
UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

STRUKTURA IN ALGORITMI V RAZREDIH GRAFOV:
NOVI REZULTATI O MINIMALNIH SEPARATORJIH IN

NEODVISNIH MNOŽICAH
(STRUCTURE AND ALGORITHMS FOR GRAPH

CLASSES: NEW RESULTS ON MINIMAL SEPARATORS
AND INDEPENDENT SETS)

NEVENA PIVAČ

KOPER, 2024





UNIVERZA NA PRIMORSKEM
FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

DOKTORSKA DISERTACIJA
(DOCTORAL THESIS)

STRUKTURA IN ALGORITMI V RAZREDIH GRAFOV:
NOVI REZULTATI O MINIMALNIH SEPARATORJIH IN

NEODVISNIH MNOŽICAH
(STRUCTURE AND ALGORITHMS FOR GRAPH

CLASSES: NEW RESULTS ON MINIMAL SEPARATORS
AND INDEPENDENT SETS)

NEVENA PIVAČ

KOPER, 2024 MENTOR: PROF. DR. MARTIN MILANIČ





Za svu snagu kada ustadoh pa padoh,
za noći kad bez odgovora dozivaste mama.

I za te dane kad sebe vam kradoh
svako slovo ovdje ja poklanjam vama.

Dunji i Vasiliju





Acknowledgements

I would like to express my gratitude to my mentor, Prof. Martin Milanič for his
guidance, motivation and support. He has been imparting knowledge to me for over
a decade and has provided me with many opportunities to broaden my professional
network. I am grateful to people from UP IAM and UP FAMNIT for giving me the
opportunity to learn and for understanding all the needs that arose during this journey.
Special thanks go to Nina, Matjaž, Vito, Klavdija, Dragan, Ademir, and all supporting
staff, as well as to the people I have worked with, in particular: Ekki’s group in Cottbus,
Ulrich’s group in Graz, and Irena Penev.

Words cannot express my gratitude to my family for their support and love through-
out my life. Firstly, thanks go to my husband Darko that has pushed the boundaries
of my faith by showing me that everything is possible if the desire is strong enough.
Thank you for being my support, for making me feel alive, for loving me, and for
believing in me when I didn’t even believe in myself.

I am grateful to my little sisters for their love, inspiring conversations and uncondi-
tional support. Furthermore, I am grateful to Lazo for his immense respect and help,
as well as to my father and my mother-in-law for being always there when needed.

And the ultimate meaning of all this is given by two little hearts. Dunja and Vasilije,
thank you for giving meaning to my every breath and for the incredible moments we
spend together. Everything here is for you and because of you. Be proud of me, of us,
and let this motivate you when success seems too far away. Our small family is my
source of motivation.

Without my friends everything would be much more difficult. One of the remarkable
individuals in my life is my friend Šejla and I am grateful to her for all the wonderful
memories from student days, as well as for the unconditional support during the hardest
moments for me and my family.

For the crucial support in the most difficult moments, I would like to thank Dr.
Lilijana Kornhauser Cerar, Dr. Matej Furlan, Nurse Jelka, Manca Oblak and the other
medical staff in University Medical Centre Ljubljana.

iii





Contents

List of Figures ix

List of Tables x

List of Algorithms xii

1 Introduction 1
1.1 Minimal separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Independent sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 General preliminaries on graphs . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Graph operations and containment relations . . . . . . . . . . . . . . . 7
2.3 Particular graphs and graph classes . . . . . . . . . . . . . . . . . . . . 8
2.4 Modular decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I PART I: Minimal separators 12

3 Overview and preliminary results 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Graph operations and their influence on the number of minimal separators 16

4 Tame graph classes 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Graph operations and tame graph classes . . . . . . . . . . . . . . . . . 25
4.3 Some non-tame graph classes . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Characterization of tame graph classes with small forbidden induced

subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Some tame graph classes . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 A dichotomy result . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Characterization of tame graph classes with a forbidden induced minor
or induced topological minor . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 Sufficient conditions for tameness . . . . . . . . . . . . . . . . . 46
4.5.3 Dichotomy results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Recognition algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



vi CONTENTS

4.6.1 Proof of Theorem 4.5.9 . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Proof of Theorem 4.5.8 . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 Detecting the butterfly as an induced minor . . . . . . . . . . . 59

5 Extremal number of minimal separators 61
5.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Subclasses of Cographs . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Split Graphs, Pseudo-Split Graphs, and 2P2-Free Graphs . . . . . . . . 69

6 Bisimplicial separators 75
6.1 Introduction and preliminary results . . . . . . . . . . . . . . . . . . . 76
6.2 Forbidden induced minors . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 k-simplicial elimination orderings and k-simplicial vertices . . . . . . . 84
6.4 NP-hardness results for Gk, k ≥ 3 . . . . . . . . . . . . . . . . . . . . . 86
6.5 Sublasses of G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.1 Graphs of bounded clique number and perfect graphs in G2 . . . 88
6.5.2 Diamond-free graphs in G2 . . . . . . . . . . . . . . . . . . . . . 89

6.6 Algorithms and complexity . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6.1 Algorithmic considerations for graphs in G2 . . . . . . . . . . . . 94
6.6.2 Algorithmic considerations for diamond-free graphs in G2 . . . . 95

7 Final Remarks to Part I 98
7.1 Tame graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Extremal number of minimal separators . . . . . . . . . . . . . . . . . 99
7.3 Bisimplicial separators . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

II Part II: Independent sets 104

8 Overview 105
8.1 Well-Covered Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Fair Allocation of Indivisible Items . . . . . . . . . . . . . . . . . . . . 107

9 Well-covered vector spaces in fork-free graphs 110
9.1 Problem definition and preliminary remarks . . . . . . . . . . . . . . . 110
9.2 Reduction to prime induced subgraphs . . . . . . . . . . . . . . . . . . 113
9.3 Cographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.4 Reduction to anti-neighborhoods . . . . . . . . . . . . . . . . . . . . . 123
9.5 Fork-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Fair Allocation of Indivisible Items with Conflict Graphs 127
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.2 General hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.3 Bipartite graphs and their line graphs . . . . . . . . . . . . . . . . . . . 132
10.4 Pseudo-polynomial algorithms for special graph classes . . . . . . . . . 134

10.4.1 Cocomparability graphs . . . . . . . . . . . . . . . . . . . . . . 135
10.4.2 Biconvex bipartite graphs . . . . . . . . . . . . . . . . . . . . . 138
10.4.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.4.4 Graphs with bounded treewidth . . . . . . . . . . . . . . . . . . 146



CONTENTS vii

10.4.5 Graphs of bounded clique-width . . . . . . . . . . . . . . . . . . 147
10.5 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11 Final Remarsks to Part II 153
11.1 Well-Covered Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 153
11.2 Fair Allocation of Indivisible Items . . . . . . . . . . . . . . . . . . . . 153

Bibliography 154

Povzetek v slovenskem jeziku 171





List of Figures

2.1 Some graphs. Dashed edges are paths of length at least 1. . . . . . . . 10

4.1 An elementary wall W8 and a minimal separator S(1,0,1,1,0,0,1,0) in W8 . . 28
4.2 The graph L(W8), and a minimal separator S ′

(1,1,0,0,1,1,1,1) in L(W8). . . 29
4.3 k-theta, k-prism, k-pyramid. . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 The turtle and k-turtle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 k-creature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Overview of the dichotomy result. . . . . . . . . . . . . . . . . . . . . . 40
4.7 From left to right: the 2P2, the diamond, the butterfly, and the house. . 43
4.8 The butterfly (left) and the house (right). . . . . . . . . . . . . . . . . 46
4.9 A schematic representation of graphs in S, T , and M. . . . . . . . . . 48
4.10 The graphs Γ2,4,4 (left) and Γ2,2,3 (right). . . . . . . . . . . . . . . . . . 49
4.11 Some small graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Some small graphs in MG2 . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 From left to right: the diamond, the 3-prism, and the K2,3. . . . . . . . 87
6.3 Three-path-configurations: theta, pyramid, and prism. . . . . . . . . . 87
6.4 Some small wheels, classified as broken or not broken. . . . . . . . . . . 88

7.1 Graph classes studied in Chapter 5 and the class of well-behaved graphs. 101

9.1 The fork and the bull. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.1 Relationships between various graph classes and the complexity of Fair
k-Division Under Conflicts (decision version). . . . . . . . . . . . 129

10.2 Two forbidden induced subgraphs for biconvex bipartite graphs. . . . . 141
10.3 A 12-vertex biconvex bipartite graph and a biconvex labeling of it. . . . 141

ix



List of Tables

5.1 Summary of our results. Functions a and b in the right column satisfy
a : N → {0, 1} and b : N → {−1, 0, 1, 2}. Moreover, log n = log2 n. . . . 62

6.1 Summary of our algorithmic and complexity results. The number of
vertices and edges of the input graph is denoted by n andm, respectively,
and ω < 2.3728596 denotes the matrix multiplication exponent (see [7]). 94

x





List of Algorithms

1 Algorithmic Idea for a Connected Biconvex Graph G . . . . . . . . . . 139

xii





Abstract

STRUCTURE AND ALGORITHMS FOR GRAPH CLASSES:
NEW RESULTS ON MINIMAL SEPARATORS AND INDEPENDENT SETS

This doctoral thesis explores diverse classes of graphs across two principal parts.
The first part is dedicated to the study of minimal separators, while in the subsequent
part we consider some old and new algorithmic problems related to independent sets.

A minimal separator of a graph G is a set S ⊆ V (G) such that there exist vertices
a, b ∈ V (G) \ S with the property that S separates a from b in G, but no proper
subset of S does. A graph class is said to be tame if graphs in the class have a
polynomially bounded number of minimal separators. Tame graph classes have good
algorithmic properties, which follow, for example, from an algorithmic metatheorem of
Fomin, Todinca, and Villanger from 2015. We show that a hereditary graph class G
is tame if and only if the subclass consisting of graphs in G without clique cutsets is
tame. This result and Ramsey’s theorem lead to several types of sufficient conditions
for a graph class to be tame. We apply these results, combined with the structure of
graphs with exponentially many minimal separators, to develop dichotomy theorems
separating tame from non-tame graph classes within the families of graph classes de-
fined by sets of forbidden induced subgraphs with at most four vertices. Building on
recent works of Gartland and Lokshtanov [SODA 2023], and of Gajarský et al. [arXiv,
2022], we characterize tame graph classes defined by a single forbidden induced minor
or induced topological minor. We provide polynomial-time recognition algorithms for
the maximal tame graph classes obtained in the above characterizations by a single
forbidden induced minor or induced topological minor.

Among the tame classes of graphs of special interest are classes of graphs having
a linear number of minimal separators, which makes the algorithms based on minimal
separators particularly efficient. We consider a number of well-known and interrelated
classes of graphs having the number of minimal separators bounded by the number of
vertices: threshold graphs, cographs, split graphs, pseudo-split graphs, trivially perfect
graphs, co-trivially perfect graphs, and 2P2-free graphs. For each of these classes, we
establish exact values for the maximum number of minimal separators in an n-vertex
graph from the class.

For an integer k ≥ 0, we say that a minimal separator is k-simplicial if it is a union
of k cliques and denote by Gk the class of all graphs in which each minimal separator
is k-simplicial. We show that for each k ≥ 0, the class Gk is closed under induced
minors and give a complete list of minimal forbidden induced minors for G2. A known
result on chordal graphs states that every chordal graph has a simplicial vertex. We
generalize this result by showing that for k ≥ 1 every LexBFS ordering of a graph in
Gk is a k-simplicial elimination ordering and consequentially, every nonnull graph in Gk

has a k-simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques.
Further, we show that, for k ≥ 3, it is NP-hard to recognize graphs in Gk. The time

xiv



ABSTRACT xv

complexity of recognizing graphs in G2 is unknown. We study various subclasses of G2

and obtain polynomial-time recognition algorithms for these restricted cases. Finally,
we show a number of algorithmic results for the class G2 and its subclasses.

In the second part of the thesis we consider two distinct problems, related to In-
dependent Set, the following well-known NP-complete problem: given a graph G
and an integer k, determine whether G contains an independent set of cardinality k.
Firstly, we study the problem of computing the vector space consisting of all well-
covered weightings of a graph G, that is, of all vertex weight functions on the graph
under which all the maximal independent sets of the graph have constant weight. This
set forms a vector space over the field of real numbers, called the well-covered vector
space of G. The problem of computing the well-covered vector space of a given graph
is co-NP-hard. In the thesis we give two general reductions for the problem, one based
on anti-neighborhoods and one based on modular decomposition, combined with Gaus-
sian elimination. Building on these results, we develop a polynomial-time algorithm
for computing the well-covered vector space of a given fork-free graph, generalizing the
result of Levit and Tankus that solves the problem for claw-free graphs.

The second problem studied in this part of the thesis is an allocation problem: a
problem of computing an optimal allocation of items to agents in the presence of a
conflict graph, respecting a certain fairness criterion. We study the fair allocation of
indivisible items to several agents and introduce an incompatibility relation between
pairs of items described in terms of a conflict graph. Every subset of items assigned to
one agent has to form an independent set in this graph and every agent has its own profit
valuation for every item. Aiming at a fair allocation, the goal is the maximization of
the lowest total profit of items allocated to any one of the agents. We derive complexity
and algorithmic results depending on the properties of the given graph. We show that
the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable
in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs,
biconvex bipartite graphs, graphs of bounded treewidth, and graphs of bounded clique-
width.

Math. Subj. Class (2010): 05C69, 05C75, 05C35, 05C83, 05C85, 90C39, 90C47,
90C27, 91B32

Key words: minimal separator, bisimplicial separator, structural characterization of
families of graphs, graph class, tame graph class, fair allocation, fork-free graph, well-
covered vector space, independent set, graph algorithm, induced subgraph, induced
minor, induced topological minor.



Povzetek

STRUKTURA IN ALGORITMI V RAZREDIH GRAFOV:
NOVI REZULTATI O MINIMALNIH SEPARATORJIH IN NEODVISNIH

MNOŽICAH

Doktorska disertacija preučuje različne razrede grafov in je strukturirana preko dveh
glavnih delov. Prvi del je posvečen študiju minimalnih separatorjev, medtem ko v
drugem delu študiramo nekatere stare in nove algoritmične probleme, povezane z neod-
visnimi množicami.

Minimalnen separator grafa G je taka množica S ⊆ V (G), za katero obstajata
točki a, b ∈ V (G) \ S, ki imata lastnost, da S loči a od b v G, vendar to ne velja za
nobeno pravo podmnožico množice S. Razredu grafov pravimo, da je krotek, če imajo
grafi v razredu polinomsko omejeno število minimalnih separatorjev. Krotki razredi
grafov imajo dobre algoritmične lastnosti, ki izhajajo, na primer, iz algoritmičnega
metaizreka Fomina, Todince in Villangerja iz leta 2015. V disertaciji pokažemo, da
je hereditaren razred grafov G krotek natanko takrat, ko je podrazred, sestavljen iz
grafov v G brez prereznih klik, krotek. Ta rezultat in Ramseyjev izrek vodita do več
vrst zadostnih pogojev za to, da je razred grafov krotek. Omenjeni rezultati, skupaj s
strukturo grafov z eksponentno mnogo minimalnimi separatorji, vodijo do dihotomij,
ki loči krotke razrede grafov od nekrotkih znotraj družin razredov grafov, definiranih
s seznamom prepovedanih induciranih podgrafov z največ štirimi točkami. Na podlagi
nedavnega dela Gartlanda in Lokshtanova [SODA 2023] ter Gajarskega idr. [arXiv,
2022] karakteriziramo krotke razrede grafov, definirane z enim prepovedanim induci-
ranim minorjem oz. induciranim topološkim minorjem. Poleg tega razvijemo poli-
nomske algoritme za prepoznavanje maksimalnih krotkih razredov grafov, pridobljenih
v omenjenih karakterizacijah s posameznim prepovedanim induciranim minorjem oz. in-
duciranim topološkim minorjem.

Med krotkimi razredi grafov so še posebej zanimivi razredi grafov, v katerih je
število minimalnih separatorjev omejeno z linearno funkcijo, zaradi česar so algoritmi,
ki temeljijo na minimalnih separatorjih, še posebej učinkoviti. V disertaciji študiramo
več znanih in medsebojno povezanih razredov grafov, ki imajo število minimalnih sep-
aratorjev omejeno s številom točk: pragovni grafi, kografi, razcepljeni grafi, psevdo-
razcepljeni grafi, trivialno popolni grafi, ko-trivialno popolni grafi in 2P2-prosti grafi.
Za vsakega od teh razredov določimo natančne vrednosti za največje število minimalnih
separatorjev v n-točkovnem grafu, ki pripada razredu.

Za celo število k ≥ 0 pravimo, da je minimalen separator k-simplicialen, če je unija
k klik, in z Gk označimo razred vseh grafov, v katerih je vsak minimalen separator
k-simplicialen. Pokažemo, da je za vsak k ≥ 0 razred Gk zaprt za inducirane minorje in
podamo popoln seznam minimalnih prepovedanih induciranih minorjev za G2. Znano
je, da vsak tetiven graf vsebuje simplicialno točko. V doktorski disertaciji ta rezultat
posplošimo tako, da pokažemo, da za k ≥ 1 vsaka LexBFS razvrstitev točk grafa v Gk

xvi



POVZETEK xvii

predstavlja k-simplicialno eliminacijsko shemo. Posledično, vsak neprazen graf v Gk

vsebuje k-simplicialno točko. Nadalje pokažemo, da je za vsak k ≥ 3 NP-težko pre-
poznati grafe v Gk. Časovna zahtevnost prepoznavanja grafov v G2 je odprt problem,
zato študiramo različne podrazrede razreda G2 in razvijemo polinomske algoritme pre-
poznavanja grafov znotraj teh podrazredov. Na koncu pokažemo nekaj algoritmičnih
rezultatov za razred G2, kot tudi za določene podrazrede razreda G2.

V drugem delu disertacije študiramo dva različna problema, povezana s problemom
Neodvisne množice, znanim NP-polnim problemom: če imamo podan graf G in celo
število k, določi, ali G vsebuje neodvisno množico moči k. Prvič, študiramo problem
izračuna vseh dobrih pokritij grafa, to je, vseh utežnih funkcij na točkah grafa, glede
na katere imajo vse maksimalne neodvisne množice grafa enako težo. Množica vseh
dobrih pokritij grafa G tvori vektorski prostor nad poljem realnih števil, ki mu rečemo
dobro pokrit prostor grafa G. Problem izračuna dobro pokritega vektorskega prostora
danega grafa je co-NP-težek. V disertaciji podamo dve splošni prevedbi za ta problem:
eno, ki temelji na nesoseščinah v grafu, in drugo, ki temelji na modularni dekompoziciji,
v kombinaciji s Gaussovo eliminacijo. Na podlagi teh rezultatov razvijemo polinomski
algoritem za izračun dobro pokritega vektorskega prostora danega grafa brez vilic, ki
posploši rezultat Levita in Tankusa, kjer se problem reši za grafe brez krempljev.

Drugi problem, ki se mu posvečamo v tem delu disertacije, je problem poštene
razdelitve: problem izračuna optimalne razdelitve nedeljivih predmetov agentom, z
upoštevanjem konfliktnega grafa in določenih omejitev poštene razdelitve. S konflik-
tnim grafom lahko prepovemo hkratno uporabo določenih predmetov, tako da vsaka
množica predmetov, ki je dodeljena določenemu agentu, predstavlja neodvisno množico
konfliktnega grafa. Vsak agent ima svojo profitno funkcijo na množici vseh predmetov
in naš cilj je maksimizacija najnižjega posameznega profita poljubne množice pred-
metov, dodeljenih kateremu koli od agentov. V disertaciji pokažemo, da je omenjeni
problem krepko NP-težek za dvodelne grafe in njihove povezavne grafe, ter rešljiv v
psevdopolinomskem času za razrede tetivnih grafov, neprimerljivostnih grafov, bikon-
veksnih dvodelnih grafov, grafov omejene drevesne širine in grafov omejene klične širine.

Math. Subj. Class (2010): 05C69, 05C75, 05C35, 05C83, 05C85, 90C39, 90C47,
90C27, 91B32

Ključne besede: minimalen separator, bisimplicilen separator, strukturna karakteri-
zacija družin grafov, razred grafov, krotki razred grafov, poštena razvrstitev, graf brez
vilic, dobro pokrit vektorski prostor, neodvisna množica, algoritmi na grafih, induciran
podgraf, induciran minor, induciran topološki minor.



Chapter 1

Introduction

A graph is a simple concept in mathematics that consists of points and lines connecting
them, and enables us to represent many real-world problems. Consider, for example,
any social network where the accounts are the points, and the connections are the lines,
or a roadmap, where the cities are the points, and the roads are the lines. Clearly, these
can be represented by graphs. Formally, a graph G consists of a vertex set V = V (G)
and edge set E = E(G), with edges being unordered pairs of distinct vertices. Graphs
represent a mathematical structure used to model pairwise relations between objects.
In particular, they can be used to model various relations and processes in physical,
biological, social, and information systems. The very first paper in the history of graph
theory was published in 1736, by Leonhard Euler [100], while the term “graph” was
introduced by Sylvester in a paper published in 1878 [222].

Over the years, many problems were modelled by graphs, and consequentially, var-
ious graph concepts were introduced and studied. Of particular interest are subsets of
vertices that possess a certain property, and their cardinalities. A minimal separator
in a graph is an inclusion-minimal set of vertices whose removal disconnects a fixed
pair of non-adjacent vertices. An independent set in a graph G is a set of pairwise
non-adjacent vertices. This doctoral thesis is divided into two parts. The first part is
dedicated to the study of minimal separators, while the second one considers some old
and new algorithmic problems related to independent sets. The central theme com-
mon to both parts is the study of graph classes, that is, sets of graphs closed under
isomorphism.

1.1 Minimal separators

A minimal separator of a graph G is a set S ⊆ V (G) such that there exist vertices
a, b ∈ V (G)\S with the property that S separates a from b in G, but no proper subset
of S does. Note that it is possible that S is a minimal separator of a graph G, even
though some S ′ ⫋ S is also a separator of G. Indeed, there may be a pair a, b of
non-adjacent vertices such that S is a minimal (a, b)-separator of G, as well as some
other pair a′, b′ of non-adjacent vertices such that some S ′ ⫋ S is an (a′, b′)-separator
of G.

Minimal separators have been studied since at least the 1960s, when chordal graphs
(graphs without any induced cycle of length at least four) were characterized as pre-
cisely those graphs in which all minimal separators are cliques (sets of paiwise adjacent
vertices) [95]. Chordal graphs are a well-studied graph class for many reasons; they

1
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have good structural properties, which imply efficient algorithms for many problems
that are NP-hard in general. For example, finding a maximum independent set can
be done in polynomial time in the class of chordal graphs. This motivated the study
of various graph classes in similar context—to obtain a characterization with minimal
separators. For instance, Backer characterized interval, cocomparability, and AT-free
graphs by the structure of minimal separators [12].

Minimal separators were subsequently studied in [24] in the context of moplexes,
have played an important role in sparse matrix computations via minimal triangula-
tions (for a survey, see [139]), and have also had numerous algorithmic applications
(see, e.g., [33, 41, 226]). Many graph algorithms and characterizations are based on
minimal separators (see, e.g., [12, 24, 33, 34, 35, 41, 62, 76, 95, 153, 193]) and such algo-
rithms usually enumerate all minimal separators of the input graph at some step of
execution (see, e.g. [42, 112, 185]). Thus, the number of minimal separators directly
influences their running time. Fomin et al. proved in [110] that the maximum num-
ber of minimal separators over all n-vertex graphs is bounded from below by Ω(3n/3)
and from above by O(1.708n). This bound was improved independently by Fomin and
Villanger [113] and by Gaspers and Mackenzie [123]. They showed that the maximum
number of minimal separators in a graph is bounded from above by O(ρnn), where
ρ = (1 +

√
5)/2. It turns out that for the classes of graphs with maximum num-

ber of minimal separators of n-vertex graphs bounded by a polynomial in n, all of
the algorithms from [42, 112, 185] run in polynomial time, so many problems that are
NP-hard for general graphs become polynomial-time solvable for classes of graphs with
polynomially bounded number of minimal separators. This is the case for Treewidth
and Minimum Fill-In [42], for Maximum Independent Set, Feedback Vertex
Set, and more generally the problem of finding a maximum induced subgraph of
treewidth at most a constant t [112], and for Distance-d Independent Set for even
d [185].

The nice properties of classes of graphs having polynomially many minimal sep-
arators that lead to the existence of efficient algorithms for various graph problems
motivate the classification of such graph classes. In this thesis, we characterize classes
of graphs with polynomially bounded number of minimal separators within certain
families of graph classes, and exactly determine the number of minimal separators in
various graph classes. Furthermore, we generalize the concept of chordal graphs by
considering graphs where every minimal separator is a union of a bounded number of
cliques and study the algorithmic consequences for several classical optimization graph
problems when restricted to such graph classes.

1.2 Independent sets

Given a graph G and an integer k, deciding whether G contains an independent set
of cardinality k is an NP-complete problem known under the name Independent
Set [146]. If every vertex of a graph G is assigned a real number, the weight of a
vertex, we speak about a weighted graph. Given a graph G and a weight function
w : V (G) → R, the weight of any set S ⊆ V (G) is defined as w(S) =

∑
v∈S w(v). A

natural generalization of Independent Set is Maximum Weight Independent
Set, that is, the problem of computing an independent set of maximum weight in a
given weighted graph.

An independent set in a graph G is said to be maximal if it is not properly contained
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in any larger independent set of G, and maximum, if there is no independent set in
G having larger cardinality. In the thesis we consider two distinct problems related
to Independent Set. The first one is the problem of computing the vector space
consisting of all vertex weight functions under which all the maximal independent sets
of the graph have constant weight. The second one is an allocation problem: a problem
of computing an optimal allocation of items to agents in the presence of a conflict graph,
respecting a certain fairness criterion. Note that the conflict graph here enables us to
forbid the simultaneous usage of particular items, so every subset of items assigned to
one agent has to form an independent set in the conflict graph.

Well-covered weightings of a graph

A graph is well-covered if all its maximal independent sets have the same cardinality.
This concept was introduced by Plummer in 1970 [201] and naturally generalizes to
the weighted case. A weighted graph G is said to be w-well-covered if all maximal
independent sets in G are of the same weight with respect to the weight function w.
This concept was introduced by Caro, Ellingham, and Ramey in 1998 [52], in the more
general context of weight functions mapping the vertices of a graph to the elements of
an abelian group (see also [50]).

In the thesis we study well-covered weighting of a graph G, that is, real-valued
weight functions w on the vertices of G such that G is w-well-covered. It is known that
for every graph G, the set WCW(G) of all well-covered weightings of G forms a vector
space over the field of real numbers (see [50,54]); we refer to it as the well-covered vector
space of G. Any system of linear equations describing the vector space WCW(G) will
be referred to as a well-covering system of G. We consider the problem of determining
a well-covering system of a graph G, and refer to this problem as Well-Covering
System.

Since the problem of recognizing well-covered graphs is co-NP-complete (see [68,
214]), the more general Well-Covering System problem is co-NP-hard. Well-
covered vector spaces of various graph classes were studied over the years (see, e.g., [51,
52,54,165]). In particular, Levit and Tankus showed that the problem can be solved in
polynomial time in the class of claw-free graphs [164] (where a claw is a graph on four
vertices, with one vertex of degree 3 and three vertices of degree 1). We continue this
line of research and study the complexity of Well-Covering System in the class
of fork-free graphs (where a fork is a claw with one edge subdivided). We give two
general reductions for the problem, one based on anti-neighborhoods and one based
on modular decomposition, combined with Gaussian elimination. Building on these
results, we develop a polynomial-time algorithm for computing the well-covered vec-
tor space of a given fork-free graph, generalizing the result of Levit and Tankus. Our
approach implies a polynomial-time recognition algorithm for the class of well-covered
fork-free graphs and also generalizes some known results on cographs (see [50]).

Fair allocation with conflict graphs

Distributing resources among multiple agents effectively is a classic problem in com-
binatorial optimization. In this scenario, each agent assigns a value to each item, and
the objective is to assign every item to exactly one agent in a way that maximizes
the lowest value assigned by any agent (see, e.g., [44, 227]). Usually, such problems
are equipped with some additional constraints for a feasible allocation, and there are
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various models of preferences expressed by the agents and different objectives arising
from these. If there are no other restrictions, the proposed classical problem is called
Fair k-Division of Indivisible Items: allocate items to k agents, where each agent
has its own utility function over the set of items, and the goal is to maximize the utility
over all agents.

It is, however, often the case that a set of feasible solutions of an allocation of
resources is restricted by various constraints. In particular, any incompatibility relation
between pairs of items can be modelled using a conflict graph. The vertices of a
conflict graph are items and an incompatibility among items i and j is modelled by the
presence of the edge ij in the conflict graph. The items are in conflict if they cannot be
used simultanuosly, or simply cannot be allocated to the same agent, for any reason.
Therefore, we study the fair allocation of n indivisible goods or items to a set of k
agents from a graph theoretical perspective. Every agent has its own value for each
item, and assuming that a conflict graph is given, we want to compute a fair allocation
of items to agents such that the minimal total weight among agents is maximized. This
problem will be called Fair k-Division Under Conflicts. Note that every subset
of items assigned to one agent has to form an independent set in a conflict graph, and
it can happen that the allocation is partial (not all items are allocated).

Recent papers from this field studying fairness issues in connection with the under-
lying graph structure are given in [16,43]. Conflict-free allocation of items immediately
leads to partial colorings of the conflict graph (see [22,90]).

Note that for k = 1, the problem coincides with the Maximum Weight Inde-
pendent Set. In particular, since the case of unit weights and k = 1 generalizes the
Independent Set problem, we conclude that Fair 1-Division Under Conflicts
is strongly NP-hard. With some effort, one can see that even without conflicts the
Fair k-Division of Indivisible Items problem is weakly NP-hard for any constant
k ≥ 2 and strongly NP-hard for k being part of the input. This holds even for k iden-
tical profit functions. Thus, unless P = NP, pseudo-polynomial algorithms for Fair
k-Division Under Conflicts can only be developed for constant k.

In the thesis we give a characterization of the computational complexity of Fair
k-Division Under Conflicts for different classes of conflict graphs. We study
the boundary between strongly NP-hard cases and those where a pseudo-polynomial
algorithm can be derived for constant k.

1.3 Publications

Some results presented in this doctoral thesis appear as part of submitted preprint or
published journal papers, prepared in collaboration with my advisor and/or with some
other collaborators. During my studies, I have also co-authored papers that are not
part of this doctoral thesis (marked by * below).

[18]* J. Beisegel, C. Denkert, E. Köhler, M. Krnc, N. Pivač, R. Scheffler, and M.
Strehler. On the end-vertex problem of graph searches. Discrete Math. Theor.
Comput. Sci., 21(1):20, 2019. Id/No 13.

[19]* J. Beisegel, C. Denkert, E. Köhler, M. Krnc, N. Pivač, R. Scheffler, and M.
Strehler. The recognition problem of graph search trees. SIAM J. Discrete Math.,
35(2):1418–1446, 2021
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[59]* N. Chiarelli, C. Dallard, A. Darmann, S. Lendl, M. Milanič, P. Muršič, U. Pfer-
schy, and N. Pivač. Allocation of indivisible items with individual preference
graphs. Discret. Appl. Math., 334:45–62, 2023.

[60]* N. Chiarelli, M. Krnc, M. Milanič, U. Pferschy, N. Pivač, and J. Schauer. Fair al-
location of indivisible items with conflict graphs. Algorithmica, 85(5):1459–1489,
2023.

[180]* M. Milanič, I. Penev, N. Pivač, and K. Vušković. Bisimplicial separators.
J.Graph Theory, 2024. doi:10.1002/jgt.23098.

[181]* M. Milanič and N. Pivač. Computing well-covered vector spaces of graphs using
modular decomposition. Comput. Appl. Math., 42(8):360, 2023.

[183]* M. Milanič and N. Pivač. Polynomially bounding the number of minimal sep-
arators in graphs: reductions, sufficient conditions, and a dichotomy theorem.
Electron. J. Combin., 28(1):Paper No. 1.41, 27, 2021.

1.4 Structure of the thesis

In Chapter 2 we summarize the main definitions, terminology and preliminary results
used throughout the thesis. The rest of the thesis is divided into two parts, regard-
ing the main topic. Part I studies minimal separators and consists of four chapters.
In Chapter 3 we give some motivation and a general overview of the problems studied
in Part I, as well as some preliminary results. The first problem, studied in Chapter 4,
deals with tame graph classes, that is, graph classes with a polynomially bounded num-
ber of minimal separators. In Chapter 5 we study the extremal number of minimal
separators in graph classes where this number is bounded by the number of vertices.
In Chapter 6 we study classes of graphs where each minimal separator is a union of k
cliques (k-simplicial). Concluding remarks and potential directions for further research
regarding the problems studied in Part I are given in Chapter 7.

Part II has similar structure as Part I: general remarks are presented in Chapter 8,
while the two problems considered in this part are presented in Chapters 9 and 10. The
former chapter considers the problem of determining a well-covering system of fork-free
graphs, while the latter one considers the fair allocation problem with a conflict graph.
Final remarks to Part II are given in Chapter 11.



Chapter 2

Preliminaries

In this chapter we provide the basic notation and definitions, recall the basic properties
of some graph classes relevant to our study, and show some preliminary results that
will be used throughout the thesis. Some concepts are defined again later in the thesis
but are collected here for the convenience of the reader.

2.1 General preliminaries on graphs

All graphs in this paper will be finite, simple, and undirected. The vertex set and the
edge set of a graph G are denoted by V (G) and E(G), respectively. Given vertices u, v
of a graph G, we denote by uv the edge {u, v}. The neighborhood of a vertex v in a
graph G is the set NG(v) of all vertices adjacent to v in G. The closed neighborhood
of v is the set NG(v) ∪ {v}, denoted by NG[v]. Given a set X ⊆ V (G), we denote by
NG(X) and NG[X] the sets

⋃
v∈X NG(v) \X and

⋃
v∈X NG[v], respectively. The degree

of vertex v in G is the cardinality of NG(v). If the graph G is clear from the context, we
simply write N(v), N [v], N [X], and d(v) instead of NG(v), NG[v], NG[X], and dG(v),
respectively. The codegree of vertex v in G is the number of vertices in G that are not
adjacent to v in G. A vertex v of degree 0 in a graph G is said to be isolated, and a
vertex v of degree |V (G)| − 1 in G is said to be universal. Given a graph G, a vertex
v is a pendant of G if v is adjacent to a single vertex of G. Two vertices u and v are
said to be true twins (resp., false twins) if NG[u] = NG[v] (resp., NG(u) = NG(v)).

A clique in a graphG is a set of pairwise adjacent vertices inG, while an independent
set in a graph G is a set of pairwise non-adjacent vertices in G. A triangle in a graph
G is a clique of size 3. A set S of vertices in a graph G is a dominating set in G if
every vertex in G is either in S or has a neighbor in it. A vertex v in a graph G is
simplicial if its neighborhood is a clique. The independence number of G is defined as
the cardinality of a largest independent set in G and denoted by α(G). The cardinality
of a largest clique in a graph G is the clique number of G and we denote it by ω(G).
The clique covering number θ(G) of a graph G is the minimum number of cliques in
G needed to cover the vertex set of G. The chromatic number χ(G) of a graph G is
the smallest number of colors needed to color the vertices of G so that no two adjacent
vertices share the same color, or, equivalently, the minimum number of independent
sets in G needed to cover V (G).

6
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2.2 Graph operations and containment relations

A connected component (or, simply, a component) of a graph G is a maximal connected
subgraph of G. The complement of a graph G is a graph G with vertex set V (G) in
which two distinct vertices are adjacent if and only if they are non-adjacent in G.
A coconnected component, or simply cocomponent, of a graph G is the subgraph of G
induced by the vertex set of a component ofG. A graph is coconnected if its complement
is connected. If G is a graph and A and B are disjoint subsets of V (G), we say that they
are complete (resp., anticomplete) to each other in G if {ab | a ∈ A, b ∈ B} ⊆ E(G)
(resp., {ab | a ∈ A, b ∈ B} ∩ E(G) = ∅). If the vertex set of G can be partitioned into
sets V1 and V2 that are anticomplete to each other in G, then G is said to be the disjoint
union of graphs G[V1] and G[V2]; we denote this by G = G[V1]+G[V2]. Similarly, if the
vertex set of a graph G can be partitioned into two sets V1 and V2 that are complete
to each other in G, we say that G is the join of the subgraphs of G induced by V1 and
V2; we denote this by G = G[V1] ∗ G[V2]. Given a non-negative integer k, the disjoint
union of k copies of G is denoted by kG.

Given a graph G, its line graph is the graph L(G) with vertex set E(G) in which two
distinct vertices e and f are adjacent if and only if e and f have a common endpoint
as edges in G. A graph F is an induced subgraph of a graph G if V (F ) ⊆ V (G) and
E(F ) = {uv ∈ E(G) | {u, v} ⊆ V (F )}; we denote this relation by F ⊆i G. In this
case, graph F will also be called the subgraph of G induced by V (F ) and denoted by
G[V (F )]. Given a set S ⊆ V (G), we denote by G − S the subgraph of G induced by
V (G) \ S. If F and G are graphs such that no induced subgraph of G is isomorphic
to F , we say that G is F -free. Given a family F of graphs, we say that a graph G is
F-free if no induced subgraph of G is isomorphic to a member of F . Contracting an
edge e = uv in a graph G is the operation of replacing the vertices u and v in G with
a new vertex w that is adjacent precisely to vertices in (NG(u) ∪ NG(v)) \ {u, v}; the
resulting graph is denoted by G/e. A minor of a graph G is any graph obtained from
G by a sequence of vertex deletions, edge deletions, and edge contractions. An induced
minor of a graph G is any graph obtained from G by a sequence of vertex deletions
and edge contractions. If a graph F is not isomorphic to any minor of G, then G is
said to be F -minor-free. Similarly, if a graph F is not isomorphic to any induced minor
of G, then G is said to be F -induced-minor-free; otherwise, we say that G contains F
as an induced minor. A subdivision of a graph G is any graph obtained by repeated
application of the operation ‘insert a vertex into an edge’: replace the edge uv by two
edges uw and wv, where w is a new vertex. An induced topological minor of a graph
G is any graph H such that some subdivision of H is an induced subgraph of G. If
a graph F is not isomorphic to any induced minor (resp., induced topological minor)
of G, then G is said to be F -induced-minor-free (resp., F -induced-topological-minor-
free). Given a family F of graphs, we say that a graph G is F-induced-minor-free if
no induced minor of G is isomorphic to a member of F . If a graph H is an induced
topological minor of G, we will often say that G contains an induced subdivision of H.

An induced minor model of a graph H in a graph G is a collection {Xv}v∈V (H)

of pairwise disjoint vertex sets Xv ⊆ V (G) such that each induced subgraph G[Xv]
is connected, if there is an edge uv ∈ E(H), then there is an edge between Xu and
Xv in G, and for each pair of distinct and non-adjacent vertices u, v ∈ V (H), u ̸= v,
uv /∈ E(H), there are no edges betweenXu andXv. It is not difficult to see that a graph
G contains a graph H as an induced minor if and only if there is an induced minor
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model of H in G. If a graph H is an induced minor of a graph G, we will sometimes
refer to the graphs G and H as the host graph and the pattern graph, respectively.

A cut partition of a graph G is a triple (A,B,C) of pairwise disjoint subsets of
V (G) such that A∪B∪C = V (G), and sets A and B are non-empty and anticomplete
to each other. If (A,B,C) is a cut partition of a graph G such that C is a (possibly
empty) clique, we say that C is a clique cutset in G. A graph is said to be an atom if
it has no clique cutset. Given a class G of graphs, we denote by A(G) the class of all
atoms that are induced subgraphs of a graph in G. The operation of gluing H1 and H2

along a clique produces a graph obtained from H1 ∪H2 by choosing cliques C1 in H1

and C2 in H2 such that |C1| = |C2|, fixing a bijection f from C1 to C2, and identifying
each vertex v ∈ C1 with the vertex f(v).

2.3 Particular graphs and graph classes

The complete graph on n vertices is denoted by Kn. We denote by Pn the n-vertex
path, that is, a graph whose vertex set {v1, . . . , vn} can be ordered linearly so that two
vertices are adjacent if and only if they appear consecutively in the ordering. Similarly,
for an integer n ≥ 3, we denote by Cn the n-vertex cycle, that is, a graph whose vertex
set {v1, . . . , vn} can be ordered cyclically so that two vertices are adjacent if and only if
they appear consecutively in the ordering. A hole in a graph G is an induced subgraph
isomorphic to the k-vertex cycle Ck for some k ≥ 4. The complement of a hole in
a graph G is called an antihole in G. A hole (antihole) is long if it has at least five
vertices. Holes and antiholes in graphs are called even if they have an even number
of vertices and odd if they have an odd number of vertices. A graph is chordal if it
contains no holes. We say that a graph G is weakly chordal if G contains no long hole,
neither long anti-hole. A graph G is perfect if every induced subgraph H of G satisfies
that χ(H) = ω(H), that is, the chromatic number of H equals the size of a maximum
clique in H. By the Strong Perfect Graph Theorem [63], perfect graphs are also exactly
the Berge graphs, that is, (odd hole, odd antihole)-free graphs. A graph is bipartite if
its vertex set can be partitioned into two independent sets called parts. A complete
bipartite graph is a bipartite graph having all possible edges joining vertices in different
parts (in other words, a join of two edgeless graphs). Given two integers p, q ≥ 0, the
graph Kp,q is a complete bipartite graph with parts of size p and q, respectively. A
cobipartite graph is the complement of a bipartite graph, that is, a graph whose vertex
set can be partitioned into two cliques. A graph is acyclic if it does not contain any
cycle. A bipartite graph G = (A ∪ B,E) is biconvex if it has a biconvex ordering,
that is, an ordering of A and B such that for every vertex a ∈ A (resp. b ∈ B) the
neighborhood N(a) (resp. N(b)) is an interval of consecutive vertices in the ordering
of B (resp. ordering of A). A graph G = (V,E) is a comparability graph if it has a
transitive orientation, that is, if each of the edges uv of G can be replaced by exactly
one of the ordered pairs (u, v) or (v, u) so that the resulting set A of directed edges is
transitive (that is, for every three vertices x, y, z ∈ V , if (x, y) ∈ A and (y, z) ∈ A, then
(x, z) ∈ A). A graph G is a cocomparability graph if its complement is a comparability
graph. Cographs are defined as graphs that can be constructed starting from copies of
the one-vertex graph using the operations of disjoint union and complementation (see,
e.g., [47]). A rooted tree is a pair (T, r) where T is a tree and r ∈ V (T ) is the root of
T . Given two nodes u and v in a rooted tree T , we say that v is a child (or successor)
of u if uv ∈ E(T ) and u belongs to the unique v, r-path in T . A leaf of a rooted tree
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T is a node without any successors, while an internal node of T is a node that is not
a leaf.

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )) where T is a tree
whose every node t is assigned a vertex subset Xt ⊆ V (G) called a bag such that the
following conditions are satisfied:

• Every vertex of G is in at least one bag.

• For every edge {u, v} ∈ E(G) there exists a node t ∈ V (T ) such that Xt contains
both u and v.

• For every vertex u ∈ V (G) the subgraph of T induced by the set {t ∈ V (T ) :
u ∈ Xt} is connected (that is, a tree).

The width of a tree decomposition (T, {Xt}t∈V (T )) of a graph G is defined as
maxt∈V (T ) |Xt| − 1. The treewidth of a graph G is the minimum possible width of
a tree decomposition of G. A graph class G is said to be of bounded treewidth if there
exists a nonnegative integer ℓ such that each graph in G has treewidth at most ℓ.

A wheel is a graph that consists of a chordless cycle of length at least four and an
additional vertex (called the center) that has at least three neighbors in the cycle. A
long wheel is a wheel with at least 6 vertices. A twin wheel is a wheel such that the
center has degree three and is adjacent to three consecutive vertices on the cycle. A
broken wheel is a wheel such that the neighborhood of the center induces a disconnected
subgraph of the cycle. A consecutive wheel is a wheel such that the neighborhood of
the center v induces a connected subgraph of H.

The diamond is the graph obtained from the complete graph K4 by deleting an
edge. The house is the graph with five vertices a, b, c, d, e and the following edges:
ab, bc, cd, de, ae, ad. The butterfly is the join of 2P2 and P1. The gem is the join of
graphs P1 and P4. The claw is the graph K1,3. The paw is the graph obtained from the
claw by adding to it one edge. The fork is the graph obtained from a claw by a single
subdivision of one of its edges, that is, the graph with vertex set {v1, v2, v3, v3, v5} and
edge set {v1v2, v2v3, v3v4, v3v5}.

