuity of function

τ from lemma 6.2 its positive orbit will stay in N and intersect Σ in x1. Without loss

of generality we can take that x1 is closer to y than x0 (otherwise we can reverse time).

We use monotonicity proven in lemma 6.5 to see that the positive orbit of x1 will stay

in M1/N1 ⊂ N and in limit the entire set ω+(x) will stay in this area. Since this area

does not contain other periodic orbits than γ(y), nor fixed points, nor regular orbits,

we must have ω+(x) = γ(y).

Furthermore, from the above proof we notice that the set of points whose positive/negative

orbits converges to some limit cycle γ(y), excluding y, is and open set. This fact ex-

cludes the possibility of existence of a periodic orbit if we have a Liapunov function

which is not constant on any orbit, since in that case all orbits near the fixed point

inside of the periodic orbit would converge to that point, and not to the orbits.

We can give one more simple criterion for non-existence of periodic orbit.

Lemma 6.14. (Dulac criterion) Let R be a simply connected region in R2 and φ(x, y) ∈
C1(R) such that div(φf) ̸= 0 almost everywhere on R. Then the system

(ẋ, ẏ) = f(x, y) = (f1(x, y), f2(x, y)) (6.1)

has no periodic orbits nor homoclinic orbits lying entirely in R.

Proof. Without loss of generality we can suppose that div(φf) = ∂(φf1)
∂x

+ ∂(φf2)
∂y

> 0

almost everywhere. Let C be periodic orbit and D its interior. Then by Green’s

theorem:

0 <

∫ ∫
D

∂(φf1)

∂x
+
∂(φf2)

∂y
dxdy =

∮
C

(−φf2dx+ φf1dy) =

∮
C

φ(−ẏẋdt+ ẋẏdt) = 0

since C is a solution of (6.1). Thus, we have an obvious contradiction with the existence

of a periodic orbit in R.



Rajković M. Dynamical Systems with an Application in Mathematical Biology.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2016 46

7 An example in Biology –

Competitive exclusion

In this chapter we present an example of an application of the theory developed

throughout previous chapters. Some of the best examples of using mathematical mod-

elling can be found in biology where one tries to explain and predict behaviour of

different biological subjects.

7.1 Motivation

The ecological principle of competitive exclusion asserts that two species cannot indef-

initely occupy the same niche. The classical example is given by Volterra in [11] who

considered a system of n consumers with densities xi and a resource R:

dxi
dt

= xi(γiR− σi) (7.1)

R = Rmax − F (x1, . . . , xn) (7.2)

where γi > 0 relates increased resource abundance to increased growth of species i and

σi > 0 is the per capita death rate of individuals of species i. Here, F is an unbounded

increasing function of the population densities with F (0, . . . , 0) = 0. If we substitute

(7.2) in (7.1) and write ϵi = γiRmax − σi we get Volterra’s original equations:

dxi
dt

= xi (ϵi − γiF (x1, . . . , xn)) , i = 1, . . . , n.

Volterra showed that, as t → ∞, the species with largest γi/ϵi will approach a finite

non-zero density and the remaining species will approach extinction, assuming that

ϵi > 0 and xi(0) ̸= 0 for the winning species.

Such a system is an example of a linear abiotic resource model. It is linear because

the specific growth rates of the competitors are linear functions of resource densities

and it describes an abiotic resource because the resource abundance changes according

to an algebraic relationship. Furthermore, this model has several more simplifying

assumptions:

(i) The organisms under consideration are ”simple” in the sense that the dynamics of

the system can be adequately described by the species densities xi. Complications

arising from age structure or physiological state are assumed unimportant.
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(ii) The species interact only through the resource, so that their specific growth rates

are functions of R alone, not of the xi.

(iv) The system under consideration is spatially homogeneous.

Ever since Volterra’s original example there were attempts to state the principle of

competitive exclusion as a theorem and generalize it to the case of n consumers and

k < n resources. However, it was shown that after relaxing some of the restrains taken

in basic models, such coexistence is possible, but not at fixed densities. In order to

explain competitive exclusion properly, we must define this notion in a mathematical

way. We start with similar notions as in Section 4.3 and make small adjustments.