Given three positive integers i, j, k, at most one of which is equal to 1, we denote
by Γi,j,k a graph G consisting of two vertices a, b and three paths P , Q, R, each from a
to b, and otherwise vertex-disjoint, such that the lengths of the paths P , Q, R are i, j,
and k, respectively, and each of the sets V (P )∪V (Q), V (P )∪V (R), and V (Q)∪V (R)
induces a cycle in G. We will mostly be interested in the case when the vertices a
and b are non-adjacent in Γi,j,k, that is, when all the indices i, j, k are at least two.
Any such graph will be referred to as a theta. Given an integer k ≥ 3, a short k-theta
(or simply a k-theta) is a graph obtained as the union of k internally disjoint paths of
length 3 with common endpoints a and b. More precisely, a k-theta is a graph G with
vertex set V (G) = {a, a1, . . . , ak, b, b1, . . . , bk}, and its set of edges consists of the pairs
of the following form: aai, bbi, and aibi for 1 ≤ i ≤ k (see Fig. 2.1). Any graph that is
a k-theta for some k ≥ 3 will be referred to as a short theta.

A prism is any subdivision of C6 in which the two triangles remain unsubdivided;
in particular, C6 is a prism. For an integer k ≥ 3, a short k-prism (or simply a k-
prism) is a graph whose vertex set can be partitioned into two n-vertex cliques, say
A = {a1, . . . , ak} and B = {b1, . . . , bk}, such that for all i, j ∈ {1, . . . , k}, ai is adjacent
to bj if and only if i = j (see Fig. 2.1). Any graph that is a k-prism for some k ≥ 3
will be referred to as a short prism.
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pyramid prism
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Figure 2.1: Some graphs. Dashed edges are paths of length at least 1.

A pyramid is any subdivision of the complete graphK4 in which one triangle remains
unsubdivided, and of the remaining three edges, at least two edges are subdivided at
least once. A k-pyramid is a graph G with vertex set V (G) = {a, a1, . . . , ak, b1, . . . , bk},
and with the edge set consisting of the pairs of the following form: aai and aibi for
1 ≤ i ≤ k, and bibj for 1 ≤ i < j ≤ k (see Fig. 2.1). A 3-path-configuration (or 3PC
for short) is any theta, pyramid, or prism.

2.4 Modular decomposition

Given a graph G and a nonempty set M ⊆ V (G), we say that M is a module in G if
every vertex not in M is either adjacent to all vertices in M or to none of them. If M1

and M2 are two disjoint modules in a graph G, then either G contains all possible edges
between M1 and M2 in G, or none of them. A module M is maximal if M ⊂ V (G) and
there is no module M ′ in G with M ⊂M ′ ⊂ V (G). If G and its complement are both
connected, then any two maximal modules in G are disjoint; in particular, the set of
maximal modules of G forms a partition of V (G). A module M of a graph G is said to
be strong if for every other module M ′ in G it holds that either M ∩M ′ = ∅, M ⊆M ′,
or M ′ ⊆M . A graph G is prime if each of its maximal strong modules is a singleton.

Every graph with at least two vertices has a unique partition of its vertex set into
maximal strong modules (see, e.g., [132]). If G is disconnected, then the partition is
given by the vertex sets of its components; if the complement of G is disconnected,
then the partition is given by the vertex sets of its cocomponents. The representative
graph R(G) of G is any induced subgraph of G obtained by taking an arbitrary but
fixed vertex from each maximal strong module of G. Note that the representative
graph of G depends on how the vertices from the maximal strong modules are chosen,
but any two such graphs are isomorphic to each other, which explains the notation
R(G). The representative graph of G is a special case of the following more general
construction. Given a graph G and an arbitrary partition P = {M1, . . . ,Mk} of V (G)
into modules of G, we denote by G/P the corresponding quotient graph, which is the
induced subgraph of G obtained by taking one vertex from each module Mj ∈ P .

Partitioning the vertex set of a graph G recursively into maximal strong modules
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leads to the so-called modular decomposition of G, represented with the so-called mod-
ular decomposition tree. This is a rooted tree TG such that every node of TG is labeled
with an induced subgraph Ht of G, and every internal node of TG is of one of the types
parallel, series, or prime. The tree TG is defined recursively as follows.

• If G is the one-vertex graph, then TG has one node t, labeled with Ht = G, and
t is the root of TG.

• Otherwise, TG is the rooted tree obtained by creating a root node r, labeling the
root by the representative graph of G (that is, setting Hr = R(G)), and joining
the root r with edges to the roots of the modular decomposition trees T1, . . . , Tk
of the subgraphs of G induced by the maximal strong modules M1, . . . ,Mk of
G. The root node of G is of type parallel if G is disconnected, series if the
complement of G is disconnected, and prime if both G and its complement are
connected. Each internal node t of TG with t ̸= r belongs to a unique tree Ti and
its type in TG is the same as in Ti.

Given a graph G, the modular decomposition tree TG of G can be computed in linear
time (see [72, 177]). By construction, for every node t ∈ V (TG), the subtree of TG
rooted at t is the modular decomposition tree of the subgraph Gt of G induced by
the vertices appearing in the one-vertex subgraphs labeling the leaves of this subtree.
Furthermore, if the node t is of type prime, then the graph Ht labeling the node is a
prime graph.



Part I

PART I: Minimal separators

12



Chapter 3

Overview and preliminary results

Given two non-adjacent vertices a and b in a graph G, a set S ⊆ V (G) is an (a, b)-
separator if a and b are contained in different connected components of G − S. If
S contains no other (a, b)-separator as a proper subset, then S is a minimal (a, b)-
separator. A minimal separator in G is a set S ⊆ V (G) that is a minimal (a, b)-
separator for some pair of non-adjacent vertices a and b. A graph class G is tame
if there exists a polynomial p : R → R such that for every graph G ∈ G, we have
s(G) ≤ p(|V (G)|), where s(G) denotes the number of minimal separators in G. A
graph class is feral if there exists a constant c > 1 so that for arbitrarily large n there
is an n-vertex graph in the class with at least cn minimal separators.

3.1 Overview

Minimal separators in graphs were studied since at least 1960s when Dirac [95] char-
acterized chordal graphs as graphs whose minimal separators are cliques. The nice
structure and properties of chordal graphs that allow for efficient algorithms to many
problems that are NP-hard in general motivated the various studies of this class
(see, e.g., [127]). Widely studied problems on graphs are concerned with comput-
ing an embedding of an arbitrary graph into a chordal graph with various properties
(see, e.g., [10, 232]). In particular, one can add edges to any given graph so that the
resulting graph, called a triangulation of the input graph, is chordal. Clearly, there
are many different triangulations for a given graph in general, so various parameters of
triangulations can be minimized. Known graph problems related to triangulations of
graphs are called Minimum Fill-in and Treewidth and both of them are known to
be NP-hard even for the class of cobipartite graphs [10, 232]. The Minimum Fill-in
asks to find a triangulation with the fewest number of edges, while the Treewidth asks
to find a triangulation where the size of the largest clique is minimized. Kloks et al. in
1993 [150] indicated a strong connection between the minimal separators of a graph
and the solutions to both of these problems. In particular, they claimed that both
problems Minimum Fill-in and Treewidth are solvable in polynomial time when
restricted to any class of graphs having a polynomial-time algorithm that computes
the set of all minimal separators for every graph in the class. It turned out that their
proof was not correct [151], so it remained an open question whether Treewidth and
Minimum Fill-in are tractable in polynomial time for every graph class having an al-
gorithm that enumerates all minimal separators in polynomial time. Note that the first
algorithm that efficiently enumerates all minimal separators in a graph was given by

13
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Kloks and Kratsch, in 1994 [152], and this initiated the more general study of classes
of graphs having polynomially many minimal separators. Parra and Scheffler [193]
showed that minimal triangulations of a graph can be obtained by turning into cliques
a maximal set of pairwise parallel1 minimal separators in the input graph. This was
the first construction of minimal triangulations of a graph that did not rely on vertex
eliminations but rather on minimal separators. The revised conjecture from [150] that
Treewidth and Minimum Fill-in are tractable in polynomial time for every graph
class having a polynomial number of minimal separators was proved by Bouchitté and
Todinca in [42] using the concept of potential maximal cliques, which they introduced
in previous work [39,40]. A potential maximal clique in a graph is a maximal clique in
some minimal triangulation of the graph. Bouchitté and Todinca showed that the num-
ber of potential maximal cliques is polynomially bounded by the number of minimal
separators and that it is possible to enumerate the potential maximal cliques in time
polynomial in their number [42]. Consequently, Treewidth and Minimum Fill-in
were shown to be polynomially tractable for tame classes of graphs.

During the period of intensive studies of minimal separators done by Bouchitté and
Todinca [39, 40, 41, 42], some other related independent studies appeared. In partic-
ular, Berry and Bordat [24] generalized the characterizations of chordal graphs ob-
tained by Dirac [95] to arbitrary graphs via moplexes. Connections between minimal
triangulations and minimal separators of a graph were further studied by Fomin and
Villanger [112] when they showed that the problem of finding a maximum induced sub-
graph of treewidth at most a constant t can be solved in polynomial time for classes of
graphs with a polynomially bounded number of minimal separators. This result was
then generalized by Fomin, Todinca, and Villanger [111] who gave a general framework
describing NP-hard problems that are solvable in polynomial time in any tame graph
class. In particular, building on connections between minimal separators and potential
maximal cliques, they proved the following result. We denote by tw(G) the treewidth
of a graph G. For a fixed integer t ≥ 0 and a fixed CMSO2 formula ϕ, consider the
following computational problem.

(t, ϕ)-Maximum Weight Induced Subgraph
Input: A graph G equipped with a vertex weight function w : V (G) → Q+.
Task: Find a set X ⊆ V (G) of maximum possible weight such that G[X] |=

ϕ and tw(G[X]) ≤ t, or conclude that no such set exists.

Theorem 3.1.1 (Fomin, Todinca, and Villanger [111]). For a fixed integer t ≥ 0,
fixed CMSO2 formula ϕ, and any tame graph class G, the (t, ϕ)-Maximum Weight
Induced Subgraph problem is solvable in polynomial time for graphs in G.

Let us remark that the algorithm given by Theorem 3.1.1 is robust in the sense
of Raghavan and Spinrad [208], that is, it produces the correct output regardless of
whether the input actually belongs to the restricted domain or not. The algorithm
works on any graphG and correctly solves the problem whenever the number of minimal
separators is bounded by a polynomial (which is, in particular, the case when G ∈ G);
otherwise, the algorithm correctly reports that the given graph does not belong to G.
Examples of problems captured by the above framework include Maximum Weight

1Two separators are called parallel if none of them contains two vertices that are separated by the
other.
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Independent Set, Maximum Weight Induced Matching, Maximum Weight
Induced Forest (which is equivalent, by complementation, to Minimum Weight
Feedback Vertex Set), Longest Induced Path, and many others (see [111]).
Minimal separators have also been studied in the recent literature from various other
points of view (see, e.g., [3, 129,133,144,156,179]).

The above algorithmic results motivate the quest of identifying tame graph classes
and classifying them when restricted to particular families of graphs. Known tame
graph classes include chordal graphs [212] and their generalization weakly chordal
graphs [41], permutation graphs [32,148] and more generally cocomparability graphs of
bounded interval dimension [92], circular-arc graphs [154], circle graphs [149], polygon
circle graphs [221], distance-hereditary graphs [150], probe interval graphs [55], AT-
free, co-AT-free graphs [155], P4-sparse graphs [187], extended P4-laden graphs [196],
and graphs with minimal separators of bounded size [218].

The problem of computing the number of minimal separators of a disconnected
graph can be reduced to the same problem on each component, and similarly for graphs
whose complements are disconnected (see, e.g., [195]). We examine the consequences
of these results for tame graph classes and show that the problem of determining
if a hereditary graph class G is tame can be reduced to the same problem on the
subclass of G obtained by certain operations on graphs (for example: join, disjoint
union, gluing along cliques, etc.). We use the above results, along with constructions
of graph classes that lack the property of tameness, to completely characterize which
graph classes defined by forbidden induced subgraphs with at most four vertices are
tame. Furthermore, building on recent works of Gartland and Lokshtanov [121], and
of Gajarský et al. [115], we show that every graph class defined by a single forbidden
induced minor or induced topological minor is either tame or feral, and classify the two
cases. We provide polynomial-time recognition algorithms for the maximal tame graph
classes obtained in the above characterizations by a single forbidden induced minor or
induced topological minor.

Among the tame classes of graphs, of special interest are classes having a linear
number of minimal separators, making the algorithms based on minimal separators
particularly efficient. For example, n-vertex split graphs have no more than n minimal
separators [196] and, more generally, the same is true for n-vertex chordal graphs [212]
and 2P2-free graphs. In the doctoral thesis we address the extremal question of de-
termining the maximum number of minimal separators in an n-vertex graph from a
given class, for a number of interrelated graph classes with at most a linear number of
minimal separators.

Secondly, we generalize the concept of chordal graphs by investigating classes of
graphs for which every minimal separator of every graph in the class is a union of k
cliques, for some fixed nonnegative integer k. In the doctoral thesis we consider a more
general concept and given a class C of graphs, we denote by GC the class of all graphs G
such that every minimal separator of G induces a graph from C. Since complete graphs
have no separators, we see that for all classes C, the class GC contains all complete
graphs. For a nonnegative integer k, we denote by Gk the class of all graphs G that
have the property that every minimal separator of G is k-simplicial, that is, a union of
k (possibly empty) cliques. If k = 1 (resp., k = 2), we simplify our terminology, so that
k-simplicial becomes simplicial (resp., bisimplicial). Obviously, G0 ⊆ G1 ⊆ G2 ⊆ . . . .
Recall that chordal graphs are precisely the graphs with minimal separators that are
cliques, so they actually correspond to the case when k = 1 [95]. If k = 0, then we
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obtain the class of complete graphs.
We study the classes of the form GC, where C is a hereditary class, that is, a class of

graphs closed under vertex deletion. We place particular emphasis on the classes Gk,
and, in particular, G2. By the above, the class G2 is the class of graphs with bisimplicial
minimal separators, and G2 contains all chordal graphs. Moreover, it is easy to see that
all circular-arc graphs (that is, intersection graphs of arcs on a circle) belong to G2.
This motivates the study of computational complexities of various graph problems in
Gk, k ≥ 2, as well as the structure of graphs belonging to Gk, with particular emphasis
on the case k = 2.

Throughout the Part I of this thesis we denote by SG(a, b) the set of all minimal
(a, b)-separators in a given graph G and by SG the set of all minimal separators in G.
The cardinality of SG will be denoted by s(G).

Given a graph G and a set S ⊆ V (G), a component C of the graph G−S is said to
be S-full if every vertex in S has a neighbor in C, or, equivalently, if NG(V (C)) = S.
The following well-known lemma characterizes minimal separators (see, e.g., [127]).

Lemma 3.1.2. Given a graph G = (V,E), a set S ⊆ V is a minimal separator in G
if and only if the graph G− S contains at least two S-full components.

Our proofs will make use of some preliminary results. Among them is the structure
of minimal separators in a 2P2-free graph, given by the following lemma.

Lemma 3.1.3. Let G be a 2P2-free graph and let S be a minimal separator in G. Then
there exists a vertex v ∈ V (G) such that S = N(v).

Proof. By Lemma 3.1.2, the graph G − S has two S-full components C and D. If
both C and D have at least two vertices, then each of them contains at least one edge.
Since C and D are anticomplete to each other, these edges form a 2P2 in G. We may
thus assume, by symmetry, that C = {v} for some v ∈ V (G). Then it follows that
N(v) ⊆ S and since every vertex of S is adjacent to v, we must have S = N(v), as
claimed.

3.2 Graph operations and their influence on the num-
ber of minimal separators

In this section, we study the effect of various graph operations on the number of
minimal separators. The family of minimal separators of a disconnected graph can
be computed from the families of minimal separators of its components, and a similar
statement holds for graphs whose complements are disconnected. The correspondences
are as follows, see Pedrotti and de Mello [196].

Theorem 3.2.1. If G is a disconnected graph, with components Gi, . . . , Gk, then SG =
{∅} ∪

⋃k
i=1 SGi

. If G is the join of graphs G1, . . . , Gk, then S ∈ SG if and only if there
exists some i ∈ {1, . . . , k} and some Si ∈ SGi

such that S = Si ∪ (V (G) \ V (Gi)).

Using Theorem 3.2.1 we can derive the formulas for the number of minimal sepa-
rators and their corollaries.

Corollary 3.2.2. Let G be a disconnected graph, with components G1, . . . , Gk. Then
s(G) =

∑k
i=1 s(Gi) + 1.
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Proof. Immediate from the first statement of Theorem 3.2.1 and the fact that sets
{∅},SG1 , . . . ,SGk

, i ∈ {1, . . . , k} are pairwise disjoint.

Corollary 3.2.3. Let G1, . . . , Gk be graphs and let G be the join of G1, . . . , Gk. Then
s(G) =

∑k
i=1 s(Gi).

Proof. From Theorem 3.2.1 we have that S ∈ SG if and only if there exists some
i ∈ {1, . . . , k} and some Si ∈ SGi

such that S = Si ∪ (V (G) \ V (Gi)). Clearly, if
i, j ∈ {1, . . . , k}, i ̸= j, then Si ∪ (V (G) \ V (Gi)) ̸= Sj ∪ (V (G) \ V (Gj)) and the sets
{Si ∪ (V (G) \ V (Gi)) | Si ∈ SGi

} and {Sj ∪ (V (G) \ V (Gj)) | Sj ∈ SGj
} are disjoint.

Moreover, if for some i ∈ {1, . . . , k} sets Si and S ′
i are distinct minimal separators

in Gi, then also the sets Si ∪ (V (G) \ V (Gi)) and S ′
i ∪ (V (G) \ V (Gi)) are distinct.

Therefore |{Si ∪ (V (G) \ V (Gi)) | Si ∈ SGi
}| = s(Gi) for all i ∈ {1, . . . , k}. It follows

that s(G) =
∑k

i=1 s(Gi), as claimed.

Corollary 3.2.3 implies the following result for graphs with disconnected comple-
ments.

Corollary 3.2.4. Let G be a graph whose complement is disconnected, with cocompo-
nents G1, . . . , Gk. Then s(G) =

∑k
i=1 s(Gi).

The following lemma gives an upper bound on the number of minimal separators
of a graph with a clique cutset in terms of the number of minimal separators of two
smaller graphs. In the proof we use the following notation: given a graph G, a set
S ⊆ V (G), and a vertex x ∈ V (G) \ S, we denote by ΓG,S,x the component of G − S
containing x.

Lemma 3.2.5. Let G be a graph that admits a cut-partition (A,B,C) such that C is
a clique. Then s(G) ≤ s(G[A ∪ C]) + s(G[B ∪ C]) + 1.

Proof. Denote by G1 (resp. G2) the subgraph of G induced by A ∪ C (resp. B ∪ C).
We show the claimed inequality by proving that SG ⊆ SG1 ∪ SG2 ∪ {C}. Suppose S is
a minimal (x, y)-separator in G and S ̸= C. The fact that C is a clique implies that
either C ∩ V (ΓG,S,x) = ∅ or C ∩ V (ΓG,S,y) = ∅. By symmetry, we may assume that
C ∩ V (ΓG,S,x) = ∅ and furthermore that V (ΓG,S,x) ⊆ A. Since A is anticomplete to B,
this implies that S ∩ B = ∅ and thus S ⊆ V (G1). We complete the proof by showing
that S is a minimal separator in G1.

Suppose first that S ⊆ C. Since S ̸= C, there exists a vertex z ∈ C \ S. We
claim that S is a minimal (x, z)-separator in G1. Since V (ΓG,S,x) ⊆ A, vertices x and
z are separated in G1 − S. From the minimality of S it follows that ΓG,S,x is an S-full
component of G1 − S. Furthermore, since S ⊆ C and C is a clique in G1, every vertex
in S is adjacent to z in G1. It follows that S is a minimal (x, z)-separator in G1, as
claimed.

We may thus assume that S ⊈ C and hence S contains a vertex from A. Since
A is anticomplete to B and ΓG,S,y is an S-full component of G − S, this component
cannot be entirely contained in B. Let z be a vertex in V (ΓG,S,y) ∩ V (G1). We claim
that S is a minimal (x, z)-separator in G1. Since G1 is an induced subgraph of G and
S separates x from z in G, we infer that S is an (x, z)-separator in G1. Note that the
components of G1 − S containing x and z, respectively, are ΓG,S,x and the subgraph
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of G1 induced by V (ΓG,S,y) ∩ V (G1). Thus, every vertex in S is adjacent in G1 to a
vertex in ΓG1,S,x. It remains to show that every vertex in S is adjacent in G1 to a
vertex in ΓG1,S,z. If V (ΓG,S,y) ⊆ V (G1), then ΓG1,S,z = ΓG,S,y and the conclusion is
clear. Otherwise, V (ΓG,S,y) ∩ B ̸= ∅, which implies that V (ΓG,S,y) ∩ C ̸= ∅. Since
S ⊆ A ∪ C and A is anticomplete to B, every vertex of S that is adjacent in G to a
vertex in V (ΓG,S,y)∩B belongs to C and is therefore adjacent in G1 also to a vertex in
V (ΓG,S,y)∩C ⊆ V (ΓG1,S,z). Therefore, using the fact that every vertex in S is adjacent
in G to a vertex in ΓG,S,y we infer that every vertex in S is adjacent in G1 to a vertex
in ΓG1,S,z, as claimed.

Recall now the definitions related to modular decomposition, from Section 2.4. As
shown by Pedrotti and de Mello [196], the set of minimal separators in a graph G can
be computed from the sets of minimal separators of its representative graph and of its
subgraphs induced by the proper maximal strong modules. The correspondence is as
follows.

Theorem 3.2.6. Let G be a graph, let {M1, . . . ,Mk} be a partition of V (G) into
proper maximal strong modules, and let G′ be the representative graph of G. For each
i ∈ {1, . . . , k}, let vi be the representative vertex of module Mi. Then SG = S1 ∪ S2,
where

1. S1 = {S ∪ Mi1 ∪ Mi2 ∪ · · · ∪ Mij | q ∈ {1, . . . , k}, S ∈ SG[Mq ], NG′(vq) =
{vi1 , . . . , vij}},

2. S2 = {Mi1 ∪ . . . ∪Mij | {vi1 , vi2 , . . . , vij} ∈ SG′}.

Theorem 3.2.6 can be used to express the number of minimal separators in a graph
G in terms of the number of minimal separators of its representative graph and of its
subgraphs induced by the proper maximal strong modules.

Proposition 3.2.7. Let G be a graph, let {V1, . . . , Vk} be a partition of V (G) into
modules, and let G′ be the corresponding quotient graph. Then

s(G) =
k∑

i=1

s(G[Vi]) + s(G′).

Proof. Let V (G′) = {v1, . . . , vk} with vi ∈ Vi for i ∈ {1, . . . , k}. Let us also denote
Gi = G[Vi] for i ∈ {1, . . . , k}. We will prove the proposition by constructing a partition
of the set of minimal separators in G and then defining bijective functions between each
of the sets in the partition of SG and the sets of minimal separators in G1, . . . , Gk, and
G′, respectively.

For every minimal separator S in G we fix two S-full components of G − S, call
them CS and DS. First we define a partition of the set SG into the sets S ′

G and S i
G,

i = 1, . . . , k as follows:

S i
G = {S ∈ SG | V (CS) ∩ Vi ̸= ∅ ∧ V (DS) ∩ Vi ̸= ∅} (3.1)

S ′
G = SG \

(
k⋃

i=1

S i
G

)
. (3.2)
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From the definition of sets S i
G and S ′

G it follows that the union of these sets is SG.
We still have to prove that they are pairwise disjoint. The set S ′

G is clearly disjoint
from the other sets. Let i, j ∈ {1, . . . , k}, i ̸= j. We want to prove that S i

G ∩ Sj
G = ∅.

Suppose for a contradiction that there is some minimal separator S ∈ S i
G ∩ Sj

G. Then
it holds that V (CS)∩Vi ̸= ∅, V (CS)∩Vj ̸= ∅, V (DS)∩Vi ̸= ∅, and V (DS)∩Vj ̸= ∅. It
is not difficult to see that the vertices vi and vj corresponding to the modules Vi and Vj
are non-adjacent in G′, since otherwise modules Vi and Vj would be fully adjacent in G,
in contradiction with the fact that V (CS) and V (DS) are anticomplete to each other
in G. Since CS is connected, there is a path P = u1 . . . um in CS connecting a vertex in
Vi∩V (CS) with a vertex in Vj∩(CS). Since modules Vi and Vj are anticomplete to each
other, every such path goes through some other modules in G. Moreover, since between
every two modules there are either all edges or none of them, it follows that the path
obtained from P by replacing vertex u1 with a vertex from Vi∩V (DS) connects CS and
DS in G − S, implying that these two components are not separated in G − S. This
is a contradiction, which shows that sets S i

G and Sj
G are disjoint. Therefore, equation

(3.1) indeed defines a partition of SG.
Now we will define the bijective functions, as follows:

ϕi : S i
G → SGi

, ϕi(S) = S ∩ Vi, for allS ∈ S i
G, (3.3)

ϕ′ : S ′
G → SG′ , ϕ′(S) = {vj | Vj ⊆ S}, for allS ∈ S ′

G. (3.4)

First we will prove that the image of every function ϕi or ϕ′ is a minimal separator
in Gi or G′, respectively. After that, we will prove that each of these functions is
bijective.

Let i ∈ {1, . . . , k} and let S ∈ S i
G. Since (3.1) defines a partition, it follows that

V (CS) ⊆ Vi and V (DS) ⊆ Vi. As every vertex of S has neighbors in both CS and
DS in G and since ϕi(S) ⊆ S, it follows that CS and DS are ϕi(S)-full components
of Gi \ ϕi(S), implying that ϕi(S) ∈ SGi

. Let now S ∈ S ′
G. We want to prove that

ϕ′(S) ∈ SG′ . The definition of S ′
G implies that CS ⊆ Vi and DS ⊆ Vj for a pair of

distinct indices i, j ∈ {1, . . . , k}. Recall that every vertex in S has neighbors in CS

and in DS. Thus, since any two modules from {V1, . . . , Vk} are either complete to each
other or anticomplete to each other, we infer that every module Vq that contains a
vertex from S is fully contained in S (as otherwise S would not separate CS and DS

in G). Since CS is S-full, for every q ∈ {1, . . . , k} such that Vq ⊆ S, it holds that
vq is adjacent to vi in G′. Similarly vq is adjacent to vj in G′. This implies that the
components of G′ − ϕ′(S) containing vi and vj, respectively, are ϕ′(S)-full and thus
ϕ′(S) ∈ SG′ .

Now we have to prove that these functions are bijective. To do that, we show that
each of them has an inverse. To this end, we define for each i ∈ {1, . . . , k}, a function
ψi : SGi

→ S i
G as ψi(S) = S ∪

(⋃
vj∈NG′ (vi)

Vj

)
. Moreover, we define ψ′ : SG′ → S ′

G

as ψ′(S) =
⋃

vj∈S Vj. From the definition of these functions it is clear that ψi is the
inverse of ϕi, for all i ∈ {1, . . . , k} and that ψ′ is the inverse of ϕ′.

Let i ∈ {1, . . . , k} and let S ∈ SGi
. We want to prove that ψi(S) ∈ S i

G. Since
S is minimal separator in Gi, there are S-full components of Gi − S, say C and D.
Observe that NG(C) ⊆ ψ(S) and NG(D) ⊆ ψ(S), by definition of ψ(S). So it has
to be that there is no path connecting components C and D in G − ψi(S). Since for
every vertex x ∈

⋃
vj∈NG′ (vi)

Vj it holds that x has neighbors in S full components C
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and D, we have that C and D are ψi(S)-full components of G, inferring that ψi(S) is
a minimal separator in G, with V (C) ∩ ψi(S) ̸= ∅ and V (D) ∩ ψi(S) ̸= ∅, so it follows
that ψi(S) ∈ S i

G. In order to prove that ϕi and ϕi are inverse functions, we can simply
show that ϕi(ψi(S) = S for every S ∈ SGi

. From definitions of these two functions we
obtain ϕi(ψi(S)) = ϕi

(
S ∪

(⋃
vj∈NG′ (vi)

Vj

))
= S, as we wanted to prove.

Let now S ∈ SG′ and let C and D be two S-full components of G−S. Let us define
the sets C ′ =

⋃
vj∈C Vj and D′ =

⋃
vj∈D Vj. Clearly C ′ ∩D′ = ∅. We claim that C ′ and

D′ are ψ′(S)-full components of G − ψ′(S). If there exist a path connecting C ′ and
D′ in G − ψ′(S), let us denote with P the shortest such path. Then the path in G′

consisting of vertices {vi | Vi ∩ P ̸= ∅} connects C and D in G′ − S; a contradiction.
Thus the set ψ′(S) separates components C ′ and D′ in G. By definition, if two vertices
in G′ are adjacent, then the corresponding modules in G are complete to each other.
So it follows that every vertex in ψ′(S) has neighbors in both components C ′ and D′,
inferring that these two components are ψ′(S)-full, as claimed. In order to show that
ψ′ and ϕ′ are inverse functions, it suffices to show that ϕ′(ψ′(S)) = S, what is clear
from the definition of functions. Since the set of domains of the proposed function is
the partition of the set SG, it follows that the cardinality of SG is equal to the sum of
cardinalities of the functions’ domains. As all functions defined above are bijective, it
follows that

s(G) =
k∑

i=1

|S i
G|+ |S ′

G| =
k∑

i=1

|SGi
|+ |SG′| =

k∑
i=1

s(Gi) + s(G′),

as claimed.

Vertex deletions

In this section we describe the number of minimal separators in a graph obtained by
the deletion of a vertex from the initial graph. Recall that in Lemma 3.1.2 a minimal
separator in a graph G was characterized as a set S ⊆ V (G) satisfying that the graph
G− S contains at least two S-full components. This brings the following corollary.

Corollary 3.2.8. Let S be a minimal separator in a graph G. Then for every v ∈ S
the set S \ {v} is a minimal separator in G− v.

Proof. Let G′ = G − v and S ′ = S \ {v}. Since S is a minimal separator in G, there
exist two S-full components C and D in G− S. Since G− S = G′ − S ′ and S ′ ⊆ S, it
follows that C and D are also S ′-full components of G′ − S ′. Hence, S ′ is a minimal
separator in G′.

Corollary 3.2.9. Let S be a minimal separator in a graph G. Then for every S∗ ⊆ S
the set S \ S∗ is a minimal separator in G− S∗.

McKee observed in [178] that ifG1 is an induced subgraph ofG2, then every minimal
separator of G1 is contained in a minimal separator of G2. The proof actually shows
that the number of minimal separators is monotone under vertex deletion.

Proposition 3.2.10. If G1 is an induced subgraph of G2, then s(G1) ≤ s(G2).
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Given a graph G and a vertex v ∈ V (G), it follows that s(G − v) ≤ s(G). The
following results gives lower-bound on s(G−v) in terms of s(G), for a particular choice
of vertex v. First we consider the case when v is a universal vertex in G.

Proposition 3.2.11. Let G be a graph with at least two vertices and let v be a universal
vertex in G. Then s(G) = s(G− v).

Proof. Immediate from Corollary 3.2.3, using the fact that G is isomorphic to the join
of G− v and K1, and that s(K1) = 0.

Of particular interest are vertices that have the same neighborhoods in a graph,
and the following lemma is an auxiliary result in this direction.

Lemma 3.2.12. Let G be a graph and v, w vertices in G such that NG(v) \ {w} =
NG(w) \ {v}. If S is a minimal separator in G, then v ∈ S if and only if w ∈ S.

Proof. Let S ∈ SG. By symmetry, it suffices to show that v ∈ S implies w ∈ S.
Suppose for a contradiction that v ∈ S but w ̸∈ S. By Lemma 3.1.2, the graph G− S
has two S-full components, say C and D. We may assume without loss of generality
that w ̸∈ V (C). Since C is an S-full component of G−S, vertex v ∈ S has a neighbor
y in V (C). But now, y is a vertex contained in NG(v) \ {w} but not in NG(w) \ {v}, a
contradiction.

Recall that two vertices u and v in a graph G are said to be true twins (resp., false
twins) if NG[u] = NG[v] (resp., NG(u) = NG(v)).

Proposition 3.2.13. Let G be a graph having a pair of true twins v, w with v ̸= w.
Then s(G) = s(G− v).

Proof. Let G′ = G − v. From Proposition 3.2.10 it follows that s(G) ≥ s(G − v), so
we have to prove that s(G) ≤ s(G − v). We will prove it by exhibiting a one-to-one
mapping ϕ from SG to SG′ . The function is defined by the following rule: for every
S ∈ SG, we set ϕ(S) = S \ {v}.

We first show that ϕ maps minimal separators in G to minimal separators in G′.
Let S ∈ SG. If v ∈ S, then ϕ(S) = S \ {v}, which is a minimal separator in G′ by
Corollary 3.2.8. Suppose now that v ̸∈ S. Then ϕ(S) = S and w ̸∈ S by Lemma 3.2.12.
Let C and D be two S-full components of G−S and let K be the component of G−S
containing v. If K ̸∈ {C,D}, then C and D are two S-full components of G′ − S and
hence ϕ(S) = S ∈ SG′ in this case. We may thus assume that K = C. Note that
w ∈ V (C) since vertices v and w are adjacent in G. Moreover, since v and w are
true twins in G, they are also true twins in C. This implies that the graph C − v is
connected and hence a component of G′ − S. Note that D is an S-full component of
G′ − S. We complete the proof that S is a minimal separator in G′ by showing that
C− v is also an S-full component of G′−S. Consider an arbitrary vertex x ∈ S. Since
C is an S-full component of G − S, vertex x has a neighbor in C. However, since v
and w are true twins in G, it cannot be that NG(x) ∩ V (C) = {v}. It follows that x
also has a neighbor in C − v. Therefore, C − v is an S-full component of G′ − S, as
claimed.

It remains to show that ϕ is one-to-one. Let S1 and S2 be distinct minimal separa-
tors in G. If S1∩{v} ≠ S2∩{v}, then we have ϕ(S1)∩{w} ≠ ϕ(S1)∩{w}, inferring that
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ϕ(S1) ̸= ϕ(S2). If none of the sets S1, S2 contains v, then ϕ1(S1) = S1 and ϕ(S2) = S2.
If both of the sets S1 and S2 contain v, then ϕ(S1) = S1 \ {v} ≠ S2 \ {v} = ϕ(S2). It
follows that ϕ is one-to-one, as claimed.

Proposition 3.2.14. Let G be a graph having a pair of false twins v, w with v ̸= w.
Then

s(G− v) ≤ s(G) ≤ s(G− v) + 1 .

Proof. Let G′ = G−v. The first inequality follows directly from Proposition 3.2.10. In
order to prove the second inequality, we use the following notation: S−

G = SG\{NG(v)}
and S−

G′ = SG′ \ {NG(v)}. Observe that {v} and {w} are NG(v)-full components of
G−NG(v), hence by Lemma 3.1.2, we have NG(v) ∈ SG. It follows that |S−

G | = s(G)−1
and that |S−

G′| ∈ {s(G′), s(G′) − 1}, depending on whether NG(v) ∈ SG′ or not. We
will prove that s(G) ≤ s(G − v) + 1 by exhibiting a one-to-one mapping ϕ from S−

G

to S−
G′ . This will suffice, as it will imply |S−

G | + 1 ≤ |S−
G′| + 1, which together with

|S−
G′ |+ 1 ≤ s(G− v) + 1 implies the desired inequality.
The mapping ϕ is defined by the following rule: for every S ∈ S−

G , we set ϕ(S) =
S \ {v}. We first show that for every S ∈ S−

G , its image under ϕ is a minimal separator
in G′. Let S ∈ S−

G . Then S ̸= NG(v). If v ∈ S, then ϕ(S) = S \{v}, which is a minimal
separator in G′ by Corollary 3.2.8. Moreover, it is not possible that ϕ(S) = NG(v),
since that would imply NG(v) ⊆ S and no component of G− S could be S-full. Thus,
if v ∈ S, then ϕ(S) = S \ {v} ∈ S−

G′ . Suppose now that v ̸∈ S. Then ϕ(S) = S, which
implies ϕ(S) ̸= NG(v). By Lemma 3.2.12, we have w ̸∈ S. Let C and D be two S-full
components of G−S and let K be the component of G−S containing v. If K ̸∈ {C,D},
then C and D are two S-full components of G′ − S and hence ϕ(S) = S ∈ S−

G′ in this
case. We may thus assume that K = C. If C = {v}, then S = NG(v) and we have
a contradiction. So it follows that C has more than one vertex. Since v ∈ V (C) and
C is connected, NG(v) ∩ C ̸= ∅, which implies that NG(w) ∩ C ̸= ∅ and consequently
w ∈ V (C). Moreover, since v and w are false twins in G, they are also false twins in
C. This implies that the graph C − v is connected and hence a component of G′ − S.
Note that D is an S-full component of G′ − S. We complete the proof that S is a
minimal separator in G′ by showing that C − v is also an S-full component of G′ − S.
Consider an arbitrary vertex x ∈ S. Since C is an S-full component of G − S, vertex
x has a neighbor in C. However, since v and w are false twins in G, it cannot be that
NG(x)∩ V (C) = {v}. It follows that x also has a neighbor in C − v. Therefore, C − v
is an S-full component of G′ − S, as claimed.

It remains to show that ϕ is one-to-one. Let S1 and S2 be distinct minimal separa-
tors in S−

G . If S1∩{v} ≠ S2∩{v}, then S1∩{w} ≠ S2∩{w}, inferring that ϕ(S1) ̸= ϕ(S2).
If we have that v ∈ S1∩S2, then ϕ(S1) = S1 \ {v} and ϕ(S2) = S2 \ {v}. Since S1 ̸= S2

implies that S1 \ {v} ̸= S2 \ {v}, we have that ϕ(S1) ̸= ϕ(S2). Finally, if none of the
sets S1, S2 contain v, then ϕ is identity mapping, and ϕ(S1) ̸= ϕ(S2). It follows that ϕ
is one-to-one, as claimed. This completes the proof.

Next, we consider the deletion of a simplicial vertex. As noticed by Deogun et
al. in [92, Lemma 13], no minimal separator in a graph G contains a simplicial vertex
of G. In fact, the following bounds hold.

Proposition 3.2.15. Let G be a graph and let v be a simplicial vertex in G. Then

s(G− v) ≤ s(G) ≤ s(G− v) + 1 .
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Proof. Let K = NG(v) and G′ = G−v. The inequality s(G−v) ≤ s(G) follows directly
from Proposition 3.2.10. We will prove the second inequality by showing the inclusion
SG ⊆ SG′ ∪ {K}.

Let S ∈ SG. If S = K, then S ∈ SG′ ∪ {K}, so we may assume that S ̸= K. From
Lemma 3.1.2 it follows that the graph G − S has two S-full components C and D.
Since V (C) and V (D) are anticomplete to each other in G and since NG(v) is a clique,
it follows that v /∈ S. Let Cv be the component of G−S containing v. If Cv ̸∈ {C,D},
then C and D are two S-full components of G′ − S and hence S ∈ SG′ . We may thus
assume that Cv = C. If V (C) = {v}, then K ⊆ S and since C is an S-full component
of G−S, it follows that S = K, a contradiction. So we have that |V (C)| ≥ 2; moreover,
since v is a simplicial vertex in a connected graph C, the graph C−v is connected. Note
that D is an S-full component of G′ − S. We complete the proof that S is a minimal
separator in G′ by showing that C − v is also an S-full component of G′ − S. Suppose
for a contradiction that this is not the case, that is, there exists a vertex x ∈ S without
a neighbor in C − v. Since C is an S-full component of G−S, vertex x has a neighbor
in C. Hence, NG(x) ∩ V (C) = {v}. However, since C is a connected graph containing
v, it follows that NG(v) ∩ V (C) ̸= ∅. Taking an arbitrary w ∈ NG(v) ∩ V (C), we now
obtain that x and w are a pair of non-adjacent neighbors of v in G, contradicting the
fact that v is a simplicial vertex in G. Therefore, C−v is an S-full component of G′−S,
as claimed, and hence S is a minimal separator in G′; in particular, S ∈ SG′ ∪ {K}.
Since S ∈ SG was arbitrary, this shows SG ⊆ SG′ ∪ {K}.

Remark 3.2.16. It is not difficult to construct examples showing that each of the in-
equalities in Proposition 3.2.15 can be attained with equality. For example, if G = P3

and v ∈ V (G) is of degree one, then s(G− v) = 0 and s(G) = 1, while if G is the paw
and v ∈ V (G) is of degree two, then s(G− v) = s(G) = 1.



Chapter 4

Tame graph classes

In this chapter we study graphs with “few” minimal separators. Recall that a graph
class is said to be tame if graphs in the class have a polynomially bounded number of
minimal separators. Since many problems that are NP-hard for general graphs become
polynomial-time solvable for tame classes of graphs, the identification of tame graph
classes is a natural research question.

Our results from this chapter can be summarized as follows:

(1) We analyze operations on graphs that preserve tame classes of graphs.

(2) We summarize known classes of graphs that are not tame and identify the condi-
tions that should be fulfilled by every tame graph class.

(3) We characterize tame graph classes within the family of graph classes defined by
sets of forbidden induced subgraphs with at most four vertices.

(4) We characterize tame graph classes within the family of graph classes defined by
a single forbidden induced minor or a single forbidden induced topological minor.

Some results presented in this chapter are based on results from the following paper:
[183] Milanič, M., Pivač, N. Polynomially Bounding the Number of Minimal Separators
in Graphs: Reductions, Sufficient Conditions, and a Dichotomy Theorem. Electron. J.
Combinatorics, 28(1):Paper No. 1.41, 27 (2021). https://doi.org/10.37236/9428

4.1 Introduction

The number of minimal separators in a graph on n vertices clearly depends on the
structure of a graph. It can be as low as zero (if the graph is complete), but in general,
it can be exponential in terms of the number of vertices of the graph. Consider, for
example, a graph consisting of two non-adjacent vertices a and b and k internally
disjoint paths of length three between them. Any vertex set consisting of an internal
vertex from each of k paths is a minimal (a, b)-separator in such a graph, hence, the
number of distinct minimal separators is at least 2k.

It is thus an interesting question when this number can be bounded by a polynomial,
and such graph classes enjoy good algorithmic properties.

Definition 4.1.1. A graph class G is tame if there exists a polynomial p : R → R such
that for every graph G ∈ G, we have s(G) ≤ p(|V (G)|).

24
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A graph class is feral if there exists a constant c > 1 so that for arbitrarily large n
there is an n-vertex graph in the class with at least cn minimal separators. We begin
this study with two straightforward observations about tame graph classes.

Observation 4.1.2. Let G1 and G2 be two graph classes such that G1 ⊆ G2. If G2 is
tame, then so is G1.

Definition 4.1.3. Given a non-negative integer k, we say that a graph class G is
k-tame if s(G) ≤ |V (G)|k − 1 for every graph G ∈ G.

The reason for including the term ‘−1’ in the definition of k-tame graph classes is
purely technical, as it simplifies some of the statements and proofs (for example, those
of Lemma 4.2.4).

Lemma 4.1.4. A graph class G is tame if and only if it is k-tame for some non-negative
integer k.

Proof. Sufficiency is trivial. To prove necessity, let G be a tame graph class and let
p(x) =

∑d
i=0 aix

i be a polynomial such that s(G) ≤ p(|V (G)|) for all G ∈ G. We
may assume that ai ≥ 0 for all i, since otherwise we may delete the terms of p with
negative coefficients to obtain a polynomial q such that s(G) ≤ q(|V (G)|) for all G ∈ G.
Moreover, we may assume that a0 = . . . = ad, since otherwise, as long as there is a
pair (i, j) with 0 ≤ i < j ≤ d and ai < aj, we may increase the i-th coefficient from ai
to aj to obtain a polynomial q such that s(G) ≤ q(|V (G)|) for all G ∈ G. Let a be this
common value, that is, a0 = . . . = ad = a. We thus have p(x) = a(

∑d
i=0 x

i) and hence
p(n) ≤ and+1 holds for all n ≥ 2. Let ℓ be the least non-negative integer such that
a ≤ 2ℓ. Then, for all n ≥ 2, we have and+1 ≤ 2ℓ ·nd+1 ≤ nℓ ·nd+1 = nd+ℓ+1 ≤ nd+ℓ+2−1.
Since the 1-vertex graph has no minimal separators, it follows that all G ∈ G satisfy
s(G) ≤ |V (G)|d+ℓ+2 − 1. Thus, taking k = d+ ℓ+ 2, necessity is proved.

In the proofs of results from this chapter we will use some known results regarding
tame graph classes. We put particular emphasis on the classes of P4-free graphs and
2P2-free graphs. The following result is a consequence of more general results due
to Nikolopoulos and Palios [187] and Pedrotti and de Mello [196].