Definition 7.1. A compact invariant set K is called an attractor if there is an open

set U ⊃ K such that ω+(U) = K, where ω+(U) is defined as in Section 4.3.

Now we consider a general n species model

dxi
dt

= xigi(x1, . . . , xn), i = 1, . . . , n.

Here xi ≥ 0 is the population density of species i and gi is a function representing the

specific per capita growth rate of species i. These functions determine a vector field

on En = {(x1, . . . , xn) ∈ Rn; xi ≥ 0, ∀i}. We denote the space of smooth functions on

this manifold En = C∞(En,Rn). A function g = (g1, . . . , gn) ∈ En can be considered

as n-species ecological community.

We are now ready to introduce mathematical definitions of the above mentioned eco-

logical notions. These definitions are due to McGehee and Armstrong [5].

Definition 7.2. An ecological community g ∈ En is said to be persistent if ϕg has an

attractor in int(En). We say that g exhibits exclusion if it is not persistent. We say

that a class of communities C ⊂ En satisfies the exclusion property if for all g ∈ C,
g exhibits exclusion.

By generalizing Volterra’s model to include k resources and by relaxing the assumption

of linearity we get the class of abiotic resource models:

dxi
dt

= xiui(R1, . . . , Rk), i = 1, . . . , n (7.3)

Rj = Rj,max − Fj(x1, . . . , xn) = sj(x1, . . . , xn), j = 1, . . . , k (7.4)

where we assume that
∂ui
∂Rj

≥ 0 and
∂sj
∂xi

≤ 0 for all i = 1, . . . , k and j = 1, . . . , n. With

previously introduced terminology, we denote such a class of models by Fn
k ⊂ En:

Fn
k = {g = u ◦ s : s ∈ C∞(En,Rk), u ∈ C∞(Rk,Rn)}.
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The class of linear Volterra models is denoted by LFn
k . In case of k ≥ n we have

Fn
k = En and Fn

k does not show exclusion property. We are left to consider the case

k < n. In this case, one can show that such a system can not have point attractors in

int(En) and as a corollary we have that F2
1 shows exclusion property. However, this

is one of the rare classes to be known to satisfy exclusion property. Even more, in

case 3k ≥ 2n one can show that Fn
k does not show exclusion property [5]. A corollary

of Zicarelli’s work [12] is that Fn
k does not satisfy the exclusion property for k ≥ 2.

Nitecki [6] constructed an example that shows that Fn
1 , n ≥ 3 does not satisfy exclusion

property. Thus, Fn
k satisfies exclusion property only for n = 2, k = 1. However, LFn

k

shows exclusion property for k < n.

Another important class of models concerns biotic resources, resources which regenerate

according to their own differential equations, as would prey species. The defining

equations for this class of models are

dxi
dt

= xiui(R1, . . . , Rk), i = 1, . . . , n (7.5)

dRj

dt
= Rjgj(R1, . . . , Rk, x1, . . . , xn), j = 1, . . . , k (7.6)

where we again have
∂ui
∂Rj

≥ 0 and
∂gj
∂xi

≤ 0 for all i = 1, . . . , n and j = 1, . . . , k. The

class of communities with n consumers and k biotic resources is denoted by Bnk , i.e we

have

Bnk = {s : En × Ek → Rn × Rk; (y, x) 7→ (u(x), g(y, x))}

To use the results mentioned for the abiotic case we prove the following lemma due to

McGehee and Armstrong [5].

Lemma 7.3. Bnk ⊂ Fn+k
2k .

Proof. Let g ∈ Bnk and write g(y, x) = (u(x), s(y, x)). Define

u∗ : Ek × Rk → Rn × Rk; (µ, ν) 7→ (u(µ), ν)

r : En × Ek → Ek × Rk; (y, x) 7→ (x, s(y, x))

Then g = u∗ ◦ r ∈ Fn+k
2k .

We use previous results to conclude that we can construct persistent communities when

2k ≥ n. Another corollary of Zicarelli’s work is that Bnk does not satisfy exclusion

property for any k, n ∈ N. However, LBnk satisfy exclusion property for k < n as a

consequence of the same fact for LFn+k
2k [5].
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7.2 Example of coexistence

In this section we give an example of coexistence of two competitors on a single biotic

resource i.e. a community in B2
1.

For the biotic resource we presume logistic growth, which is the most often used model

of bounded growth and corresponds to the situation where organisms are constrained

with different limiting factors such as food and space. The density of the biotic resource

is denoted by N .

Mutual relation between consumer and resource or predator and prey is described by

functional response. By definition, it is the number of resource/prey consumed

by one consumer/predator per unit of time, typically given as a function of resource

density.

For one of the predators we presume a linear functional response which corresponds

to the situation where the number of prey captured by a predator per unit of time is

proportional to the prey density, say C2N . Such a functional response is also reffered

to as the Holling type I functional response [3].

For the second predator we use the Holling type II functional response which which

has the form F (N) = C2N/(1 + hC2N).

The Holling type II functional response can be derived in the following manner: suppose

predators can be in one of two states, either searching for prey or handling the captured

prey (e.g. eating, resting). Searchers capture the prey at a linear rate, C2N . Upon

capture, predators move into the class of handling predators. Handling predators spend

h units of time handling the prey and return to the searching state afterwards.

Suppose that a total of time T is available for searching and handling. The number

of prey caught by one predator in time of searching Ts is TsC2N . Since Ts = T − Th

(where Th is the time of handling of the captured prey) we have Ts = T −hTsC2N and

so Ts = T/(1 + hC2N). The functional response is therefore

F (N) = TsC2N/T = C2N/(1 + hC2N).

Let P1 and P2 denote, respectively, the density of predators with the Holling type I

and II functional response and N the density of prey. We describe the dynamics with

the following system

dP1

dt
= P1 (B1C1N −D1) (7.7)

dP2

dt
= P2

(
B2C2N

1 + hC2N
−D2

)
(7.8)

dN

dt
= rN

(
1− N

K

)
− C2NP2

1 + hC2N
− C1NP1. (7.9)

The above parameters have the following meaning:
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Bi conversion efficiency of food into offspring

Ci searching consumers attack rate

Di per capita death rate of predator in case of extermination of resource

h handling time for a resource item consumed by predator 2

r intrinsic growth rate of the resource

K carrying capacity of the resource.

We can simplify the system by rescaling to avoid dependence on units and thereby also

decrease the number of parameters. We introduce t′ = rt, N ′ = N/K, P ′
1 = P1/(B1K),

P ′
2 = P2/(B2K) and after dropping the primes our system has the following form

dP1

dt
= P1 (a1N − d1) (7.10)

dP2

dt
= P2

(
a2N

1 + bN
− d2

)
(7.11)

dN

dt
= N(1−N)− a2NP2

1 + bN
− a1NP1, (7.12)

were we have introduced new parameters ai =
KBiCi
r

, b = KC2h, di =
Di

r
.

We first analyze the system where only one consumer is present. We start with the

simpler case where only P1 is present. Then we have the following system

dN

dt
= N(1−N)− a1NP1

dP1

dt
= P1(a1N − d1).

We observe that we have
dN

dt
≤ N(1−N) and hence we conclude N(t) ≤ exp(t)C

1 + exp(t)C

where C =
N(0)

1−N(0)
. This means that N is bounded and if we start with N(0) < 1

we have N(t) < 1 for t ≥ 0. We use this fact to show in a similar way that

exp ((a1 − d1)t)P1(0) ≥ P1(t) ≥ exp(−d1t)P1(0).

We also observe that (0, exp (−d1t)P1(0)) and

(
exp(t)C

1 + exp(t)C
, 0

)
are solutions of the

system and hence both of the axes are invariant.