Theorem 4.1.5. The class of P4-free graphs is tame.

In Chapter 3 we saw that every minimal separator in a 2P2-free graph G is a
neighborhood of some vertex in G. This in particular implies that a 2P2-free graph G
can have at most |V (G)| minimal separators. We state below this result for later use.

Corollary 4.1.6. The class of 2P2-free graphs is tame.

4.2 Graph operations and tame graph classes

In this section, we study operations on graph classes preserving tameness. We start
with the relations between family of minimal separators of a disconnected graph and
the families of minimal separators of its components. Note that some results presented
in this section are corollaries of the results presented in Section 3.2.
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Corollary 4.2.1. Let G be a hereditary graph class and let G ′ be the class of connected
graphs in G. Then G is tame if and only if G ′ is tame.

Proof. Since G is hereditary, we have G ′ ⊆ G. Hence, if G is tame, then so is G ′ by
Observation 4.1.2. Suppose that G ′ is tame. By Lemma 4.1.4, there exists a positive
integer k such that s(G) ≤ |V (G)|k − 1 for all G ∈ G ′. Let G ∈ G \ G ′ and let
G1, . . . , Gp (with p ≥ 2) be the components of G. Since G is disconnected and for all
i ∈ {1, . . . , p} we have Gi ∈ G ′, we infer using Corollary 3.2.2 that s(G) =

∑p
i=1 s(Gi)+

1 ≤
∑p

i=1(|V (Gi)|k − 1)+ 1 ≤
∑p

i=1 |V (Gi)|k − 1 ≤ (
∑p

i=1 |V (Gi)|)k − 1 = |V (G)|k − 1.
It follows that G is tame.

Note that the above proof also shows that for every positive integer k, the class G
is k-tame if and only if G ′ is k-tame.

Corollary 4.2.2. Let G be a hereditary graph class and let G∗ be the class of coconnected
graphs in G. Then G is tame if and only if G∗ is tame.

Proof. Since G is hereditary, we have G∗ ⊆ G. Thus, if G is tame, then so is G∗ by
Observation 4.1.2. Suppose that G∗ is tame. By Lemma 4.1.4, there exists a positive
integer k such that s(G) ≤ |V (G)|k−1 for all G ∈ G∗. Let G ∈ G\G∗ and let G1, . . . , Gp

(with p ≥ 2) be the cocomponents of G. Since for all i ∈ {1, . . . , p} we have Gi ∈ G∗,
we infer using Corollary 3.2.4 and the assumption on G∗ that s(G) =

∑p
i=1 s(Gi) ≤∑p

i=1(|V (Gi)|k − 1) ≤
∑p

i=1 |V (Gi)|k − 1 ≤ (
∑p

i=1 |V (Gi)|)k − 1 = |V (G)|k − 1. It
follows that G is tame.

Note that the above proof also shows that for every positive integer k, the class G
is k-tame if and only if G∗ is k-tame. Recall that a graph is said to be an atom if it
has no clique cutset and that, given a class G of graphs, we denote by A(G) the class of
all atoms that are induced subgraphs of a graph in G. Thus, Theorem 4.2.3 is a direct
consequence of Lemma 4.1.4.

Theorem 4.2.3. For every graph class G, if A(G) is tame, then so is G.

Lemma 4.2.4. Let G be a graph class such that the class of atoms A(G) is k-tame for
some non-negative integer k. Then G is (k + 1)-tame.

Proof. Let G and k be as in the lemma. We show that every n-vertex graph G ∈ G has
at most nk+1 − 1 minimal separators. The proof is by induction on n.

If n = 1, then G = K1 and G has 0 = 1k+1 − 1 minimal separators. Suppose that
n > 1 and let G be an n-vertex graph from G. If G is an atom, then G has at most
nk − 1 minimal separators by assumption, and nk − 1 < nk+1 − 1. Suppose now that
G has a clique cutset. Then, G has a cut-partition (A,B,C) such that C is a clique
and GA = G[A ∪ C] has no clique cutset (see, e.g., [36, 226]). Since GA belongs to
A(G), we have s(GA) ≤ |V (GA)|k − 1. Furthermore, since B is non-empty, we have
|V (GA)| ≤ n−1 and consequently, s(GA) ≤ (n−1)k−1. Note that also A is non-empty,
and hence we can apply the induction hypothesis to the graph GB = G[B ∪ C] ∈ G to
derive s(GB) ≤ |V (GB)|k+1 − 1 ≤ (n− 1)k+1 − 1. By Lemma 3.2.5, we have

s(G) ≤ s(GA) + s(GB) + 1 ≤ (n− 1)k + (n− 1)k+1 − 1 .
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Thus, to complete the proof, it suffices to show the following inequality:

nk+1 − (n− 1)k+1 ≥ (n− 1)k . (4.1)

Note that for every two non-negative real numbers a and b we have

ak+1 − bk+1 = (a− b) ·

(
k∑

i=0

ak−ibi

)
≥ (a− b)bk .

Applying the inequality ak+1−bk+1 ≥ (a−b)bk to a = n, b = n−1 establishes (4.1).

4.3 Some non-tame graph classes

In this section we give an overview of known constructions of graphs with exponen-
tially many minimal separators. Obviously, such constructions imply certain necessary
conditions for a graph class to be tame, in the sense that graphs in a tame graph class
cannot contain the corresponding structures with respect to some graph containment
relation. First we will describe two families of graphs with exponentially many minimal
separators that were presented in [183]. In particular, the first construction involves
families of graphs of arbitrarily large maximum degree but without long induced paths.
The second construction involves two families of graphs with small maximum degree
but with arbitrarily long induced paths. In both cases, we make use of line graphs.

Given positive integers k and ℓ, the k, ℓ-theta graph is the graph θk,ℓ obtained as
the union of k internally disjoint paths of length ℓ with common endpoints a and b.
For every positive integer ℓ, we define a family of graphs Θℓ in the following way:
Θℓ = {θk,ℓ | k ≥ 2}. Note that ℓ refers to the length of each of the a, b-paths and not
to the number of paths, which is unrestricted.

Observation 4.3.1. For every integer ℓ ≥ 3, the class Θℓ is not tame.

Proof. Let k ≥ 2, ℓ ≥ 3, let G = θk,ℓ, and let P 1, . . . , P k be paths in G as in the
definition of the theta graphs. Let S be any set of vertices of G containing exactly
one internal vertex of each of the paths P j. Then, the graph G − S has two S-full
components and Lemma 3.1.2 implies that S is a minimal separator in G. Note that
for every j ∈ {1, . . . , k}, path P j has exactly ℓ − 1 internal vertices. It follows that
s(θk,ℓ) ≥ (ℓ−1)k. Thus, as |V (θk,ℓ)| = k(ℓ−1)+2, we infer that for every fixed positive
integer ℓ ≥ 3, the class Θℓ is not tame.

Corollary 4.3.2. If G is graph class such that Θℓ ⊆ G for some ℓ ≥ 3, then G is not
tame.

Consider now the family of line graphs of theta graphs. More precisely, given
positive integers k and ℓ, let Lk,ℓ denote the line graph of θk,ℓ and let Lℓ = {Lk,ℓ | k ≥ 2}.
Note that the class L2 is precisely the class of all short prisms of order at least two.

Observation 4.3.3. For every integer ℓ ≥ 2, the class Lℓ is not tame.
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Proof. Let k, ℓ ≥ 2 and let G = Lk,ℓ. Then, graph G consists of two cliques K and K ′,
each of size k, say K = {a1, . . . , ak} and K ′ = {b1, . . . , bk}, and k internally pairwise
disjoint paths P 1, . . . , P k such that for every j ∈ {1, . . . , k}, path P j is an ai, bi-path
with |V (P j)| = ℓ, V (P j) ∩K = {aj} and V (P j) ∩K ′ = {bj}. Consider any set S of
vertices of G containing exactly one vertex from each of the paths P j and such that
S /∈ {K,K ′}. Then, the graph G − S has two S-full components and Lemma 3.1.2
implies that S is a minimal separator in G. It follows that s(Lk,ℓ) ≥ ℓk − 2. Thus, as
|V (Lk,ℓ)| = k(ℓ+ 1), we infer that for every fixed positive integer ℓ ≥ 2, the class Lℓ is
not tame.

Corollary 4.3.4. If G is a graph class such that Lℓ ⊆ G for some ℓ ≥ 2, then G is not
tame.

We now turn to the second type of construction for families of graphs with expo-
nentially many minimal separators. Let r, s ≥ 2 be integers. An r×s-grid is the graph
with vertex set {0, . . . , r − 1} × {0, . . . , s − 1} in which two vertices (i, j) and (i′, j′)
are adjacent if and only if |i− i′|+ |j − j′| = 1. Given an integer h ≥ 2, an elementary
wall of height h is the graph Wh obtained from the (2h+ 2)× (h+ 1)-grid by deleting
all edges with endpoints (2i + 1, 2j) and (2i + 1, 2j + 1) for all i ∈ {0, 1, . . . , h} and
j ∈ {0, 1, . . . , ⌊(h−1)/2⌋}, deleting all edges with endpoints (2i, 2j−1) and (2i, 2j) for
all i ∈ {0, 1, . . . , h} and j ∈ {1, . . . , ⌊h/2⌋}, and deleting the two resulting vertices of
degree one. Note that an elementary wall of height h consists of h levels each containing
h bricks, where a brick is a cycle of length six; see Fig. 4.1(a).

(0, 0) (2, 0)

C

(a) (b)

S(1,0,1,1,0,0,1,0)

D

Figure 4.1: (a) An elementary wall of height 8. (b) A minimal separator S(1,0,1,1,0,0,1,0)

in W8 and the two components of W8 − S(1,0,1,1,0,0,1,0).

Grids contain exponentially many minimal separators [221]. We show next that the
same is true for walls.

Proposition 4.3.5. For every integer h ≥ 2, an elementary wall of height h has at
least 2h minimal separators.

Proof. Fix an integer h ≥ 2. We will define a family of 2h subsets of V (Wh) and
show that each of them is a minimal separator in Wh. For each binary sequence of
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length h, say x = (x1, . . . , xh) ∈ {0, 1}h, we define a set Sx by the following rule:
Sx = {vx,0, vx,1, . . . , vx,h} where vx,0 = (2, 0) (independently of x) and for all j ∈
{1, . . . , h}, we set vx,j = vx,j−1 + (xj, 1), where addition is performed component-wise.
Clearly, for each x ∈ {0, 1}h and each j ∈ {1, . . . , h}, we have vx,j = (

∑j
i=1 xi +2, j) ≤

(h+2, h), where comparison is performed component-wise. It follows that Sx ⊆ V (Wh).
Moreover, the graphWh−Sx has exactly two connected components, say C andD, with
V (C) =

⋃h
j=0{(i, j) ∈ V (Wh) | i < vx,j1 } and V (D) =

⋃h
j=0{(i, j) ∈ V (Wh) | i > vx,j1 }.

Note that each vertex vx,j ∈ Sx has a neighbor in C, namely vx,j−(1, 0), and a neighbor
in D, namely vx,j +(1, 0). By Lemma 3.1.2, set Sx is a minimal separator in Wh. Since
the sets Sx are pairwise distinct, this completes the proof. Fig. 4.1(b) shows an example
with h = 4 and x = (1, 0, 1, 1). The thick horizontal edges can be used to justify the
fact that C and D are Sx-full components of Wh − Sx.

Another family with exponentially many minimal separators is given by the line
graphs of elementary walls; see Fig. 4.2(a) for an example.

(a) (b)

S ′
(1,1,0,0,1,1,1,1)

C ′

D′

Figure 4.2: (a) L(W8), the line graph of an elementary wall of height 8. (b) The set
of nine vertices depicted with large black disks is a minimal separator S ′

(1,1,0,0,1,1,1,1)

in L(W8), which corresponds to the minimal separator S(1,1,0,0,1,1,1,1) in W8. The two
components of L(W8)− S ′

(1,1,0,0,1,1,1,1) are also depicted.

Proposition 4.3.6. For every even integer h ≥ 2, the graph L(Wh) has at least 2h/2
minimal separators.

Proof. We use a modification of the construction used in the proof of Proposition 4.3.5.
We again consider the minimal separators Sx in Wh constructed in the proof of Propo-
sition 4.3.5; however, for technical reasons that will simplify the argument, we restrict
ourselves only to the 2h/2 minimal separators Sx in Wh that arise from binary sequences
x ∈ Xh, where

Xh = {(x1, . . . , xh) ∈ {0, 1}h | x2i−1 = x2i for all i ∈ {1, 2, . . . , h/2}} .

Recall that for every x ∈ Xh, we have Sx = {vx,0, vx,1, . . . , vx,h} where vx,0 = (2, 0) and
vx,j = vx,j−1 + (xj, 1) for all j ∈ {1, . . . , h}. A set of 2h/2 minimal separators of L(Wh)
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can be obtained as follows. For each x ∈ Xh, we define a set S ′
x ⊆ V (L(Wh)) as follows:

S ′
x = {ex,j | vx,j ∈ Sx} where ex,j is the vertex of the line graph of Wh corresponding

to the edge in Wh joining vertex vx,j with vertex vx,j + (1, 0).
Since the mapping is one-to-one, the set {S ′

x | x ∈ Xh} is of cardinality 2h/2.
Therefore, to complete the proof it suffices to show that for every x ∈ Xh, set S ′

x

is a minimal separator in L(Wh). Let us first argue that the graph L(Wh) − S ′
x is

disconnected. Vertices of the wall Wh correspond bijectively to maximal cliques of its
line graph. For every x ∈ Xh, every vertex of the form vx,j where j ∈ {1, . . . , h − 1}
corresponds to a triangle (clique of size three) in L(Wh), while vertex vx,h corresponds
to a clique of size two. Let us say that a triangle in L(Wh) is upward pointing if it
arises from a vertex in Wh whose coordinates have even sum, and downward pointing,
otherwise. (We draw this terminology from the planar embeddings of the line graphs
of the walls following the example given in Fig. 4.2.) It is not difficult to see that
for every x ∈ Xh and every even i ∈ {0, 1, . . . , h − 2}, vertex vx,i corresponds to
an upward triangle, while odd-indexed vertices may correspond to either upward or
downward pointing triangles. It follows that for no index i ∈ {0, 1, . . . , h− 1}, vertices
vx,i and vx,i+1 can both correspond to downward pointing triangles. This property
ensures that the graph L(Wh) − S ′

x is disconnected, with exactly two components C ′

and D′ such that for all vx,j ∈ Sx, component C ′ contains all vertices of the form
ex,j

− , where ex,j− ∈ V (L(Wh)) is the vertex corresponding to the edge in Wh joining
vertex vx,j with vertex vx,j − (1, 0), while component D′ contains all vertices of the
form ex,j

+ , where ex,j+ ∈ V (L(Wh)) is the vertex corresponding to the edge in Wh

joining vertex vx,j +(1, 0) with vertex vx,j +(2, 0). Furthermore, since for every vertex
ex,j ∈ S ′

x, vertices ex,j− and ex,j+ are both adjacent to ex,j in L(Wh), this also implies,
by Lemma 3.1.2, that S ′

x is a minimal separator in L(Wh). This completes the proof.
Fig. 4.2(b) shows an example with h = 8 and x = (1, 1, 0, 0, 1, 1, 1, 1). The thick
horizontal edges can be used to justify the fact that C ′ and D′ are S ′

x-full components
of L(Wh)− S ′

x.

The above proofs were originally presented by Milanič and Pivač in [183,184]. Their
initial systematic study of tame graph classes was followed by a series of other results.
Using the subsequent recent literature, we perform a brief survey of graph classes that
lack the property of tameness, and fix some terminology (see also Chapter 2). Abr-
ishami et al. [3] obtained new results concerning tame graph classes and provided some
examples of graph families having exponentially many minimal separators. Some of
the families listed in their work were already presented in an earlier paper by Chud-
novsky et al. [66].

In particular, Abrishami et al. considered graphs called k-theta and k-prism, as
follows. A k-theta is a graph obtained as the union of k internally disjoint paths of
length 3 with common endpoints a and b. More precisely, a k-theta is a graph G with
vertex set V (G) = {a, a1, . . . , ak, b, b1, . . . , bk}, and edge set consisting of the pairs of
the following form: aai, bbi, and aibi for 1 ≤ i ≤ k (see Fig. 4.3; these graphs were
depicted in Fig. 2.1 as well, although we reproduce some part of it for convenience).
Any graph that is a k-theta for some k ≥ 3 will be referred to as a short theta. A
k-prism is a graph whose vertex set can be partitioned into two n-vertex cliques, say
A = {a1, . . . , an} and B = {b1, . . . , bn}, such that for all i, j ∈ {1, . . . , n}, ai is adjacent
to bj if and only if i = j. Any graph that is a k-prism for some k ≥ 3 will be referred to
as short prism. Note that the class consisting of all short thetas is precisely the class
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Θ3 and the class of all short prisms is precisely the class L2.
The class of all short prisms and the class of all short thetas are known to be

feral, which implies they are not tame (see, e.g., [3, 183]). Combining the structure of
k-thetas and k-prisms results in a graph called a k-pyramid, that is, a graph G with
vertex set V (G) = {a, a1, . . . , ak, b1, . . . , bk}, and with the edge set consisting of the
pairs of the following form: aai and aibi for 1 ≤ i ≤ k, and bibj for 1 ≤ i < j ≤ k. It is
not difficult to see that a k-pyramid has at least 2k−1 minimal separators, with similar
argumentation as described for k-thetas and k-prisms.

To avoid terminological conflict, let us recall that a theta is any subdivision of the
complete bipartite graph K2,3 and prism is any subdivision of C6 in which the two
triangles remain unsubdivided, as defined in Chapter 2. A pyramid is any subdivision
of the complete graph K4 in which one triangle remains unsubdivided, and of the
remaining three edges, at least two edges are subdivided at least once.

...
...

...

Figure 4.3: k-theta, k-prism, k-pyramid.

A k-turtle is a graph G with two non-adjacent vertices a, b ∈ V (G), two paths P and
Q from a to b, vertex-disjoint except for a and b, such that V (P )∪V (Q) induces a cycle
H in G. Also, for 1 ≤ i ≤ k, xi, yi ∈ V (G)\V (H) such that xiyi ∈ E(G), and xi has at
least three neighbors in P and no neighbors in Q, and yi has at least three neighbors in
Q and no neighbors in P . Chudnovsky et al. [66] provided a construction of k-turtles
as the example of a graph family that is (theta, prism, pyramid)-free and contains
exponentially many minimal separators. Every k-turtle contains a smaller graph, called
turtle, defined as follows (see Fig. 4.4). A turtle is a graph G consisting of two vertex-
disjoint paths P and Q and two adjacent vertices x, y ∈ V (G) \ (V (P ) ∪ V (Q)) such
that P is a path from a1 to b1, Q is a path from a2 to b2, a1 is adjacent to a2, b1 is
adjacent to b2, V (P ) ∪ V (Q) induces a hole in G, x has at least three neighbors in P
and no neighbors in Q, and y has at least three neighbors in Q and no neighbors in P .

a1

b1

a2

b2

x y

a

b

...

Figure 4.4: The turtle and k-turtle.

In [66], the authors conjectured that forbiding the aforementioned constructions
represents sufficient conditions for a graph class to be tame. Soon after, Abr-
ishami et al. proved this conjecture and showed that there is a polynomial p such
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that every graph G that contains no prism, pyramid, theta, or turtle has at most
p(|V (G)|) minimal separators [3].

In the same work (see [3]), the authors introduced a structure called k-creature,
where a k-creature in a graph G is a tuple (A,B,X, Y ) of pairwise disjoint nonempty
vertex sets such that (i) A and B induce connected subgraphs, (ii) A is anticomplete
to Y ∪ B and B is anticomplete to A ∪ X, (iii) every x ∈ X has a neighbor in A
and every y ∈ Y has a neighbor in B, (iv) |X| = |Y | = k and X and Y can be
enumerated as X = {x1, . . . , xk}, Y = {y1, . . . , yk} so that xiyi ∈ E(G) if and only if
i = j (see Fig. 4.5). We say that G is k-creature-free if G does not contain a k-creature
as an induced subgraph. Note that this structure generalizes the structure of k-thetas,
k-prisms (k ≥ 3), and k-pyramids, so it is easy to verify that a k-creature contains at
least 2k minimal separators.

A X Y B

...

Figure 4.5: k-creature. Blue edges may or may not exist.

The structures presented in this section turn out to be crucial for showing the
boundaries between tame and non-tame graph classes, as we will see in the following
sections.

4.4 Characterization of tame graph classes with small
forbidden induced subgraphs

In this section we completely characterize which graph classes defined by forbidden
induced subgraphs with at most four vertices are tame. To describe the result, we need
to introduce some notation. Given two families F and F ′ of graphs, we write F ⊴ F ′

if the class of F -free graphs is contained in the class of F ′-free graphs, or, equivalently,
if every F -free graph is also F ′-free. It is well known and not difficult to see that the
relation F ⊴ F ′ can be checked by means of the following criterion, which becomes
particularly simple for finite families F and F ′.

Observation 4.4.1. For every two graph families F and F ′, we have F ⊴ F ′ if and
only if every graph from F ′ contains an induced subgraph isomorphic to a member of F .

In order to obtain a dichotomy result that characterizes sets of forbidden induced
subgraphs on at most four vertices for tame graph classes, first we give some necessary
conditions. In previous sections we proposed some graph families that have exponen-
tially many minimal separators, and here we use them to derive some properties of
a finite set of graphs F such that the class of F -free graphs is tame. In particular,
Corollaries 4.3.2 and 4.3.4 imply that any graph class G that contains the class Θℓ for
ℓ ≥ 3 or the class Lℓ for ℓ ≥ 2 is not tame.
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Proposition 4.4.2. Let F be a finite set of graphs such that the class of F-free graphs
is tame. Then F either contains an induced subgraph of P4 or of 2P2, or F contains
both an acyclic graph and a graph of girth at most 4.

Proof. Let F be a finite set of graphs such that for every F ∈ F we have F ⊈i P4,
F ⊈i 2P2. Suppose for a contradiction that either all graphs in F contain cycles or all
of them are of girth more than 5. We analyze the two cases separately.

Case 1: all graphs in F contain cycles. Let ℓ be the smallest integer such that ℓ ≥ 3
and for every graph F ∈ F , it holds that F does not contain an induced cycle of length
exactly 2ℓ. Note that ℓ is well defined since F is finite. We claim that every graph in
Θℓ is F -free. Suppose for a contradiction that for some k ≥ 2, the graph θk,ℓ contains
an induced subgraph isomorphic to some F ∈ F . Since F contains an induced cycle
and every induced cycle contained in θk,ℓ is of length 2ℓ, we infer that F contains an
induced cycle of length 2ℓ. However, this contradicts the definition of ℓ. Thus, every
graph in Θℓ is F -free, as claimed. By Corollary 4.3.2, the class of F -free graphs is not
tame, a contradiction.

Case 2: every graph in F is of girth more than five. We will show that in this case,
every graph in L2 is F -free. By Corollary 4.3.4 this will imply that the class of F -free
graphs is not tame, a contradiction. From the definition of L2 it follows that every
graph in L2 has independence number two. Thus, to show that every graph in L2 is
F -free, it suffices to prove that α(F ) ≥ 3 for all F ∈ F . Suppose for a contradiction
that α(F ) ≤ 2 for some F ∈ F . Then F is acyclic, since otherwise a shortest cycle
in F would be of length at least 6, which would imply α(F ) ≥ 3. Moreover, F has at
most two connected components. If F is connected, then F is a tree with α(F ) ≤ 2. In
particular, the maximum degree of F is at most 2, hence F a path with at most four
vertices, which implies F ⊆i P4, a contradiction. If F has exactly two components,
then the condition α(F ) ≤ 2 implies that each component of F is a complete graph.
However, since F is acyclic, each component of F is an induced subgraph of P2. It
follows that F ⊆i 2P2, a contradiction.

In the following section we prove a number of propositions, each giving a sufficient
condition for a family F of graphs on at most 4 vertices such that the class of F -free
graphs is tame. Then, we use these results, along with constructions of graphs with
exponentially many minimal separators, and obtain the main result in Section 4.4.2.

4.4.1 Some tame graph classes

Now we are able to identify several sufficient conditions for a graph class to be tame.
The first two reveal two infinite families of tame graph classes, each parameterized by
two positive integers.

Graphs in which all edges are almost dominating

Some of our proofs will make use of the following classical result due to Ramsey [209].

Ramsey’s Theorem. For every two positive integers k and ℓ, there exists a least
positive integer R(k, ℓ) such that every graph with at least R(k, ℓ) vertices contains
either a clique of size k or an independent set of size ℓ.

Our first sufficient condition is an easy consequence of Ramsey’s theorem.
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Theorem 4.4.3. For every two positive integers k and ℓ, the class of {P2 + kP1, Kℓ +
P2}-free graphs is tame.

We prove the theorem using an auxiliary lemma. For a non-negative integer k, we
denote by Ck the class of graphs G such that for every edge uv ∈ E(G), at most k
vertices of G are adjacent to neither u nor v.

Lemma 4.4.4. For every positive integer k, the class Ck is tame.

Proof. Since Ci ⊆ Ci+1 for all i ≥ 0, we may assume that k ≥ 1. We will prove that for
every minimal separator S in G, there exists a set X ⊆ V (G) such that |X| ≤ k and
S = NG(X). Clearly, this will imply that G has at most

(|V (G)|
k

)
minimal separators.

Let S be a minimal separator in G and let C and D be two S-full components of G−S.
Since NG(V (C)) = NG(V (D)) = S, it suffices to show that |V (C)| ≤ k or |V (D)| ≤ k.
Suppose that this is not the case. Then |V (C)| ≥ k + 1 and |V (D)| ≥ k + 1. Since
|V (C)| ≥ k + 1 ≥ 2 and C is connected, there is an edge uv ∈ E(C). But then, G
contains at least |V (D)| ≥ k+1 vertices that are adjacent to neither u nor v, contrary
to the fact that G ∈ Ck.

Proof of Theorem 4.4.3. Let G be a {P2+kP1, Kℓ+P2}-free graph and let r = R(ℓ, k).
By Lemma 4.4.4, it suffices to show that G ∈ Cr−1. Suppose this is not the case. Then,
G has an edge uv such that there exists a set X of r vertices of G such that every
vertex in X is adjacent to neither u nor v. By Ramsey’s theorem, there exists a set
Z ⊆ X such that Z is either a clique of size ℓ or an independent set of size k in G. But
then the set {u, v} ∪ Z induces either a Kℓ + P2 or P2 + kP1, respectively. Both cases
lead to a contradiction.

Graphs of bounded clique cover number excluding some short prism

We now prove that every hereditary class of graphs of bounded clique cover number
that does not contain all short prisms is tame. We formulate it in an equivalent way
that will facilitate our inductive proof. We denote by Lk the k-prism. For every two
positive integers k and ℓ, let Ck,ℓ denote the class of all Lk-free graphs with clique cover
number at most ℓ.

Theorem 4.4.5. For every two positive integers k and ℓ, the class Ck,ℓ is tame.

We prove Theorem 4.4.5 by induction on ℓ, with cases ℓ ∈ {1, 2} as the base
cases. In the proof for the case ℓ = 2, we make use of the following result, discovered
independently by Alekseev [6], Balas-Yu [13], and Prisner [205].

Theorem 4.4.6. For every positive integer k, every kP2-free graph G has
O(|V (G)|2k−2) maximal cliques.

Lemma 4.4.7. For every positive integer k, the class Ck,2 is tame.

Proof. Let G be an Lk-free graph with clique cover number at most 2 and let {A1, A2}
be a clique cover of G. We associate to G a graph G′ obtained by swapping the roles
of edges and non-edges between cliques A1 and A2. Formally, G′ is defined as follows:
V (G′) = V (G) and E(G′) = E1 ∪ E2 ∪ E3 where E1 = {uv | u, v ∈ A1, u ̸= v},
E2 = {uv | u, v ∈ A2, u ̸= v}, and E3 = {uv | u ∈ A1, v ∈ A2, uv ̸∈ E(G)}.
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We prove that G has a polynomially bounded number of minimal separators in two
steps. First we prove that if a set S ⊆ V (G) is a minimal separator in G, then its
complement S = V (G)\S is a maximal clique in G′. Then, we show that G′ is kP2-free.
Finally, we invoke the result of Theorem 4.4.6 to infer that G′ has O(|V (G′)|2k−2) =
O(|V (G)|2k−2) maximal cliques. Since the mapping S 7→ S is one-to-one, this will
imply that G has O(|V (G)|2k−2) minimal separators.

Let S be a minimal separator in G. Then G − S has precisely two components,
namely G[A1 \ S] and G[A2 \ S], and both of these components are S-full. Since sets
A1\S and A2\S are anticomplete to each other in G, we infer that S = (A1\S)∪(A2\S)
is a clique in G′. It remains to prove that S is a maximal clique. Assume for a
contradiction that there exists a vertex x ∈ S such that S ∪ {x} is a clique in G′. By
symmetry we may assume that x ∈ A1 ∩ S. Since A2 \ S is an S-full component in
G− S, vertex x is adjacent in G to some vertex y ∈ A2 \ S. This implies that vertices
x and y are non-adjacent in G′, contradicting the fact that they both belong to clique
S ∪ {x}. It follows that S is a maximal clique in G′, as claimed.

To complete the proof of the lemma, it remains to show that G′ is kP2-free. Assume
the opposite: let X ⊆ A1, Y ⊆ A2 be such that G′[X ∪ Y ] ∼= kP2. Since X and Y
are cliques in G′, all the non-edges of the kP2 must go from X to Y . It follows that
G[X ∪ Y ] ∼= Lk, contradicting the fact that G is Lk-free. Hence, G′ is kP2-free, as
claimed.

Before proceeding to the induction step, we prove two more technical results. For
two positive integers k, ℓ, let us denote by C∗

k,ℓ the class of all graphs of the form G−S∗

such that G ∈ Ck,ℓ and there exists a clique cover {A1, . . . , Aℓ} of G such that S∗ is a
minimal separator in the graph G− Aℓ.

Lemma 4.4.8. Suppose that for some positive integers k, ℓ with ℓ ≥ 3, the classes
Ck,ℓ−1 and C∗

k,ℓ are both tame. Then, the class Ck,ℓ is also tame.

Proof. Fix positive integers k, ℓ with ℓ ≥ 3 and suppose that the classes Ck,ℓ−1 and C∗
k,ℓ

are a-tame and b-tame, respectively. We want to prove that Ck,ℓ is tame as well. Let G
be a graph in Ck,ℓ and let {A1, A2, . . . , Aℓ} be a clique cover of G. Let S be a minimal
separator in G and let C and D be two distinct S-full components in G − S. Since
ℓ ≥ 3, there exists at least one clique Ai, i ∈ {1, . . . , ℓ}, such that V (C) ⊈ Ai and
V (D) ⊈ Ai. By renumbering the cliques, if necessary, we may assume that V (C) ⊈ Aℓ

and V (D) ⊈ Aℓ. Furthermore, since C and D are anticomplete to each other and Aℓ

is a clique, we have V (C) ∩ Aℓ = ∅ or V (D) ∩ Aℓ = ∅. By symmetry, we may assume
that V (C) ∩ Aℓ = ∅.

Consider the graph G − Aℓ. Fix two vertices u ∈ V (C) and v ∈ V (D) \ Aℓ. From
the definition of S it follows that S \Aℓ is a (u, v)-separator in G−Aℓ. Let S∗ ⊆ S \Aℓ

be a minimal (u, v)-separator in G − Aℓ. By Corollary 3.2.9 it follows that the set
S ′ := S \S∗ is a minimal separator in G−S∗. In particular, we have S = S∗∪S ′ where
S∗ ∈ SG−Aℓ

and S ′ ∈ SG−S∗ . Clearly, G − Aℓ ∈ Ck,ℓ−1. It follows that every minimal
separator S in G can be written as a union of two sets S∗ and S ′ such that S∗ ∈ SG∗

where G∗ = G− Aℓ ∈ Ck,ℓ−1 and S ′ ∈ SG′ where G′ = G− S∗ ∈ C∗
k,ℓ.

Note that the above arguments hold for any clique cover {A1, A2, . . . , Aℓ} of G,
except that some renaming of cliques might have been necessary depending on S,
C, and D, to assure that V (C) ∩ Aℓ = ∅ and V (D) ⊈ Aℓ. Once a clique cover
{A1, A2, . . . , Aℓ} ofG is fixed, there are ℓ choices for which a clique in the cover is labeled
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Aℓ. Furthermore, since Ck,ℓ−1 is a-tame, there are at most |V (G∗)|a − 1 ≤ |V (G)|a − 1
choices for S∗. The graph G′ ∈ C∗

k,ℓ as above is uniquely determined with G and S∗ and
since C∗

k,ℓ is b-tame, there are at most |V (G′)|b − 1 ≤ |V (G)|b − 1 choices for S ′. Since
S = S∗ ∪ S ′, we infer that altogether we have at most ℓ · (|V (G)|a − 1)(|V (G)|b − 1)
choices for S. This shows that s(G) ≤ ℓ(|V (G)|a − 1)(|V (G)|b − 1) and thus Ck,ℓ is
tame.

Lemma 4.4.9. For every two positive integers k and ℓ with ℓ ≥ 3, if the class Ck,ℓ−1

is tame, then so is the class C∗
k,ℓ.

Proof. Fix positive integers k and ℓ with ℓ ≥ 3 and suppose that the class Ck,ℓ−1 is
tame. By Theorem 4.2.3, to show that C∗

k,ℓ is tame, it suffices to show that the class
A(C∗

k,ℓ) is tame. We do so by showing that every graph in A(C∗
k,ℓ) belongs to Ck,ℓ−1.

This will suffice since the class Ck,ℓ−1 is tame by assumption.
Let G ∈ A(C∗

k,ℓ). Then G is an atom that is an induced subgraph of a graph
G∗ ∈ C∗

k,ℓ. By definition of C∗
k,ℓ, there exist a graph G′ in Ck,ℓ, a clique cover {A1, . . . , Aℓ}

of G′, and a minimal separator S∗ in the graph G′ − Aℓ such that G∗ = G′ − S∗. The
fact that S∗ is a separator in G′ − Aℓ implies that the graph G′ − S∗ − Aℓ = G∗ − Aℓ

is disconnected. Thus, there exists a cut-partition (A,B,C) of G∗ such that C = Aℓ.
Note that sets A∩V (G) and B ∩V (G) are anticomplete to each other in G. Note also
that Aℓ∩V (G) is a (possibly empty) clique in G. Since G has no clique cutset, we infer
that one of the sets A∩V (G) and B∩V (G) is empty, say A∩V (G) = ∅. Furthermore,
since the sets A and B are anticomplete to each other in G∗ − Aℓ, it follows that
A is the union of a nonempty subset of the set of cliques {A1 \ S∗, . . . , Aℓ−1 \ S∗}.
Let i ∈ {1, . . . , ℓ − 1} be such that Ai \ S∗ ⊆ A. The fact that A ∩ V (G) = ∅ now
implies that the vertex set of G can be covered with ℓ− 1 cliques (Aj \S∗)∩ V (G), for
j ∈ {1, . . . , ℓ} \ {i}. Since G is an induced subgraph of a graph in Ck,ℓ, it is Lk-free.
Consequently, G ∈ Ck,ℓ−1 and the proof is complete.

Proof of Theorem 4.4.5. Fix a positive integer k. We prove that for every positive
integer ℓ, the class Ck,ℓ is tame, using induction on ℓ. If ℓ = 1, then every graph in
Ck,ℓ is complete and Ck,ℓ is tame. If ℓ = 2, then the class Ck,ℓ is tame by Lemma 4.4.7.
Suppose now that ℓ ≥ 3 and that the class Ck,ℓ−1 is tame. By Lemma 4.4.9, the class
C∗
k,ℓ is tame. Since the classes Ck,ℓ−1 and C∗

k,ℓ are tame, Lemma 4.4.8 implies that so is
the class Ck,ℓ.

Subclasses of C4-free graphs

We now derive two consequences of Theorem 4.4.5 dealing with subclasses of C4-free
graphs. Wagon proved in [230] that every 2P2-free graph with clique number k is
(k(k + 1)/2)-colorable. This result can be equivalently stated as follows.

Theorem 4.4.10. For every positive integer k, every {kP1, C4}-free graph has clique
cover number at most k(k − 1)/2.

Since the graph L2 is the 4-cycle, this result implies that the class of {kP1, C4}-free
graphs is a subclass of the class C2,k(k−1)/2. By Theorem 4.4.5, the class C2,k(k−1)/2 is
tame, and we thus obtain the following.
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Corollary 4.4.11. For every positive integer k, the class of {kP1, C4}-free graphs is
tame.

The question of which classes of graphs defined by a set of forbidden induced sub-
graphs with at most four vertices are tame was first investigated in the conference
paper [184]. An almost complete dichotomy was obtained, leaving open only two
cases: the classes of {4P1, C4}-free and {4P1, claw, C4}-free graphs. Clearly, the result
of Corollary 4.4.11 resolves both cases. Daniel Lokshtanov kindly communicated to us
that the result of Corollary 4.4.11 was also obtained independently (and at approxi-
mately the same time) by Peter Gartland. At the same time we managed to generalize
Corollary 4.4.11 by replacing kP1 in the statement of the corollary with P2 + kP1.

Theorem 4.4.12. For every positive integer k, the class of {P2+kP1, C4}-free graphs
is tame.

Proof. Let G be a {P2 + kP1, C4}-free graph. Fix a maximum independent set I in
G. If |I| ≤ 2k − 1, then G is {2kP1, C4}-free and Corollary 4.4.11 implies that G
has a polynomially bounded number of minimal separators. Thus, in what follows we
assume that |I| ≥ 2k. Let w be a vertex in V (G)\I. Since I is a maximal independent
set, w has a neighbor in I. Consequently, since G is (P2 + kP1)-free, w has at most
k − 1 non-neighbors in I and hence w has at least |I| − (k − 1) ≥ k + 1 neighbors
in I. Suppose next that u and v are two distinct non-adjacent vertices in V (G) \ I.
Since each of u and v has at least k+1 neighbors in I, they have at least two common
neighbors in I. But this contradicts the fact that G is C4-free. It follows that V (G) \ I
is a clique. Since I is an independent set and V (G) \ I is a clique, G is 2P2-free, and
we infer from Lemma 3.1.3 that G has at most |V (G)| minimal separators.

4.4.2 A dichotomy result

In this section we state and prove the dichotomy result. We will need the following
result from the literature, describing the structure of paw-free graphs. A graph G is
complete multipartite if its vertex set can be partitioned into any number of parts such
that two vertices are adjacent if and only if they belong to different parts.

Theorem 4.4.13 (Olariu [188]). A connected paw-free graph G is either C3-free or
complete multipartite.

If some class of graphs is not tame, then neither is any larger class that contains
it. Recall that the class of short prisms, denoted as L2 is not tame, and that the line
graphs of elementary walls are not tame. Then, we infer the following corollary.

Corollary 4.4.14. The class of {3P1, diamond}-free graphs and the class of {claw,
K4, C4, diamond}-free graphs are not tame.

Proof. Let G ∈ L2. Since the vertex set of G is the union of two cliques, G is 3P1-free.
Moreover, it is not difficult to see that G is diamond-free. Consequently, the class of
{3P1, diamond}-free graphs contains all graphs in L2 and is therefore not tame by
Corollary 4.3.4. Similarly, line graphs of elementary walls are contained in the class of
{claw, K4, C4, diamond}-free graphs, and by Proposition 4.3.6 the class of {claw, K4,
C4, diamond}-free graphs is not tame.
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First we prove a number of propositions, each giving a sufficient condition for a
family F of graphs on at most 4 vertices such that the class of F -free graphs is tame.
We start with a lemma simplifying the cases with P3 + P1 ∈ F .

Lemma 4.4.15. Let F be a family of graphs such that P3 + P1 ∈ F and let
F ′ = (F \ {P3 + P1}) ∪ {3P1}. Then the class of F-free graphs is tame if and only
if the class of F ′-free graphs is tame.

Proof. Let G and G ′ be the classes of F -free and F ′-free graphs, respectively. Clearly,
every F ′-free graph is also F -free (cf. Observation 4.4.1), and hence if G is tame, then
so is G ′. Suppose that G ′ is tame. By Lemma 4.1.4, there exists an integer k ≥ 0
such that s(G) ≤ |V (G)|k − 1 for all G ∈ G ′. Let G ∈ G. By Corollary 4.2.2 we may
assume that G is coconnected. Since G is coconnected and (P3 + P1)-free, applying
Theorem 4.4.13 to the complement of G implies that G is either a disjoint union of
complete graphs, in which case s(G) ≤ 1, or G is 3P1-free, in which case G ∈ G ′ and
thus s(G) ≤ |V (G)|k − 1. It follows that G is tame.

We now consider various families of forbidden induced subgraphs with at most
four vertices. We will also need the following result describing the structure of {claw,
C3 + P1}-free graphs. By S3 we denote the 6-vertex graph obtained from the 6-cycle
with vertices v1, . . . , v6 in cyclic order by adding to it the chords v1v3, v3v5, and v5v1.

Theorem 4.4.16 (Pouzet et al. [204]). The class of {claw, C3+P1}-free graphs consists
of S3, of the induced subgraphs of L(K3,3), of graphs whose connected components are
cycles of length at least 4 or paths, and of the complements of these graphs.

Proposition 4.4.17. For every F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, the class of {F ,
C3 + P1}-free graphs is tame.

Proof. (1) The class of {4P1, C3+P1}-free graphs is a subclass of the class of {P2+4P1,
C3 + P2}-free graphs, which is tame by Theorem 4.4.3.

(2) The class of {P2+2P1, C3+P1}-free graphs is a subclass of the class of {P2+2P1,
C3 + P2}-free graphs, which is tame by Theorem 4.4.3.

(3) By Lemma 4.4.15, it suffices to show that the class of {3P1, C3 + P1}-free graphs
is tame. This follows from part (1) of the proposition.

(4) By Corollaries 4.2.1 and 4.2.2, it suffices to prove that the class of connected and
coconnected {claw, C3+P1}-free graphs is tame. Let G be a connected and cocon-
nected {claw, C3 + P1}-free graph with at least 10 vertices. By Theorem 4.4.16,
G is either a path or a cycle, or the complement of a path or of a cycle. If G is a
path or a cycle, then all its minimal separators have size 1 or 2, respectively. If the
complement of G is a path or a cycle, then G is 2P2-free, and hence has at most
|V (G)| minimal separators by Lemma 3.1.3. Thus, in either case the number of
minimal separators of G is polynomially bounded.

Proposition 4.4.18. The class of {P3 + P1, C4}-free graphs is tame.

Proof. Immediate from Lemma 4.4.15 and the fact that the class of {3P1, C4}-free
graphs is tame, which follows from Corollary 4.4.11.
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Proposition 4.4.19. For every F ∈ {4P1, P2+2P1, P3+P1}, the class of {F , K4}-free
graphs is tame.

Proof. (1) By Ramsey’s theorem, the class of {4P1, K4}-free graph consists of finitely
many graphs, so it is tame.

(2) The class of {P2 + 2P1, K4}-free graphs is a subclass of the class of {P2 + 2P1,
K4 + P2}-free graphs, which is tame by Theorem 4.4.3.

(3) By Lemma 4.4.15, it suffices to show that the class of {3P1, K4}-free graphs is
tame. This follows from part (1) of the proposition.

In the proofs of Proposition 4.4.20 and Theorem 4.4.21 we need the fact that the
class of P4-free graphs is tame (stated in Theorem 4.1.5).

Proposition 4.4.20. For every F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, the class of {F ,
paw}-free graphs is tame.

Proof. Let G be an {F , paw}-free graph. By Corollary 4.2.1, we may assume that G
is connected. Since G is paw-free, Theorem 4.4.13 implies that G is either C3-free, or
complete multipartite. If G is complete multipartite, then G is P4-free, and thus has
a polynomially bounded number of minimal separators by Theorem 4.1.5. Suppose
now that G is C3-free. If F ∈ {4P1, P2 + 2P1, P3 + P1}, then using the fact that G
is K4-free, Proposition 4.4.19 implies that G has a polynomially bounded number of
minimal separators. If F is the claw, then G is a {claw, C3}-free graph, hence G is a
path or a cycle, and all its minimal separators have size 1 or 2, respectively. In either
case, G has a polynomially bounded number of minimal separators. Thus, the class of
{F , paw}-free graphs is tame.

Finally, we obtain the characterization of tame graph classes defined by the set
of forbidden induced subgraphs on at most four vertices. To appreciate our result
(Theorem 4.4.21), note that up to isomorphism, there are 11 four-vertex graphs, which
means that there are 211 = 2048 different graph classes defined by a set of forbidden
induced subgraphs with exactly four vertices, and even more graph classes defined by
a set of forbidden induced subgraphs with at most four vertices.