Fixed points of this system are (N,P1) = {(0, 0), (1, 0),
(
d1
a1
,
a1 − d1
a21

)
} where the third

point is biologically meaningful if and only if a1 ≥ d1. This corresponds to the case

where per capita number of offsprings of predator at carrying capacity of prey is bigger

then per capita death rate of predators.
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The Jacobian matrix of the system is given by J =

(
1− 2N − a1P1 −a1N

P1a1 a1N − d1

)
. We

calculate J(0, 0) =

(
1 0

0 −d1

)
which is clearly unstable since 1 > 0 and d1 ̸= 0.

For the point (1, 0) we have J(1, 0) =

(
−1 −a1
0 a1 − d1

)
. Eigenvalues of this matrix

satisfy λ1λ2 = d1 − a1 and λ1 + λ2 = a1 − d1 − 1. Therefore, the point (1, 0) is

asimptotically stable if and only if a1 ≤ d1, i.e. in case when the third fixed point is

not biologically meaningful.

For the point (N∗, P ∗
1 ) =

(
d1
a1
,
a1 − d1
a21

)
we have J(N∗, P ∗

1 ) =

 −d1
a1

−d1
a1 − d1
a1

0

. Its

eigenvalues satisfy λ1 + λ2 = −d1
a1

< 0 and λ1λ2 =
(a1 − d1)d1

a1
> 0 and we conclude

that λ1,2 < 0 showing that this point is asimptoticaly stable.

For the relation of the parameters a1 = d1 points (1, 0) and (N∗, P ∗
1 ) exchanged stabil-

ity. This phenomenon is called a transcritical bifurcation.

The system where only the predator with Holling type II functional response and prey

are present is far more complicated. This system is called the Rosenzweig–MacArthur

system, after ecologists who where first to propose it in [8].

dN

dt
= N(1−N)− a2NP2

1 + bN
dP2

dt
= P2

(
a2N

1 + bN
− d2

)
.

As in the above example we have N(t) ≤ exp(t)C

1 + exp(t)C
and

exp

(
t

(
a2
b+ 1

− d2

))
P2(0) ≥ P2(t) ≥ exp (−d2t)P2(0)

We also observe that (0, exp (−d1t)P1(0)) and

(
exp(t)C

1 + exp(t)C
, 0

)
are solutions of the

system and hence both of the axis are invariant. Furthermore, for N(0) > 0 we have

N(t) > 0 and similarly for P1 and we conclude that the interior of the first quadrant,

denoted by Q, is invariant. As for boundedness of solutions, we have the following

lemma.

Lemma 7.4. There exists a S0 > 0 such that for all S ≥ S0 the triangle T (S) with

sides N = 0, P2 = 0, N + P2 = S is invariant.

Since every initial point in Q lies in a such triangle, every solution is bounded for t ≥ 0.
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Proof. Since we have already shown the invariance of axis, we have to show that the

solution can not leave the triangle through the hypotenuse N + P2 = S. On a such

line we have
dN

dt
+
dP2

dt
= N(1 − N) − d2P2 = −N2 + N(1 + d2) − d2S. It reaches a

maximum, sign of which depends on disciriminant D = (1 + d2)
2 − 4d2S. For S large

enough this maximum is negative and solution decreases along the hypotenuse and can

not cross it.

We proceed to find the curves where the right hand sides of equations have zero value.

Such curves are called nullclines. P−nullclines, i.e. the curves where
dP2

dt
= 0 are

P2 = 0 and N =
d2

a2 − bd2
and N−nullclines, i.e. the curves where

dN

dt
= 0 are N = 0

and P2 =
(1−N)(1 + bN)

a2
. We see that between lines N = 0 and N =

d1
a1 − bd1

, P

decreases and right from N =
d1

a1 − bd1
it increases. Similarly, between P = 0 and

P =
(1−N)(1 + bN)

a
, N increases and above P =

(1−N)(1 + bN)

a
it decreases. The

areas of the first quadrant where the growth of both functions is monotone are denoted

by Qi, i = 1, 2, 3, 4. This situation is depicted in Figure 5.