In Fig. 4.6 we give an overview of maximal tame and minimal non-tame classes of
F -free graphs, where F contains graphs with at most four vertices. A similar figure
with respect to the boundedness of the clique-width can be found in [45].

Theorem 4.4.21. For every family F of graphs with at most 4 vertices, the following
statements are equivalent.

1. The class of F-free graphs is tame.

2. The class of F-free graphs does not contain any of the following graph classes:
the class of {C3, C4}-free graphs, the class of {3P1, diamond}-free graphs, and
the class of {claw, K4, C4, diamond}-free graphs.

3. F ⊴ F ′ for at least one of the following families F ′:

(a) F ′ = {P4},
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P4 2P2

4P1, K4 P2 + 2P1, K4 P3 + P1, K4 claw, paw

4P1, paw P2 + 2P1, paw P3 + P1, paw

C3, C44P1, C3 + P1 P2 + 2P1, C3 + P1

claw, C3 + P1P2 + 2P1, C43P1, diamond

P3 + P1, C3 + P1P3 + P1, C44P1, C4

claw, K4, C4, diamond

Figure 4.6: Overview of the dichotomy result. Maximal tame classes correspond to sets
F of forbidden induced subgraphs depicted in green ellipses, while minimal non-tame
classes correspond to sets depicted in red ellipses (in brighter, resp., darker ellipses in
gray-scale printing).

(b) F ′ = {2P2},
(c) F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
(d) F ′ = {F , C3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw},
(e) F ′ = {F , K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1},
(f) F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}.

Proof. Let F be a family of graphs on at most 4 vertices.
Suppose first that the class of F -free graphs is tame and, for a contradiction, that

the class of F -free graphs contains the class of F ′-free graphs for some F ′ ∈ {{C3,
C4}, {3P1, diamond}, {claw, K4, C4, diamond}}. If F ′ = {C3, C4}, then the class of
F ′-free graphs is not tame by Proposition 4.4.2. If F ′ = {3P1, diamond}, then the
class of F ′-free graphs is not tame by Corollary 4.4.14. Note that the line graphs of
elementary walls are {claw, K4, C4, diamond}-free. If F ′ = {claw, K4, C4, diamond},
then Proposition 4.3.6 implies that the class of F ′-free graphs is tame. It follows by
Observation 4.1.2 that the class of F -free graphs is not tame, a contradiction. Thus,
the first statement implies the second one.

Suppose now that for all F ′ ∈ {{C3, C4}, {3P1, diamond}, {claw, K4, C4,
diamond}}, the class of F -free graphs does not contain the class of F ′-free graphs.
We want to prove that F ⊴ F ′ where F ′ satisfies one of the following: F ′ = {P4},
F ′ = {2P2}, F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, F ′ = {F ,
C3+P1} for some F ∈ {4P1, P2+2P1, P3+P1, claw}, F ′ = {F , K4} for some F ∈ {4P1,
P2 + 2P1, P3 + P1}, or F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}.

If some graph F ∈ F is an induced subgraph of 2P2 or of P4, then F ⊴ F ′ for
F ′ = {2P2} or F ′ = {P4}. Thus, from now on we assume that no graph F ∈ F is an
induced subgraph of either 2P2 or P4. Let A = {C3, C4, C3 + P1, paw, diamond, K4}
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and B = {3P1, 4P1, P2 + 2P1, P3 + P1, claw}. Note that every member of B contains
3P1 as an induced subgraph, and similarly every member of A contains C3 or C4 as an
induced subgraph. Since every graph in F has at most 4 vertices and is not an induced
subgraph of either 2P2 or P4, we infer that F ⊆ A ∪ B. Let A′ = A \ {diamond}. If
F∩A′ = ∅, then F ⊆ {diamond}∪B and the class of F -free graphs contains the class of
{3P1, diamond}-free graphs, a contradiction. It follows that F ∩A′ ̸= ∅. If F ∩B = ∅,
then F ⊆ A and the class of F -free graphs contains the class of {C3, C4}-free graphs, a
contradiction. Therefore, F ∩B ̸= ∅. If F ∩{C3, C3+P1, paw} ≠ ∅, then the fact that
F ∩ B ̸= ∅ implies that F ⊴ F ′ where F ′ = {F , paw} or F ′ = {F , C3 + P1} for some
F ∈ {4P1, P2 + 2P1, P3 + P1, claw}. Assume now that F ∩ {C3, C3 + P1, paw} = ∅.
As F ∩A′ ̸= ∅, it follows that F ∩ {C4, K4} ≠ ∅. Let B′ = B \ {claw}. If F ∩B′ = ∅,
then F ⊆ {claw, C4, K4, diamond} and the class of F -free graphs contains the class
of {claw, K4, C4, diamond}-free graphs, a contradiction. It follows that F ∩ B′ ̸= ∅.
Therefore, using that F ∩ {C4, K4} ̸= ∅, we infer that F ⊴ F ′ where F ′ = {F , C4}
or F ′ = {F , K4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}. Thus, the second statement
implies the third one.

Finally, suppose that F ⊴ F ′ where F ′ satisfies one of the following: F ′ = {P4},
F ′ = {2P2}, F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, F ′ = {F ,
C3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, F ′ = {F , K4} for some
F ∈ {4P1, P2+2P1, P3+P1}, or F ′ = {F , C4} for some F ∈ {4P1, P2+2P1, P3+P1}.
Note that the class of F -free graphs is contained in the class of F ′-free graphs, hence
by Observation 4.1.2 it suffices to show that the class of F ′-free graphs is tame. If
F ′ = {P4} or F ′ = {2P2}, then the class of F ′-free graphs is tame by Theorem 4.1.5
and Corollary 4.1.6, respectively. If F ′ = {F , paw} for some F ∈ {4P1, P2 + 2P1,
P3 + P1, claw}, then the class of F ′-free graphs is tame by Proposition 4.4.20. If
F ′ = {F , C3 + P1} for some F ∈ {4P1, P2 + 2P1, P3 + P1, claw}, then the class of
F ′-free graphs is tame by Proposition 4.4.17. If F ′ = {F , K4} for some F ∈ {4P1,
P2 + 2P1, P3 + P1}, then the class of F ′-free graphs is tame by Proposition 4.4.19.
Finally, if F ′ = {F , C4} for some F ∈ {4P1, P2 + 2P1, P3 + P1}, then the class of
F ′-free graphs is tame by Corollary 4.4.11 (if F = 4P1), by Proposition 4.4.18 (if
F = P3 + P1), or by Theorem 4.4.12 (if F = P2 + 2P1). This shows that the third
statement implies the first one and completes the proof.

4.5 Characterization of tame graph classes with a for-
bidden induced minor or induced topological mi-
nor

The results presented so far in this chapter are restricted to graph classes that are
closed under induced subgraphs. However, outside the realm of tame graph classes,
many other graph inclusion relations—for example, the minor, topological minor, sub-
graph, induced minor, and induced topological minor relations—have been studied
in the literature and have proved important in various contexts. In particular, di-
chotomy results for various properties were developed for graph classes defined by a
single excluded graph with respect to one of the above relations. Such properties in-
clude bounded clique-width [20], well-quasi ordering [28, 94], equivalence of bounded
treewidth and bounded clique number [86], bounded tree-independence number [88],
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and polynomial-time solvability of Graph Isomorphism [189].
Motivated by this state of the art, we focus in this section on the two remaining

“induced” relations, the induced minor and induced topological minor relation. These
relations are more challenging to work with than the induced subgraph relation. For
example, there exist graphs H such that detecting H as an induced minor or an induced
topological minor is NP-complete. For the induced minor relation, this was shown by
Fellows, Kratochvíl, Middendorf, and Pfeiffer in 1995 [104]; recently, Korhonen and
Lokshtanov showed that this can happen even if H is a tree [158]. For the induced
topological minor relation, Lévêque, Lin, Maffray and Trotignon [163] and Maffray,
Trotignon and Vušković [170] showed that the problem is NP-complete if H is the
complete graph K5, or the complete bipartite graph K2,4, respectively. In general, the
following two questions are widely open.

Question 4.5.1. For which graphs H there exists a polynomial-time algorithm for de-
termining if a given graph G contains H as an induced minor?

Question 4.5.2. For which graphs H there exists a polynomial-time algorithm for de-
termining if a given graph G contains H as an induced topological minor?

In both cases, the problem is solvable in polynomial time if every component of H
is a path, since in this case it suffices to check if H is present as an induced subgraph.
Furthermore, if H is a graph with at most four vertices, then determining if a given
graph G contains H as an induced minor can be done in polynomial time (see [85,134]).
This is also the case if H is the complete bipartite graph K2,3 (see [85]). Also for the
induced topological minor relation, only few polynomial cases are known (see [65,161,
161]).

Graph classes excluding a fixed planar graph H as an induced minor are also rele-
vant for the complexity of Maximum Weight Independent Set (MWIS): Given a
graph G and a vertex weight function w : V (G) → Q+, compute an independent set I
in G maximizing its weight

∑
x∈I w(x). The problem of determining the computational

complexity of MWIS in particular graph classes has been extensively studied. In par-
ticular, the problem is known to be NP-hard in the class of planar graphs (see [117]),
which implies that MWIS remains NP-hard in graph classes defined by a single for-
bidden induced minor H when H is nonplanar. For the case when a planar graph H
is forbidden as an induced minor, Dallard, Milanič, and Štorgel posed the following
question in [88].

Question 4.5.3. Is MWIS solvable in polynomial time in the class of H-induced-minor-
free graphs for every planar graph H?

This question is still open, even for the cases when H is the path P7 or the cycle C6,
but some partial results are known. Question 4.5.3 has an affirmative answer for all of
the following graphs H: the path P6 (as shown by Grzesik et al. [130]), the cycle C5

(as shown by Abrishami et al. [4]), the complete bipartite graph K2,t for any positive
integer t, as well as graphs obtained from the complete graph K5 by deleting either
one edge or two disjoint edges (as shown by Dallard, Milanič, and Štorgel [88]), and
the t-friendship graph (that is, t disjoint edges plus a vertex fully adjacent to them; as
shown by Bonnet et al. [37]1). Quasi-polynomial-time algorithms are also known for
the cases when H is either a path (as shown by Gartland and Lokshtanov [119] and

1The paper [37] solves the unweighted version of the problem, however, the methods can be easily
extended to the weighted case.
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Pilipczuk et al. [199]) or, more generally, a cycle (as shown by Gartland et al. [122]), or
the graph tC3+C4 for any integer t ≥ 0 (as shown by Bonnet et al. [37]). Furthermore,
Korhonen showed that for any planar graph H, MWIS can be solved in subexponential
time in the class of H-induced-minor-free graphs [157].

Recall that if G is a tame graph class, then MWIS and many other problems are
solvable in polynomial time for graphs in G. This motivates the following questions.

Question 4.5.4. For which graphs H is the class of graphs excluding H as an induced
minor tame?

Question 4.5.5. For which graphs H is the class of graphs excluding H as an induced
topological minor tame?

In particular, this may provide further partial answers to Question 4.5.3. Let us
remark that for the case of induced subgraph relation, the aforementioned dichotomy
of hereditary graph classes defined by a finite set of forbidden induced subgraphs into
tame and feral (see [115,120]) implies that a graph class defined by a single forbidden
induced subgraph H is tame if H is an induced subgraph of the path P4 or of the graph
2P2, and feral, otherwise.

In this section we completely answer Questions 4.5.4 and 4.5.5. We show that every
graph class defined by a single forbidden induced minor or induced topological minor
is either tame or feral, and classify the two cases. Graphs used in our characterizations
are depicted in Fig. 4.7.

Figure 4.7: From left to right: the 2P2, the diamond, the butterfly, and the house.

Theorem 4.5.6. Let H be a graph and let G be the class of graphs that do not contain
H as an induced minor. Then, the following statements are equivalent:

(1) G is tame.

(2) G is not feral.

(3) H is an induced subgraph of the diamond, the butterfly, or the house.

(4) H is an induced minor of the butterfly or of the house.

Theorem 4.5.7. Let H be a graph and let G be the class of graphs that do not contain
an induced subdivision of H. Then, the following statements are equivalent:

(1) G is tame.

(2) G is not feral.

(3) H is an induced subgraph of 2P2, the diamond, or the house.

(4) H is an induced topological minor of 2P2 or of the house.
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Then, we complement the above results by analyzing the complexity of the recog-
nition problems for the maximal tame graph classes in each of the above two theorems.
These correspond to Question 4.5.4 for the case when H is either the butterfly or the
house and to Question 4.5.5 for the case when H is either 2P2 or the house. As already
observed, determining if a given graph G contains 2P2 as an induced topological minor
can be done in polynomial time. Determining if a given graph G contains the butterfly
as an induced minor can also be done in polynomial time, using a characterization of
such graphs due to Dumas and Hilaire (personal communication, 2024; for complete-
ness, we present the argument in Section 4.6). We provide polynomial-time algorithms
for the remaining two cases.

Theorem 4.5.8. Determining if a given graph G contains the house as an induced
minor can be done in time O(n8m log2 n).

Theorem 4.5.9. Determining if a given graph G contains the house as an induced
topological minor can be done in time O(n8m log2 n).

Applying the result by Fomin, Todinca, and Villanger from Theorem 3.1.1 to the two
maximal tame graph classes identified in Theorems 4.5.6 and 4.5.7 yields the following
algorithmic implications of our results.

Corollary 4.5.10. For fixed integer t ≥ 0, fixed CMSO2 formula ϕ, the (t, ϕ)-
Maximum Weight Induced Subgraph problem is solvable by a robust polynomial-
time algorithm whenever the input graph does not contain the butterfly as an induced
minor or the house as an induced topological minor.

The above graph classes generalize some graph classes extensively studied in the
literature (see, e.g., [47, 126, 219]). First, the class of graphs that do not contain
the butterfly as an induced minor generalizes the class of 2P2-free graphs (hence, in
particular, the classes of split graphs and complements of chordal graphs). Second,
the class of graphs that do not contain the butterfly as an induced minor (or, more
generally, as an induced topological minor) is a common generalization of the classes
of chordal graphs and cographs.

Since Maximum Weight Independent Set is a special case of (t, ϕ)-Maximum
Weight Induced Subgraph, Corollary 4.5.10 provides further partial support for
Question 4.5.3, giving an affirmative answer to the question for the cases when H is
either the butterfly or the house. Let us also note that the butterfly is the 2-friendship
graph, hence, the former result also follows from the aforementioned result of Bonnet
et al. [37].

4.5.1 Preliminary results

Given a graph G, a walk in G is a finite nonempty sequence W = (w1, . . . , wk) of
vertices in G such that every two consecutive vertices are joined by an edge in G. If
w1 = wk, then W is said to be a closed walk. The length of a walk (w1, . . . , wk) is
defined to be k − 1. Given two vertices u, v in a graph G, a u, v-walk in G is any
walk (w1, . . . , wk) in G such that u = w1 and v = wk. More generally, for two sets
A,B ⊆ V (G), a walk from A to B is any walk (w1, . . . , wk) in G such that w1 ∈ A
and wk ∈ B. Given two walks W = (w1, . . . , wk) and Z = (z1, . . . , zℓ) in a graph G
such that wk = z1, we define the concatenation of W and Z to be the walk obtained
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by traversing first W and then Z, that is, the walk (w1, . . . , wk = z1, z2, . . . , zℓ). The
concatenation of walks W and Z will be denoted by W ⊕ Z. A path in G is a walk in
which all vertices are pairwise distinct. Given a u, v-path P , the vertices u and v are
the endpoints of P , while all the other vertices are its internal vertices. A cycle in G
is a closed walk with length at least 3 such that all its vertices are pairwise distinct,
except that w1 = wk.

Recall that any induced topological minor of a graph is also an induced minor of the
same graph, so given a graph H it holds that a class of H-induced-minor-free graphs
is a subclass of the class of graphs that do not contain H as an induced topological
minor. Recall also that a graph H is an induced minor of a graph G if and only if
there is an induced minor model {Xv}v∈V (H) of H in G. In the rest of this section we
establish a general result about induced minor models of graphs containing vertices of
degree 2.

We identify a property of induced minor models that can be assumed without loss of
generality whenever the pattern graph contains an edge-disjoint collection of particular
walks. A walk W = (w1, . . . , wk) in a graph H is said to be a thin walk if all the vertices
of W are pairwise distinct, except that possibly w1 = wk, and for all i ∈ {2, . . . , k−1},
vertex wi has degree 2 in H. Given a thin walk W = (w1, . . . , wk) in a graph H,
vertices w2, . . . , wk−1 will be referred to as the internal vertices of W .

Lemma 4.5.11. Let H be a graph, let W be a thin walk in H, and let H be an induced
minor of a graph G. Then, there exists an induced minor model {Xv}v∈V (H) of H in
G such that |Xw| = 1 for every internal vertex w of W .

Proof. Let {Xv}v∈V (H) be an induced minor model of H in G. Let W = (w1, . . . , wk).
For simplicity, write Xi for Xwi

for all i ∈ {1, . . . , k}. Note that the sets X1, . . . , Xk are
nonempty and pairwise disjoint, except that X1 = Xk if W is a closed walk. If k = 2,
there is nothing to show, so we assume that k ≥ 3. Consider the following particular
way of constructing a walk in G from X1 to Xk. For all i ∈ {1, . . . , k−1}, let uivi+1 be
an edge in G such that ui ∈ Xi and vi+1 ∈ Xi+1. Moreover, for all i ∈ {2, . . . , k − 1},
let P i be a vi,ui-path in G[Xi]. Then, the following concatenation of walks

(u1, v2)⊕
k−1⊕
i=2

(
P i ⊕ (ui, vi+1)

)
is a walk in G from X1 to Xk with all vertices pairwise distinct, except that the
endpoints might coincide. Any walk that can be obtained by the above procedure will
be referred to as a W -monotone walk in G.

Let Z = (z1, . . . , zr) be a shortest W -monotone walk in G. Note that the vertices
z2, . . . , zr−1 all belong to

⋃k−1
i=2 Xi. The minimality of Z and the fact that all internal

vertices of W have degree 2 in H imply that the vertices z2, . . . , zr−1 have degree 2 in
the subgraph of G induced by {z1, . . . , zr}. We now modify {Xv}v∈V (H) to obtain an
alternative induced minor model {Yv}v∈V (H) of H in G, as follows:

• Yv = Xv for all v ∈ V (H) \ {w1, . . . , wk},

• Ywi
= {zi} for all i ∈ {2, . . . , k − 1},

• Ywk
= Xk ∪ {zi : k ≤ i < r}, and
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• if w1 ̸= wk, then Yw1 = X1.2

Note that |Ywi
| = 1 for all i ∈ {2, . . . , k − 1} and for each v ∈ V (H), the subgraph

of G induced by Yv is connected. Furthermore, the aforementioned properties of the
subgraph of G induced by {z1, . . . , zr} imply that {Yv}v∈V (H) is indeed an induced
minor model of H in G.

A repeated application of Lemma 4.5.11 and its proof leads to the following.

Proposition 4.5.12. Let H be a graph, W be a set of edge-disjoint thin walks in H,
and U be the set of all internal vertices of walks in W. Let H be an induced minor of a
graph G. Then, there exists an induced minor model {Xv}v∈V (H) of H in G such that
|Xu| = 1 for all u ∈ U .

Proof. Let {Xv}v∈V (H) be an induced minor model of H in G. Consider a walk W =
(w1, . . . , wk) in W . Modifying the induced minor model {Xv}v∈V (H) as described in
the proof of Lemma 4.5.11 yields an induced minor model {Yv}v∈V (H) of H in G such
that |Yu| = 1 for every internal vertex u in W and, moreover,

⋃k−1
i=2 Ypi ⊆

⋃k−1
i=2 Xpi . In

particular, for any walk W ′ ∈ W such that W ′ ̸= W this procedure does not interfere
with sets Xu for internal vertices u of W . Thus, since no internal vertex of any walk
W belongs to any other walk in W , we can apply the construction to all walks in W
in any order, resulting in an induced minor model {Zv}v∈V (H) of H in G such that
|Zu| = 1 for all u ∈ U .

4.5.2 Sufficient conditions for tameness

In this section we identify new tame classes of graphs defined by a single excluded
induced minor or induced topological minor. Some result of this section will make use
of the following result by Gajarský et al. [115]. Note that a k-skinny ladder is a graph
consisting of two induced anti-adjacent paths P = (p1, . . . , pk), Q = (q1, . . . , qk), an
independent set R = (r1, . . . , rk), and edges

⋃k
i=1{piri, qiri}

Theorem 4.5.13 (Theorem 3 in [115]). For every positive integer k there exists a
polynomial p of degree O(k3 · (8k2)k+2) such that every graph G that is k-creature-free
and does not contain a k-skinny ladder as an induced minor contains at most p(|V (G)|)
minimal separators.

By Theorem 4.5.13, in order to prove that a graph class G is tame, it suffices to
prove that there exists an integer k such that every graph in G is k-creature-free and
does not contain k-skinny ladder as an induced minor. We show that if G is the class
of graphs excluding the butterfly as an induced minor or the class of graphs excluding
the house as an induced topological minor (see Fig. 4.8), then the above condition is
satisfied with k = 3. These results will be crucial for the dichotomy theorems developed
in Section 4.5.3.

Figure 4.8: The butterfly (left) and the house (right).

2Note that if w1 = wk, then Yw1
= Ywk

.
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We start with the easy case of graphs excluding a butterfly as an induced minor.

Lemma 4.5.14. Every butterfly-induced-minor-free graph is 3-creature-free.

Proof. Let G be a butterfly-induced-minor-free graph. Suppose for a contradiction
that there exists a 3-creature H = (A,B,X, Y ) in G, with X = {x1, x2, x3} and
Y = {y1, y2, y3}. Note that each vertex in X = {x1, x2, x3} has a neighbor in A, and
each vertex in Y = {y1, y2, y3} has a neighbor in B. Contracting A ∪ B ∪ {x2, y2} in
H to a single vertex x gives a butterfly graph induced by vertices x, x1, y1, x3, y3, a
contradiction.

Lemma 4.5.15. Let G be a butterfly-induced-minor-free graph. Then, G does not
contain the 3-skinny ladder as an induced minor.

Proof. Suppose for a contradiction that the 3-skinny ladder graph H is an induced
minor of G and let {Xv}v∈V (H) be an induced minor model of H in G. Let
p1, p2, p3, q1, q2, q3, r1, r2, r3 be the vertices of H, as in the definition of k-skinny ladder.
By Proposition 4.5.12 we may assume that Xpi = {pi} and Xqi = {qi} for i ∈ {1, 3} and
Xrj = {rj} for all j ∈ {1, 2, 3}. Contracting the set Xq2 ∪Xp2 ∪{p1, p3, r2} into a single
vertex x results in a butterfly graph induced by {x, r1, q1, r3, q3}, a contradiction.

Lemmas 4.5.14 and 4.5.15 and Theorem 4.5.13 immediately imply the following.

Theorem 4.5.16. The class of butterfly-induced-minor-free graphs is tame.

To derive a similar conclusion for the class of graphs excluding a house as an induced
topological minor, we build on a recent work of Dallard et al. [85] who studied the
class of K2,3-induced-minor-free graphs and obtained a polynomial-time recognition
algorithm for graphs in the class. As part of their approach, they described a family
F of graphs such that a graph G contains K2,3 as an induced minor if and only if G
contains a member of F as an induced subgraph. We omit the exact description of
the family F , as we will not need it; however, a lemma from Dallard et al. [85] used in
their proof will be useful for us.

To explain the lemma, we need to introduce three more specific graph classes (see
Fig. 4.9). Let S be the class of subdivisions of the claw. The class T is the class of
graphs that can be obtained from three paths of length at least one by selecting one
endpoint of each path and adding three edges between those endpoints so as to create
a triangle. The class M is the class of graphs H that consist of a path P and a vertex
a, called the center of H, such that a is non-adjacent to the endpoints of P and a has
at least two neighbors in P . Given a graph H ∈ S ∪ T ∪M, the extremities of H are
the vertices of degree one as well as the center of H in case H ∈ M. Observe that any
graph H ∈ S ∪ T ∪M has exactly three extremities.

Lemma 4.5.17 (Dallard et al. [85]). Let G be a graph and I be an independent set in
G with |I| = 3. If there exists a connected component C of G− I such that I ⊆ N(C),
then there exists an induced subgraph H of G[N [C]] such that H ∈ S ∪ T ∪M and I
is exactly the set of extremities of H.

Using Lemma 4.5.17 we now derive the following.

Lemma 4.5.18. Let G be a graph that does not contain an induced subdivision of the
house. Then, G is 3-creature-free.
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G ∈ S G ∈ T G ∈ M G ∈ M

Figure 4.9: A schematic representation of graphs in S, T , and M. Dashed edges
represent paths of positive length. Dotted edges may be present or not. The figure is
adapted from [85].

Proof. Suppose for a contradiction that there exists a 3-creatureH = (A,B,X, Y ) inG,
with X = {x1, x2, x3} and Y = {y1, y2, y3}. Note that each vertex in X = {x1, x2, x3}
has a neighbor in A. Similarly, each vertex in Y = {y1, y2, y3} has a neighbor in B.
Let QA (resp., QB) be a shortest x1, x2-path (resp., y1, y2-path) of length at least two
in G such that all its internal vertices belong to A (resp., B).

Assume that there exists an edge in X. By symmetry, we may assume that x1x2
is an edge. If y1y2 ∈ E(G), then the vertices {y1, y2} together with the vertices from
the path QA induce a subdivision of the house in G. If y1y2 /∈ E(G), then the vertices
from the paths QA and QB induce a subdivision of the house in G. Both cases lead to
a contradiction, hence, X is an independent set in G, and, by symmetry, so is Y .

Note that A and B induced connected components ofH−X andH−Y , respectively,
and X ⊆ NH(A) and Y ⊆ NH(B). Hence, by Lemma 4.5.17, there exist induced
subgraphs HA and HB of H[N [A]] and H[N [B]], respectively, such that HA, HB ∈
S ∪ T ∪ M and and X and Y are exactly the sets of extremities of HA and HB,
respectively.

Assume first that one of these two graphs belongs to T . Up to symmetry, we may
assume that HA ∈ T . Then, the vertices x1, x2, x3 connect to one triangle in HA. It
follows that the shortest x1, x2-path in HA together with the remaining vertex of the
triangle, the edges x1y1, x2y2, and the path QB form an induced subdivision of the
house in G, a contradiction. We may therefore assume that neither HA nor HB belong
to T . Hence, HA, HB ∈ S ∪M.

Assume next that both graphs HA and HB belong to S. In this case H and, hence,
G contains an induced subgraph of the form Γi,j,k with 3 ≤ i ≤ j ≤ k, which is a
subdivision of the house, yielding a contradiction. Therefore, by symmetry, we may
assume that the graph HA does not belong to S. It follows that HA ∈ M.

Recall that an arbitrary graph in M consists of a path P and a center a such that
a is non-adjacent to the endpoints of P and a has at least two neighbors in P . Up to
symmetry, we may assume that x1 is the center in HA. Let a be the neighbor of x1 in
HA closest to x2 and let a′ be a neighbor of x1 in the same graph such that x1 has no
neighbors in the interior of the path in A from a to a′. Let P be the x2, a′-path in the
graph HA − x1. We now analyze two cases depending on the structure of HB; recall
that HB ∈ S ∪M.

Assume first that HB belongs to S. Then, the path P and the x1, x2-path in HB,
together with the edges x1a, x1a′ form an induced subdivision of the house in G, a
contradiction.

Consider now the case when HB belongs to M. Up to symmetry, there are two
subcases: either x1 is the center of HB, or x2 is the center of HB. Assume first that x1
is the center of HB. Let b be the neighbor of x1 in HB that is closest to x2. Then, the
path P and the x2, b-path in HB together with the edges x1a, x1a′, x1b form an induced
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subdivision of the house in G, a contradiction. Finally, assume that x2 is the center of
HB. Let b be the neighbor of x2 in the path HB − x2 that is closest to x1. Then, the
path P and the x1, b-path in the graph HB together with the edges x1a, x1a′, x2b form
an induced subdivision of the house in G, a contradiction.

It remains to prove that every graph that does not contain any induced subdivision
of the house excludes the 3-skinny ladder as an induced minor. Recall the notation
of graphs Γi,j,k from Chapter 2 and note that the 3-skinny ladder is isomorphic to the
graph Γ2,4,4 (see Fig. 4.10).

b̂

â

c
d

a

b

Figure 4.10: The graphs Γ2,4,4 (left) and Γ2,2,3 (right).

Note also that the graph Γ2,2,3 is an induced minor of the graph Γ2,4,4. Hence,
in order to show that every graph that does not contain any induced subdivision of
the house excludes the 3-skinny ladder as an induced minor, it suffices to show the
following.

Lemma 4.5.19. Let G be a graph that does not contain an induced subdivision of the
house. Then, G is Γ2,2,3-induced-minor-free.

Proof. Suppose for a contradiction that G contains Γ2,2,3 as an induced minor. Note
that the three paths in Γ2,2,3 joining the two vertices of degree three form a collection
of edge-disjoint thin walks in Γ2,2,3. Hence, using the notation from Fig. 4.10, we may
assume by Proposition 4.5.12 that there exists an induced minor model {Xv}v∈V (Γ2,2,3)

of Γ2,2,3 in G such that Xu = {u} for all u ∈ {a, b, c, d}. Denoting by H the subgraph
of G induced by {Xv}v∈V (Γ2,2,3), we have that V (H) = {a, b, c, d} ∪ A ∪B, where both
A and B induce connected subgraphs of H, vertices c and d have neighbors in both A
and B, vertex a has neighbors in A but not in B, vertex b has neighbors in B but not
in A, and ab is an edge in H, and the sets {a, c, d} and {b, c, d} are independent in H.

Note that A is a connected component of H − SA such that each vertex in SA =
{a, c, d} has a neighbor in A. Similarly, B in a connected component of H − SB such
that each vertex in SB = {b, c, d} has a neighbor in B. By Lemma 4.5.17, there exist
induced subgraph HA of H[N [A]] and HB of H[N [B]], such that HA, HB ∈ S ∪T ∪M
and SA and SB are exactly the sets of extremities of HA and HB, respectively.

Assume first that one of these two graphs belongs to T . Up to symmetry, we may
assume that HA ∈ T . Then, the vertices a, c, d connect to one triangle in A. Let P
be a shortest c, d-path with interior in B. It follows that the shortest c, d-path in HA,
together with the remaining vertex of the triangle and the path P induces a subdivision
of the house in G. We may therefore assume that neither HA nor HB belong to T .
Hence, HA, HB ∈ S ∪M.

Assume next that both of these graphs belong to S. In this case G contains an
induced subgraph of the form Γi,j,k with 2 ≤ i ≤ j ≤ k such that k ≥ 3, which is
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a subdivision of the house. This yields a contradiction, and by symmetry, we may
assume that HA ∈ M.

In the rest of the proof, we will consider the graph H ′ obtained from H by contract-
ing the edge ab. Denoting by u the contracted vertex, observe that the set S = {u, c, d}
is an independent set in H ′. Furthermore, A and B are connected components of H ′−S
and each vertex of S is adjacent in H ′ to some vertex in each of A and B. Hence, by
Lemma 4.5.17, there exist induced subgraphs H ′

A and H ′
B of H ′[N [A]] and H ′[N [B]],

respectively, such that H ′
A, H

′
B ∈ S ∪ T ∪M and S is exactly the sets of extremities

of H ′
A and H ′

B.
By analyzing various cases regarding the structure of these two graphs, we next

show that H ′ contains an induced subdivision of the house. Since the graph H is
obtained from the graph H ′ by subdividing an edge, this will imply that H, and hence
also G, contains an induced subdivision of the house, a contradiction.

Note first that, since the graph H ′[N [A]] is isomorphic to the graph H[N [A]], it
follows that H ′

A ∈ M. We may assume that u is the center in H ′
A. The graph H ′

B

either belongs to S or to M. Let x be the neighbor of u in the graph H ′
A closest to c

and let x′ be a neighbor of u in the same graph such that u has no neighbors in the
interior of the path in A from x to x′. Let P be a c, x′-path in the graph H ′

A − u. We
consider three cases.

Assume first that H ′
B ∈ S. Then the path P and the shortest c, u-path in the graph

H ′
B, together with the edges ux, ux′ form a subdivision of the house in the graph H ′,

a contradiction.
Consider now the case when H ′

B ∈ M and u is a center of H ′
B. Let y be the

neighbor of u in the graph H ′
B closest to c. Then the path P and the c, y-path in the

graph H ′
B together with the edges ux, ux′, uy form a subdivision of the house in the

graph H ′, a contradiction.
Finally, assume that H ′

B ∈ M and c is the center of H ′
B. Let y be the neighbor of c

in the path H ′
B − c closest to u. Then, the path P and the u, y-path in the graph H ′

B

together with the edges ux, ux′, cy form a subdivision of the house in the graph H ′, a
contradiction.

Theorem 4.5.20. The class of graphs that do not contain an induced subdivision of
the house is tame.

Proof. Let G be a class of graphs that do not contain an induced subdivision of
the house and let G be a graph in G. By Lemma 4.5.18, G is 3-creature-free. By
Lemma 4.5.19, G is Γ2,2,3-induced-minor-free. Since the graph Γ2,2,3 is an induced mi-
nor of the graph Γ2,4,4, which is isomorphic to the 3-skinny ladder, we conclude that
G does not contain a 3-skinny ladder as an induced minor. By Theorem 4.5.13, G is
tame.

We state the following corollary for later use.

Corollary 4.5.21. The class of house-induced-minor-free graphs is tame.

Proof. Immediate from Theorem 4.5.20 and Observation 4.1.2, since the class of house-
induced-minor-free graphs is a subclass of the class of graphs that do not contain any
induced subdivision of the house.
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4.5.3 Dichotomy results

In this section we prove Theorems 4.5.6 and 4.5.7, characterizing tame graph classes
among graph classes excluding a single graph as an induced minor or as an induced
topological minor. Recall that a short prism is a graph consisting of two cliques of the
same cardinality, and a matching between them and a short theta is a graph consisting
of non-adjacent vertices a and b and at least three internally disjoint (anticomplete)
paths of length three between them. We restate here two of the results presented
in Section 4.3, as we will refer to them in the rest of this section.

Observation 4.5.22. (1) The class of all short prisms is feral.

(2) The class of all short thetas is feral.

We proceed with a lemma characterizing graphs that are simultaneously induced
minors of both some short prism and some short theta. In order to do that, we need
a preparatory technical lemma regarding graph parameters that, informally speaking,
measure the distance to minor-closed classes. Let F be a family of graphs. For a graph
G, we define the following parameter: cF(G) = min{|S| : G− S is F -minor-free} (see,
e.g., [96]).

Lemma 4.5.23. Let F be a family of graphs and let G and H be graphs such that H
is a minor of G. Then, cF(H) ≤ cF(G).

Proof. Let k = cF(G). It suffices to show that any graph G′ obtained from G by
a single vertex deletion, edge deletion, or edge contraction satisfies cF(G′) ≤ k. Let
S ⊆ V (G) be a set of size k such that G− S is F -minor-free.

If G′ = G − v for some vertex v ∈ V (G), then S ′ = S ∩ V (G′) is a set of size at
most k such that G′ − S ′ is an induced subgraph of G− S and, hence, F -minor-free.

If G′ = G − e for some edge e ∈ E(G), then G′ − S is a subgraph of G − S and,
hence, F -minor-free.

Finally, assume that G′ = G/e for some edge e = uv ∈ E(G), and let w be the
new vertex. If at least one of u and v belongs to S, then S ′ = (S \ {u, v}) ∪ {w} is a
set of size at most k such that G′ − S ′ is an induced subgraph of G − S and, hence,
F -minor-free. Otherwise, u, v ∈ V (G) \ S, in which case G′ − S is a minor of G − S
and, hence, F -minor-free.

We need the following special case of Lemma 4.5.23. A feedback vertex set in a
graph G is a set S ⊆ V (G) such that G− S is acyclic. The feedback vertex set number
of G, denoted by fvs(G), is the minimum cardinality of a feedback vertex set. Since
a graph is acyclic if and only if it does not contain the cycle C3 as a minor, we have
fvs(G) = cF(G) for F = {C3}; hence, the following holds.

Corollary 4.5.24. If a graph H is a minor of a graph G, then fvs(H) ≤ fvs(G).

This result has the following consequence.

Corollary 4.5.25. Let H be a graph that is a minor of some short theta. Then,
fvs(H) ≤ 1.

Proof. Let k be a positive integer, let G be the k-theta and let H be a minor of G. Since
deleting a vertex of degree k from G results in an acyclic graph, we have fvs(G) ≤ 1.
Hence, Corollary 4.5.24 implies that fvs(H) ≤ fvs(G) ≤ 1.
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P2 + P1 K3 2P2

C4

paw

diamond house butterfly

Figure 4.11: Some small graphs.

We can now prove the announced result, a characterization of graphs that are
induced minors of some short prism, as well as of some short theta. It turns out that
there are only finitely many such graphs. Some of them are depicted in Fig. 4.11.

Lemma 4.5.26. Let H be a graph that is an induced minor of some short prism and
of some short theta. Then H is an induced subgraph of the diamond, the butterfly, or
the house.

Proof. Let k ≥ 3 and ℓ ≥ 3 be integers and let H be a graph that is an induced minor
of the k-prism and of the ℓ-theta. Let G1 be the k-prism and let G2 be the ℓ-theta.
We prove a few claims about the structure of H.

Claim 1: H is K4-minor-free.
Proof of Claim 1. Since fvs(K4) = 2 while fvs(G2) ≤ 1, Corollary 4.5.25 implies that
G2 is K4-minor-free. But then so is H. ♦

Claim 2: H is (K3 + P1)-free.

Proof of Claim 2. It suffices to show that G2 is (K3+P1)-induced-minor-free. Suppose
for a contradiction that H̃ = K3 + P1 is an induced minor of G2. Label the vertices of
H̃ by p, q, r, s so that s is the isolated vertex and the vertices p, q, r form a triangle. Let
{Xp, Xq, Xr, Xs} be an induced minor model of H̃ in G2. Any two of the sets Xp, Xq,
and Xr are connected by an edge in G; using one such edge per pair and, for each of
the sets Xp, Xq, and Xr, a path connecting the endpoints of those edges belonging to
the set, we obtain a cycle C in G2. Since every vertex of G2 either belongs to C or has
a neighbor on it, the set Xs cannot be anticomplete to Xp ∪Xq ∪Xr; a contradiction
with the fact that {Xp, Xq, Xr, Xs} is an induced minor model of H̃ in G2. ♦

Claim 3: H is gem-free.

Proof of Claim 3. It suffices to show that G2 is gem-induced-minor-free. Suppose
for a contradiction that the gem H̃ is an induced minor of G2. Label the vertices
of H̃ by v1, v2, v3, v4, v5 so that (v1, v2, v3, v4) is an induced P4 and v5 is universal in
H̃. Let {Xv}v∈V (H̃) be an induced minor model of H̃ in G2. Note that G2 contains
two vertices a and b that belong to every cycle. We claim that {a, b} ⊆ Xv5 . This
is true, for if up to symmetry a ̸∈ Xv5 , then there exists some i ∈ {1, 2, 3} such that
a ̸∈ Xvi ∪ Xvi+1

∪ Xv5 and, hence, the subgraph of G2 induced by Xvi ∪ Xvi+1
∪ Xv5

contains a cycle not containing a, a contradiction. Since {a, b} ⊆ Xv5 , the subgraph
of G2 induced by

⋃4
i=1Xvi is an induced subgraph of G2 − {a, b}, that is, of kP2. But
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there is a path of length at least 3 in
⋃4

i=1Xvi , which cannot be contained in kP2, a
contradiction. ♦

We now use Claims 1–3 to analyze the structure of H, showing that H must be
isomorphic to an induced subgraph of the diamond, the butterfly, or the house. Note
that any such graph is either a path Pn or an edgeless graph nP1 for some n ≤ 4, or
one of the graphs depicted in Fig. 4.11.

Since G1 is cobipartite and H can be obtained by contracting edges of an induced
subgraph of G1, we infer that H is also cobipartite. Then the vertex set of H is a union
of two cliques A and B. Since H is K4-free, each of A and B has at most 3 vertices.
Furthermore, By Corollary 4.5.24 it follows that fvs(H) ≤ 1 and so at most one of the
cliques A and B contains a cycle. Hence, H has at most five vertices. We may assume
without loss of generality that |A| ≥ |B|.

If A has a single vertex, then H is isomorphic to either P1, 2P1, or P2. If A has
two vertices and B has at most one vertex, then H is isomorphic to either P2, P3, or
K3. If both A and B have two vertices, let A = {a1, a2} and B = {b1, b2}. Since
H is K4-minor-free, A and B are not complete to each other. Up to symmetry, let
a1b1 /∈ E(H). Depending on the existence of other edges between A and B we get that
H is isomorphic to either 2P2, P4, C4, the paw, or the diamond.

Consider now the case when A = {a1, a2, a3}. If B is empty, then H ∼= K3. If B
consists of a single vertex, then this vertex has either one or two neighbors in A, since
H is {K4, K3 + P1}-free. In the first case, it follows that H is a paw. In the second
case H is a diamond. Finally, assume that B consists of two vertices b1 and b2. If b1
and b2 have a common neighbor in A, we may assume that they are both adjacent to
the vertex a1. If H has no other edges, then H is a butterfly. If, up to symmetry,
a2b1 ∈ E(H), then a2b2 /∈ E(H) and a3b1 /∈ E(H) since H is K4-free. Since H is not
isomorphic to the gem, we have that a3b2 ∈ E(H), and, hence, fvs(H) = 2, which is in
contradiction with Corollary 4.5.25.

If b1 and b2 have no common neighbors in A, up to symmetry we may assume
that a1b1 ∈ E(H) and a2b2 ∈ E(H), while a1b2 and a2b1 are non-edges in H. Since
H is K4-minor-free, neither of the two vertices in B is adjacent to a3, hence, H is a
house.

We now have everything ready to prove Theorems 4.5.6 and 4.5.7, which we restate
for the convenience of the reader.

Theorem 4.5.6. Let H be a graph and let G be the class of graphs that do not contain
H as an induced minor. Then, the following statements are equivalent:

(1) G is tame.

(2) G is not feral.

(3) H is an induced subgraph of the diamond, the butterfly, or the house.

(4) H is an induced minor of the butterfly or of the house.

Proof. Clearly, (1) implies (2). We next prove that (2) implies (3). Assume that G is
not feral. By Observation 4.5.22, neither the class of short prisms nor the class of short
thetas is a subclass of G. Hence, there exist integers k ≥ 3, ℓ ≥ 3 such that H is an
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induced minor of the k-prism and of the ℓ-theta. By Lemma 4.5.26, it follows that H
is an induced subgraph of the diamond, the butterfly, or the house.

Since the diamond is an induced minor of the house, (3) implies (4).
It remains to prove that (4) implies (1). If H is an induced minor of the butterfly,

then G is a subclass of the class of butterfly-induced-minor-free graphs and G is tame by
Theorem 4.5.16. If H is an induced minor of the house, then G is a subclass of the class
of the class of house-induced-minor-free graphs and G is tame by Corollary 4.5.21.

Theorem 4.5.7. Let H be a graph and let G be the class of graphs that do not contain
an induced subdivision of H. Then, the following statements are equivalent:

(1) G is tame.

(2) G is not feral.

(3) H is an induced subgraph of 2P2, the diamond, or the house.

(4) H is an induced topological minor of 2P2 or of the house.

Proof. Clearly, (1) implies (2). We next show that (2) implies (3). Let G be non-feral.
By Observation 4.5.22, neither the class of short prisms nor the class of short thetas
is a subclass of G. Hence, there exist integers k ≥ 3, ℓ ≥ 3 such that the k-prism G1

and the ℓ-theta G2 both contain an induced subdivision of H. In other words, H is
an induced topological minor of both G1 and G2, and in particular, an induced minor
of both G1 and G2. It follows from Lemma 4.5.26 that H is an induced subgraph of
the diamond, the butterfly, or the house. Note that every proper induced subgraph
of the butterfly is also an induced subgraph of either 2P2, the diamond, or the house
(see Fig. 4.11). Hence, to complete the proof of the implication, it suffices to show that
H is not a butterfly.

Suppose for a contradiction that H is the butterfly. Then, G2 contains an induced
subdivision of the butterfly. Let F be an induced subdivision of the butterfly contained
in G2 and let x be the vertex of degree 4 in F (all other vertices in F are of degree
2). Let a and b be the two vertices of degree ℓ in G2. Every induced cycle in G2 (and
thus in F ) contains both a and b, so any two induced cycles in G2 have at least two
common vertices. But the two cycles of F intersect only in x, a contradiction.

Since the diamond is an induced topological minor of the house, (3) implies (4).
It remains to prove that (4) implies (1). If H is an induced topological minor of

2P2, then G is a subclass of the class of 2P2-free graphs. The class of 2P2-free graphs
is tame (by Corollary 4.1.6), and we infer that the class G is tame as well. If H is an
induced topological minor of the house, then the class G is a subclass of the class of
graphs that do not contain any induced subdivision of the house, and G is tame by
Theorem 4.5.20.