1

2

3

1

N

P2

Q1Q2

Q3 Q4

Figure 5: Nullclines of the Rosenzweig–MacArthur system

The fixed points of the system are found as intersections of N−nullclines and P2-

nullclines and are (N,P2) = {(0, 0), (1, 0),
(

d2
a2 − bd2

,
a2 − bd2 − d2
(a2 − bd2)2

)
} where the third

point makes biological sense only if a2 > d2(1 + b). This corresponds to the situation

when per capita growth rate of the predator at carrying capacity of resource is positive.
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Jacobian matrix of the system is J =

1− 2N − a2P2

(1 + bN)2
− a2N

1 + bN
a2P2

(1 + bN)2
a2N

1 + bN
− d2

.

We now get J(0, 0) =

(
1 0

0 −d2

)
and (0, 0) is obviously unstable since 1 > 0 and

d2 ̸= 0. For the second point we have J(1, 0) =

−1 − a2
1 + b

0
a2

1 + b
− d2

 and we see that it

is asimptotically stable when
a2

1 + b
< d2 and unstable otherwise.

Now we consider the case a2 > d2(1 + b) i.e. the case when (1, 0) is unstable and the

third point (N∗∗, P ∗
2 ) =

(
d2

a2 − bd2
,
a2 − bd2 − d2
(a2 − bd2)2

)
is in the first quadrant. We have

J(N∗∗, P ∗
2 ) =

a2d2(b− 1)− bd22(b+ 1)

a2(a2 − bd2)
−d2

a2 − bd2 − d2
a

0

 .

Eigenvalues of this matrix satisfy λ1λ2 =
d2(a2 − bd2 − d2)

a2
and

λ1+λ2 =
a2d2(b− 1)− bd22(b+ 1)

a2(a2 − bd2)
. In order to have λ1λ2 > 0 and λ1+λ2 < 0 we need

to have
a2
b+ 1

b− 1

b
< d2 <

a2
b+ 1

. In this case we have an asimptotically stable point.

Observe that for the relation of parameters
a2

1 + b
= d2 the two fixed points interchange

stability and we have transcritical bifurcation.

Observe that the maximum of the non-trivial N−nullcline is reached for N =
b− 1

2b
. If

the point (N∗∗, P ∗
2 ) is asimptotically stable the above condition can be rewritten into

d2
a2 − bd2

>
b− 1

2b
showing that in this case the fixed point is on decreasing part of

non-trivial N−nullcline.

We can show even more, that for the above relation of parameters every solution

starting in the interior of Q converges to the point (N∗∗, P ∗
2 ).

Lemma 7.5. Let
a2
b+ 1

b− 1

b
< d2 <

a2
b+ 1

. Then every solution starting in the interior

of Q converges to the fixed point (N∗∗, P ∗
2 ) =

(
d2

a2 − bd2
,
a2 − bd2 − d2
(a2 − bd2)2

)
.

Proof. We will use the Lemma 6.14 (Dulac criterion) to show that no periodic orbit

or homoclinic loop exist. Then, by the Poincare–Bendixson theorem, for each point

p in the open first quadrant Q, the ω−limit set of p must contain an equilibrium. If

the ω+ set contains the sink P ∗
2 , then it can contain no other point and we are done.

Otherwise, by the third case of Poincare–Bendixson theorem, the ω+ set of any orbit

consists of two other fixed points and non-periodic orbits connecting them. The ω+(p)
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set of points from Q can be neither of two points since the stable manifolds of points

are the y-axis and the x-axis, respectively. For the same reason, the heteroclinic orbit

connecting these two points should belong to the x-axis and it cannot be the ω+ set of

any p ∈ Q.

Following Hsu [4], we use the Dulac function of the form g(N,P2) =
1 + bN

N
Pα−1
2 for

the corresponding α.

We calculate(
g
dP2

dt

)
P2

+

(
g
dN

dt

)
N

=
P α−1
2

N

[
−2bN2 +N(α(a2 − d2b) + b− 1)− αd2

]
.

The term in the bracket has a maximum determined by the value of the discriminant

D = (α(a2−d2b)+(b−1))2−8αd2b < (α 2a2
b+1

+b−1)2−8α a1
b+1

(b−1) = (2α a1
b+1

−(b−1))2.

Hence for α = b2−1
2a2

we get that the maximum of the function is smaller then 0 and

therefore (g dP2

dt
)P1 + (g dN

dt
)N < 0 inside Q and we can apply the Dulac criterion.

Figure 6: Two orbits of the Rosenzweig–MacArthur system (in coordinates (N,P2))

for the values of parameters a = 0.9, b = 2.5, d = 0.16

We are left with the case d2 <
a2
b+ 1

b− 1

b
. This is the case when the positive fixed

point is on the increasing part of the non-trivial N−nullcline. In this case none of the
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equilibria are stable. We can show that in this case there is a periodic orbit containing

(N∗∗, P ∗
2 ).

Lemma 7.6. Let d2 <
a2
b+ 1

b− 1

b
. Then there exists a periodic solution of Rosenzweig–

MacArthur system. Furthermore, every solution starting in the interior of Q, except

for the positive equilibrium, has the periodic orbit as its limit set.

Proof. The main role in the proof is played by the unstable manifold of the point (1, 0).

We use the second claim of Theorem 5.5 to find the slope of its tangent at the point

(1, 0). If d2 <
a2
b+ 1

b− 1

b
we find that this slope is less (more negative) then the slope

of nullcline at the same point. This ensures that of the unstable manifold with P2 > 0

lies above the nullcline.

By the above argument, the orbit of M−(1, 0) enters Q1 as it leaves (1, 0). Since by

Lemma 7.4 all solutions are bounded, if M−(1, 0) stays in Q1 then because of mono-

tonicity of N and P2 the trajectory should converge to fixed point in Q1. However,

(N∗∗, P ∗
2 ) is unstable and therefore, trajectory must go to Q2. We apply similar argu-

ments to show that the direction of the trajectory must be Q1 → Q2 → Q3 → Q4.

We have traced the unstable manifold until its second intersection with the right part of

nullcline. Observe the area R, closed by Γ, consisting of this part of unstable manifold

an the part of nullcline connecting the intersection point and the point (1, 0). It is

compact, positively invariant, and contains only one unstable equilibrium (N∗∗, P ∗
2 ).

By the Poincare–Bendixson theorem for each p ∈ R distinct from (N∗∗, P ∗
2 ), the ω+

limit set of the trajectory through p must be a periodic orbit in R.

Additionally, by the similar argument about crossing of the regions and negative in-

variance of the unstable manifold, we see that every non-fixed orbit starting outside of

R will cross the nullcline on the part belonging to Γ and enter inside of R. Therefore,

every non-fixed solution has the periodic orbit as its ω+ set.

In this case linearly asimptotically stable point changed to unstable and in addition

to an unstable equilibrium we have a limit cycle. In this case we say that for d2 =
a2
b+ 1

b− 1

b
we have a Hopf bifurcation. Observe that for this relation of parameters

the eigenvalues of the corresponding Jacobian matrix are purely imaginary.

We now proceed by considering coexistence of these two competitors. In order to

survive, a small population P2 must be able to invade equilibrium point of N and

P1 i.e. we must have
dP2

dt
> 0 near (N∗, P ∗

1 ). Because of continuity we must have

dP2

dt
(N∗, P ∗

1 ) > 0. Since
1

P2

dP2

dt
is strictly increasing and

dP2

dt
(N∗∗, P ∗

1 ) = 0 we must

have N∗ > N∗∗. However, with similar observations we see that if this relation holds
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Figure 7: Two orbits of the Rosenzweig–MacArthur system (in coordinates (N,P2))

for the values of parameters a = 0.9, b = 2.5, d = 0.15

P1 can not invade equilibrium of N and P2 since
dP1

dt
< 0 near (N∗∗, P ∗

2 ) . But we

have shown that this point is not necessarily stable. The case where coexistence can

happen is along the periodic orbit. In this case, in order for P1 to invade P2 and N its

average rate of increase along the orbit must be positive. That is, invasion is possible

only if
1

τ

∫ τ

0

1

P1

dP1

dt
dt =

1

τ

∫ τ

0

(a1N − d1) dt = a1N̄ − d1 > 0

where N̄ =
1

τ

∫ τ
0
N(t)dt. Since we have a1N

∗ − d1 = 0 it follows that N̄ > N∗. This is

depicted in Figure 8.