4.6 Recognition algorithms

In this section we give polynomial-time algorithms for the recognition of maximal tame
graph classes appearing in our dichotomy theorems Theorems 4.5.6 and 4.5.7 (except
for the class of 2P2-free graphs, which we already discussed). We first prove Theo-
rem 4.5.9, dealing with graphs containing the house as an induced topological minor,
in Section 4.6.1. The result for graphs containing the house as an induced minor
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and developed in Section 4.6.2 by a reduction to the induced topological minor case.
Finally, we explain in Section 4.6.3 a result due to Dumas and Hilaire (personal com-
munication, 2024) leading to a polynomial-time recognition algorithm for determining
if a given graph contains the butterfly as an induced minor.

Note that by n and m we denote the number or vertices and edges of input graph,
respectively. When discussing the running times of algorithms, we will slightly abuse
the notation by writing O(m) instead of O(n+m) for linear running time.

4.6.1 Proof of Theorem 4.5.9

In order to recognize graphs excluding the house as an induced topological minor, we
first characterize this graph class in terms of two families of forbidden induced sub-
graphs. Then, we apply the three-in-a-tree algorithm by Chudnovsky and Seymour [64]
and a result due to Trotignon and Pham [228].

Building on the terminology of Trotignon and Pham [228], we say that a long
unichord in a graph is an edge that is the unique chord of some cycle of length at least
5. A graph is long-unichord-free if it does not contain any long unichord. A long theta is
any theta graph other than K2,3, that is, a graph of the form Γi,j,k with min{i, j, k} ≥ 2
and max{i, j, k} ≥ 3. A graph is long-theta-free if it does not contain any long theta
as an induced subgraph. These concepts lead to the following characterization of the
class of graphs not containing any induced subdivision of the house.

Lemma 4.6.1. A graph G does not contain any induced subdivision of the house if
and only if G is long-unichord-free and long-theta-free.

Proof. Note that if a graph G contains a long unichord ab, then G contains a cycle C
with length at least 5 such that ab is the unique chord of C. In this case, the subgraph
of G induced by V (C) is isomorphic to a graph of the form Γ1,j,k for some two integers
j ≥ 2 and k ≥ 3. The converse also holds, hence, G contains a long unichord if and
only if G contains an induced subgraph isomorphic to a graph of the form Γ1,j,k with
j ≥ 2 and k ≥ 3. Similarly, G contains an induced long theta if and only if it contains
an induced subgraph isomorphic to a graph of the form Γi,j,k such that i, j ≥ 2 and
k ≥ 3.

Since the house is isomorphic to the graph Γ1,2,3, any subdivision of the house is
isomorphic to the graph Γi,j,k for some i ≥ 1, j ≥ 2, and k ≥ 3. Hence, a graph
G contains an induced subdivision of the house if and only if G contains an induced
subgraph isomorphic to the graph Γi,j,k for some i ≥ 1, j ≥ 2, k ≥ 3. As shown above,
the cases i = 1 and i ≥ 2 correspond to the cases when G contains a long unichord
and an induced long theta, respectively.

By Lemma 4.6.1, we can determine whether a given graph contains an induced
subdivision of the house by testing if it has a long unichord or an induced long theta.
The former problem has already been solved in the literature, as follows.

Theorem 4.6.2 (Trotignon and Pham [228]). Deciding whether a given graph G has
a long unichord can be performed in time O(n4m2).

In order to test for an induced long theta, we modify an algorithm by Chudnovsky
and Seymour [64] to determine whether a given graph G contains an induced theta.
The key ingredient in the proof is an efficient solution to the three-in-a-tree problem,
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which takes as input a graph G and a set X ⊆ V (G) with |X| = 3, and the task
is to determine whether G contains an induced subgraph T such that T is a tree
and X ⊆ V (T ). Chudnovsky and Seymour gave an algorithm for the three-in-a-tree
problem running in time O(mn2) (see [64]). This time complexity was significantly
improved by Lai et al. [160], who gave an algorithm running in time O(m log2 n).

Proposition 4.6.3. Deciding whether a given graph G contains an induced long theta
can be performed in time O(n8m log2 n).

Proof. Let G be a graph with n vertices and m edges. Enumerate all five-tuples
(a, b, v1, v2, v3) of distinct vertices such that vertex a is adjacent to each of the ver-
tices in {b, v1, v2}, vertex b is adjacent to v3, vertices in {v1, v2, v3} are pairwise non-
adjacent, and vertices in {b, v1, v2} are pairwise non-adjacent. For each such five-tuple
(a, b, v1, v2, v3), enumerate all subsets X ⊆ V (G) such that a and b have no neighbors
in X, and v1, v2, v3 each have exactly one neighbor in X, and each member of X is
adjacent to at least one of v1, v2, v3 (it follows that |X| ≤ 3). For each such choice of
X, let G′ be obtained from G by deleting a, b and all vertices adjacent to one of a, b,
v1, v2, v3 except for the members of {v1, v2, v3}∪X and test whether there is an induced
tree in G′ containing all of v1, v2, v3. Indeed, we claim that G contains an induced long
theta if and only if there is some choice of a, b, v1, v2, v3, and X such that G′ contains
an induced subgraph T such that T is a tree and {v1, v2, v3} ⊆ V (T ). Assuming the
claim, we have to run the three-in-a-tree algorithm at most n8 times, and each one
takes time O(m log2 n).

It remains to show the claim. Suppose first that G contains an induced long theta,
that is, an induced subgraph H isomorphic to a graph of the form Γi,j,k such that
i, j ≥ 2 and k ≥ 3. Let P 1, P 2, and P 3 be the three edge-disjoint paths forming Γi,j,k

of lengths i, j, and k, respectively. Let a be a vertex of degree 3 in H, let v1 and v2 be
the neighbors of a in P 1 and P 2, respectively, let b be the neighbor of a in P 3, and let
v3 be the neighbor of b in P 3 other than a. For i ∈ {1, 2, 3}, let xi be the neighbor of vi
in P i such that X = {x1, x2, x3} is disjoint from {a, b}. Let G′ be the graph obtained
from G by deleting a, b and all vertices adjacent to one of a, b, v1, v2, v3 except for the
members of {v1, v2, v3} ∪X. Then T = H − {a, b} is an induced subgraph of G′ such
that T is a tree and {v1, v2, v3} ⊆ V (T ).

Conversely, suppose that there is some choice of a, b, v1, v2, v3, and X in G such
that G′ contains an induced subgraph T such that T is a tree and {v1, v2, v3} ⊆ V (T ).
We may assume that T is an inclusion-minimal induced subtree of G′ such that
{v1, v2, v3} ⊆ V (T ). By the minimality of T , the tree T has at most three leaves,
and if it has three leaves, then the leaves are exactly the vertices v1, v2, and v3. If T
has only two leaves, then T is a path from vp to vq having vr as an internal vertex,
where {p, q, r} = {1, 2, 3}. However, this means that vr two neighbors in X, a contra-
diction. Hence, T has exactly three leaves, namely v1, v2, and v3, and, furthermore,
the minimality of T implies that T is isomorphic to a subdivision of a claw. It follows
that the subgraph of G induced by V (T ) ∪ {a, b} is a theta; in fact, it is a long theta,
since the path between the two vertices of degree three containing b has length at least
three.

Theorem 4.5.9. Determining if a given graph G contains the house as an induced
topological minor can be done in time O(n8m log2 n).

Proof. The result follows from Lemma 4.6.1, Proposition 4.6.3, and Theorem 4.6.2.
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4.6.2 Proof of Theorem 4.5.8

In this section we show that detecting if a graph contains the house as an induced minor
can be done in polynomial time. To reduce this problem to the induced topological
minor case, we show (in Theorem 4.6.5) that the existence of the house as the induced
minor in a graph G is equivalent to the existence of the house as an induced topological
minor or an induced long twin wheel in G, that is, a graph obtained from a cycle of
length at least five by replacing a vertex with a pair of adjacent vertices with the same
closed neighborhoods.

First we show a useful result about graphs that do not contain the house as an
induced topological minor (or, equivalently, graphs that do not contain any induced
subdivision of the house). Given a graph G, a subgraph H of G, and a vertex v ∈
V (G) \ V (H), we say that v is a pendant of H if v is adjacent to a single vertex of H.

Lemma 4.6.4. Let G be a graph that does not contain any induced subdivision of the
house, H be a hole in G and v ∈ V (G) \V (H) be a vertex with a neighbor in H. Then
one of the following is true: v is pendant of H, or the neighbors of v in H are exactly
three vertices that are consecutive, or v is universal for H.

Proof. Let G, H, v be as stated and let v1, . . . , vk be vertices of H in a cyclic order. If
v has only one neighbor in H, or is universal for H, we are done, so we may assume
that v has at least two neighbors in H and at least one non-neighbor in H. If v has
exactly two neighbors in H, then V (H) ∪ {v} induce a subdivision of the house in G.
It follows that v has at least three neighbors in H. Without loss of generality we may
assume that vv1 ∈ E(G) and vvk /∈ E(G). Let vi and vj be neighbors of v in H such
that 1 < i < j < k and no vertex vℓ with i < ℓ < j is adjacent to v. If v1, vi, vj are not
consecutive, then v and the vertices of the v1, vj-path in H − vk induce a subdivision
of the house in G; a contradiction. Hence, v1, vi, vj are consecutive in H, that is, i = 2
and j = 3. If there is a neighbor of v in G among the vertices {v4, . . . , vk−1}, let vℓ be
the one with the largest index. Then v and the vertices of the v2, vℓ-path in H − v3
induce a subdivision of the house in G; a contradiction. It follows that such a vertex
vℓ cannot exist and v has exactly three consecutive neighbors in H.

A long twin wheel is a graph consisting of a hole H of length at least 5 and of
another vertex v, called the center, such that v has degree three and the neighborhood
of the center induces a connected graph in H.

Theorem 4.6.5. Let G be a graph. Then the following statements are equivalent.

1. G does not contain the house as an induced minor.

2. G does not contain an induced subdivision of the house and does not contain an
induced long twin wheel.

Proof. First we prove that (1) implies (2). Let G be a graph that does not contain
the house as an induced minor. Since an induced topological minor is a particular
case of an induced minor, it follows that G does not contain an induced subdivision
of the house. Suppose for a contradiction that G contains a long twin wheel H as an
induced subgraph. Let v0, v1, . . . , vk be vertices of the hole in H, in a cyclic order,
and let v be the center of H. Up to symmetry, we may assume that v0, v1, v2 are the
neighbors of v in H. Contracting all the edges of the hole in H, except those incident
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with vk and v2 gives a house in G, a contradiction with the assumption that G is
house-induced-minor-free.

Now we prove that (2) implies (1). Let G be a graph that does not contain an
induced subdivision of the house and does not contain an induced long twin wheel.
Let H be a house obtained from the 5-cycle with vertices p, q, r, s, t in cyclic order by
adding to it the chord qt and assume that G contains H as an induced minor. Let
{Xv}v∈V (H) be an induced minor model of H in G. By Proposition 4.5.12, we may
assume that the sets Xs, Xr and Xp are all singletons and let Xs = {a}, Xr = {b} and
Xp = {c}. For simplicity, we denote sets Xt and Xq by A and B, respectively. Then
G contains two connected subsets A and B and vertices a, b, c ∈ V (G) \ (A ∪ B) such
that a and b are adjacent, a has a neighbor in A but not in B, b has a neighbor in B
but not in A, c has a neighbor in both A and B but is not adjacent to any of a and b,
and there is an edge between A and B.

By assumption, there exists an edge in G with endpoints in A and B, so the
subgraph of G obtained from G[A∪B ∪{a, b}] by deletion of the edge ab is connected.
Hence, there is an induced a, b-path in G[A ∪ B ∪ {a, b}] − ab. Note that every such
path is of length at least 3. Let P be the set of all such induced a, b-paths in G[A∪B∪
{a, b}]−ab. Given P ∈ P , let HP be the hole consisting of the edge ab and of the path
P , let PA be a shortest path from c to the hole HP such that all vertices of PA other
than c belong to A, and let PB be a shortest path from c to the hole HP such that all
vertices of PB other than c belong to B. Finally, let P ∈ P be a path that minimizes
the number |E(HP )| + |E(PA)| + |E(PB)|. In the rest of the proof we simply denote
by H the hole HP .

Let cA and cB be vertices on PA and PB, respectively, that have neighbors on H.
Assume first that both PA and PB are of length one. Then c = cA = cB has

at least two neighbors in H. As G is a graph without an induced subdivision of the
house, by Lemma 4.6.4 it follows that c is either universal for H, or has exactly three
consecutive neighbors in H. However, since c is not adjacent to a and b, it follows
that c has exactly three consecutive neighbors in H. Thus, H has at least five vertices
and together with c induces a long twin wheel, a contradiction to the definition of G.
Hence, up to symmetry, we may assume that c ̸= cA and thus PA is of length at least
two.

All internal vertices of PA belong to A, so cA is not adjacent to b. Then, by
Lemma 4.6.4, it follows that cA either has one neighbor in H or it has exactly three
consecutive neighbors in H. Assume first that cA has exactly three consecutive neigh-
bors in H. If |V (H)| ≥ 5, then H together with cA induces a long twin wheel, a contra-
diction. This implies that H is a hole on four vertices. Let {a, b, y, x} be vertices in H,
in cyclic order. Then defining H ′ to be the hole induced by {a, b, y, cA} implies that the
corresponding shortest paths from c to H ′ are defined as QA = PA − x and QB = PB.
Altogether we have that |E(H ′)|+ |E(QA)|+ |E(QB)| < |E(H)|+ |E(PA)|+ |E(PB)|,
which contradicts the minimality of P . Hence, cA has exactly one neighbor on the hole
H.

By symmetry, a similar argumentation can be used to verify that cB (if not equal to
c) has exactly one neighbor on H. Moreover, if c = cB, then by Lemma 4.6.4 it follows
that c either has three consecutive neighbors on H, or c has exactly one neighbor
in H. In the first case it follows that H and c together induce a long twin wheel, a
contradiction to definition of G. Hence, in either case, cB also has exactly one neighbor
on the hole H.
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If there is some edge uv in G such that u is an internal vertex of the path PA,
u ̸= cA, and v belongs to the hole H, then the path consisting of the c, u-subpath of PA

and of the edge uv can be taken instead of the path PA, contradicting the minimality
condition. By symmetry, the same holds for u being the internal vertex of the path
PB, distinct than cB. It follows that the internal vertices of paths PA and PB, distinct
than cA and cB have no neighbors in H.

If the sets of internal vertices of PA and PB are anticomplete to each other, then H
together with PA and PB induces a subdivision of the house, so we may assume there
is some edge connecting the internal vertices of PA and PB. Let x be the neighbor of cA
in H, and let y be the neighbor of cB in H. Note that x ̸= y, since x ∈ A, y ∈ B. We
know that there is an x, y-path in G[V (PA) ∪ V (PB)]. Let Q be a shortest such path.
The existence of the edge connecting the internal vertices of PA and PB ensures that
c /∈ V (Q). Let R be the x, y-path in the hole H that contains vertices a and b, and let
S be the xy-path in H − a.

Clearly, Q is of length at least three, and at least one of the paths R and S is of
length at least two, so the vertices of paths R, S, Q induce an Γi,j,k with i ≥ 1, j ≥ 2,
k ≥ 3. But then Γi,j,k is an induced subdivision of the house in G, a contradiction.

Theorem 4.5.8. Determining if a given graph G contains the house as an induced
minor can be done in time O(n8m log2 n).

Proof. Let G = (V,E) be a graph. By Theorem 4.6.5, in order to test if G is house-
induced-minor-free, it suffices to check whether G contains an induced subdivision of
the house and whether G contains an induced long twin wheel. If any of these condi-
tions is satisfied, then G is not house-induced-minor-free; otherwise, it is. The former
condition can be tested in polynomial time by Theorem 4.5.9. The latter condition
can also be tested in polynomial time, as follows. It is not difficult to verify that G
contains an induced long twin wheel if and only if there exist four vertices a, b, c, d in G
such that the subgraph of G induced by {a, b, c, d} is isomorphic to the diamond, the
vertices a and d are non-adjacent, and there exists an a, d-path in the graph obtained
from G by deleting from it the vertices in (N [b] ∪N [c]) \ {a, d} as well as all common
neighbors of a and d. Checking this condition over all the four-tuples of vertices of G
can be done in time O(n4(n+m)).

4.6.3 Detecting the butterfly as an induced minor

Determining if a given graph G contains the butterfly as an induced minor can also be
done in polynomial time. This is an immediate consequence of the following charac-
terization of graphs containing the butterfly as an induced minor.

Proposition 4.6.6 (Maël Dumas and Claire Hilaire, personal communication, 2024).
Let G be a graph. Then, G contains the butterfly as an induced minor if and only if
there exists a set X ⊆ V (G) inducing a subgraph isomorphic to 2P2 and a connected
component C of the graph G−X such that every vertex in X has a neighbor in C.

For completeness, we include a short proof of Proposition 4.6.6 based on Proposi-
tion 4.5.12.

Proof. Assume first there exists a set X ⊆ V (G) inducing a subgraph isomorphic to
2P2 and a connected component C of the graph G−X such that every vertex in X has
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a neighbor in C. Deleting all vertices in V (G) \ (X ∪ V (C)) and contracting all edges
within C results in the butterfly, showing that G contains the butterfly as an induced
minor.

Conversely, assume that the butterfly is an induced minor of G. Fix a graph H
isomorphic to the butterfly, let z the vertex of degree 4 in H and let U = V (H) \ {z}.
Then U is the set of vertices of degree 2 in H. By Proposition 4.5.12, there exists
an induced minor model {Xv}v∈V (H) of H in G such that |Xu| = 1 for all u ∈ U .
Let X =

⋃
u∈U Xu. Then, the subgraph of G induced by X is isomorphic to 2P2.

Furthermore, since the set Xz induces a connected subgraph of G −X, there exists a
connected component C of the graph G−X such that X ⊆ V (C). Since every vertex
in U is adjacent to z in H, every vertex in X is adjacent in G to a vertex in Xz and
hence to a vertex in C. This completes the proof.

Theorem 4.6.7. Determining if a given graph G contains the butterfly as an induced
minor can be done in time O(n5(n+m)).

Proof. Immediate from Proposition 4.6.6. Indeed, given a graph G = (V,E), we check
all subsets X ⊆ V (G) with |X| = 4. For each such subset inducing a 2K2, we compute
the connected components C of the graph G − X, for each of them we compute the
neighborhood of V (C) in G and test if X ⊆ N(V (C)). If one such pair (X,C) is found,
then G contains the butterfly as an induced minor, otherwise, it does not.



Chapter 5

Extremal number of minimal
separators

Many graph algorithms are based on minimal separators of the input graph, and the
number of minimal separators directly influences the running time of such algorithms.
Typically, the first step in an algorithm based on minimal separators is a complete
enumeration of the family of minimal separators of the graph. The most efficient
known algorithm that enumerates all the minimal separators in a graph was developed
by Berry et al. [25] and runs in time O(n(n + m)s) where n, m, and s denote the
number of vertices, edges, and minimal separators of the input graph, respectively.1
Therefore, since the number of minimal separators directly influences the running time
of such algorithms, it is important not only to identify graph classes with a polynomially
bounded number of minimal separators, but also to develop sharp upper bounds for
the number of minimal separators in such graph classes.

For example, n-vertex split graphs have no more than n minimal separators [196]
and, more generally, the same is true for n-vertex chordal graphs [212] and 2P2-
free graphs. For n-vertex cographs and, more generally, n-vertex P4-sparse graphs,
Nikolopoulos and Palios established an upper bound of 2n/3 on the number of mini-
mal separators [187].

In this chapter we address the extremal question of determining the maximum
number of minimal separators in an n-vertex graph from a given class, for a number of
interrelated graph classes with at most a linear number of minimal separators: thresh-
old graphs, split graphs, cographs, trivially perfect graphs and their complements,
pseudo-split graphs, and 2P2-free graphs. These graph classes have been studied in
the literature from various points of view (see [46]). They admit a variety of charac-
terizations; in particular, they can all be defined with a small set of forbidden induced
subgraphs, which is a subset of the set {2P2, P4, C4, C5}. For each of these classes, we
establish exact values for the maximum number of minimal separators in an n-vertex
graph that belongs to the class.

1The authors only proved a running time of O(n3) per separator but the actual bound is O(n(n+
m)) per separator, see [176].
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5.1 Preliminary remarks

Given a graph class G and a positive integer n, we denote by fG(n) the maximum
number of minimal separators over all n-vertex graphs G ∈ G (with fG(n) = 0 if
G contains no n-vertex graph). If G is the class of all graphs, then fG(n) is in
O
(
((1 +

√
5)/2)n · n

)
[113,123]. In this chapter we determine the exact values of fG(n)

for various graph classes and all values of n. Our results are summarized in Table 5.1
and presented in detail in Sections 5.2 and 5.3.

Graph class G Forbidden induced subgraphs fG(n)

threshold graphs [67] {2P2, P4, C4} ⌈(n− 1)/2⌉
trivially perfect graphs [126] {P4, C4} ⌈(n− 1)/2⌉
co-trivially perfect graphs {2P2, P4} ⌈2n/3⌉ − 1

cographs [73] {P4} ⌈2n/3⌉ − 1

split graphs [108] {2P2, C4, C5} n− ⌊log n⌋ − a(n)

pseudo-split graphs [169] {2P2, C4} n− ⌊log n⌋+ b(n)

2P2-free graphs {2P2} n

Table 5.1: Summary of our results. Functions a and b in the right column satisfy
a : N → {0, 1} and b : N → {−1, 0, 1, 2}. Moreover, log n = log2 n.

The family of minimal separators of a disconnected graph can be computed from
the families of minimal separators of its components, and a similar statement holds for
graphs whose complements are disconnected.

Recall that Corollaries 3.2.2 and 3.2.3 describe the number of separators in the
graph in terms of the number of minimal separators in its connected components, or
in connected components in the complement of the graph. We restate them below to
keep this chapter self-contained.

Corollary 3.2.2. Let G be a disconnected graph, with components G1, . . . , Gk. Then
s(G) =

∑k
i=1 s(Gi) + 1.

Corollary 3.2.3. Let G1, . . . , Gk be graphs and let G be the join of G1, . . . , Gk. Then
s(G) =

∑k
i=1 s(Gi).

An immediate corollary is that given a universal vertex v in graph G we have that
s(G) = s(G−v). The following results from Section 3.2 will be useful for proofs in this
chapter. They describe the influence of the vertex deletion on the number of minimal
separators in the graph and we restate them below.

Proposition 3.2.13. Let G be a graph having a pair of true twins v, w with v ̸= w.
Then s(G) = s(G− v).

Proposition 3.2.14. Let G be a graph having a pair of false twins v, w with v ̸= w.
Then

s(G− v) ≤ s(G) ≤ s(G− v) + 1 .

Proposition 3.2.15. Let G be a graph and let v be a simplicial vertex in G. Then

s(G− v) ≤ s(G) ≤ s(G− v) + 1 .
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We begin this study with the result that considers four known tame graph classes,
defined as follows.

A distance-hereditary graph is a graph G satisfying that the distances in any con-
nected induced subgraph of G are the same as in G. An interval graph is a graph
whose vertex set can be associated with intervals on the real line in such a way that
two vertices are adjacent if and only if the associated intervals have a nonempty inter-
section. If no interval is properly contained in the other one, a graph is said to be a
proper interval. Note that every interval graph is chordal.

Theorem 5.1.1. Let G be one of the following classes: proper interval graphs, interval
graphs, chordal graphs, distance-hereditary graphs. Then for all n ∈ N, we have

fG(n) =

{
n− 2, if n ≥ 3;
n− 1, if n ∈ {1, 2}.

Proof. Let g(1) = 0, g(2) = 1, and g(n) = n − 2 for all n ∈ N with n ≥ 3. We
prove that fG(n) = g(n) by induction on n. Each graph with at most three vertices
is a proper interval graph (end hence an interval graph, and a chordal graph) and
also a distance-hereditary graph. For n = 1, the only graph to consider is P1, hence
fG(1) = s(P1) = 0 = g(1) and the statement holds. For n = 2, there are two graphs
in G, namely P2 and 2P1, hence fG(2) = max{s(P2), s(2P1)} = 1 = g(2) and the
statement holds. For n = 3, there are four graphs in G, namely 3P1, P2 + P1, P3, and
K3, hence fG(3) = max{s(3P1), s(P2 + P1), s(P3), s(K3)} = 1 = g(3).

Let now n ≥ 4 and suppose that fG(k) = g(k) for all k ∈ {1, . . . , n−1}. Since n ≥ 4,
we have g(n) = n− 2 and g(n− 1) = n− 3. We want to show that fG(n) = n− 2. To
show the inequality fG(n) ≥ n− 2, it suffices to consider the n-vertex path, Pn. Since
Pn is a proper interval graph (and hence an interval graph and a chordal graph) as well
as a distance-hereditary graph, and every internal vertex of a path forms a minimal
separator, we have fG(n) ≥ s(Pn) ≥ n− 2. To show the inequality fG(n) ≤ n− 2, we
need to show that s(G) ≤ n − 2 for every n-vertex graph G ∈ G. We show that G
contains a vertex v such that s(G) ≤ s(G− v) + 1. This will suffice, since then we can
apply the induction hypothesis to G− v ∈ G to infer that s(G− v) ≤ g(n− 1) = n− 3
and consequently s(G) ≤ n−2, as claimed. Suppose first that G is chordal. A theorem
of Dirac [95] states that every minimal separator in a chordal graph is a clique. This
implies that every chordal graph has a simplicial vertex. Let v be a simplicial vertex in
G. Using Proposition 3.2.15, we infer that s(G) ≤ s(G− v) + 1. Suppose now that G
is a distance-hereditary graph. By a result of Bandelt and Mulder [14], G has a pair of
distinct vertices v and w such that either v, w are a pair of true twins, v, w are a pair
of false twins, or NG(v) = {w}. Applying Propositions 3.2.13 to 3.2.15, respectively,
shows that s(G) ≤ s(G− v) + 1. This completes the proof.

5.2 Subclasses of Cographs

Recall that cographs are defined as graphs that can be constructed starting from copies
of the one-vertex graph using the operations of disjoint union and complementation
(see, e.g., [47]). Now we consider the subclasses of cographs: the classes of threshold
and trivially perfect graphs. A graph G = (V,E) is threshold if there exists a vertex
weight function w : V → R+ and a threshold t ∈ R+ such that a set X ⊆ V is
independent in G if and only if

∑
x∈X w(x) ≤ t. Threshold graphs were introduced by
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Chvátal and Hammer in [67] and characterized as exactly the {2P2, P4, C4}-free graphs.
Chvátal and Hammer also characterized threshold graphs as exactly the graphs that
can be built from the one-vertex graph by iteratively adding either an isolated or a
universal vertex.

Theorem 5.2.1 (Chvátal and Hammer [67]). A graph G is threshold if and only if
G ∼= P1 or G has a vertex v that is either universal or isolated and such that G− v is
threshold.

A graph G is trivially perfect if for every induced subgraph H of G the independence
number of H equals the number of maximal cliques in H. Trivially perfect graphs were
introduced by Golumbic in [126] and characterized as exactly the {P4, C4}-free graphs.
Golumbic also proved a composition theorem characterizing trivially perfect graphs
as exactly the graphs that can be built from the one-vertex graph by an iterative
application of the operations of disjoint union and addition of a universal vertex.

Theorem 5.2.2 (Golumbic [126]). Let G be a trivially perfect graph. Then either
G ∼= P1, or G has a universal vertex v such that G− v is trivially perfect graph, or G
is disconnected graph every component of which is a trivially perfect graph.

These structural results lead to the following.

Theorem 5.2.3. Let G be the class of threshold graphs or the class of trivially perfect
graphs. Then for all n ∈ N, we have fG(n) = ⌈(n− 1)/2⌉ .

Proof. Let g(n) = ⌈(n − 1)/2⌉ for all n ∈ N. Note that g is non-decreasing, that is,
n1 ≤ n2 implies g(n1) ≤ g(n2). Since the class of threshold graphs is contained in
the class of trivially perfect graphs, it suffices to show that for all n ∈ N we have
fG1(n) ≤ g(n) ≤ fG2(n), where G1 is the class of trivially perfect graphs and G2 is the
class of threshold graphs.

Let us first show that fG2(n) ≥ g(n). We prove the stated inequality by induction
on n. For n = 1, the only graph to consider is P1, hence fG2(1) = s(P1) = 0 = g(1)
and the statement holds. For n = 2, there are two graphs in G2, P2 and 2P1, hence
fG2(2) = max{s(P2), s(2P1)} = 1 = g(2) and again the statement holds. Let now n ≥ 3
and suppose that fG(k) = g(k) for all k ∈ {1, . . . , n − 1}. The induction hypothesis
implies that fG2(n−2) = g(n−2); in particular, there exists an (n−2)-vertex threshold
graph G′ such that s(G′) = g(n− 2). Let G = (G′ ∗ P1) + P1. By a double application
of Theorem 5.2.1, we infer that G is a threshold graph. Furthermore, Corollary 3.2.3
implies that s(G′ ∗ P1) = s(G′) and, using the fact that G is disconnected, with one
component isomorphic to G′ ∗ P1 and one to P1, Corollary 3.2.2 yields s(G) = s(G′ ∗
P1) + 1. It follows that fG2(n) ≥ s(G) = s(G′) + 1 = g(n − 2) + 1 = g(n), which is
what we wanted to show.

It remains to show that fG1(n) ≤ g(n). That is, we want to prove that s(G) ≤ g(n)
for every n-vertex trivially perfect graph.

For n ∈ N, let f 1
G1
(n) = max{s(G) | G is a connected n-vertex graph in G1}

and f 0
G(n) = max{s(G) | G is a coconnected n-vertex graph in G1}. First, we will

develop equalities and inequalities relating f 0
G1
(n), f 1

G1
(n), and fG1(n) with values of

these functions at smaller arguments. Clearly, we have f 0
G1
(1) = f 1

G1
(1) = fG1(1) = 0.
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For n > 1, we claim that

f 1
G1
(n) ≤ f 0

G1
(n− 1) , (5.1)

f 0
G1
(n) ≤ max

1≤i≤n−1
(f 1

G1
(i) + f 1

G1
(n− i)) + 1 , (5.2)

fG1(n) = max{f 0
G1
(n), f 1

G1
(n)} . (5.3)

Equation (5.3) follows immediately from the definitions. In the following we prove
that f 1

G1
(n) ≤ f 0

G1
(n − 1). Let G be a connected n-vertex graph from G1 that sat-

isfies s(G) = f 1
G1
(n). Let U be the set of universal vertices in G and let k = |U |.

By Theorem 5.2.2, it follows that k ≥ 1. If U = V (G), then G is complete graph
and f 1

G1
(n) = s(G) = 0, so the inequality trivially holds. We may thus assume this is

not the case. By definition of U , the graph G− U contains no universal vertices, so it
follows by Theorem 5.2.2 that the graph G−U has at least two connected components.
Let H1, H2, . . . , Hℓ, ℓ ≥ 2, be the connected components of G−U . Then we have that
s(G) = s(G − U) =

∑ℓ
i=1 s(Hi) + 1, by Corollaries 3.2.2 and 3.2.3, respectively. Let

G′ be the disjoint union of graphs H1, . . . , Hℓ, (k − 1)P1. Then G′ is an (n− 1)-vertex
graph belonging to the class G1. It follows from the definition of G′ and Corollary 3.2.2
that s(G′) =

∑ℓ
i=1 s(Hi)+1. Finally, we have that f 1

G1
(n) = s(G) = s(G′) ≤ f 0

G(n−1),
implying that f 1

G1
(n) ≤ f 0

G1
(n− 1), as we wanted to prove.

Next, we prove the inequality f 0
G1
(n) ≤ max1≤i≤n−1(f

1
G1
(i) + f 1

G1
(n − i)) + 1. Let

G be an n-vertex coconnected graph from G1 such that s(G) = f 0
G(n) and such that,

subject to this equality, the number of components of G is as small as possible. Let k
be the number of components of G. Then k ≥ 2. We claim that k = 2. Suppose for
a contradiction that k ≥ 3, and let G1, . . . , Gk be the components of G. Since every
component Gi, i ∈ {1, . . . , k} is a connected graph from G1, each of them contains at
least one universal vertex. If every connected component Gi, i ∈ {1, . . . , k} is complete,
then f 0

G1
(n) = s(G) = 1 and inequality trivially holds. We may thus assume that there

exists one component that is not complete, say Gk. Let U be the set of universal
vertices in Gk. Consider the graph G′ obtained from G by deleting the vertices in U
and adding a vertex set U ′ such that |U ′| = |U |, U ′ is a clique, and all vertices in U ′ are
adjacent to all vertices in G−U , except those in G1. Using Theorem 5.2.2 we infer that
Gk − U belongs to G1 and has no universal vertices. In particular, by Theorem 5.2.2,
Gk − U is disconnected. Let H1, . . . , Hℓ be connected components of Gk − U . Then
the components of G′ are G1 and H, where H is the join of the disjoint union of
components G2, . . . , Gk−1, H1, . . . , Hℓ with G′[U ′]. Corollary 3.2.2 implies that s(G′) =
s(G1)+s(H)+1. From Corollary 3.2.3 we obtain s(H) =

∑k−1
i=2 s(Gi)+

∑ℓ
i=1 s(Hi)+1

and s(Gk) =
∑ℓ

i=1 s(Hi) + 1, so it follows that

s(G′) =
k−1∑
i=1

s(Gi) +
ℓ∑

i=1

s(Hi) + 1 + 1 =
k∑

i=1

s(Gi) + 1 = s(G).

Hence G′ is an n-vertex coconnected graph that belongs to G1 and satisfies s(G) =
s(G′). Since G′ has two connected components, we have a contradiction with minimal-
ity of k, so k = 2. This shows that G has exactly two components, say G1 and G2.
Let j = |V (G1)|. Then j ∈ {1, . . . , n− 1} and |V (G2)| = n− j. By Corollary 3.2.2 we
have s(G) = s(G1) + s(G2) + 1, so it follows that

max
1≤i≤n−1

(f 1
G1
(i) + f 1

G1
(n− i)) + 1 ≥ f 1

G1
(j) + f 1

G1
(n− j) + 1 ≥ s(G1) + s(G2) + 1 = s(G).
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Since s(G) = f 0
G1
(n), the inequality is proved.

We claim that f 0
G1
(n) ≥ f 0

G1
(n−1). Let G′ be a coconnected (n−1)-vertex graph in

G1 that satisfies s(G′) = f 0
G1
(n− 1). We construct a coconnected n-vertex graph G in

G1 by adding an isolated vertex to G′. Since G′ is induced subgraph of G, by Proposi-
tion 3.2.10 it follows that s(G) ≥ s(G′). Thus f 0

G1
(n) ≥ s(G) ≥ s(G′) = f 0

G1
(n− 1), as

claimed. Since f 0
G1
(n) ≥ f 0

G1
(n−1), we infer using inequality (5.1) that f 0

G1
(n) ≥ f 1

G1
(n),

which, using equality (5.3), implies that fG1(n) = f 0
G1
(n). Consequently, inequality (5.1)

implies

f 0
G1
(n) ≤ max

1≤i≤n−1
(f 0

G1
(i− 1) + f 0

G1
(n− i− 1)) + 1

= max
1≤i≤n−1

(fG1(i− 1) + fG1(n− i− 1)) + 1 ,

where we define f 0
G1
(0) = fG1(0) = 0. In particular, we obtain the following inequality:

fG1(n) ≤ max
1≤i≤n−1

(fG1(i− 1) + fG1(n− i− 1)) + 1, for alln > 1 . (5.4)

To complete the proof, we show that the inequality (5.4) leads to the following
bound: for all n ∈ N, n = 2k or n = 2k + 1, we have fG1(n) ≤ k = g(n). We prove
this using induction on n. For n = 0 or n = 1, we have that fG1(n) = 0 = k. For
n = 2, we have fG1(n) ≤ fG1(0) + fG1(1) + 1 = 1 = k. Suppose now that n > 2 and
that the inequality holds for all smaller arguments. We analyze two cases depending
on the parity of n.

Suppose first that n = 2k+2 for some k ∈ N. Note that for every i ∈ {1, . . . , n−1},
we have (i−1)+(n− i−1) = n−2. Thus, considering inequality (5.4), we analyze the
possible ways how to express n − 2 = 2k as the sum of two smaller positive integers.
Working modulo 2, there are two essentially different ways of how this can be done:
either n − 2 = (2i + 1) + (2j + 1) or n − 2 = (2i) + (2j + 2) for i, j ∈ Z+ with
i + j = k − 1. The induction hypothesis implies that fG1(2i + 1) ≤ i, fG1(2j + 1) ≤ j,
fG1(2i) ≤ i, fG1(2j + 2) ≤ j + 1. Hence fG1(2i + 1) + fG1(2j + 1) + 1 ≤ i + j + 1 = k,
fG1(2i) + fG1(2j + 2) ≤ i + j + 1 + 1 = k + 1. Using inequality (5.4), it follows that
fG1(n) ≤ max{k, k + 1} = k + 1, as claimed.

Suppose now that n = 2k + 1 for some k ∈ N. Now we have n − 2 = 2k − 1 =
(2i) + (2j + 1) for some i, j ∈ Z+ with i + j = k − 1. The induction hypothesis
implies that fG1(2i) ≤ i, fG1(2j+1) ≤ j. Finally, inequality (5.4) implies that fG1(n) ≤
fG1(2i) + fG1(2j + 1) ≤ i+ j + 1 = k, as claimed. This completes the proof.

Next, we consider the classes of co-trivially perfect graphs and cographs. A graph is
co-trivially perfect if its complement is trivially perfect. The following characterization
of co-trivially perfect graphs is an immediate consequence of Theorem 5.2.2.

Corollary 5.2.4. Let G be a co-trivially perfect. Then either G ∼= P1, or G has an
isolated vertex v such that G− v is co-trivially perfect or G is a join of two co-trivially
perfect graphs.

The class of cographs is defined as the smallest class of graphs containing the one-
vertex graph that is closed under the operations of disjoint union and join. Cographs
were introduced independently several times in the literature and are known to coincide
with the P4-free graphs (see, e.g., [73]). A result of Nikolopoulos and Palios from [187]
determines the exact value of fG(n), where G is the class of cographs, if n is a power
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of 2. A more detailed analysis reveals the exact values of fG(n) for all positive integers
n. These values coincide with the values for the class of co-trivially perfect graphs.

Theorem 5.2.5. Let G be the class of co-trivially perfect graphs or the class of cographs.
Then for all n ∈ N, we have fG(n) = ⌈2n/3⌉ − 1.

Proof. Let G1 and G2 be the classes of cographs and of trivially perfect graphs, respec-
tively. For n ∈ N and k ∈ {1, 2}, let f 1

Gk
(n) = max{s(G) | G is a connected n-vertex

graph in Gk} and f 0
Gk
(n) = max{s(G) | G is a coconnected n-vertex graph in Gk}.

First, we will develop recurrence relations for f 0
Gk
(n), f 1

Gk
(n), and fGk

(n). Clearly, we
have f 0

Gk
(1) = f 1

Gk
(1) = fGk

(1) = 0. For n > 1 and for k ∈ {1, 2}, we claim that

fGk
(n) = max{f 0

Gk
(n), f 1

Gk
(n)} , (5.5)

f 1
Gk
(n) = max

1≤i≤n−1
(fGk

(i) + fGk
(n− i)) , (5.6)

f 0
Gk
(n) =

{
max

1≤i≤n−1
(f 1

Gk
(i) + f 1

Gk
(n− i)) + 1, if k = 1

f 1
Gk
(n− 1) + 1, if k = 2 .

(5.7)

Equation (5.5) follows immediately from the definitions.
We prove the equality (5.6) by proving two inequalities. Let k ∈ {1, 2}. The

inequality f 1
Gk
(n) ≥ max1≤i≤n−1(fGk

(i) + fGk
(n − i)), is equivalent to showing that

f 1
Gk
(n) ≥ fGk

(i)+fGk
(n−i) holds for all i ∈ {1, . . . , n−1}. For each j ∈ {i, n−i}, let Gj

be a j-vertex graph in Gk such that s(Gj) = fGk
(j), and let G be the join of Gi and Gn−i.

Then G is an n-vertex connected graph in Gk. Moreover, by Corollary 3.2.3, we have
s(G) = s(Gi)+ s(Gn−i) = fGk

(i)+fGk
(n− i). This implies f 1

Gk
(n) ≥ fGk

(i)+fGk
(n− i),

hence, since i was arbitrary, f 1
Gk
(n) ≥ max1≤i≤n−1(fGk

(i) + fGk
(n− i)).

Let us now establish the converse inequality f 1
Gk
(n) ≤ max1≤i≤n−1(fGk

(i) + fGk
(n−

i)). Let G be an n-vertex connected graph in Gk such that s(G) = f 1
Gk
(n). Since G is a

connected graph in Gk with more than one vertex, it can be written as the join of two
smaller graphs in Gk, say G1 and G2. Let j = |V (G1)|. Then j ∈ {1, . . . , n − 1} and
|V (G2)| = n− j. By Corollary 3.2.3, we have s(G) = s(G1) + s(G2) and consequently,

max
1≤i≤n−1

(fGk
(i) + fGk

(n− i)) ≥ fGk
(j) + fGk

(n− j) ≥ s(G1) + s(G2) = s(G).

Since s(G) = f 1
Gk
(n), the inequality is proved.

In the following we will prove equality (5.7) by proving the two inequalities for
each value of k. The inequality f 0

G1
(n) ≥ max1≤i≤n−1(f

1
G1
(i) + f 1

G1
(n − i)) + 1 can be

proved by taking G to be the disjoint union of two cographs Gi and Gn−i where Gj

for j ∈ {i, n − i} is a j-vertex connected cograph such that s(Gj) = f 1
G1
(j). Then G

is an n-vertex coconnected cograph and, by Corollary 3.2.2, we have s(G) = s(Gi) +
s(Gn−i) = f 1

G1
(i) + f 1

G1
(n − i) + 1. Again, since i was arbitrary, we obtain f 0

G1
(n) ≥

max1≤i≤n−1(f
1
G1
(i) + f 1

G1
(n − i)) + 1. The inequality f 0

G2
(n) ≥ f 1

G2
(n − 1) + 1 can be

proved similarly, by taking G to be the disjoint union of graphs G′ and P1, where G′

is a connected (n − 1)-vertex graph in G2 that satisfies s(G) = fG2(n − 1). Then G
is an n-vertex coconnected graph in G2 with connected components G′ and P1 and,
by Corollary 3.2.2, we have s(G) = s(G′) + s(P1) + 1 = f 1

G2
(n− 1) + 1. Consequently,

we obtain f 0
G2
(n) ≥ s(G) = f 1

G2
(n− 1) + 1.

Next, we prove the inequality f 0
G1
(n) ≤ max1≤i≤n−1(f

1
G1
(i) + f 1

G1
(n− i)) + 1. Let G

be an n-vertex coconnected cograph such that s(G) = f 0
G1
(n) and such that, subject
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to this equality, the number of components of G is as small as possible. Let ℓ be
the number of components of G. Since G is a coconnected cograph with more than
one vertex, G is disconnected, that is, ℓ ≥ 2. We claim that ℓ = 2. Suppose for
a contradiction that ℓ ≥ 3, and let G1, . . . , Gℓ be the components of G. Consider
the graph G′ obtained from G by adding all edges joining a vertex in Gℓ−1 with a
vertex in Gℓ. Then, the components of G′ are G1, . . . , Gℓ−2 and Hℓ−1 where Hℓ−1 is
the join of Gℓ−1 and Gℓ. In particular, it follows that G′ is an n-vertex disconnected
cograph, hence G′ is coconnected. Corollary 3.2.2 implies that s(G′) =

∑ℓ−2
i=1 s(Gi) +

s(Hℓ−1) + 1. From Corollary 3.2.3 we obtain s(Hℓ−1) = s(Gℓ−1) + s(Gℓ), which in
turn implies s(G′) =

∑ℓ
i=1 s(Gi) + 1 = s(G) = f 0

G1
(n), where the last equality follows

again from Corollary 3.2.2. However, since G′ has one component less than G, the
fact that s(G′) = f 0

G1
(n) contradicts the choice of G. This shows that G has exactly

two components, say G1 and G2. Let j = |V (G1)|. Then j ∈ {1, . . . , n − 1} and
|V (G2)| = n − j. Moreover, by Corollary 3.2.2 we have s(G) = s(G1) + s(G2) + 1. It
follows that

max
1≤i≤n−1

(f 1
G1
(i) + f 1

G1
(n− i)) + 1 ≥ f 1

G1
(j) + f 1

G1
(n− j) + 1 ≥ s(G1) + s(G2) + 1 = s(G).

As s(G) = f 0
G1
(n), the inequality is proved.

Finally, we prove the inequality f 0
G2
(n) ≤ f 1

G2
(n − 1) + 1. Let G be an n-vertex

coconnected graph in G2 such that s(G) = f 0
G2
(n) and such that, subject to this equality,

the number of isolated vertices in G is as small as possible. Let ℓ be the number of
isolated vertices in G. By Corollary 5.2.4, G has at least one isolated vertex, that is,
ℓ ≥ 1. We claim that ℓ = 1. Suppose for a contradiction that ℓ ≥ 2, and let I be the
set of isolated vertices in G. Let v ∈ I. Consider the graph G′ obtained from G by
turning the set I \ {v} into a clique and adding all edges joining vertices in G− I with
vertices in I \ {v}. Since any complete graph is in G2, and G′ − v is a join of Kℓ−1 and
G− I, we infer that G′ is an n-vertex graph in G2, having exactly one isolated vertex.
By Corollaries 3.2.2 and 3.2.3 we have s(G′) = s(G′−v)+1 = s(G−I)+s(Kℓ−1)+1 =
s(G−I)+1 = s(G). Since s(G) = s(G′), this contradicts the choice of G and shows that
G has exactly one isolated vertex, say v. By Corollary 3.2.2 we have s(G) = s(G−v)+1.
It follows that f 1

G2
(n − 1) + 1 ≥ s(G − v) + 1 = s(G) = f 0

G2
(n) and the inequality is

proved.
To complete the proof, we show that the recurrence relations (5.5)–(5.7) together

with initial conditions f 0
Gk
(1) = f 1

Gk
(1) = fGk

(1) = 0 lead to the following explicit
formulas for the function values f 0

Gk
(n), f 1

Gk
(n), and fGk

(n). For all n ∈ N and for
k ∈ {1, 2}, we have:

• If n = 3ℓ+ 1 for some ℓ ∈ Z+, then f 1
Gk
(n) = f 0

Gk
(n) = fGk

(n) = 2ℓ.

• If n = 3ℓ+ 2 for some ℓ ∈ Z+, then f 1
Gk
(n) = 2ℓ and f 0

Gk
(n) = fGk

(n) = 2ℓ+ 1.

• If n = 3ℓ+ 3 for some ℓ ∈ Z+, then f 1
Gk
(n) = f 0

Gk
(n) = fGk

(n) = 2ℓ+ 1.

This will indeed suffice, since the statement fGk
(n) = ⌈2n/3⌉ − 1 for all n ∈ N and for

all k ∈ {1, 2} is easily seen to be equivalent to the truthfulness of the above explicit
formulas for the values of fGk

(n). We prove the formulas by induction on n. Let
k ∈ {1, 2}. For n = 1, the formulas state that f 1

Gk
(1) = f 0

Gk
(1) = fGk

(1) = 0, which is
true. For n = 2, we have f 1

Gk
(2) = fGk

(1) + fGk
(1) = 0 (by (5.6)), f 0

Gk
(2) = f 1

Gk
(1) +

f 1
Gk
(1) + 1 = 1 (by (5.7)), and fGk

(2) = max{f 1
Gk
(2), f 0

Gk
(2)} = 1 (by (5.5)), which
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coincides with the values given by the explicit formulas. Similarly, for n = 3, we have
f 1
Gk
(3) = fGk

(1) + fGk
(2) = 1, f 0

G1
(3) = f 1

G1
(1) + f 1

G1
(2) + 1 = 1, f 0

G2
(3) = f 1

G2
(2) + 1 = 1

and fGk
(3) = max{f 1

Gk
(3), f 0

Gk
(3)} = 1, which also matches with the explicit formulas.

Suppose now that n > 3 and that the explicit formulas hold for all smaller arguments.
We analyze the three cases depending on the value of n mod 3.

Suppose first that n = 3ℓ + 1 for some ℓ ∈ N. Working modulo 3, there are two
essentially different ways of how n can be written as the sum of two smaller positive
integers: either n = (3i + 1) + (3j + 3) or n = (3i + 2) + (3j + 2) for i, j ∈ Z+ with
i + j = ℓ − 1. The induction hypothesis implies that fGk

(3i + 1) = f 1
Gk
(3i + 1) = 2i,

fGk
(3j+3) = f 1

Gk
(3j+3) = 2j+1, fGk

(3i+2) = 2i+1, f 1
Gk
(3i+2) = 2i, fGk

(3j+2) =
2j + 1, and f 1

Gk
(3j + 2) = 2j, f 1

G2
(n− 1) = f 1

G2
(3ℓ) = 2ℓ− 1.

Hence fGk
(3i+ 1) + fGk

(3j + 3) = f 1
Gk
(3i+ 1) + f 1

Gk
(3j + 3) = 2(i+ j) + 1 = 2ℓ− 1,

fGk
(3i+2)+fGk

(3j+2) = 2(i+j+1) = 2ℓ, and f 1
Gk
(3i+2)+f 1

Gk
(3j+2) = 2(i+j) = 2ℓ−2.

Using recurrence relations (5.5)–(5.7), it follows that f 1
Gk
(n) = max1≤q≤n−1(fGk

(q) +
fGk

(n − q)) = 2ℓ, f 0
G1
(n) = max1≤q≤n−1(f

1
Gk
(q) + f 1

Gk
(n − q)) + 1 = 2ℓ, and f 0

G2
(n) =

f 1
Gk
(n− 1) + 1 = 2ℓ− 1 + 1 = 2ℓ, and fGk

(n) = 2ℓ, as claimed.
Suppose now that n = 3ℓ + 2 for some ℓ ∈ N. Now we have either n = (3i +

1) + (3j + 1) for some i, j ∈ Z+ with i + j = ℓ or n = (3i′ + 3) + (3j′ + 2) for some
i′, j′ ∈ Z+ with i′ + j′ = ℓ − 1. The induction hypothesis implies that fGk

(3i + 1) =
f 1
Gk
(3i + 1) = 2i, fGk

(3j + 1) = f 1
Gk
(3j + 1) = 2j, fGk

(3i′ + 3) = f 1
Gk
(3i′ + 3) = 2i′ + 1,

fGk
(3j′ + 2) = 2j′ + 1, f 1

Gk
(3j′ + 2) = 2j′, and f 1

Gk
(n − 1) = f 1

Gk
(3ℓ + 1) = 2ℓ. Hence

fGk
(3i+1)+fGk

(3j+1) = f 1
Gk
(3i+1)+f 1

Gk
(3j+1) = 2(i+j) = 2ℓ, fGk

(3i′+3)+fGk
(3j′+

2) = 2(i′+j′+1) = 2ℓ, and f 1
Gk
(3i′+3)+f 1

Gk
(3j′+2) = 2(i′+j′)+1 = 2ℓ−1. Recurrence

relations (5.5)–(5.7) imply that f 1
Gk
(n) = max1≤q≤n−1(fGk

(q) + fGk
(n − q)) = 2k and

f 0
G1
(n) = max1≤q≤n−1(f

1
Gk
(q)+f 1

Gk
(n−q))+1 = 2ℓ+1, f 0

G2
(n) = f 1

Gk
(n−1)+1 = 2ℓ+1,

and fGk
(n) = 2ℓ+ 1, as claimed.

Finally, let n = 3ℓ + 3 for some ℓ ∈ N. In this case, we have either n = (3i + 1) +
(3j+2) for some i, j ∈ Z+ with i+ j = ℓ or n = (3i′+3)+(3j′+3) for some i′, j′ ∈ Z+

with i′ + j′ = ℓ− 1. The induction hypothesis implies that fGk
(3i+ 1) = f 1

Gk
(3i+ 1) =

2i, fGk
(3j + 2) = 2j + 1, f 1

Gk
(3j + 2) = 2j, fGk

(3i′ + 3) = f 1
Gk
(3i′ + 3) = 2i′ + 1,

fGk
(3j′ + 3) = f 1

Gk
(3j′ + 3) = 2j′ + 1, and f 1

Gk
(n − 1) = f 1

Gk
(3ℓ + 2) = 2ℓ. Hence

fGk
(3i+1)+fGk

(3j+2) = 2(i+j)+1 = 2ℓ+1, f 1
Gk
(3i+1)+f 1

Gk
(3j+2) = 2(i+j) = 2ℓ,

fGk
(3i′+3)+ fGk

(3j′+3) = f 1
Gk
(3i′+3)+ f 1

Gk
(3j′+2) = 2(i′+ j′+1) = 2ℓ. Recurrence

relations (5.5)–(5.7) imply that f 1
Gk
(n) = max1≤q≤n−1(fGk

(q) + fGk
(n − q)) = 2ℓ + 1,

f 0
G1
(n) = max1≤q≤n−1(f

1
Gk
(q)+f 1

Gk
(n−q))+1 = 2ℓ+1, f 0

G2
(n) = f 1

Gk
(n−1)+1 = 2ℓ+1,

and fGk
(n) = 2ℓ+ 1, as claimed. This completes the proof.

5.3 Split Graphs, Pseudo-Split Graphs, and 2P2-Free
Graphs

A split graph is a graph that has a split partition, that is, a partition (C, I) of its vertex
set into a clique C and an independent set I. Split graphs were introduced by Foldes
and Hammer in [108] and characterized as exactly the {2P2, C4, C5}-free graphs. It is
not difficult to see that every split graph has a split partition (C, I) such that C is a
maximal clique. The following lemma given by Pedrotti and de Mello is stated in [196]
without proof. We include a proof for the sake of completeness.
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Lemma 5.3.1. Let G be a split graph with a split partition (C, I) such that C is a
maximal clique in G. Then SG = {NG(v) | v ∈ I}.

Proof. Suppose first that S is a minimal separator in G. Since G is 2P2-free and there
are two S-full components in G − S, by Lemma 3.1.3 there exists a vertex v ∈ V (G)
such that S = NG(v). Clearly G[{v}] is an S-full component of G−S. The graph G−S
has an S-full component other than G[{v}]; let C ′ be such a component. To complete
the proof, we show that there exists some w ∈ I such that S = NG(w). Suppose that
this is not the case. Then v ∈ C and S = (C \ {v}) ∪ (S ∩ I); in particular, the graph
G−S consists of isolated vertices only. Since v is the only vertex in G−S that belongs
to C, it follows that V (C ′) = {w′} for some w′ ∈ I. Since C ′ is an S-full component,
every vertex in S is adjacent to w′, that is, NG(v) ⊆ NG(w

′). By assumption, these
two sets are not the same, hence there exists a vertex z ∈ NG(w

′) \ NG(v). However,
since w′ ̸∈ S = NG(v), vertices w′ and v are non-adjacent. It follows that z ̸= w′ and
hence z ∈ C \ {v}, which implies z ∈ NG(v), a contradiction.

Suppose now that S = NG(v) for some vertex v ∈ I. Since C is a maximal clique,
there exists a vertex w ∈ C \ S. Let C ′ be the component of G − S containing w.
Since C is a clique and S ∪ {w} ⊆ C, every vertex in S is adjacent to w. It follows
that G[{v}] and C ′ are two distinct S-full components of G− S; hence S is a minimal
separator.

Using Lemma 5.3.1, the following extremal result for the class of split graphs can
be obtained.

Theorem 5.3.2. Let G be the class of split graphs. Then for all n ∈ N we have
fG(n) = n − min{k ∈ N | 2k + k > n} . Consequently, for all n ∈ N we have
n− ⌊log n⌋ − 1 ≤ fG(n) ≤ n− ⌊log n⌋ .

Proof. For n ∈ N, let κ(n) = min{k ∈ N | 2k + k > n} and let g(n) = n − κ(n).
We prove that fG(n) = g(n) for all n ∈ N by proving each of the two inequalities.
Let n ∈ N. First we prove that fG(n) ≤ g(n), that is, that every n-vertex split
graph G satisfies s(G) ≤ g(n). Fix a split partition (C, I) of G such that C is a
maximal clique in G. Let k = κ(n) and ℓ = |C|. Lemma 5.3.1 and the fact that C
is a maximal clique imply that SG = {NG(x) | x ∈ I} ⊆ {X | X ⊆ C} \ {C} and
hence s(G) ≤ min{|I|, 2ℓ − 1}. Suppose for a contradiction that s(G) > g(n). Since
g(n) = n− k, this implies n− k + 1 ≤ s(G) ≤ |I| = n− |C| = n− ℓ, hence ℓ ≤ k − 1.
Using the fact that s(G) ≤ 2ℓ − 1, we infer that s(G) ≤ 2k−1 − 1. On the other hand,
the definition of k implies that 2k−1+k−1 ≤ n, which implies s(G) ≥ n−k+1 ≥ 2k−1,
a contradiction.

We now prove that fG(n) ≥ g(n), that is, that there exists an n-vertex split graph
G satisfying s(G) ≥ g(n). Let k = κ(n). Then n − k < 2k. Let K be a complete
graph of order k, let C = V (K), and let F be a set of subsets of C such that C /∈ F
and |F| = n − k. Note that such a set F exists, since n − k ≤ 2k − 1 = 2|C| − 1.
Moreover, let I = {vX | X ∈ F} be a set of n − k new vertices and let G be the
split graph with split partition (C, I) obtained from the disjoint union of K and the
edgeless graph with vertex set I by adding the edges of the form {vX , w} for all w ∈
X ∈ F . By construction, G is an n-vertex split graph with C a maximal clique.
Hence, Lemma 5.3.1 implies that SG = {NG(v) | v ∈ I}. Since distinct vertices in I
have distinct neighborhoods, s(G) = |I| = n − k = g(n) and fG(n) ≥ s(G) = g(n), as
claimed.
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It remains to show that n − ⌊log n⌋ − 1 ≤ g(n) ≤ n − ⌊log n⌋, or, equivalently,
that ⌊log n⌋ ≤ k ≤ ⌊log n⌋ + 1 where k = κ(n). The definition of k implies that
2k−1 + k − 1 ≤ n. Consequently k − 1 ≤ log(2k−1 + k − 1) ≤ log n, which implies
k ≤ log n+1 and thus, since k is an integer, k ≤ ⌊log n⌋+1. To prove that k ≥ ⌊log n⌋,
note that if 2k ≥ n, then k ≥ log n ≥ ⌊log n⌋, while if 2k < n, then k = ⌊log n⌋ since
k < log n < k + 1, where the last inequality follows from n < 2k + k < 2k+1. This
completes the proof.

A graph is pseudo-split if it is {2P2, C4}-free. Pseudo-split graphs were characterized
independently by Blázsik et al. in [29] and by Maffray and Preissmann in [169] as exactly
the graphs that are either split or consist of a split graph G with a split partition (C, I)
together with a 5-cycle disjoint from G that is fully adjacent to vertices in C and fully
non-adjacent to vertices in I. Given a graph G, a pseudo-split partition of G is a
partition (C, I, S) of V (G) into a clique C, an independent set I and a set S such that
either S = ∅ or the subgraph of G induced by S is a 5-cycle fully adjacent to vertices
in C and fully non-adjacent to vertices in I. A graph G is pseudo-split if and only
if it has a pseudo-split partition (see [29, 169]). This structural result together with
Theorem 5.3.2 leads to the following extremal result.

Theorem 5.3.3. Let G be the class of pseudo-split graphs. Then, for all n ∈ N:

fG(n) =


⌊n/2⌋, if n ∈ {1, 2, 3, 4};
n, if n ∈ {5, 6};
n−min{k ∈ N | 2k + k > n− 6}, if n ≥ 7.

Consequently, for all n ∈ N we have n− ⌊log n⌋ − 1 ≤ fG(n) ≤ n− ⌊log n⌋+ 2.

Proof. Let us denote by S the class of split graphs. For all n ≤ 4, every n-vertex pseudo-
split graph is a split graph and consequently fG(n) = fS(n). Recall from Theorem 5.3.2
that fS(n) = n − min{k ∈ N | 2k + k > n}. Hence, fS(1) = 0, fS(2) = fS(3) = 1,
fS(4) = 2. It follows that fS(n) = ⌊n/2⌋.

Let now n ∈ {5, 6} and let G be a pseudo-split graph on n vertices. If n = 5,
then either S = ∅ and G is a split graph, or G ∼= C5. If G is a split graph, then
s(G) ≤ fS(5) = 3, while for G ∼= C5 we have s(G) = 5. It follows that fG(5) = 5.
Similarly, if n = 6, then either S = ∅ and G is a split graph with s(G) ≤ fS(6) = 3,
or G ∼= C5 ∗ P1 with s(G) = 5, or G ∼= C5 + P1, with s(G) = 6. We conclude that
fG(6) = 6.

For all n ≥ 7, let g(n) be the function defined as follows:

g(n) = max{fS(n), fS(n− 5) + 5, fS(n− 6) + 6}.

Let n ≥ 7 be arbitrary. We want to show that fG(n) = n−min{k ∈ N | 2k+k > n−6}.
First we will prove that g(n) = fS(n− 6) + 6. Then we will prove that fG(n) = g(n).
By Theorem 5.3.2, this will imply the explicit formula given by Theorem 5.3.3.

In order to prove that

g(n) = max{fS(n), fS(n− 5) + 5, fS(n− 6) + 6} = fS(n− 6) + 6,

it suffices to show that fS(n) ≤ fS(n − i) + i for all i ∈ {0, . . . , n − 1}, as that will
imply that fS(n) ≤ fS(n − 5) + 5 ≤ fS(n − 6) + 6. Let i ∈ {0, . . . , n − 1} and let
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m = n− i. The inequality fS(n) ≤ fS(n− i)+ i is equivalent to fS(m+ i) ≤ fS(m)+ i.
By Theorem 5.3.2 this is equivalent to:

m+ i−min{k ∈ N | 2k + k > m+ i} ≤ m−min{k ∈ N | 2k + k > m}+ i,

which simplifies to min{k ∈ N | 2k + k > m} ≤ min{k ∈ N | 2k + k > m + i}. The
last inequality holds since the function κ(m) = min{k ∈ N | 2k + k > m} is clearly
non-decreasing. Therefore, g(n) = fS(n− 6) + 6, as claimed.

Now we prove that fG(n) = g(n). We divide the proof into two parts, by proving
each of the two inequalities. First we prove that fG(n) ≥ g(n). Let G′ be a split graph
with n− 6 vertices such that s(G′) = fS(n− 6) and let (C, I) be a split partition of G′

such that C is a maximal clique in G′. Let G′′ be the disjoint union of G′, C5, and P1.
Let us denote the vertex set of the C5 by S and the unique vertex of P1 by v. We add to
G′′ all the edges joining a vertex in C with a vertex in S ∪ {v}. The resulting graph G
has n vertices and is a pseudo-split graph, with a pseudo-split partition (C, I ∪{v}, S).
By Lemma 5.3.1, every minimal separator in G′ is the neighborhood of some vertex in
I. It is not difficult to see that G′ is an induced subgraph of G and that every minimal
separator in G′ is also a minimal separator in G. Moreover, the neighborhood of vertex
v separates v and any vertex in S, so we have that C = NG(v) ∈ SG, while C /∈ SG′ , by
Lemma 5.3.1. Similarly, we infer that for all u ∈ S it holds that NG(u) ∈ SG\SG′ . Since
all vertices in S have distinct neighborhoods in G, they define five distinct separators
in G. It follows that s(G) ≥ s(G′)+6. Since fG(n) ≥ s(G) ≥ s(G′)+6 = fS(n−6)+6,
we infer that fG(n) ≥ g(n), as claimed.

Next, we show that fG(n) ≤ g(n). Let G be an n-vertex pseudo-split graph, with
a pseudo-split partition (C, I, S). We will show that s(G) ≤ g(n). Since this will be
true for an arbitrary n-vertex pseudo-split graph, this will imply that fG(n) ≤ g(n).
If S = ∅, then G is a split graph and s(G) ≤ fS(n) ≤ g(n). So let S ̸= ∅. Let
U = {v ∈ I | N(v) = C}, I ′ = I \U , and k = |U |. Then the subgraph G′ of G induced
by C∪I ′ is a split graph with n−k−5 vertices and thus s(G′) ≤ fS(n−k−5). Moreover,
by the definition of U , we infer that C is a maximal clique in G′. By Lemma 5.3.1 it
follows that SG′ = {NG′(u) | u ∈ I ′}. We now describe all minimal separators in G.
Since G is 2P2-free, by Lemma 3.1.3 every minimal separator in G is the neighborhood
of some vertex. Let u ∈ V (G). If u ∈ I, then NG(u) is a minimal separator in G,
since it separates u and any vertex v in S. If u ∈ S, then NG(u) separates u from any
vertex in S that is non-adjacent to u. If u ∈ C, then the subgraph of G induced by
{u} is the only NG(u)-full component in G − NG(u), so NG(u) cannot be a minimal
separator in G. It follows that SG = {NG(u) | u ∈ I ∪S}. Consequently, if k = 0, then
SG = SG′ ∪ {NG(u) | u ∈ S} and

s(G) = s(G′) + 5 ≤ fS(n− 5) + 5 ≤ g(n),

while if k ≥ 1, then SG = SG′ ∪ {NG(u) | u ∈ S} ∪ {C} and

s(G) = s(G′) + 6 ≤ fS(n− k − 5) + 6 ≤ fS(n− 6) + 6 = g(n).

It remains to show that for all n ∈ N, we have n − ⌊log n⌋ − 1 ≤ fG(n) ≤ n −
⌊log n⌋+2. For n ∈ {1, . . . , 6}, this can be easily verified. For n ≥ 7, the inequalities are
equivalent to proving that ⌊log n⌋−2 ≤ k ≤ ⌊log n⌋+1, where k is the smallest positive
integer such that 2k + k > n− 6. The definition of k implies that 2k−1 + k− 1 ≤ n− 6.
Consequently k−1 ≤ log(2k−1+k−1) ≤ log(n−6) ≤ log n, which implies k ≤ log n+1
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and thus, since k is an integer, k ≤ ⌊log n⌋+1. To prove that k ≥ ⌊log n⌋−2, note that
n ≤ 2k + k + 5 ≤ 4 · 2k = 2k+2, which implies ⌊log n⌋ ≤ log n ≤ k + 2. This completes
the proof.

Finally, we consider the class of 2P2-free graphs. The following lemma (originally
stated in Chapter 3) gives a necessary condition for a minimal separator in a 2P2-free
graph (see [184]).

Lemma 3.1.3. Let G be a 2P2-free graph and let S be a minimal separator in G. Then
there exists a vertex v ∈ V (G) such that S = N(v).

From the above lemma it follows that for any n ∈ N we have that fG(n) ≤ n, where
G is a class of 2P2-free graphs. The following result will be useful to establish the lower
bound.

Theorem 5.3.4. Let G be a 2P2-free graph and let v be a vertex in G such that for
every w ∈ V (G), if NG(w) ⊆ NG(v) or NG[w] ⊆ NG[v], then w is isolated in G. Then
NG(v) ∈ SG.

Proof. Let G be a 2P2-free graph and let v be a vertex in G. Assume that for every
vertex w in G, w ̸= v, it holds that NG(w) ⊈ NG(v) and NG[w] ⊈ NG[v]. We want to
prove that NG(v) ∈ SG.

Let C1, . . . , Ck be connected components of G − NG[v]. Assume for contradiction
that NG(v) is not a minimal separator in G. Then it holds that for every component
Ci, i ∈ {1, . . . , k}, there exists some vertex u ∈ NG(v) such that NG(u) ∩ Ci = ∅.

Since the closed neighborhoods of vertex v and all other vertices in G are incompa-
rable, it follows that every vertex in NG(v) has a neighbor in the set V (G) \N [v]. Let
C be the component from {C1, . . . , Ck} that maximizes the number |{NG(u)∩Ci | u ∈
NG(v)}| among all i ∈ {1, . . . , k}. Observe that |{NG(u) ∩ C | u ∈ NG(v)}| ≥ 1. As
NG(v) is not minimal separator in G, we have that C cannot be NG(v)-full component,
so there exists a vertex u ∈ NG(v) having no neighbor in C. Since NG[u] ⊈ NG[v],
it follows that there exists some vertex w ∈ Cj, j ∈ {1, . . . , k}, C ̸= Cj, such that
uw ∈ E(G). If the component C has at least two vertices, then there exists some
edge e in C and together with edge uw it obtains a forbidden 2P2. So it follows that
C contains just one vertex, say v′. But then NG(v

′) ⊆ NG(v), contrary to the as-
sumption. This yields a contradiction, so it cannot be true that NG(u) ∩ C = ∅, and
thus NG(NG(v)) = C, implying that S is a minimal separator in G, as we wanted to
prove.

Corollary 5.3.5. Let G be a class of graphs containing complements of cycles of length
at least 5. Then fG(n) ≥ n, for all n ≥ 5.

Proof. Let n ≥ 5. Then the graph Gn = Cn is in G and we have that fG(n) ≥ s(Gn).
Let u, v ∈ V (Gn) be distinct vertices in Gn. Then neither their neighborhoods, nor
closed neighborhoods are comparable, so by Theorem 5.3.4, it follows that for every
vertex v ∈ V (Gn), the set NGn(v) is a minimal separator in Gn. Since |V (Gn)| = n, it
follows that s(Gn) = n and thus fG(n) ≥ n.
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Theorem 5.3.6. Let G be the class of 2P2-free graphs. Then, for all n ∈ N:

fG(n) =


n− 1, if n ∈ {1, 2};
n− 2, if n ∈ {3, 4};
n, if n ≥ 5.

Proof. Lemma 3.1.3 implies that fG(n) ≤ n for all n ∈ N. We first show that for every
two non-negative integers k, ℓ, not both equal 0, we have fG(n) ≥ n for n = 5k + 6ℓ.
Since every n ≥ 20 can be written in such a way [223], this will imply that fG(n) = n
for all n ≥ 20. Let thus n = 5k + 6ℓ with k, ℓ ∈ Z+ and let G be the join of k
copies of C5 and ℓ copies of the graph C5 + P1. Since the complement of G is the
disjoint union of k copies of C5 and ℓ copies of the join C5 ∗ P1, the complement
of G is C4-free. It follows that G is an n-vertex 2P2-free graph. Since s(C5) = 5,
by Corollary 3.2.2 it follows that s(C5 + P1) = 6. Hence, applying Corollary 3.2.3,
we get fG(n) ≥ s(G) = ks(C5) + ℓs(C5 + P1) = 5k + 6ℓ = n, as claimed. Let us
now analyze the cases when n ∈ {1, . . . , 19}. A straightforward verification shows that
fG(n) = n − 1 for n ∈ {1, 2} and fG(n) = n − 2 for n ∈ {3, 4}. Let now n ≥ 5 and
let n′ be the largest integer such that n′ ≤ n and n′ = 5k + 6ℓ for some k, ℓ ∈ Z+.
If n ∈ {5, 6, 10, 11, 12, 15, 16, 17, 18}, then it is not difficult to see that n′ = n, hence
we can use the above construction to show that fG(n) = n. If n ∈ {7, 8, 9}, then the
graph (C5 + P1) ∗ ((n − 6)P1) shows that fG(7) ≥ 6, fG(8) ≥ 7, and fG(9) ≥ 7. If
n = 13 (resp., n = 19), then the graph G obtained from the disjoint union of P1 and
the join of ℓ = 2 (resp., ℓ = 3) copies of C5 + P1 is an n-vertex 2P2-free graph with
s(G) = ℓs(C5 + P1) + 1 = 6ℓ + 1 = n (by Corollary 3.2.2). For n = 14, adding an
isolated vertex to the above 13-vertex graph shows that fG(n) ≥ n − 1 in this case.
This completes the proof.

Theorem 5.3.7. Let G be the class of {2P2, C5}-free graphs. Then, for all n ∈ N we
have:

fG(n) =


n− 1, if n ∈ {1, 2};
n− 2, if n ∈ {3, 4};
n, if n ≥ 5.

Proof. If n ≤ 4, then the classes of 2P2-free graphs and {2P2, C5}-free graphs coincide.
Let thus n ≥ 5. Every graph in G is 2P2-free, so we have that fG(n) ≤ n. Moreover,
the graph on n vertices that is isomorphic to the complement of the n-cycle belongs
to the class G, so we have that fG(n) ≥ s(Cn) and by Corollary 5.3.5, we have that
fG(n) ≥ s(Cn) ≥ n. Finally, it follows that fG(n) = n, as we wanted to show.



Chapter 6

Bisimplicial separators

Recall that the class of chordal graphs is exactly the class of graphs where all minimal
separators are cliques [95]. In this chapter we study a generalization of this concept.
For a class C of graphs, we denote by GC the class of all graphs G such that every
minimal separator of G induces a graph from C. For an integer k ≥ 0, we denote by
Gk the class of all graphs G that have the property that every minimal separator of
G is a union of at most k cliques. Note that G0 is the class of all disjoint unions of
(arbitrarily many) complete graphs, and (by [95]) G1 is the class of all chordal graphs.
We give structural and algorithmic results for classes Gk, summarized as follows:

(1) We show that for any hereditary graph class C that is closed under edge addition,
both the class C and the corresponding class GC are closed under induced minors,
and we characterize the class GC in terms of forbidden induced minors. In par-
ticular, we give a complete list of minimal forbidden induced minors for the class
G2.

(2) We generalize results on chordal graphs(by Dirac [95] and by Rose, Tarjan, and
Lueker [212]) by showing that for every positive integer k, every LexBFS ordering
of a graph in Gk is a k-simplicial elimination ordering. This implies that every
nonnull graph in Gk has a k-simplicial vertex (i.e., a vertex whose neighborhood is
a union of k cliques).

(3) We show that for each k ≥ 3, it is NP-hard to recognize graphs in Gk. (Graph in
G1 can be recognized in polynomial time, while the time complexity of recognizing
graphs in G2 is unknown.)

(4) We show the decomposition theorems and polynomial-time recognition for various
subclasses of G2.

(5) We construct various polynomial-time algorithms in class G2 or in its subclasses
(see Table 6.1 on page 94).

Results presented in this chapter are based on the following paper: [180] M. Mi-
lanič, I. Penev, N. Pivač, K. Vušković, Bisimplicial separators. J.Graph Theory, 2024.
doi:10.1002/jgt.23098.
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6.1 Introduction and preliminary results

One can define a graph class by restricting the properties of minimal separators of
graphs in the class. Given a class C of graphs, we denote by GC the class of all graphs
G such that every minimal separator of G induces a graph from C. Since complete
graphs have no separators, we see for all classes C, the class GC contains all complete
graphs (including the null graph). In this work we restrict our attention to classes
Ck consisting of graphs whose vertex sets can be partitioned into k (possibly empty)
cliques. This naturally leads to the definition of a graph class GCk , that consists of
graphs whose minimal separators can be partitioned into k (possibly empty) cliques.
For an integer k ≥ 0, we say that a minimal separator is k-simplicial if it is a union
of at most k cliques and we denote by Gk = GCk the class of all graphs in which every
minimal separator is k-simplicial. If k = 1 (resp., k = 2), we simplify out terminology,
so that k-simplicial becomes simplicial (resp., bisimplicial).

Note that G0 is the class of all disjoint unions of (arbitrarily many) complete graphs,
and (by [95]) G1 is the class of all chordal graphs. Furthermore, for every k ≥ 0 it holds
that Gk ⊆ Gk+1 and all these inclusions are proper, as verified by the class of complete
bipartite graphs with exactly two vertices in one of the two parts. We provide some
characterizations of the class GC when C is hereditary, that is, closed under vertex
deletion. Note that if GC is hereditary, then the class C is contained in the class GC.

Proposition 6.1.1. Let C be a hereditary class of graphs, and let G be a graph. Then
the following are equivalent:

(1) G ∈ GC;

(2) for all induced subgraphs H of G, every minimal separator S of H satisfies H[S] ∈
C;

(3) for all induced subgraphs H of G, every minimal cutset C of H satisfies H[C] ∈ C.

Proof. We prove the result by showing that (1) implies (2), that (2) implies (3), and
that (3) implies (1).

First, we assume that (1) holds, and we prove (2). Let H be an induced subgraph
of G, and suppose that a, b ∈ V (H) are distinct, non-adjacent vertices, and that S is
a minimal (a, b)-separator of H. Then S ∪ (V (G) \ V (H)) is an (a, b)-separator of G.
Let S∗ ⊆ S ∪ (V (G) \ V (H)) be a minimal (a, b)-separator of G; by (a), G[S∗] ∈ C.
Since S∗ is an (a, b)-separator of G, we have that S∗∩V (H) is an (a, b)-separator of H.
Moreover, S∗∩V (H) ⊆ S, and so the minimality of S guarantees that S∗∩V (H) = S;
consequently, S ⊆ S∗. Since G[S∗] ∈ C, and since C is hereditary, it follows that
G[S] ∈ C. Clearly, G[S] = H[S], and so H[S] ∈ C. Thus, (2) holds.

Next, we assume that (2) holds, and we prove (3). Let H be an induced subgraph
of G, and suppose that C is a minimal cutset of H. Let A and B be the vertex sets of
two distinct components of H \ C. The minimality of C guarantees that every vertex
in C has a neighbor both in A and in B, and this, in turn, guarantees that for all a ∈ A
and b ∈ B, C is a minimal (a, b)-separator of H. But now (2) implies that H[C] ∈ C.
Thus, (3) holds.

Finally, we assume that (3) holds, and we prove (1). Suppose that a, b ∈ V (G) are
distinct, non-adjacent vertices, and that S is a minimal (a, b)-separator of G. Let A
(resp. B) be the vertex set of the component of G\S that contains a (resp. b). Clearly,
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A and B are disjoint and anticomplete to each other. Furthermore, the minimality of S
implies that every vertex in S has a neighbor both in A and in B. SetH := G[A∪B∪S].
Then (A,B, S) is a cut-partition ofH; furthermore, sinceH[A] andH[B] are connected,
and every vertex of S has a neighbor both in A and in B, we see that S is a minimal
cutset of H. Now (3) guarantees that H[S] ∈ C; since H[S] = G[S], it follows that
G[S] ∈ C. Thus, (1) holds.

The equivalence of conditions (1) and (2) in the above theorem implies the following.

Corollary 6.1.2. Let C be a hereditary class of graphs. Then GC is hereditary.

Proof. This readily follows from Proposition 6.1.1, and more precisely, from the equiv-
alence of (1) and (2) from Proposition 6.1.1.

Recall that the operation of gluing H1 and H2 along a clique produces a graph
obtained from H1∪H2 by choosing cliques C1 in H1 and C2 in H2 such that |C1| = |C2|,
fixing a bijection f from C1 to C2, and identifying each vertex v ∈ C1 with the vertex
f(v).

Theorem 6.1.3. Let C be a hereditary class of graphs that contains all complete
graphs.1 Then, GC is closed under gluing along a clique.

Proof. LetG be a graph that admits a clique cutset C and let (A,B,C) be an associated
cut-partition of G. Assume that GA := G[A ∪ C] and GB := G[B ∪ C] both belong to
GC. It suffices to show that G ∈ GC.

Fix a pair of distinct, non-adjacent vertices x, y ∈ V (G), and let S be a minimal
(x, y)-separator of G. We must show that G[S] ∈ C. Since C is a clique, it contains at
most one of x, y; by symmetry, we may therefore assume that x ∈ A. We now consider
two cases: when y ∈ A ∪ C, and when y ∈ B.

Case 1: y ∈ A∪C. Then S∩ (A∪C) is an (x, y)-separator of GA; let S ′ ⊆ S∩ (A∪C)
be a minimal (x, y)-separator of GA. Since GA ∈ GC, we see that GA[S

′] = G[S ′]
belongs to C. If S ′ = S, then we are done. So, assume that S ′ ⫋ S. The minimality of
S then implies that there is a path p1, . . . , ps in G \ S ′, with p1 = x and ps = y. Since
S ′ is an (x, y)-separator of GA, we see that at least one vertex of the path p1, . . . , ps
belongs to B. Let i be the smallest index in {1, . . . , s} such that pi ∈ B, and let j be
the largest index in {1, . . . , s} such that pj ∈ B. Since p1, ps ∈ A ∪ C, we have that
2 ≤ i ≤ j ≤ s−1. Moreover, since A is anticomplete to B, we have that pi−1, pj+1 ∈ C;
since C is a clique, we see that pi−1, pj+1 are adjacent. But now p1, . . . , pi−1, pj+1, . . . , ps
is a path between x and y in GA \S ′, contrary to the fact that S ′ is an (x, y)-separator
of GA.

Case 2: y ∈ B. Note that, in this case, C is an (x, y)-separator of G.

Claim. At least one of S ∩ A and S ∩B is empty.

Proof of the Claim. Suppose otherwise, i.e., that both S ∩A and S ∩B are nonempty.
Set SA := S \ B and SB := S \ A. By the minimality of S, there is a path p1, . . . , ps,
with p1 = x and ps = y, in G\SA, and there is a path q1, . . . , qt, with q1 = x and qt = y,
in G \ SB. Since p1 ∈ A and ps ∈ B, and since A is anticomplete to B, some internal
vertex of the path p1, . . . , ps belongs to C; let i be the smallest index in {2, . . . , s− 1}

1However, not all graphs in C have to be complete.
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such that pi ∈ C (then p1, . . . , pi−1 ∈ A). Similarly, at least one internal vertex of the
path q1, . . . , qt belongs to C; let j be the largest index in {2, . . . , t−1} such that qj ∈ C
(then qj+1, . . . , qt ∈ B). Since C is a clique, we see that pi and qj are either equal or
adjacent. In the former case, p1, . . . , pi, qj+1, . . . , qt is a path between x and y in G \S;
and in the latter case, p1, . . . , pi, qj, . . . , qt is a path between x and y in G \ S. But
neither outcome is possible, since S is an (x, y)-separator of G. This proves the Claim.
♦

By the Claim, and by symmetry, we may assume that S ∩ B = ∅, i.e., S ⊆ A ∪ C.
Let Y be the vertex set of the component of G[B] that contains y.

Suppose first that C \ S is anticomplete to Y . Then C ∩ S is an (x, y)-separator
of G, and so the minimality of S guarantees that S ⊆ C. Thus, S is a clique; since C
contains all complete graphs, it follows that G[S] ∈ C, and we are done.

From now on, we assume that C \S is not anticomplete to Y . Fix a vertex c ∈ C \S
that has a neighbor in Y . Since y ∈ Y , and G[Y ] is connected, the graph G contains
a path q1, . . . , qt, with q1 = c, qt = y, and q2, . . . , qt ∈ Y (so, q2, . . . , qt ∈ B). Now,
suppose that there is a path p1, . . . , ps in GA \ S, with p1 = x and ps = c. Then
p1, . . . , ps, q2, . . . , qt is a path in G \ S between x and y, contrary to the fact that S is
an (x, y)-separator of G. So, S is an (x, c)-separator of GA. Let S ′ ⊆ S be a minimal
(x, c)-separator of GA; since GA ∈ GC, we see that GA[S

′] = G[S ′] belongs to C. If S ′

is an (x, y)-separator of G, then the minimality of S guarantees that S = S ′, and we
are done. So, assume that S ′ is not an (x, y)-separator of G. Then there is a path
r1, . . . , rk in G\S ′, with r1 = x and rk = y. Since x ∈ A, y ∈ B, and A is anticomplete
to B, we see that some internal vertex of r1, . . . , rk belongs to C; let i be the smallest
index in {2, . . . , k− 1} such that ri ∈ C. Since ri, c ∈ C, and C is a clique, we see that
ri and c are either equal or adjacent. In the former case, r1, . . . , ri is a path from x to
c in GA \ S ′, and in the latter case, r1, . . . , ri, c is a path from x to c in GA \ S ′. But
neither outcome is possible, since S ′ is an (x, c)-separator of GA.

Theorem 6.1.3 implies the following result on the classes of graphs in which every
minimal separator is a union of k cliques.

Corollary 6.1.4. For every positive integer k, the class Gk is closed under gluing along
a clique.

Proof. This follows immediately from Theorem 6.1.3, the fact that Gk = GCk , and the
fact that the class Ck is a hereditary graph class containing all complete graphs.

Note that Corollary 6.1.4 fails for G0: the two-edge path P3 is an obvious coun-
terexample.

6.2 Forbidden induced minors

For a class of graphs C, let us denote by MC the class of all graphs that do not belong
to C, but all of whose proper induced minors do belong to C. Note that nonisomorphic
graphs in MC are incomparable under the induced minor relation. If the class C is
closed under induced minors, then clearly, C is precisely the class of all MC-induced-
minor-free graphs. In this case, we refer to graphs in MC as the minimal forbidden
induced minors for the class C. More generally, if M is a class of graphs such that
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every graph in C is M-induced-minor-free, we refer to graphs in M as forbidden induced
minors for the class C.

We now consider hereditary graph classes that are closed under edge addition. We
show that for any such class C, both the class C and the corresponding class GC are
closed under induced minors, and we characterize the class GC in terms of forbidden
induced minors. Recall that H1 ∗H2 denotes the join of graphs H1 and H2 on disjoint
vertex sets.

Theorem 6.2.1. Let C be a hereditary class of graphs, closed under edge addition.
Then both C and GC are closed under induced minors, and GC is precisely the class of
all {2K1 ∗H | H ∈ MC}-induced-minor-free graphs.

Proof. Let C be a hereditary class of graphs, closed under edge addition. First, we
prove that C is closed under induced minors. It suffices to show that C is closed under
vertex deletion and edge contraction. The former follows immediately from the fact
that C is hereditary. Let us prove the latter. Fix a graph G ∈ C, and fix an edge
xy ∈ E(G). Then G/xy is isomorphic to the graph obtained from G by first deleting
y, and then adding edges between x and all vertices in NG[y] \NG[x]; since C is closed
under vertex deletion and edge addition, it follows that G/xy belongs to C. So, C is
closed under edge contraction. This proves that C is closed under induced minors.

By Corollary 6.1.2, GC is hereditary. So, in order to prove that GC is closed under
induced minors, it suffices to show that GC is closed under edge contractions. Fix
G ∈ GC, let xy be an edge of G, and set G′ := G/xy; the vertex of G′ to which the edge
xy is contracted will be denoted by vxy. We must show that G′ ∈ GC, i.e., that for any
minimal separator S of G′, we have that G′[S] ∈ C.

We first deal with minimal separators of G′ that contain vxy. So, suppose that
S ⊆ V (G′) is a minimal separator of G′ such that vxy ∈ S; we must show that
G′[S] ∈ C. Fix distinct a, b ∈ V (G′) \S such that S is a minimal (a, b)-separator of G′.
Then S∗ := (S \ {vxy}) ∪ {x, y} is an (a, b)-separator of G. Let S ′ ⊆ S∗ be a minimal
(a, b)-separator of G; since G ∈ GC, we have that G[S ′] ∈ C. If x, y /∈ S ′, then S ′ ⫋ S is
an (a, b)-separator of G′, contrary to the minimality of S. So, S ′ contains at least one of
x, y. Then (S ′\{x, y})∪{vxy} is an (a, b)-separator of G′; since (S ′\{x, y})∪{vxy} ⊆ S,
the minimality of S implies that S = (S ′ \ {x, y})∪{vxy}. As we show next, the graph
G′[S] can be obtained from an induced subgraph of G[S ′] by possibly adding some
edges. By symmetry, we may assume that x ∈ S ′. Since S \ {vxy} = S ′ \ {x, y}, the
graph G′[S] is isomorphic to the graph obtained from the subgraph of G[S ′] induced by
S ′ \ {y} by adding to it the edges from x to all vertices in S ′ \ {x, y} that are adjacent
in G to y but not to x. Since G[S ′] ∈ C, and C is hereditary and closed under edge
addition, we deduce that G′[S] ∈ C, and we are done.

We still have to consider minimal separators of G′ that do not contain vxy. Here,
we first observe that for any pair of non-adjacent vertices a, b of G′, and any set
S ⊆ V (G′) \ {a, b, vxy} = V (G) \ {a, b, x, y}, both the following hold:

(1) if vxy /∈ {a, b}, then S is an (a, b)-separator of G if and only if S is an (a, b)-
separator of G′;

(2) if vxy = a, then S is an (x, b)-separator of G if and only if S is an (a, b)-separator
of G′.

Clearly, (1) and (2) imply that any set S ⊆ V (G′) \ {vxy} = V (G) \ {x, y} is a
minimal separator of G′ if and only if it is a minimal separator of G. But for any
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S ⊆ V (G′) \ {vxy} = V (G) \ {x, y}, we have that G′[S] = G[S], and moreover, if S is
a minimal separator of G, then G[S] ∈ C. This shows that if a set S ⊆ V (G′) \ {vxy}
is a minimal separator of G′, then G′[S] ∈ C.

Finally, it remains to show that GC is precisely the class of all {2K1 ∗H | H ∈ MC}-
induced-minor-free graphs. Let us first show that all graphs in GC are {2K1 ∗H | H ∈
MC}-induced-minor-free. Since GC is closed under induced minors, it suffices to show
that, for all H ∈ MC, the graph 2K1 ∗H does not belong to GC. So, fix H ∈ MC, and
let x and y be the two vertices of the 2K1 from 2K1 ∗ H. Then V (H) is a minimal
(x, y)-separator of 2K1 ∗ H. Since the subgraph of 2K1 ∗ H induced by V (H) is H,
which does not belong to C (because H ∈ MC), it follows that 2K1 ∗H does not belong
to GC.