Finally, the condition for coexistence is N̄ > N∗ > N∗∗. To show that this condition

is sufficient and that we really have coexistence, one has to consider global properties

of the three-species system, as in McGehee and Armstrong [5]. The three dimensional

portrait of the system is given in Figure 9.
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Figure 8: Impact of introduction of predator 1 onto periodic orbit of the prey and

predator 2

Figure 9: Three dimensional portrait of the system for the values of parameters ai = 1,

d1 = 0.1, d2 = 0.2, b = 5
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8 Conclusion

In the final project we studied ordinary differential equations by considering existence

and uniqueness of their solutions and their asymptotical behaviour. We were mostly

following [10]. Theoretical results were applied on an example in mathematical biology.

For the initial value problem of the form

ẋ = f(t, x), x(t0) = x0, (8.1)

where f ∈ C(U,Rn), U an open set in Rn+1 and (t0, x0) ∈ U we used fixed point

theorems to show local existence and uniqueness of solution if f satisfies the Lipschitz

condition. Peano’s theorem guarantees local existence but not uniqueness if f is a con-

tinuous function. If f satisfies the Lipschitz condition we have shown that continuous

dependence on the initial conditions and parameters which implies that such IVPs are

well–posed.

Special attention was dedicated to linear systems of the form

ẋ = A(t)x+ b(t), x(0) = x0, (8.2)

where A : R → Rn × Rn, x : R → Rn, b : R → Rn. We used results of the previous

section to prove existence and uniqueness of solution for continuous functions A(t) and

b(t). We gave a closed form of solutions for such systems and use these results to give

solutions of higher order linear equations. For autonomous linear systems of the form

ẋ = Ax, (8.3)

we have shown that asymptotical behaviour of solutions depends on eigenvalue decom-

position of the matrix A.

Further study of solutions of differential equations was accomplished by introducing

the notion of a dynamical system. For autonomous equations of the form

ẋ = f(x), x(0) = x0, (8.4)

where f ∈ Ck(M,Rn), k ≥ 1 and M is an open subset of Rn, we introduced the notion

of the flow

Φ(t, x) = ϕ(t, x)
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where ϕ(t, x) is the value at time t on the maximal integral curve at x. We studied

(8.4) by introducing notions from theory of dynamical systems: orbits, fixed points,

invariant, limit and attracting sets.

We generalized the theory of asymptotic behavior of linear systems to general au-

tonomous systems. We established the connection between a phase portrait of the

starting system and its linearization and used this to study local behaviuor of hyper-

bolic systems near fixed points. The Liapunov method gave us another approach to

the study of stability of a fixed point and its area of attraction.

Based on the Jordan curve theorem, we classified all possible limit sets for planar

dynamical systems and gave some useful criteria for both existence and non-existence

of periodic and homoclinic orbits. For dynamical systems in dimension bigger than 2,

such theory does not exist and strange asymptotical behaviour of solutions can occur

for readily simple systems.

Discrete dynamical systems are another example of dynamical systems where we are

usually interested in behaviour of iterates of some function f . While we define and

study similar notions as in the continuous case, the asymptotical behaviour can be

strange even for continuous functions of one variable. Theory and examples of higher

dimensional continuous systems and discrete dynamical systems can be found in [2, 9,

10].

Another important notion in theory of dynamical systems, only briefly mentioned in

this paper, are bifurcations. The reader can find more on the theory of bifurcations

in [9].

The theory developed throughout the paper was used in an example from the theory

of competitive existence. We presented some results on possibility of coexistence of n

consumers on k resources, both abiotic and biotic. We gave an example of coexistence

of two consumers on a single biotic resource and studied the range of parameters under

which the coexistence is possible. For predators we supposed Holling type I and II

functional response, while the prey is following the logistic growth model. We proved

that for coexistence predator 2 and the prey must coexists along periodic orbit and for

certain values of parameters the predator 1 is able to invade that system.