For the reverse direction, fix any {2K1 ∗ H | H ∈ MC}-induced-minor-free graph
G; we must show that G ∈ GC. Fix distinct, non-adjacent vertices a and b of G, and fix
a minimal (a, b)-separator S of G. We must show that G[S] ∈ C. Suppose otherwise.
Then since C is closed under induced minors, there exists some H ∈ MC such that H
is an induced minor of G[S]. We will derive a contradiction by showing that 2K1 ∗H
is an induced minor of G. Let {Xv}v∈V (H) be a family of nonempty, pairwise disjoint
subsets of S, each inducing a connected subgraph of G[S], and having the property
that for all distinct u, v ∈ V (H), there is an edge between Xu and Xv in G[S] if and
only if uv ∈ E(H). Next, let Xa (resp., Xb) be the vertex set of the component of
G\S that contains a (resp., b). Obviously, Xa and Xb are disjoint and anticomplete to
each other in G. Further, since S is a minimal (a, b)-separator of G, we see that, in G,
every vertex of S has a neighbor both in Xa and in Xb. In particular, for all v ∈ V (H),
there is an edge between Xa and Xv in G, and there is also an edge between Xb and
Xv in G. But now by considering the family {Xv}v∈{a,b}∪V (H), we see that 2K1 ∗H is
an induced minor of G (here, a and b are the two vertices of the 2K1).

We now apply Theorem 6.2.1 to the cases when C = Ck for k ∈ {0, 1}, and thus
GC = Gk.

For k = 0, we have MC0 = {K1} and therefore {2K1 ∗ H | H ∈ MC0} = {2K1 ∗
K1} = {P3}; we obtain that G0 is precisely the class of all P3-induced-minor-free graphs.
In particular, we recover the known easy fact that the class G0 of all disjoint unions of
complete graphs is precisely the class of all P3-induced-minor-free graphs (which is also
the class of all P3-free graphs). In this case, since the set of forbidden induced minors
is a singleton, it is in fact also the set of minimal forbidden induced minors, that is,
MG0 = {P3}.

For k = 1, we have MC1 = {2K1} and we obtain that {2K1 ∗ H | H ∈ MC1} =
{2K1 ∗ 2K1} = {C4}; that is, G1 is precisely the class of all C4-induced-minor-free
graphs. Note that a graph is C4-induced-minor-free if and only if it contains no induced
cycles of length greater than three, that is, it is a chordal graph. By the definition of
G1, graphs in G1 are precisely the graphs in which all minimal separators are cliques.
Thus, we have again recovered a known result: a graph is chordal if and only if all its
minimal separators are cliques (see [95]). Since the set of forbidden induced minors is
a singleton, we again conclude that MG1 = {C4}.

The reader may wonder whether, in Theorem 6.2.1, it is necessary to assume that C
is closed under edge addition. Here, we note that if C is the class of all edgeless graphs,
then K2,3 ∈ GC, but contracting one edge of K2,3 produces the diamond, which does not
belong to GC. Thus, the assumption about edge additions cannot be simply removed
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from Theorem 6.2.1, although it is possible that some other (weaker) assumption would
suffice instead.

Corollary 6.2.2. For all integers k ≥ 0, classes Ck and Gk are closed under induced
minors, and all graphs in Gk are K2,k+1-induced-minor-free.

Proof. Fix an integer k ≥ 0. Obviously, Ck is hereditary and closed under edge addition.
So, by Theorem 6.2.1, Ck is closed under induced minors, and Gk = GCk is closed under
induced minors. It remains to show that K2,k+1 /∈ Gk. But this is obvious: one minimal
separator of K2,k+1 induces an edgeless subgraph on k + 1 vertices in K2,k+1, and Ck
does not contain edgeless graphs on more than k vertices.

We now proceed to showing that when C is a hereditary class of graphs closed
not only under edge addition, but also under the addition of universal vertices, the
conclusion of Theorem 6.2.1 can be strengthened to a characterization of the class of
minimal forbidden induced minors for the class GC (see Theorem 6.2.6). Recall that
a graph is coconnected if its complement is connected and that every graph is the
complete join of its cocomponents.

Proposition 6.2.3. Let H be a coconnected graph on at least two vertices, and assume
that H is an induced minor of a graph G. Let {Xv}v∈V (H) be an induced minor model
of H in G. Then there exists a cocomponent C of G such that

⋃
v∈V (H)Xv ⊆ V (C).

Proof.

Claim. For all v ∈ V (H), there exists a cocomponent C of G such that
Xv ⊆ V (C).

Proof of the Claim. Suppose otherwise. Then there exists some vertex u ∈ V (H) and
distinct cocomponents C1 and C2 of G such that Xu intersects both V (C1) and V (C2).
Let us show that u is a universal vertex of H. Fix any w ∈ V (H) \ {u}. Let C be
any cocomponent of G such that Xw ∩ V (C) ̸= ∅. By symmetry, we may assume that
C ̸= C1.2 Then Xu ∩ V (C1) and Xw ∩ V (C) are both nonempty and complete to each
other in G, and in particular, there is at least one edge between Xu and Xw in G. So,
uw ∈ E(H). This proves that u is a universal vertex of H. But this is impossible
since H is a coconnected graph on at least two vertices, and consequently, H has no
universal vertices. ♦

Fix any cocomponent C of G such that
(⋃

v∈V (H)Xv

)
∩ V (C) ̸= ∅, and set U :=

{v ∈ V (H) | Xv ∩ V (C) ̸= ∅}. By construction, we have that U ̸= ∅, and by the
claim, we have that U = {v ∈ V (H) | Xv ⊆ V (C)}. It now suffices to show that
U = V (H), for it will then follow that

⋃
v∈V (H)Xv ⊆ V (C), which is what we need.

Since U ̸= ∅ and H is anticonnected, it is in fact enough to show that U is complete
to V (H) \ U in H. So, fix some u ∈ U and w ∈ V (H) \ U . Since u ∈ U , we have that
Xu ⊆ V (C). On the other hand, by the claim, there exists a cocomponent D of G
such that Xw ⊆ V (D); since w /∈ U , we have that D ̸= C. Since C and D are distinct
cocomponents of G, we know that V (C) and V (D) are complete to each other in G;
consequently, Xu is complete to Xw in G, and it follows that uw ∈ E(H). This proves
that U is complete to V (H) \ U , and we are done.

2Indeed, either C ̸= C1 or C ̸= C2, and by symmetry, we may assume that C ̸= C1.
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Proposition 6.2.4. Let H1 and H2 be graphs. Assume that H1 contains no universal
vertices and that 2K1 ∗ H1 is an induced minor of 2K1 ∗ H2. Then H1 is an induced
minor of H2.

Proof. If H1 is the null graph, then it is obviously an induced minor of H2. So, we may
assume that H1 is nonnull. Since 2K1 ∗H1 is an induced minor of 2K1 ∗H2, it follows
that the graph H2 is also nonnull.

Now, using the fact that 2K1∗H1 is an induced minor of 2K1∗H2, we fix an induced
minor model {Xv}v∈V (2K1∗H1) of 2K1 ∗H1 in 2K1 ∗H2. If

⋃
v∈V (H1)

Xv ⊆ V (H2), then
H1 is an induced minor of H2, and we are done. So, we may assume that

⋃
v∈V (H1)

Xv ̸⊆
V (H2). Fix a cocomponent H of H1 such that

⋃
v∈V (H)Xv ̸⊆ V (H2). Since H1 has no

universal vertices, we have that |V (H)| ≥ 2. In view of Proposition 6.2.3, it follows that⋃
v∈V (H)Xv ⊆ V (2K1). Since H has at least two vertices, it follows that H ∼= 2K1 and⋃
v∈V (H)Xv = V (2K1). Consequently,

⋃
v∈V (2K1∗H1)\V (H)Xv ⊆ V (H2), and see that

(2K1 ∗H1) \ V (H) is an induced minor of H2. But note that (2K1 ∗H1) \ V (H) ∼= H1.
So, H1 is an induced minor of H2.

We note that the assumption that H1 contains no universal vertices cannot be
removed from Proposition 6.2.4. To see this, note that 2K1 ∗K2 is an induced minor
of 2K1 ∗ 3K1 (indeed, we obtain 2K1 ∗K2 by contracting any one edge of 2K1 ∗ 3K1),
but K2 is not an induced minor of 3K1.

Lemma 6.2.5. Let C be a class of graphs, closed under the addition of universal ver-
tices. Then no graph in MC contains a universal vertex. Moreover, for any two noni-
somorphic graphs H1, H2 ∈ MC, the graphs 2K1 ∗H1 and 2K1 ∗H2 are incomparable
with respect to the induced minor relation.

Proof. Let us first show that no graph in MC contains a universal vertex. Suppose
otherwise, and fix a graphH ∈ MC that contains a universal vertex u. By the definition
of MC, we have that H \u belongs to C. But thenc since C is closed under the addition
of universal vertices, we have that H ∈ C, contrary to the fact that H ∈ MC.

Now, fix any two nonisomorphic graphs H1, H2 ∈ MC. By the definition of MC,
the graphs H1 and H2 are incomparable with respect to the induced minor relation.
Moreover, by what we just proved, H1 and H2 have no universal vertices. So, by
Proposition 6.2.4, 2K1 ∗H1 and 2K1 ∗H2 are incomparable with respect to the induced
minor relation.

Theorem 6.2.6. Let C be a hereditary class of graphs, closed under edge addition, and
closed under the addition of universal vertices. Then MGC = {2K1 ∗H | H ∈ MC}.

Proof. By Theorem 6.2.1, GC is precisely the class of all {2K1 ∗H | H ∈ MC}-induced-
minor-free graphs. On the other hand, Lemma 6.2.5 guarantees that nonisomorphic
graphs in {2K1 ∗ H | H ∈ MC} are incomparable with respect to the induced minor
relation. So, MGC = {2K1 ∗H | H ∈ MC}.

We now apply Theorem 6.2.6 to the cases when C = C2, and thus GC = G2. It can
be shown that MG2 = {K2 ∪ C2k+1 | k ∈ N} (see Fig. 6.1). To this end, the following
auxiliary proposition will be useful.

Proposition 6.2.7. If a graph H1 is an induced minor of a graph H2, then H1 is
isomorphic to a (not necessarily induced) subgraph of H2.
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K2 ∪ C3 K2 ∪ C5 K2 ∪ C7

Figure 6.1: Some small graphs in MG2 .

Proof. The result follows from the following technical claim via simple induction.

Claim. If a graph H is obtained from a graph G by deleting one vertex or
contracting one edge, then H is isomorphic to a subgraph of G.

Proof of the Claim. Fix graphs H and G, and assume that H is obtained from G by
deleting one vertex or contracting one edge. We must show that H is isomorphic to
a (not necessarily induced) subgraph of G. If H is obtained from G by deleting one
vertex, then this is obvious. So, assume that H is obtained from G by contracting an
edge xy of G. Then H is isomorphic to the graph obtained from G by first deleting y
and then deleting all edges between x and NG[y] \ NG[x] = NG(x) \ NG(y). So, H is
isomorphic to a subgraph of G. ♦

Corollary 6.2.8. MG2 = {K2 ∪ C2k+1 | k ∈ N}.

Proof. Note that for all positive integers k, we have that K2 ∪ C2k+1
∼= 2K1∗C2k+1. So,

in view of Theorem 6.2.6, it is enough to show that MC2 = {C2k+1 | k ∈ N}. Note that
graphs in C2 are precisely the complements of bipartite graphs, and it is well known
that a graph is bipartite if and only if it contains no odd cycle as an induced subgraph.
So, C2 is precisely the class of all {C2k+1 | k ∈ N}-free graphs. Since C2 is closed
under induced minors (by Corollary 6.2.2), it follows that C2 is in fact the class of all
{C2k+1 | k ∈ N}-induced-minor-free graphs. It remains to show that (nonisomorphic)
graphs in {C2k+1 | k ∈ N} are incomparable with respect to the induced minor relation.
But this follows from Proposition 6.2.7, and from the fact that no cycle is a subgraph
of a cycle of different length.

A graph is 1-perfectly-orientable if it admits an orientation in which the out-
neighborhood of each vertex is a clique of the underlying graph. It was shown by
Hartinger and Milanič in [136] that all 1-perfectly-orientable graphs are {K2 ∪ C2k+1 |
k ∈ N}-induced-minor-free. Thus, Corollary 6.2.8 implies that 1-perfectly-orientable
graphs form a subclass of G2. Let us also remark that the proof of the mentioned result
in [136] also gives a proof of the fact that nonisomorphic graphs in {K2 ∪ C2k+1 | k ∈ N}
are incomparable with respect to the induced minor relation, which, when combined
with Theorem 6.2.6, gives an alternative proof of Corollary 6.2.8.
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6.3 k-simplicial elimination orderings and k-simplicial
vertices

Recall that a vertex v in a graph G is k-simplicial if its neighborhood in G is a union
of k cliques. Given a graph G and an integer k ≥ 0, a k-simplicial elimination ordering
of G is an ordering v1, . . . , vn of the vertices of G such that for all i ∈ {1, . . . , n}, vi is
k-simplicial in the graph G[v1, . . . , vi]. For k = 1, resp. k = 2, a k-simplicial elimination
ordering is also called a perfect elimination ordering, resp. a bisimplicial elimination
ordering.

LexBFS is a linear-time algorithm of Rose, Tarjan, and Lueker [212] whose input is
any nonnull graph G together with a vertex s ∈ V (G), and whose output is an ordering
of the vertices of G starting at s. It is a restricted version of Breadth First Search,
where the usual queue of vertices is replaced by a queue of unordered subsets of the
vertices, which is sometimes refined, but never reordered (for details, see [212]). An
ordering of the vertices of a graph G is a LexBFS ordering if there exists a vertex s of
G such that the ordering can be produced by LexBFS when the input is G, s.

A classical result due to Dirac [95] states that every nonnull chordal graph has a
simplicial vertex. An alternative proof of this result was given by Rose, Tarjan, and
Lueker [212], who showed that every LexBFS ordering of a chordal graph is a perfect
elimination ordering. In this section we generalize these results by showing that for
every positive integer k, every LexBFS ordering of a graph in Gk is a k-simplicial
elimination ordering. In particular, this shows that every nonnull graph in Gk has a
k-simplicial vertex. We also examine some algorithmic consequences of these results
for the case k = 2.

For a family F of graphs, an ordering v1, . . . , vn of the vertices of a graph G is an
F-elimination ordering if for every index i ∈ {1, . . . , n}, the graph G[NG[v1,...,vi](vi)]
is F -free. Note that a graph G admits an F -elimination ordering if and only if every
nonnull induced subgraph of G contains a vertex whose neighborhood induces an F -free
subgraph in G.

In certain cases, F -elimination orderings can be found using LexBFS. This relies
on the concept of locally F -decomposable graphs and graph classes, introduced by
Aboulker et al. in [2]. Let F be a family of graphs. A graph G is locally F-decomposable
if for every vertex v of G, every F ∈ F contained, as an induced subgraph, in G[NG(v)]
and every component C of G \ NG[v], there exists y ∈ V (F ) such that y has a non-
neighbor in F and has no neighbors in C. A class of graphs G is locally F-decomposable
if every graph G ∈ G is a locally F -decomposable graph.

Theorem 6.3.1 (Aboulker et al. [2]). If F is a family of noncomplete graphs and G is
a locally F-decomposable graph, then every LexBFS ordering of G is an F-elimination
ordering.

For a hereditary graph class C, we denote by FC the class of all graphs G such that
G does not belong to C, but all proper induced subgraphs of G do belong to C.

Theorem 6.3.2. Let C be a hereditary class of graphs that is closed under the addition
of universal vertices. Then, for every graph G ∈ GC, every LexBFS ordering of G is an
FC-elimination ordering.

Proof. First, we note that no graph in FC contains a universal vertex (and thus, FC is
a family of noncomplete graphs). Indeed, if some F ∈ FC contained a universal vertex
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u, then the definition of FC would imply that F \ u belongs to C, and since C is closed
under the addition of universal vertices, it would follow that F ∈ C, a contradiction.

Now, fix a graph G ∈ GC. We claim that G is locally FC-decomposable. Consider
a vertex x ∈ V (G). Suppose that F is an induced subgraph of G[NG(x)] such that
F ∈ FC. By the above, F does not contain a universal vertex, and consequently, every
vertex of F has a non-neighbor in F . Let C be a component of G\NG[x]; we must show
that some vertex in F is anticomplete to V (C). Suppose otherwise, that is, suppose
that every vertex in V (F ) has a neighbor in V (C). Let z ∈ V (C). Clearly, NG(x) is
an (x, z)-separator of G, and moreover, any minimal (x, z)-separator of G included in
NG(x) includes V (F ); since G ∈ GC and C is hereditary, it follows that F ∈ C, contrary
to the fact that F ∈ FC. Thus, some vertex in V (F ) is indeed anticomplete to V (C).
It follows that G is locally FC-decomposable, and so by Theorem 6.3.1, every LexBFS
ordering of G is an FC-elimination ordering. This completes the proof.

The reader may wonder whether, in Theorem 6.3.2, it might be possible to eliminate
the hypothesis that C is closed under the addition of universal vertices. This would in
fact not be possible (at least not without adding some other, perhaps weaker, hypoth-
esis). To see this, fix any positive integer ℓ, and any hereditary class C that does not
contain Kℓ. The class GC contains all complete graphs, and in particular, Kℓ+1 ∈ GC.
However, the neighborhood of any vertex of Kℓ+1 induces a Kℓ, and Kℓ /∈ C.

Corollary 6.3.3. Let k be a positive integer. Then, for every graph G in Gk, every
LexBFS ordering of G is a k-simplicial elimination ordering.

Proof. Fix an integer k ≥ 1. Recall that Ck is the class of graphs whose vertex set
can be partitioned into k cliques. Let G ∈ Ck, and let C1, . . . , Ck be k cliques in G
partitioning the vertex set of G. If G′ is the graph obtained by adding a universal
vertex u to G, then C1 ∪ {u}, C2, . . . , Ck are k cliques in G′ forming a partition of the
vertex set of G′. It follows that Ck is closed under the addition of universal vertices. By
Theorem 6.3.2, for every graph G in Gk, every LexBFS ordering of G is a k-simplicial
elimination ordering.

Corollary 6.3.4. For every positive integer k, every nonnull graph in Gk has a k-
simplicial vertex.

Remark 6.3.5. Corollary 6.3.3 can also be obtained from the fact that every nonnull
graph G contains a moplex [24], that is, a clique C such that every two vertices in C
have the same closed neighborhood and the neighborhood of C is either empty or a
minimal separator of G. (In fact, the last vertex visited by any execution of LexBFS
on G necessarily belongs to a moplex.) Given a graph G ∈ Gk and a vertex v that
belongs to a moplex C of G, there exist k cliques C1, . . . , Ck covering the neighborhood
of C. But then C1, . . . , Ck ∪ (C \ {v}) are k cliques covering NG(v), showing that v is
a k-simplicial vertex.

Remark 6.3.6. For k > 1, the statement of Corollary 6.3.3 does not generalize to the
class of graphs that admit a k-simplicial elimination ordering. To see this, let G be the
complete bipartite graph K2,k+1. Then, G admits a bisimplicial elimination ordering
obtained by placing the two vertices of degree k+ 1 before all the k+ 1 the vertices of
degree 2 in the ordering. On the other hand, any LexBFS ordering of G starting at a
vertex with degree k + 1 will end in the other vertex of degree k + 1, which is not a
k-simplicial vertex in G.
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6.4 NP-hardness results for Gk, k ≥ 3

In this section we prove that for all k ≥ 3, it is NP-hard to recognize graphs in Gk.
The time complexity of recognizing graphs in G2 is still unknown. We also show that
the Maximum Clique problem is NP-hard for G3 (and consequently for Gk whenever
k ≥ 3).

Recall that for an integer k, the k-Coloring problem is the problem of determining
whether the input graph is k-colorable. It is well known that for any integer k ≥ 3, the
k-Coloring problem is NP-complete; we prove the NP-hardness of recognizing graphs
in Gk (k ≥ 3) by a reduction from this problem. We begin with a technical proposition.

Proposition 6.4.1. Let k ≥ 0 be an integer, and let G be a graph. Let G′ be the graph
obtained from G by adding two new, non-adjacent vertices, and making them adjacent
to all vertices of G. Then χ(G) ≤ k if and only if G′ ∈ Gk.

Proof. Let a and b be the two vertices added to G to form G′.
Suppose first that G′ ∈ Gk. Clearly, V (G) is a minimal (a, b)-separator of G′, and

so V (G) is a union of k cliques of G′. But then χ(G) ≤ k.
Suppose now that χ(G) ≤ k; we must show that G′ ∈ Gk. Fix two distinct, non-

adjacent vertices x, y ∈ V (G′) and let S be a minimal (x, y)-separator of G′. We must
show that S is a union of k cliques of G′.

Suppose first that {x, y} ∩ {a, b} ≠ ∅. By symmetry, we may assume that x = a.
Since b is the only non-neighbor of a in G′, it follows that y = b. Since {a, b} = {x, y}
is complete to V (G) = V (G′) \ {a, b}, it follows that V (G) is the only (x, y)-separator
of G′. So, S = V (G). Since χ(G) ≤ k, it follows that S is a union of k cliques of G′.

From now on, we assume that {x, y}∩ {a, b} = ∅, so that x, y ∈ V (G). Since x and
y are non-adjacent, we see that V (G) is not a clique, and consequently k ≥ χ(G) ≥ 2.
Note that {a, b} is complete to {x, y}, and so a, b ∈ S. Now, χ(G) ≤ k, and so S\{a, b}
is a union of k cliques of G, say C1, . . . , Ck. Using the fact that {a, b} is complete to
V (G) in G′, and the fact that k ≥ 2, we see that S is a union of k cliques of G′, namely
C1 ∪ {a}, C2 ∪ {b}, C3, . . . , Ck.

We have now shown that G′ ∈ Gk, and we are done.

Theorem 6.4.2. For every integer k ≥ 3, it is NP-hard to recognize graphs in Gk.

Proof. Fix an integer k ≥ 3, and let G be any graph. We form a graph G′ by adding
two new, non-adjacent vertices to G, and making them adjacent to all vertices of G.
Since G = G, Proposition 6.4.1 guarantees that χ(G) ≤ k if and only if G′ ∈ Gk. Since
k-Coloring is NP-complete, it follows that recognizing graphs in Gk is NP-hard .

Theorem 6.4.3. The Maximum Clique problem is NP-hard for graphs in G3.

Proof. Note that G3 contains all graphs whose vertex set can be partitioned into three
cliques; moreover, note that the vertex set of a graph can be partitioned into three
cliques if and only if the complement of the graph is 3-colorable. Thus, it suffices
to show that the Maximum Independent Set problem is NP-hard for 3-colorable
graphs. But this readily follows from [203]. Indeed, as observed by Poljak [203], for
any graph G, the graph G∗ obtained from G by subdividing each edge twice has the
property that α(G∗) = α(G) + |E(G)|. But notice that for any graph G, the graph G∗

is 3-colorable. Thus, since the Maximum Independent Set problem is NP-hard for
general graphs, it is NP-hard for 3-colorable graphs.
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6.5 Sublasses of G2

In previous section we saw that the recognition of graphs in G3 is NP-hard problem.
The recognition of graphs in G2, however, remains an open problem. For this reason,
in this section we consider subclasses of the class G2. In particular, we consider the
following subclasses of the class G2: triangle-free graphs in G2, perfect graphs in G2 and
diamond-free graphs in G2.

Recall that a prism is any subdivision of C6 in which the two triangles remain
unsubdivided and theta is any subdivision of the complete bipartite graph K2,3. In
particular, C6 is a prism and K2,3 is a theta. The diamond, 3-prism and K2,3 are
depicted in Fig. 6.2. Any prism other than C6 is a long prism.

Figure 6.2: From left to right: the diamond, the 3-prism, and the K2,3.

A pyramid is any subdivision of the complete graphK4 in which one triangle remains
unsubdivided, and of the remaining three edges, at least two edges are subdivided at
least once. A 3-path-configuration (or 3PC for short) is any theta, pyramid, or prism.
The three types of 3PC are represented in Fig. 6.3. A k-prism is a graph whose
vertex set can be partitioned into two k-vertex cliques, say A = {a1, . . . , ak} and
B = {b1, . . . , bk}, such that for all i, j ∈ {1, . . . , k}, ai is adjacent to bj if and only if
i = j. Any graph that is a k-prism for some integer k ≥ 3 will be referred to as short
prism. Note that C6 is 3-prism.

Figure 6.3: Three-path-configurations: theta (left), pyramid (center), and prism
(right). A full line represents an edge, and a dashed line represents a path that has at
least one edge.

A broken wheel (see Fig. 6.4) is a wheel that consists of a hole H and an additional
vertex v such that v has at least three neighbors in H, and furthermore, the neighbors
of v in V (H) induce a disconnected subgraph of H.
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not broken

not broken not broken not broken

not broken not broken

not broken not broken

broken

broken broken

broken broken

not broken

Figure 6.4: Some small wheels, classified as broken or not broken.

6.5.1 Graphs of bounded clique number and perfect graphs in
G2

Among the subclasses of G2, first we consider the class of graphs of bounded clique
number in G2 and we justify that graphs in this class can be recognized in polynomial
time.

Let ℓ be an integer, G be the class ofKℓ+1-free graphs and letG be a graph in G, with
n vertices and m edges. Now we explain the algorithm that decides whether G ∈ G2.
We generate the set consisting of all pairs of disjoint cliques in G and enumerate those
pairs whose union is a minimal separator in G. Let s2 be the number of all enumerated
pairs; clearly, s2 ∈ O(n2ℓ). Further, we run some of the algorithms that enumerate
all minimal separators of a graph, for example the one developed by Berry et al. [25].
The algorithm enumerates all the minimal separators of G in time O(n(n + m)s),
where s denotes the number of minimal separators of G. We run the algorithm for
O(n(n + m)s2) time and compare the output with the list of s2 enumerated clique
pairs (more preciselly, we compare the output with the sets obtained as a union of
cliques from a single pair, for every pair). If the answer is affirmative, we conclude
that G ∈ G2. Otherwise, if output does not coincide with the list of clique pairs, or the
algorithms did not produce any response, we conclude that G /∈ G2.

Now we focus on perfect graphs in G2. A recent result from Dallard et al. [85]
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gives a polynomial-time algorithm for the recognition of graphs that do not contain
the complete bipartite graph K2,3 as an induced minor.

Theorem 6.5.1 (Dallard et al. [85]). Determining whether a given graph contains K2,3

as an induced minor can be done in time O(n13(n +m)), where n and m denote the
number of vertices and edges of the input graph, respectively.

It turns out that using Theorem 6.5.1 the perfect graphs in G2 can be recognized
in polynomial time. Recall that α(G) is the size of maximum independent set in G,
ω(G) is the size of maximum clique in G, θ(G) is the minimum number of cliques
needed to cover the vertices of G, χ(G) is the minimum number of colors needed to
color the vertices of G so that the adjacent vertices have distinct colors. Note that any
independent set in G is a clique in G, and a proper coloring of G is a clique cover in
G. It follows that for every graph G it holds that α(G) = ω(G) and θ(G) = χ(G).

Theorem 6.5.2. Let G be a perfect graph. Then G belongs to G2 if and only if G is
K2,3-induced-minor-free.

Proof. If G ∈ G2, then G is K2,3-induced-minor free, by Corollary 6.2.2.
Let G be a perfect graph that is K2,3-induced-minor-free. Since the complement

of a perfect graph is perfect, G is perfect as well and by the definition of perfect
graphs, for every induced subgraph H of G it holds that ω(H) = χ(H). Note that G
is the complement of G and the last equality implies that for every induced subgraph
H of G it holds that α(H) = θ(H). Recall that G is K2,3-induced-minor free, so
every minimal separator S in G induces a graph with independence number at most 2
(see, e.g., [88, Lemma 3.2]). Finally, for an arbitrary minimal separator S in G it holds
that α(G[S]) = θ(G[S]), so θ(G[S]) ≤ 2. Therefore, S can be covered by two cliques,
and since S was an arbitrary minimal separator in G, it follows that G ∈ G2.

The following result is a direct consequence of Theorems 6.5.1 and 6.5.2.

Corollary 6.5.3. Determining whether a given perfect graph belongs to G2 can be done
in time O(n13(n+m)), where n and m denote the number of vertices and edges of the
input graph, respectively.

6.5.2 Diamond-free graphs in G2

In this section we prove a decomposition theorem for the class of diamond-free graphs
in G2. The decomposition results imply certain polynomial-time recognition algorithms
for these class of graphs, as will be discussed in Section 6.6.2.

We will need the following decomposition theorem for (3PC, wheel)-free graphs.

Theorem 6.5.4 (Conforti et al. [70]). If a graph G is (3PC, wheel)-free, then either
G is a complete graph or a cycle, or G admits a clique cutset.

Lemma 6.5.5. K2,3 is an induced minor of every theta, pyramid, long prism, or broken
wheel.

Proof. First, we show that K2,3 is an induced minor of every theta. Let H be a theta.
Let a and b be distinct, non-adjacent vertices of H, and let P 1, P 2, P 3 be distinct
induced paths in H, each between a and b, such that any two of P 1, P 2, P 3 have
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exactly two vertices (namely a and b) in common. Contracting in H all but two edges
of each path P i results in a graph isomorphic to K2,3.

Next, we show that K2,3 is an induced minor of every pyramid. Let H be a pyramid.
Let a be a vertex of H, let B = {b1, b2, b3} be a 3-vertex clique in H \ a, and let P 1,
P 2, and P 3 be induced paths in H such that

• for each i ∈ {1, 2, 3}, the endpoints of P i are a and bi;

• any two of the paths P 1, P 2, P 3 have exactly one vertex (namely a) in common.

Since H is a pyramid, we know that at least two of P 1, P 2, P 3 have more than one
edge; by symmetry, we may assume that P 1 and P 2 each have at least two edges.
Contracting in H all but two edges of each of the paths P 1 and P 2, all but one edge
of the path P 3, and the edge b1b2 results in a graph isomorphic to K2,3.

Next, we show that K2,3 is an induced minor of every long prism. Let H be a long
prism. Let A = {a1, a2, a3} and B = {b1, b2, b3} be disjoint 3-vertex cliques in H, and
let P 1, P 2, and P 3 be induced paths in H such that

• for each i ∈ {1, 2, 3}, the endpoints of P i are ai and bi;

• no two of the paths P 1, P 2, P 3 have any vertices in common.

Since H is a long prism, we know that at least one of P 1, P 2, P 3 has more than one
edge; by symmetry, we may assume that P 1 has more than one edge. Contracting in
H all but two edges of the path P 1, all but one edge of each of the paths P 2 and P 3,
and the edges a1a2 and b1b3, results in a graph isomorphic to K2,3.

Finally, we show that K2,3 is an induced minor of every broken wheel. Let W be
a broken wheel, consisting of a hole H = h0, h1, . . . , hk−1, h0 (with k ≥ 4, and indices
in Zk) and an additional vertex v that has at least three neighbors in H, and such
that the neighbors of v induce a disconnected subgraph of H. By symmetry, we may
assume that v is non-adjacent to h0 and adjacent to h1. Let the path h1, . . . , hi be one
component of H[NW (v)]. Contracting in W all edges of the hole H except for the four
edges h0h1, h0hk−1, hihi+1, hi+1hi+2 results in a graph isomorphic to K2,3.

Corollary 6.5.6. Every graph in G2 is (theta, pyramid, long prism, broken wheel)-free.

Proof. Since G2 is hereditary (by Corollary 6.1.2), it suffices to show that G2 contains
no theta, no pyramid, no long prism, and no broken wheel. By Corollary 6.2.2, G2

is a subclass of the class of K2,3-induced-minor-free graphs. Thus, it suffices to show
that the class of K2,3-induced-minor-free graphs contains no theta, no pyramid, no
long prism, and no broken wheel, or equivalently, that K2,3 is an induced minor of
every theta, pyramid, long prism, or broken wheel. This is exactly the statement of
Lemma 6.5.5.

Lemma 6.5.7. Let G be a diamond-free graph that belongs to G2. Then G is (theta,
pyramid, long prism, wheel)-free.

Proof. Clearly, every wheel either contains an induced diamond or is a broken wheel.
The result now follows from Corollary 6.5.6.

Lemma 6.5.8. Let G be a (diamond, theta, pyramid, long prism, wheel)-free graph
that contains an induced C6. Then either G is a short prism, or G admits a clique
cutset.
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Proof. Recall that C6 is a 3-prism; fix a maximum integer n ≥ 3 such thatG contains an
induced n-prism H. Set V (H) = A ∪B, where A = {a1, . . . , an} and B = {b1, . . . , bn}
are disjoint, n-vertex cliques, such that for all i, j ∈ {1, . . . , n}, ai is adjacent to bj in
H if and only if i = j. We may assume that V (H) ⫋ V (G), for otherwise, G is a short
prism, and we are done. We may further assume that G is connected, for otherwise, ∅
is a clique cutset of G, and again we are done.

Claim 1. For all v ∈ V (G) \ V (H), either NG(v)∩ V (H) = A, or NG(v)∩ V (H) = B,
or there exists some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) ⊆ {ai, bi}.
Proof of Claim 1. Fix v ∈ V (G) \ V (H). We may assume that |NG(v) ∩ V (H)| ≥ 2,
for otherwise, the result is immediate. Next, if there exist distinct i, j ∈ {1, . . . , n}
such that v is complete to {ai, bj}, then G[v, ai, aj, bi, bj] is either a theta or a wheel,
contrary to the fact that G is (theta, wheel)-free. So, if v has a neighbor both in A
and in B, then there exists some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) = {ai, bi},
and we are done. From now on, we assume that either NG(v)∩ V (H) ⊆ A or NG(v)∩
V (H) ⊆ B; by symmetry, we may assume that NG(v) ∩ V (H) ⊆ A, and we deduce
that |NG(v) ∩ A| ≥ 2. Then v is complete to A, for otherwise, we fix pairwise distinct
ai, aj, ak ∈ A such that v is adjacent to ai, aj and non-adjacent to ak, and we observe
that G[v, ai, aj, ak] is a diamond, contrary to the fact that G is diamond-free. It now
follows that NG(v) ∩ V (H) = A, and we are done. This proves Claim 1. ♦

Claim 2. If there exists some v ∈ V (G) \ V (H) such that NG(v) ∩ V (H) = A (resp.
such that NG(v) ∩ V (H) = B), then A (resp. B) is a clique cutset of G.

Proof of Claim 2. By symmetry, we may assume that some v ∈ V (G) \ V (H) satisfies
NG(v) ∩ V (H) = A; we must show that A is a clique cutset of G. By construction, A
is a clique of G, and so it suffices to show that A is a cutset of G separating v from
B. Suppose otherwise. Then there exists an induced path P in G \ V (H) between
v and some vertex that has a neighbor in B. Let Q = q0, . . . , qt (with t ≥ 0) be a
minimum-length subpath of P such that q0 is complete to A and qt has a neighbor in
B; by Claim 1, NG(q0) ∩ V (H) = A and q0 ̸= qt, i.e., t ≥ 1. By symmetry, we may
assume that qt is adjacent to b1. By Claim 1, we have that either NG(qt)∩ V (H) = B,
or NG(qt) ∩ V (H) = {a1, b1}, or NG(qt) ∩ V (H) = {b1}.

Assume first that NG(qt) ∩ V (H) = B. If t = 1, then G[A ∪ B ∪ {q0, q1}] is an
(n + 1)-prism, contrary to the maximality of n. So, t ≥ 2. By the minimality of
Q, all internal vertices of Q are anticomplete to B. If the internal vertices of Q are
also anticomplete to A, then G[{a1, a2, b1, b2} ∪ V (Q)] is a long prism, contrary to the
fact that G is long-prism-free. Hence, some internal vertex of Q has a neighbor in
A; let i ∈ {1, . . . , t − 1} be maximum with the property that qi has a neighbor in
A. By the minimality of Q, and by Claim 1, we know that qi has a unique neighbor
in A; fix j ∈ {1, . . . , n} such that aj is the unique neighbor of qi in A, and fix any
k ∈ {1, . . . , n} \ {j}. But now G[aj, ak, bj, bk, qi, qi+1, . . . , qt] is a pyramid, contrary to
the fact that G is pyramid-free.

Assume next that NG(qt)∩V (H) = {a1, b1}. Let qi be the vertex of Q with highest
index such that qi is adjacent to a2. Then qi, . . . , qt, b1, b2, a2, qi is a hole, and a1 has at
least three neighbors (namely, a2, qt, b1) in it, contrary to the fact that G is wheel-free.

Assume finally that NG(qt) ∩ V (H) = {b1}. Let qi (resp. qj) be the vertex of
Q with highest index such that qi (resp. qj) is adjacent to a2 (resp. a1). If j ≥ i
then qi, . . . , qt, b1, b2, a2, qi is a hole and a1 has at least three neighbors in it (namely,
a2, qj, b1), contrary to the fact that G is wheel-free. So, i > j. Then qj, . . . , qt, b1, a1, qj
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is a hole and a2 has two non-adjacent neighbors in it (namely, a1, qi), and hence
G[qj, . . . , , qt, b1, a1, a2] is a theta or a wheel, contrary to the fact that G is (theta,
wheel)-free. This proves Claim 2. ♦

In view of Claims 1 and 2, we assume from now on that for all v ∈ V (G) \ V (H),
there exists some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) ⊆ {ai, bi}.
Claim 3. For all i ∈ {1, . . . , n}, if some vertex in V (G) \ V (H) is complete to {ai, bi},
then {ai, bi} is a clique cutset of G.

Proof of Claim 3. By symmetry, we may assume that some vertex of V (G) \ V (H)
is complete to {a1, b1}; we must show that {a1, b1} is a clique cutset of G. Let p0
be a vertex of V (G) \ V (H) that is complete to {a1, b1}. Since a1 is adjacent to b1,
it suffices to show that G \ {a1, b1} is disconnected. Suppose otherwise. Then, there
exists an induced path in G \ {a1, b1} from the vertex p0 to a vertex in V (H) \ {a1, b1}.
Consequently, there exists an induced path P = p0, . . . , ps (with s ≥ 0) in G \ (A ∪
B) such that ps has a neighbor in V (H) \ {a1, b1}; we may assume that the path
P was chosen so that its length is minimum. By Claim 1, we have that NG(p0) ∩
V (H) = {a1, b1}, and so s ≥ 1. Furthermore, by the minimality of P , {p0, . . . , ps−1}
is anticomplete to V (H) \ {a1, b1}. By symmetry, we may assume that a2 ∈ NG(ps) ∩
V (H) ⊆ {a2, b2}. Let i be the largest index in {0, . . . , s} such that pi is adjacent to b1
(such an i exists because p0 is adjacent to b1). Now pi, . . . , ps, a2, a3, b3, b1, pi is a hole,
and a1 has at least three neighbors (namely, a2, a3, b1) in it, contrary to the fact that
G is wheel-free. This proves Claim 3. ♦

In view of Claim 3, we may now assume that no vertex in V (G) \ V (H) has more
than one neighbor in V (H). Let NA be the set of all vertices in V (G) \ V (H) that
have a neighbor in A, and let NB be the set of all vertices in V (G) \ V (H) that have a
neighbor in B. Then NA ∩NB = ∅. Since V (H) ⫋ V (G) and G is connected, we have
that NA ∪ NB ̸= ∅. If NA = ∅, then B is a clique cutset of G, and if NB = ∅, then
A is a clique cutset of G. So, we may assume that NA and NB are both nonempty.
Furthermore, we may assume that there is an induced path in G \ V (H) between NA

and NB, for otherwise, both A and B are clique cutsets of G, and we are done. Let
P = p0, . . . , ps (with s ≥ 0) be a minimum-length path in G \V (H) such that p0 ∈ NA

and ps ∈ NB; since NA ∩ NB = ∅, we see that s ≥ 1. Furthermore, the minimality of
P implies that the interior of P is anticomplete to V (H).

Since no vertex of V (G)\V (H) has more than one neighbor in V (H), we may assume
by symmetry that NG(p0) ∩ V (H) = {a1}, and that either NG(ps) ∩ V (H) = {b1} or
NG(ps)∩V (H) = {b2}. But if NG(ps)∩V (H) = {b2}, then G[a1, a2, b1, b2, p0, . . . , ps] is
a theta, contrary to the fact that G is theta-free. So, NG(ps) ∩ V (H) = {b1}. We now
have that V (P ) is anticomplete to V (H) \ {a1, b1}.

Our goal is to show that {a1, b1} is a clique cutset of G. Suppose otherwise; then
G \ {a1, b1} is connected. Then, there exists an induced path in G \ {a1, b1} from a
vertex in P to a vertex in V (H)\{a1, b1}. Since V (P ) is anticomplete to V (H)\{a1, b1},
any such path has length at least two. Deleting the endpoints of any such path, we
obtain an induced path Q = q0, . . . , qt (with t ≥ 0) in G \ (V (H) ∪ V (P )) such that
q0 has a neighbor in V (P ), and qt has a neighbor in V (H) \ {a1, b1}; we may assume
that Q is a minimum-length path with this property, so that q0 is the only vertex
of Q with a neighbor in V (P ), and qt is the only vertex of Q with a neighbor in
V (H) \ {a1, b1}. By symmetry, we may further assume that qt is adjacent to a2; then
NG(qt)∩V (H) = {a2}. Let i be the largest index in {0, . . . , s} such that q0 is adjacent
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to pi. Then pi, . . . , ps, b1, b3, a3, a2, qt, . . . , q0, pi is a hole in G, and b2 has at least three
neighbors (namely, a2, b1, b3) in it, contrary to the fact that G is wheel-free. This
completes the proof.

Lemma 6.5.9. Let G be a (diamond, theta, pyramid, long prism, wheel)-free graph.
Then either G is a short prism, a cycle, or a complete graph, or G admits a clique
cutset.

Proof. If G contains an induced C6, then the result follows from Lemma 6.5.8. Oth-
erwise, we have that G is (3PC, wheel)-free, and the result follows from Theo-
rem 6.5.4.

Theorem 6.5.10. Let G be a diamond-free graph that belongs to G2. Then either G
is a short prism, a cycle, or a complete graph, or G admits a clique cutset.

Proof. This follows immediately from Lemmas 6.5.7 and 6.5.9.

A remark about triangle-free graphs in G2. It turns out that every triangle-
free graph G in G2 is a graph of separability at most 2. Graphs of separability at most
k, k ≥ 0, were introduced by Milanič and Cicalese [69] as graphs in which every two
non-adjacent vertices in G are separated by a set of at most k other vertices. They
showed that graphs of separability at most 2 are precisely the graphs that can be built
from complete graphs and cycles by an iterative application of gluing a long 2-cliques.
Equivalently, they showed that G is of separability at most 2 if and only if G contains
no induced K−

5 (that is, K5 minus one edge), no induced 3PC and no induced wheel.
Using this characterization of graphs of separability at most 2 and Corollary 6.5.6 we
can easily show that every triangle-free graph in G2 is of separability at most 2, and
thus can be built from complete graphs and cycles by an iterative application of gluing
along 2-cliques, by [69, Theorem 1].

6.6 Algorithms and complexity

In this section we use the results and characterizations obtained in previous sections,
in order to develop polynomial-time algorithms for certain graph problems in the class
G2 and its subclass of diamond-free graphs in G2. On the other side, we proved in Sec-
tion 6.4 that the recognition of graphs in G3 is NP-hard. Note that, since Vertex
Coloring is NP-hard for circular-arc graphs [116], which form a subclass of G2, the
problem is also NP-hard for Gk, whenever k ≥ 2. Table 6.1 summarizes our algorithmic
and complexity results. Since G0 is the class of all disjoint unions of complete graphs,
and G1 is the class of all chordal graphs, all problems from the table below can be
solved in linear time for G0 and G1 (see [114,212]).
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diamond-free
graphs in G2 G2 Gk (k ≥ 3)

recognition O(nω log n) ? NP-hard
Maximum Weight Clique O(nω log n) O(n3+o(1)) NP-hard
Maximum Weight Independent Set O(n2(n+m)) O(n5) O(n2k+2)
Vertex Coloring O(nω log n) NP-hard NP-hard

Table 6.1: Summary of our algorithmic and complexity results. The number of vertices
and edges of the input graph is denoted by n and m, respectively, and ω < 2.3728596
denotes the matrix multiplication exponent (see [7]).