A study of coexistence in B2
1 for other types of behaviour of species (functional re-

sponses, migrations) can be found in [1].
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9 Povzetek naloge v slovenskem

jeziku

V zaključni nalogi smo preučevali navadne diferencialne enačbe pri čemer smo študirali

obstoj in enoličnost njihovih rešitev ter njihovo asimptotsko obnašanje. Teoretični

rezultati so uporabljeni pri preučevanju primera v matematični biologiji.

Za začetno nalogo

ẋ = f(t, x), x(t0) = x0, (9.1)

kjer je f ∈ C(U,Rn), U odprta množica v Rn+1 in (t0, x0) ∈ U , smo uporabili izreke o

negibni točki za dokaz obstoja in lokalne enoličnosti rešitve za funkcije f , ki zadoščajo

Lipschitzovemu pogoju. Za zvezne funkcije f smo obstoj (ne pa enoličnosti) dobili iz

Peanovega izreka. Za funkcije f , ki zadoščajo Lipschitzovemu pogoju smo pokazali

zvezno in gladko odvisnost od začetnih pogojev in parametrov iz česar sledi, da je taka

začetna naloga korektno zastavljena.

Posebej smo preučevali linearne sisteme oblike

ẋ = A(t)x+ b(t), x(0) = x0, (9.2)

kjer je A : R → Rn × Rn, x : R → Rn, b : R → Rn. Za dokaz obstoja in enoličnosti

rešitve za zvezne funkcije A(t) in b(t) smo uporabili rezultate preǰsnjega poglavja.

Dobili smo formulo za rešitve tega sistema in jo uporabili za izračun rešitev linearnih

enačb vǐsjega reda. Za avtonomne linearne sisteme oblike

ẋ = Ax. (9.3)

smo preučevali asimptotsko obnašanje rešitev v odvisnosti od spektralne dekompozicije

matrike A.

V nadaljevanju smo preučevali splošneǰse sisteme diferencialnih enačb – dinamične

sisteme. Omejili smo se na avtonomne sisteme. Cauchyjeva oz. začetna naloga za

avtonomne sisteme je oblike

ẋ = f(x), x(0) = x0, (9.4)

kjer je f ∈ Ck(M,Rn), k ≥ 1 in M odprta podmnožica Rn. Uvedli smo pojem toka

Φ(t, x) = ϕ(t, x),
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kjer je ϕ(t, x) vrednost v času t na maksimalni integralski krivulji skozi x. Nalogo (9.4)

smo preučevali z uvedbo pojmov iz teorije dinamičnih sistemov: orbit, stacionarnih

točk, invariantnih, limitnih in privlačnih množic.

Teorijo asimptotskega obnašanja linearnih sistemov smo posplošili na splošne avotonom-

ne sisteme. Pokazali smo zvezo med faznim portretom začetnega sistema in faznim

portretom njegove linearizacije in to uporabili za preučevanje lokalnega obnašanja

hiperboličnih sistemov v bližini stacionarnih točk. Metoda Ljapunova nam da še en

pristop preučevanju stabilnosti stacionarnih točk in njihovih območj privlačnosti.

Na podlagi izreka o Jordanski krivulji za ravninske dinamične sisteme smo klasificirali

vse možnosti za limitne množice in podali koristne kriterije za obstoj ali neobstoj

periodičnih in homokliničnih orbit.

Teorijo, razvito skozi nalogo, smo uporabili na primeru iz teorije tekmovalnega izključe-

vanja. Predstavili smo rezultate o možnostih sobivanja n uporabnikov na k virih, ki so

lahko biotični in abiotični. Podali smo primer sobivanja dveh plenilcev na enem plenu

in preučevali razpon parametrov, za katere je to mogoče. Za plenilce smo predpostavili

funkcijski odziv tipov Holling I in Holling II, za plen pa logistični model rasti. Dokazali

smo, da je za sobivanje potrebno, da plenilec 2 in plen sledita periodični orbiti ki jo

plenilec 1 lahko ”napade” za določene vrednosti parametrov.
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