6.6.1 Algorithmic considerations for graphs in G2

The Maximum Weight Clique problem can be solved in polynomial time for n-
vertex graphs that admit a bisimplicial elimination ordering, see [233]. The algorithm
iteratively removes bisimplicial vertices and reduces the problem to solving n instances
of the Maximum Weight Independent Set problem in bipartite graphs. The
polynomial running time of the algorithm given in [233] was based on polynomial-
time solvability of the Maximum Weight Independent Set problem in the class of
perfect graphs. Using maximum flow techniques, an improved running time of O(n4)
can be achieved, see [17]. For graphs in G2, a further improvement can be obtained
using LexBFS and recent developments on maximum flow algorithms.

Theorem 6.6.1. For every ϵ > 0, the Maximum Weight Clique problem can be
solved in O(n3+ϵ) time for n-vertex graphs in G2.

Proof. LetG be an n-vertex graph in G2. In time O(n2), we compute a LexBFS ordering
v1, . . . , vn of G. By Corollary 6.3.3, v1, . . . , vn is a bisimplicial elimination ordering of
G. For each i ∈ {1, . . . , n}, let Gi be the graph induced by the closed neighborhood of
vi in the graph G[v1, . . . , vi]. We will show that for each i ∈ {1, . . . , n}, we can compute
a maximum-weight clique Ci in Gi in time O(n2+ϵ). This will suffice, since a clique Ci

with maximum total weight is also a clique in G with maximum total weight.
Fix an i ∈ {1, . . . , n}. A maximum-weight clique in the graph Gi consists of vi and

a maximum-weight independent set in the complement of the graph Gi − vi. Since vi
is a bisimplicial vertex in the graph G[v1, . . . , vi], the complement of the graph Gi − vi
is bipartite. The problem of finding a maximum-weight independent set in a vertex-
weighted bipartite graph can be reduced in linear time to a maximum flow problem in a
derived network (see, e.g., [141]). Using a recent result due to Chen et al. [57] showing
that the maximum flow problem can be solved in almost linear time, we conclude that
a maximum-weight independent set in the complement of the graph Gi − vi can be
computed in time O(n2+ϵ). The claimed O(n3+ϵ) overall time complexity follows.

Note that Theorem 6.4.3 implies that this result cannot be generalized to graphs
in Gk for k ≥ 3, unless P = NP.

Dallard et al. showed in [88] that, for each positive integer k, the Maximum
Weight Independent Set problem can be solved in O(n2k) time for n-vertex K2,k-
induced-minor-free graphs. To connect this result with the classes Gk, recall that every
graph in Gk is K2,k+1-induced-minor-free, by Corollary 6.2.2. Therefore, the result by
Dallard et al. implies the following.
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Corollary 6.6.2. For each integer k ≥ 0, the Maximum Weight Independent
Set problem can be solved in O(n2k+2) time for n-vertex graphs in Gk.

Similar results hold for a number of other related problems, including the Maximum
Induced Matching problem, the Dissociation Set problem, etc. We refer to [87]
for the details.

Furthermore, Dallard et al. showed in [86] that in any class of K2,k-induced-minor-
free graphs, the treewidth of the graphs in the class is bounded from above by some
polynomial function of the clique number (see also [88]). Combining this with a result
of Chaplick et al. [56, Theorem 12], it follows that for any two positive integers k and
ℓ, the ℓ-Coloring problem is solvable in time O(n) in the class of n-vertex K2,k-
induced-minor-free graphs, and thus in the class Gk as well. (The O-notation hides a
constant depending on k and ℓ.) The same result holds in fact for the more general
List ℓ-Coloring problem, in which every vertex is equipped with a list of available
colors from the set {1, . . . , ℓ}.

6.6.2 Algorithmic considerations for diamond-free graphs in G2

Clearly, short prisms, cycles, and complete graphs are diamond-free and belong to
G2, and furthermore, they can all be recognized in polynomial time. So, using Corol-
lary 6.1.4 and Theorem 6.5.10, we show that diamond-free graphs in G2 can be recog-
nized in polynomial time. In order to derive the result, we decompose a graph by means
of clique cutsets. This common algorithmic tool, first proposed by Tarjan (see [226]),
applies to any n-vertex graph G and produces a family H of O(n) induced subgraphs of
G that do not have any clique cutsets and such that G can be obtained by an iterative
application of gluing graphs from H along cliques. The original algorithm proposed
by Tarjan runs in time O(n(n +m)), where m denotes the number of edges of G. A
more efficient approach for decomposing a graph along clique cutsets was suggested by
Coudert and Ducoffe [75]. They improved the time complexity to O(nω log n), where
ω < 2.3728596 is the matrix multiplication exponent (see [7]).

Proposition 6.6.3. There exists an algorithm running in time O(nω log n) that cor-
rectly determines if an input n-vertex graph G is a diamond-free graph in G2.

Proof. Given a graph G with n vertices, testing if G is diamond-free can be done in time
O(nω) (see [231]). Assuming G is diamond-free, we compute the connected components
of G and run the algorithm by Coudert and Ducoffe [75] on each nontrivial component
of G. This can be done in time O(nω log n). The algorithm produces a family H of
O(n) induced subgraphs of G that do not have any clique cutsets and such that G can
be obtained by an iterative application of gluing graphs from H along cliques. We then
check, for each graph H ∈ H, whether H is a short prism, cycle, or a complete graph.
If this is the case, the algorithm determines that G belongs to G2, and otherwise, it
determines that G does not belong to G2. The correctness follows from Corollary 6.1.4
and Theorem 6.5.10.

To complete the proof, we show that testing whether a given H ∈ H satisfies one
of the desired properties can be done in time O(n+m), where m denotes the number
of edges of G. Since H is connected, testing if it is a cycle or a complete graph can
be done in linear time simply by checking if all the vertex degrees are equal to 2 or
to |V (H)| − 1, respectively. If none of these cases occurs, we can assume that n = 2k
for some k ≥ 3 and that every vertex in H has degree exactly k, since otherwise, we
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can infer that H is not a short prism. We choose an arbitrary vertex v ∈ V (H) and
compute the components of the graph H[NH(v)]. If H is a k-prism, then H[NH(v)]
has exactly two components, say C and D, such that C is isomorphic to a complete
graph Kk−1 and D is a trivial component. Set A = C ∪ {v} and B = V (G) \A. Since
we already checked that all the vertices are of degree k + 1, it remains to verify if B
is a clique of cardinality k. If this is the case, then H is a short prism, otherwise it is
not. Each of the above constantly many steps can be carried out in linear time.

Moreover, it is clear that the Maximum Weight Clique, Maximum Weight
Independent Set, and Vertex Coloring can be solved in polynomial time for
short prisms, cycles, and complete graphs. Thus, Theorem 6.5.10 and the algorithm
by Coudert and Ducoffe [75] allow us to solve these three optimization problems in
polynomial time for diamond-free graphs in G2. A more precise time complexity analysis
is provided by the following.

Theorem 6.6.4. When restricted to the class of diamond-free graphs in G2 with n ver-
tices and m edges, the Maximum Weight Clique and Vertex Coloring prob-
lems can be solved in O(nω log n) time and the Maximum Weight Independent
Set problem in O(n2(n+m)) time.

Proof. Let G be a diamond-free graph with n vertices and m edges that belongs to
G2. For the Maximum Weight Clique and Vertex Coloring problems, the
approach is as follows. We compute the connected components of G and run the
algorithm by Coudert and Ducoffe [75] on each component of G. This can be done in
time O(nω log n). We obtain a family H of O(n) induced subgraphs of G that do not
have any clique cutsets and such that G can be obtained by an iterative application
of gluing graphs from H along cliques. We now iterate over all H ∈ H and solve
the Maximum Weight Clique and Vertex Coloring problems on H in linear
time. By Theorem 6.5.10, each graph H ∈ H is a short prism, cycle, or a complete
graph; as explained in the proof of Proposition 6.6.3, which of these cases occurs can
be determined in linear time in the size of H. If H is a complete graph, then its
chromatic number is |V (H)| and its vertex set solves the Maximum Weight Clique
problem. Otherwise, if H is a cycle with at least four vertices, then its chromatic
number is either 2 or 3, depending on whether |V (H)| is even or odd, respectively,
and to solve the Maximum Weight Clique problem, we only need to examine its
edges. Finally, if H is a short prism, say with |V (H)| = 2k for some k ≥ 3, then
we can identify in linear time the two cliques A and B, each of size k, that partition
V (H). Then, the chromatic number of H is k, and to solve the Maximum Weight
Clique problem, we only need to examine the two cliques A and B and the k edges
connecting them. In all these cases, the Maximum Weight Clique and Vertex
Coloring problems can be solved in linear time for graphs in H. Since each clique of
G is fully contained in one of the graphs in H, this provides an efficient solution to the
Maximum Weight Clique problem on G. Similarly, the chromatic number of G is
the maximum chromatic number of the graphs in H.

For the Maximum Weight Independent Set problem, the approach is similar,
except that in each decomposition step decomposes G along a cut-partition (A,B,C)
of G such that C is a clique and the subgraph of G induced by A∪C belongs to H. For
each vertex v ∈ C, we determine a maximum-weight independent set of the subgraph
of G induced by A \ NG(v), a maximum-weight independent set of the subgraph of
G induced by A, redefine the weights on C, and solve the problem recursively on the



CHAPTER 6. BISIMPLICIAL SEPARATORS 97

graph G− A. (We refer to [226] for details; see also [36, Section 8.1].) Thus, we solve
O(|V (G)|) subproblems for each graph H ∈ H for a total of O(|V (G)|2) subproblems.
Each of these subproblems can be solved in linear time. If H is a complete graph,
then a heaviest vertex forms a maximum-weight independent set. If H is a cycle,
then we can use the fact that cycles have bounded treewidth and apply the results
from [11, 31]. Finally, assume that H is a short prism. Then, for each vertex v a
maximum-weight independent set Sv containing v can be computed in O(|V (H)|) time:
indeed, Sv is of the form Sv = {v, zv} where zv is a vertex of maximum weight among
the non-neighbors of v in H. The heaviest among the sets Sv forms a maximum-weight
independent set. The complexity of this approach is O(|V (H)|2), which in this case is
O(|V (H)|+ |E(H)|).



Chapter 7

Final Remarks to Part I

Some of the results we discussed earlier in Part I have been previously published in
the proceedings of peer-reviewed conferences and papers in scientific journals. Several
of these findings have sparked interest among other researchers in structural and algo-
rithmic graph theory, leading to further studies of the problems studied in our work.
In this chapter, we summarize the results from the recent literature motivated by our
works and discuss any remaining unanswered questions from our research, as well as
potential future research directions.

7.1 Tame graph classes

In Chapter 4 we considered tame graph classes, that is, classes of graphs with poly-
nomially many minimal separators, and examined them from various points of view.
Constructions of graphs with exponentially many minimal separators and the newly
identified families of tame graph classes led to a complete classification of the tame
graph classes within the family of graph classes defined by forbidden induced sub-
graphs with at most four vertices (see Section 4.4). These results were published in
paper [183]), and were followed by research papers on the same topic by other authors,
as follows.

In parallel with our studies, Chudnovsky et al. [66] gave a polynomial-time algo-
rithm to compute a maximum weight independent set in an (even-hole, pyramid)-free
graph. They obtained a decomposition result for the class of (even-hole, pyramid)-free
graphs and using it, they proved that this class of graphs is tame. As a continuation
of these studies, Abrishami et al. confirmed a conjecture posed in [66]. In particular,
they showed that the class of (theta, pyramid, prism, turtle)-free graphs is tame. Fur-
thermore, they conjectured that for every k the class of all k-creature-free graphs is
tame.

Soon after, a systematic study of tame graph classes was done by Gartland and
Lokshtanov [120, 121]. They say that a graph class is strongly-quasi-tame if there
exists a constant c such that every graph in the class on n vertices contains at most
O(nc log n) minimal separators. Recall that a graph class is feral if there exists a
constant c > 1 such that for arbitrarily large n there is an n-vertex graph in the class
with at least cn minimal separators. While for any tame graph class it clearly holds
that it is not feral, the opposite is in general not true: there are graph classes that
are neither feral nor tame, see [115]. Gartland and Lokshtanov gave a counterexample
to the conjecture of Abrishami et al. [3] and obtained a complete classification of all
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hereditary graph classes defined by a finite set of forbidden induced subgraphs into
strongly-quasi-tame or feral. In their work the weaker forms of the conjecture by
Abrishami et al. were proved. In particular, they showed that for every k the class of
all k-creature-free graphs that additionally excludes all cycles of length at least ℓ, for
some constant ℓ, is tame. Furthermore, they showed that for every k the class of all
k-creature-free graphs that is Kℓ-free for some fixed constant ℓ is tame. For details,
see the paper by Gartland and Lokshtanov [120] (as well as [118]).

Gartland and Lokshtanov obtained a complete classification of graph families de-
fined by a finite number of forbidden induced subgraphs into strongly-quasi-tame and
feral and in particular, they showed that the absence of k-creatures, when combined
with an excluded k-skinny ladder1 as an induced minor, implies a quasi-polynomial
upper bound on the number of minimal separators. They conjectured that the re-
sulting graph classes are tame and showed that proving their tameness would imply a
full dichotomy of hereditary graph classes defined by a finite set of forbidden induced
subgraphs into tame and feral. Their conjecture was proved by Gajarský et al. [115] in
the form of the following result (Theorem 4.5.13): for every positive integer k, the class
of graphs that are k-creature-free and do not contain a k-skinny-ladder as an induced
minor is tame. Finally, this result was followed by the second paper of Gartland and
Lokshtanov where they showed that every graph class that is (k-creature, k-critter)-free
is quasi-tame (for the definition of k-critter and other details, see [121]).

As proved by Gartland and Lokshtanov in [120], Theorem 4.5.13, combined
with [120, Theorem 1.3], implies a dichotomy theorem classifying graph classes de-
fined by finitely many induced subgraphs into tame and feral. This result implies that
graph class defined by a single forbidden induced subgraph F is tame if F is an induced
subgraph of the path P4 or of the graph 2P2, and feral, otherwise. We address the same
question for the induced minor and induced topological minor relations. Building on
the result of Gajarský et al. [115], we show that the class consisting of graphs that do
not contain any induced subdivision of the house is tame. Together with the result
that the class of butterfly-induced-minor-free graphs is tame, this leads to a character-
ization of tame graph classes defined by a single forbidden induced minor, or induced
topological minor.

A natural research question that arises here is a characterization of tame graph
classes by a single forbidden minor or topological minor. Furthermore, our studies can
be extended to a more general study classifying tame graph classes by finitely many
forbidden induced minors, or finitely many forbidden induced topological minors.

7.2 Extremal number of minimal separators

In Chapter 5 we studied several tame graph classes satisfying the property that the
number of minimal separators of every graph in a class is bounded by the number of
vertices in a graph. This leads to the general research problem of identification of all
graph classes for which the number of minimal separators of every graph in a class
is bounded by the number of vertices. In other words, we wonder whether one can
characterize tame graph classes for which the polynomial that bounds the number of
minimal separators is the identity function.

1A k-skinny ladder is a graph consisting of two induced anti-adjacent paths P = (p1, . . . , pk),
Q = (q1, . . . , qk), an independent set R = (r1, . . . , rk), and edges

⋃k
i=1{piri, qiri} (see Section 4.5.2).
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In particular, we say that a graph G is orderly if s(G) ≤ |V (G)| and a graph class
is orderly if every graph in the class is orderly. The proposed research question is
the classification of orderly graph classes, that is, the study of sufficient and necessary
conditions for a graph class to be orderly. These are the vertices, the removal of which
reduces the number of minimal separators in a graph by at most one.

A vertex v in a graph G is said to be well-behaved if its deletion decreases the
number of minimal separators by at most 1, that is, if s(G− v) ≥ s(G)− 1. Note that
in this case s(G − v) ≤ s(G) ≤ s(G − v) + 1. We say that a graph G is well-behaved
if every induced subgraph of G contains a well-behaved vertex (see Fig. 7.1). Not all
graphs are well-behaved. For example, if G is the cycle Cn for n ≥ 3, then G has(
n
2

)
− n minimal separators, while the deletion of any vertex results in the path Pn−1,

which has n− 3 minimal separators; the difference
(
n
2

)
− 2n+3 exceeds 1 for all n ≥ 5.

The importance of well-behaved graphs for the study of minimal separators is evident
from the following.

Proposition 7.2.1. Any class of well-behaved graphs is orderly. More precisely, if G
is a class of well-behaved graphs, then fG(n) ≤ n− 1 for all n ∈ N.

Proof. Let G be a class of well-behaved graphs and let H be the class of all induced
subgraphs of graphs in G. Since G is a subclass of H, it suffices to show that fH(n) ≤
n− 1 for all n ∈ N.

We prove the inequality by induction on n. If n = 1, then the only possible n-
vertex graph in H is P1 and s(P1) = 0, hence fH(1) ≤ 0. Assume now that n > 1
and let H be an n-vertex graph in H. By the definition of H, there exists a graph
G ∈ G such that H is an induced subgraph of G. Since G belongs to G, it is well-
behaved, hence the induced subgraph H of G contains a well-behaved vertex v. It
follows that s(H − v) ≥ s(H) − 1. Since the graph H − v is an induced subgraph of
G, it belongs to H. By the induction hypothesis, we have fH(n − 1) ≤ n − 2, which
implies s(H − v) ≤ n − 2 and consequently s(H) ≤ s(H − v) + 1 ≤ n − 1. It follows
that fH(n) ≤ n− 1, as claimed.

As we show next, many well-known properties of vertices of graphs guarantee that
the vertex is well-behaved.

Proposition 7.2.2. For every graph G it holds that every vertex that is universal, or
simplicial, or has a true twin, or has a false twin, or has codegree 1, is 1-well-behaved.

Proof. Let G be a graph and let v be a vertex in G. If v is universal, simplicial, or
has a true or a false twin, then the claim follows from Propositions 3.2.11 and 3.2.13
to 3.2.15, respectively.

Let v be a vertex of codegree 1 in G. Let u be the unique vertex of V (G) \ {v}
that is non-adjacent to v. Let G′ = G − v. Let S be a minimal separator in G. If
v ∈ S, then S \ {v} is a minimal separator in G′, by Corollary 3.2.8. If v /∈ S, then
v ∈ A ∪ B, where A and B are S-full components of G − S, since otherwise v would
have a non-neighbor in each of A and B, contradicting the assumption that u is the
unique non-neighbor of v in G. We may assume without loss of generality that v ∈ A.
Thus V (B) = {u}, since A and B are anticomplete to each other. We know that
NG′(u) = NG(u) ⊆ NG′(v), so S = NG(u).



CHAPTER 7. FINAL REMARKS TO PART I 101

Cographs

Distance-hereditary 2P2-free

Well-behaved

Weakly chordal

Trivially perfect

Proper interval

Interval

Strongly chordal

Trivially perfect

Pseudo-split

Threshold

Split
Co-trivially perfect

{2P2, C5}-free

Chordal

Perfect

Figure 7.1: Graph classes studied in Chapter 5 and the class of well-behaved graphs.
An arrow from a class G1 to a class G2 means that every graph in G1 is also in G2.

The result about codegree one is sharp in the following sense: we cannot increase
the codegree to beyond one, since a vertex of codegree two is not necessarily well-
behaved. For example, every vertex of the 5-cycle has codegree two, but deleting any
such vertex reduces the number of minimal separators by 3. The same graph shows
that bisimplicial vertices are not well-behaved. One more example of vertex that is not
well-behaved is a cut-vertex, as can be seen by gluing two cycles along a vertex. The
following observation describes a class that is not well-behaved.

Observation 7.2.3. Complements of cycles are not well-behaved graphs.

Proof. Observe first that s(Cn) = n for n ≥ 5. Since s(P1) = 0 and the graph Pn (for
any n ≥ 2) can be obtained from the graph Pn−1 by adding to it a vertex of codegree
one, we infer that s(Pn) ≤ n− 1 for all n ≥ 2. Deleting any vertex from Cn results in
the graph Pn−1, and s(Pn−1) ≤ n− 2.

Consequently, every well-behaved graph is weakly chordal (see Fig. 7.1). This
inclusion is proper, as can be seen by domino, the graph obtained by gluing two 4-
cycles along a 2-clique. Furthermore, every well-behaved graph is orderly as well,
while orderly graph classes do not necessarily consist of well-behaved graphs only. For
example, the class of all complements of cycles is orderly (every graph in the class is
2P2-free and so Theorem 5.3.6 applies), even though it is not a well-behaved class of
graphs.

This study can be extended in several different directions. Here we propose some
open problems for future research.
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(1) Characterize the class of well-behaved graphs by minimal forbidden induced sub-
graphs.

(2) Let G be a class of graphs G such that every induced subgraph H of G satisfies
that s(H) ≤ |V (H)|. Characterize G by minimal forbidden induced subgraphs.

(3) Determine the extremal number of minimal separators for other tame graph classes.
Consider, for example, the class of ladders (Cartesian products of P2 and a path),
that is an orderly class of graphs. Then every subclass of this class is orderly as well,
and we wonder what is the extremal number of minimal separators in such graph
classes. More generally, we may consider the class of bipartite permutation graphs,
biconvex bipartite graphs, convex bipartite graphs, chordal bipartite graphs, and
weakly chordal graphs.

7.3 Bisimplicial separators

In Chapter 6 we considered graphs in which every minimal separator is k-simplicial,
that is, a union of k cliques, for some fixed integer k ≥ 0. We denoted by Gk the
graph class consisting of graphs with k-simplicial minimal separators and showed that
the recognition of graphs in Gk is NP-hard for every k ≥ 3. As the cases k = 0 and
k = 1 correspond to classes of complete graphs and chordal graphs, respectively, the
only remaining case where the recognition problem is open is G2. This is the main open
question with respect to the study of k-simplicial graphs.
Question 7.3.1. Can graphs in G2 be recognized in polynomial time?

Regarding subclasses of G2, in Chapter 6 we considered the intersection of G2 with
classes of graphs of bounded clique number, the class of perfect graphs, and the class
of diamond-free graphs, and proposed polynomial-time algorithms for the recogni-
tion of graphs from these classes as well. It turns out that wheel-free graphs in G2

have the same structural characterization as diamond-free graphs in G2, which yields
a polynomial-time recognition algorithm for this class of graphs, too. Moreover, since
any graph in G2 is (theta, pyramid, long prism, broken wheel)-free, the class of wheel-
free graphs in G2 coincides with the class of consecutive-wheel-free graphs in G2, where
a consecutive wheel is a wheel that consists of a hole H and a center v such that the
neighborhood of v in V (H) induces a connected subgraph of H. Every wheel is either
broken or consecutive. One can show that every consecutive-wheel-free graph in G2 is
either a short prism, a cycle, or a complete graph, or admits a clique-cutset. The proof
of this structural result is quite similar to the one presented for diamond-free graphs,
so we omit it here.

Regarding the overall study of the class G2, we point out the following remarks.
First, note that the subclass of the class G2 that consists of prism-free graphs is con-
tained in the class of (theta, pyramid, prism, turtle)-free graphs and is tame by [3]
and one can decide in polynomial time whether such a graph belongs to the class G2.
Thereby, the problem of recognizing graphs in G2 can be reduced to the subclass of G2

consisting of graphs that contain an induced short prism and an induced consecutive
wheel.
Question 7.3.2. Can we find a decomposition theorem for (theta, pyramid, long prism,
broken wheel)-free graphs that contain an induced short prism, and an induced con-
secutive wheel?
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Let us now put the complexity results in the class of diamond-free graphs in per-
spective by comparing them with the known complexities of the three problems in the
larger classes of diamond-free graphs and graphs in G2. First, the Vertex Color-
ing problem is NP-hard for diamond-free graphs [159], as well as for graphs in G2,
since it is already hard for the subclass of circular-arc graphs [116]. The situation is
somewhat different for the Maximum Weight Independent Set problem, which
is NP-hard (even in the unweighted case) in the class of diamond-free graphs, as can
be seen using Poljak’s reduction [203], but solvable in polynomial time in the class
G2. Our algorithm described in Corollary 6.6.2 solves the problem in G2 in time O(n6).
Recently, Dallard, Milanič and Štorgel improved this result and obtained the algorithm
that solves the same problem for n-vertex K2,3-induced-minor-free graph in time O(n5)
(see [88, Theorem 3.16]).

Finally, while the Maximum Weight Clique problem is known to be solvable in
polynomial time both for diamond-free graphs as well as for graphs in G2, the running
time of the algorithm given by Theorem 6.6.4 improves on both time complexities. By
Theorem 6.6.1, the problem can be solved in O(n3+ϵ) time for n-vertex graphs in G2,
for every ϵ > 0. For the class of diamond-free graphs, observe that every edge in such a
graph is contained in a unique maximal clique. Thus, a diamond-free graph with n ver-
tices and m edges has O(n+m) maximal cliques, and the Maximum Weight Clique
problem can be solved in polynomial time by enumerating all maximal cliques and re-
turning one of maximum weight. Using, for example, the maximal clique enumeration
algorithm due to Makino and Uno [172], this would result in an overall running time
of O(n2.373(n+m)) on diamond-free graphs with n vertices and m edges.
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Chapter 8

Overview

An independent set in a graph G is a set of pairwise non-adjacent vertices in G. An
independent set is said to be maximum if it has maximum cardinality among all in-
dependent sets in G and maximal if it is not contained in any larger independent set.
Given a graph G and an integer k, deciding whether G contains an independent set
of cardinality k is an NP-complete problem known under the name Independent
Set [146].

If every vertex of a graph G is assigned a real number, the weight of a vertex, we
speak about a weighted graph. Independent Set naturally generalizes to a weighted
version. Maximum Weight Independent Set (MWIS) is the problem of com-
puting an independent set of maximum weight in a given weighted graph, where the
weight of a set of vertices is defined as the sum of the weights of its members.

It is known that Independent Set remains NP-hard on F -free graphs (where F
is a finite set) unless, for at least one graph in F , every connected component is a path
or a subdivision of the claw [5].

In this part of the thesis we consider two distinct problems related to the inde-
pendent set problem. The first one is the problem of computing the vector space
consisting of all vertex weight functions under which all the maximal independent sets
of the graph have constant weight. The second one is an allocation problem, a problem
of computing an optimal allocation of items to agents in the presence of a conflict
graph, respecting a certain fairness criterion.

8.1 Well-Covered Vector Spaces

While every maximum independent set in a graph is also a maximal one, the opposite
implication does not hold. If every maximal independent set in a graph G is also
a maximum one, the graph G is said to be well-covered. Well-covered graphs were
introduced by Plummer in 1970 [201] and have been extensively studied in the literature
(see [137] for an introduction and [202] for a survey). One of the motivations for the
study of well-covered graphs stems from the fact that Maximum Independent Set is
solvable in linear time in the class of well-covered graphs by a simple greedy algorithm
that computes a maximal independent set.

Two central research directions on well-covered graphs are the study of their recog-
nition and their characterizations in special graph classes. As proved independently by
Sankaranarayana and Stewart in 1992 [214] and by Chvátal and Slater in 1993 [68], the
recognition of well-covered graphs is co-NP-complete. In Plummer’s survey from 1993
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(see [202]) one can find results on various restrictions of the well-coveredeness prop-
erty defining special subclasses of well-covered graphs, as well as an overview of the
study of well-coveredeness versus the girth and the maximum degree. After Plummer’s
survey, the study of well-covered graphs focused mostly on the recognition problem
in special cases. In particular, Caro, Sebő, and Tarsi showed that the recognition of
well-covered graphs remains co-NP-complete even for K1,4-free graphs [53], Brown and
Hoshino established co-NP-completeness for the class of circulant graphs [49], and a
careful examination of the reduction due to Sankaranarayana and Stewart [214] shows
that the problem remains co-NP-complete in the class of weakly chordal graphs. On
the positive side, Tankus and Tarsi showed that the problem is polynomial-time solv-
able in the class of claw-free graphs (see [224,225]). The well-coveredness property can
also be tested efficiently in the classes of bipartite graphs [103,211], graphs with girth
at least 5 [106], graphs without cycles of lengths 4 and 5 [107], chordal graphs [206],
graphs of bounded degree [52], perfect graphs with bounded clique number [91], various
generalizations of the class of cographs [9,147], and graphs of bounded clique-width [8].
The problem has also been studied from the parameterized complexity point of view,
by Alves et al. [8] and Araújo et al. [9].

In this thesis we focus on a weighted generalization of well-coveredness. Given a
graph G and a weight function w : V (G) → R, a graph G is said to be w-well-covered
if all maximal independent sets in G are of the same weight with respect to the weight
function w. The concept of w-well-covered graphs was introduced by Caro, Ellingham,
and Ramey in 1998 [52], in the more general context of weight functions mapping the
vertices of a graph to the elements of an abelian group (see also [50]). Graphs that
are w-well-covered with respect to some nonnegative weight function w : V (G) → R+

that is not identically equal to 0 are exactly the complements of the so-called stochastic
graphs studied in 1983 by Berge [21], and generalize the equistable graphs introduced
in 1980 by Payan [194] and defined as the graphs that admit a weight function w :
V (G) → R+ such that a set S ⊆ V (G) is a maximal independent set if and only if the
total weight of S equals 1.

Given a graph G, a well-covered weighting of G is any real-valued weight function w
on the vertices of G such that G is w-well-covered. For every graph G, the set WCW(G)
of all well-covered weightings of G forms a vector space over the field of real numbers
(see [50,54]); we refer to it as the well-covered vector space of G. Similar vector spaces
can be defined for more general situations, for example for hypergraphs and for vertex
weight functions that assign to each vertex of G a value from some fixed field F (see
Caro and Yuster [54] and Brown and Nowakowski [50]). In this thesis we restrict our
attention to the case of graphs and the field of real numbers. Any system of equations
representing the vector space WCW(G) will be referred to as a well-covering system of
G. (Precise definitions will be given in Section 9.1.)

In this work we study the problem called Well-Covering System: given a graph
G, compute a well-covering system of G.

A graph is well-covered if and only if the vertex weight function that is constantly
equal to 1 belongs to the well-covered vector space of the graph. Therefore, since
the problem of recognizing well-covered graphs is co-NP-complete, the more general
Well-Covering System problem is co-NP-hard.

The well-covered dimension of G is denoted by wcdim(G) and defined as the di-
mension of the well-covered vector space of G. Clearly, a graph G has well-covered
dimension equal to zero if and only if the only well-covered weighting of G is the iden-
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tically zero function. Such graphs are known to exist; for instance, the Petersen graph
and any cycle with at least 8 vertices are among them (see [52, 54]). However, to the
best of our knowledge, the complexity of computing the well-covered dimension of a
graph is open, even in the special case of recognizing graphs with positive well-covered
dimension. Caro and Yuster proved that the well-covered dimension of a tree is equal
to the number of leaves [54]. Brown and Nowakowski generalized this result to the
class of chordal graphs [50] by showing that in this case the well-covered dimension
equals the number of simplicial cliques. They also showed that the well-covered dimen-
sion can be computed in polynomial time for cographs, for graphs with independence
number at most two, and for chordal graphs. The well-covered dimension of certain
product graphs was studied by Birnbaum et al. [26] and for Levi graphs of point-line
configurations by Hauschild et al. [138].

Well-covered vector spaces of graphs containing no cycles of length 4 were studied
by Brown, Nowakowski, and Zverovich [51]. Well-Covering System can be solved
in polynomial time in classes of graphs of bounded vertex degree, as shown by Caro,
Ellingham, and Ramey [52], in the class of graphs with girth at least 7, as shown by
Caro and Yuster [54], and, as shown by Levit and Tankus, in the class of claw-free
graphs [164] and in the class of graphs without cycles of lengths 4, 5, and 6 [165].

In the thesis we give two general reductions for the Well-Covering System
problem, one based on modular decomposition and one based on anti-neighborhoods.
Building on these results, we develop a polynomial-time algorithm for solving the prob-
lem in the class of fork-free graphs, thereby generalizing the analogous result of Levit
and Tankus on claw-free graphs [164]. The algorithm decomposes a given fork-free
graph G into a polynomial number of induced subgraphs of G and recursively computes
a well-covering system for every graph H constructed at some step of the decomposi-
tion of G. To keep the well-covering systems polynomially bounded in size, Gaussian
elimination is applied at each step. In the base case, when the subgraph H cannot be
decomposed further, we use a structural result on fork-free graphs due to Lozin and
Milanič [167, 168] (see also [97]) to infer that H is claw-free; hence, in this case the
algorithm of Levit and Tankus applies.

The class of fork-free graphs generalizes also the class of cographs, hence our results
generalize the result of Brown and Nowakowski [50] that the well-covered dimension of
cographs can be computed in polynomial time. Furthermore, our reduction involving
modular decomposition generalizes the analogous reduction for the (unweighted) well-
covered graphs due to Klein, de Mello, and Morgana [147], who used modular and
primeval decompositions to develop efficient algorithms for the problem of recognizing
well-covered graphs in several extensions of the class of cographs.

8.2 Fair Allocation of Indivisible Items

Allocating resources to several agents in a satisfactory way is a classical problem in
combinatorial optimization. Usually, such problems are equipped with some additional
constraints for a feasible allocation, and there are various models of preferences ex-
pressed by the agents and different objectives arising from these. Here we study the
fair allocation of n indivisible goods or items to a set of k agents. Each agent has its
own additive utility function over the set of items. The goal is to assign every item to
exactly one of the agents such that the minimal utility over all agents is as large as
possible. In the area of Combinatorial Optimization a similar problem is well-known as
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the Santa Claus problem (see [15]), which can also be seen as a scheduling problem.
In particular, Santa Claus asks for a distribution of items (presents) to agents (kids)
so that the least happy kid is as happy as possible. Related problems of fair allocation
are frequently studied in Computational Social Choice, see, e.g., [44]. Recent papers
from this field containing many pointers to the literature and studying fairness issues,
also in connection with an underlying graph structure, are given by [16,43].

We look at the problem from a graph theoretical perspective and add a major new
aspect to it. We allow an incompatibility relation between pairs of items, meaning
that incompatible items should not be allocated to the same agent. This can reflect
the fact that items rule out their joint usage or simply the fact that certain items are
identical (or of a similar type) and it does not make sense for one agent to receive
more than one of these items. We represent such a relation by a conflict graph where
vertices correspond to items and edges express incompatibilities. If two items i and j
are joined by an edge ij ∈ E, then i and j should not be allocated to a same agent.

In the literature we can find various combinatorial optimization problems equipped
with conflict graphs leading to new problems with feasible solutions consisting of ob-
jects whose graph representations are independent sets in the conflict graph, e.g., knap-
sack problems [197,198], bin packing [186], scheduling (see, e.g., [30,101]), transporta-
tion [215] and problems on graphs (see, e.g., [89]).

Consider the example when items represent tasks with a starting and end time,
and each agent should be allocated a fair subset of non-overlapping tasks. Then the
mutual exclusion of two tasks will be represented by the edges of a conflict graph (see,
e.g., [101,173]). Another example is the transportation when orders need to be divided
among several shipping partners which should all be treated as equally as possible,
according to a joint agreement. In some industries, goods cannot be combined in an
arbitrary way due to safety regulations, so a conflict graph can represent forbidden
combinations of items. (see, e.g., [102,142]).

Therefore, for a positive integer k we consider the problem called Fair k-Division
Under Conflicts: given a graph G and k agents with utility functions over the set
V (G) of items, allocate items to agents so that the minimal value of utility over all
agents is maximized. The formal definition of the problem will be given in Section 10.1.
Clearly, every subset of items assigned to one agent has to form an independent set in
th graph G, and in general, we allow the partial distribution of items, meaning that
possibly not all items are distributed. The case when the conflict graph is edgeless
corresponds to the problem Fair k-Division of Indivisible Items.

Note that for k = 2, the decision version of Fair k-Division of Indivisible
Items (and thus of Fair k-Division Under Conflicts with edgeless conflict graph)
also generalizes the decision version of the Knapsack problem: Given a set V =
{1, . . . , n} of items with weights w1, . . . , wn ∈ Z+ and values v1, . . . , vn ∈ Z+, and
two positive integers W and C such that W <

∑
j∈V wj, is there a subset of the

items having total weight at most W and total value at least C? It turns out that
Fair k-Division of Indivisible Items, even with k identical profit functions, is
weakly NP-hard for any constant k ≥ 2 and strongly NP-hard for k being part of the
input. Furthermore, we point out that Fair k-Division of Indivisible Items is
still only weakly NP-hard for constant k even for arbitrary profit functions, since we
can construct a pseudo-polynomial algorithm solving the problem with a k-dimensional
dynamic programming array.

Note further that for k = 1, Fair k-Division Under Conflicts coincides with
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Maximum Weight Independent Set. In particular, the case of unit weights and
k = 1 generalizes Independent Set. Altogether, we conclude that Fair 1-Division
Under Conflicts is strongly NP-hard. Hence, the addition of the conflict structure
gives rise to a much more complicated problem, since Fair k-Division of Indivisible
Items (which arises naturally as a special case for an edgeless conflict graphG) is trivial
for k = 1 and only weakly NP-hard for k ≥ 2.

In the thesis we aim to characterize the computational complexity of Fair k-
Division Under Conflicts for different classes of conflict graphs. We study the
boundary between strongly NP-hard cases and those where a pseudo-polynomial algo-
rithm can be derived for a constant k. The fact that the Fair 2-Division Under
Conflicts when a conflict graph is edgeless generalizes Knapsack problem implies
that pseudo-polynomial algorithm is the only positive result we can obtain. Simultane-
ously, the proposed problem generalizes the Maximum Weight Independent Set
problem, so pseudo-polynomial algorithms for the proposed problem can be obtained
only in graph classes where the same holds for Maximum Weight Independent
Set. We show that the problem is strongly NP-hard for bipartite graphs and their
line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs,
cocomparability graphs, biconvex bipartite graphs, graphs of bounded treewidth and
graphs of bounded clique-width.



Chapter 9

Well-covered vector spaces in fork-free
graphs

Our results from this chapter can be summarized as follows:

(1) We give two general reductions for the problem of computing the well-covered
vector space of a given graph, one based on anti-neighborhoods and one based on
modular decomposition, combined with Gaussian elimination.

(2) We develop a polynomial-time algorithm for computing the well-covered vector
space of a given fork-free graph, generalizing the analogous result of Levit and
Tankus for claw-free graphs.

(3) Our approach implies a polynomial-time recognition algorithm for the class of well-
covered fork-free graphs and also generalizes some known results on cographs.

The results presented in this chapter are based on results from the following paper:
Milanič, M., Pivač, N. Computing well-covered vector spaces of graphs using modular
decomposition. Comp. Appl. Math. 42, 360 (2023). https://doi.org/10.1007/s40314-
023-02502-8

9.1 Problem definition and preliminary remarks

Recall that given a weighted graph (G,w) and a set S ⊆ V (G), the weight of S (with
respect to w) is defined as w(S) =

∑
v∈S w(v). Given a set S ⊆ V (G), we denote

by wS the restriction of w to S, that is, the function wS : S → R defined by setting
wS(v) = w(v) for all v ∈ S. Given a weighted graph (G,w), we say that w is a well-
covered weighting of G and that G is w-well-covered if all maximal independent sets in
G have the same weight with respect to w, that is, for every two maximal independent
sets I and I ′ in G, we have w(I) = w(I ′). Recall that for every graph G, the set
WCW(G) of all well-covered weightings of G forms a vector space over the field of
real numbers, called the well-covered vector space of G. Given a positive integer n, we
denote by [n] the set {1, . . . , n} (and [0] := ∅).

Since we only work with finite graphs, the well-covered vector space WCW(G)
is always finite-dimensional and thus has a finite basis (an inclusion-wise maximal
linearly independent set of vectors); furthermore, all bases of WCW(G) have the same
cardinality, which is referred to as the well-covered dimension of G. Clearly, for every
graph G, its well-covered dimension is an integer between 0 and |V (G)|.

110
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Well-covered vector spaces of graphs can also be represented using systems of linear
equations. Let G be a graph with n vertices. Fix an arbitrary ordering v1, . . . , vn of
the vertices of G and an arbitrary ordering I1, . . . , Ik of all maximal independent sets
in G. By definition, a weight function w : V (G) → R is a well-covered weighting of G
if and only if w satisfies the following system of

(
k
2

)
equations:

w(Ii)− w(Ij) = 0 for any two distinct i, j ∈ [k] with i < j . (9.1)

To distinguish between vectors of abstract variables of a system and vectors of their
concrete real values, we use the following convention throughout this chapter. To
each vertex v ∈ V (G) we associate a variable xv, and write the systems of equations
using such variable names. For example, following this convention, the system (9.1)
corresponds to the following homogeneous linear system over the set of variables {xv :
v ∈ V (G)}:∑

v∈Ii

xv −
∑
v∈Ij

xv = 0 for any two distinct i, j ∈ [k] with i < j . (9.2)

This system can be compactly represented with a single matrix equation

Ax = 0r

where r =
(
k
2

)
, A ∈ Rr×n is the coefficient matrix, and the right-hand side 0r is the

all-zero vector in Rr. Thus, a column vector w = (w(v1), . . . , w(vn))
⊤ ∈ Rn belongs to

the well-covered vector space WCW(G) if and only if Aw = 0r.
There are many ways to represent the well-covered vector space of a given graph G

with a linear system. For example, a system equivalent to (9.2) with k − 1 equations
can be obtained by requiring that all maximal independent sets have the same weight
as an arbitrary but fixed maximal independent set, say Ik:∑

v∈Ii

xv −
∑
v∈Ik

xv = 0 for all i ∈ [k − 1] . (9.3)

Another equivalent system, also with k − 1 equations, is the following:∑
v∈Ii

xv −
∑

v∈Ii+1

xv = 0 for all i ∈ [k − 1] . (9.4)

A well-covering system of G is any system S of linear homogeneous equations over a
set {xv : v ∈ V (G)} of variables indexed by the vertices of G such that a column vector
w = (w(v1), . . . , w(vn))

⊤ ∈ Rn belongs to the well-covered vector space WCW(G) if
and only if it satisfies all the equations of the system. Given a well-covering system S
of G, we denote by |S| the size of S, that is, the number of equations in S. As shown
by systems (9.2) and (9.3), the same graph can admit well-covering systems of different
sizes. Finally, we define the problem studied in this chapter.

Well-Covering System
Input: A graph G = (V,E).
Task: Compute a well-covering system of G.
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In the following sections we solve the Well-Covering System in the class of
fork-free graphs (see Fig. 9.1, part a)). Now we illustrate the main concepts with a
concrete example and then discuss two important remarks about properties of well-
covering systems.

Example 9.1.1. Let G be the bull graph, that is, the graph obtained from the 5-vertex
path with vertices v1, . . . , v5 in order along the path by adding to it the edge v2v4
(Fig. 9.1 b)). Then G has exactly three maximal independent sets: I1 = {v1, v4},
I2 = {v2, v5}, and I3 = {v1, v3, v5}. Any well-covered weighting w of G must satisfy
that w(I1) = w(I2) = w(I3), or equivalently, w(I1)−w(I3) = 0 and w(I2)−w(I3) = 0.
This yields the following linearly independent well-covering system S of G with size
r = 2:

− xv3 + xv4 − xv5 = 0

−xv1 + xv2 − xv3 = 0 .

Using this system of equations we can easily determine for any weighting w of G whether
it is well-covered weighting or not. For example, letting

B = {(1, 1, 0, 0, 0)⊤, (0, 1, 1, 1, 0)⊤, (0, 0, 0, 1, 1)⊤} ,

it can be easily verified that each w = (w(v1), . . . , w(v5))
⊤ ∈ B satisfies both equations

in S and thus belongs to the space WCW(G). Furthermore, since the two rows of the
coefficient matrix of the system S, that is, (0, 0,−1, 1,−1) and (−1, 1,−1, 0, 0), form
a basis of the orthogonal complement of the well-covered vector space, it follows that
the well-covered dimension of the space WCW(G) equals |V (G)| − r = 3. Thus, since
the vectors in the set B are linearly independent, we infer that B is a basis of the
well-covered vector space WCW(G). ▲

A remark on the size of well-covering systems. The number of maximal inde-
pendent sets in an n-vertex graph can be exponential in n.1 However, using Gaussian
elimination it can be shown that any well-covering system of an n-vertex graph contains
a well-covering subsystem of size at most n (see Lemma 9.1.2).

Consider an arbitrary well-covering system S of an n-vertex graph G and let r be
the size of S. Fix an arbitrary ordering of the vertices of G and an arbitrary ordering
of the equations in S. Let A ∈ Rr×n be the coefficient matrix of S. We say that a
well-covering system S is linearly independent if the rows of the corresponding matrix
A are linearly independent over the field of real numbers. In this case, the r rows of A
form a basis of the orthogonal complement of the vector space WCW(G), and hence by
standard linear algebra we have r+wcdim(G) = n. In particular, in this case we have
r ≤ n, and equality holds if and only if wcdim(G) = 0, that is, the all-zero weighting
is the only well-covered weighting of G.

a) b)

Figure 9.1: The fork and the bull.
1For example, the 2n-vertex graph consisting of n isolated edges has 2n maximal independent sets.
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A remark on the coefficients of well-covering systems. Since we consider the
well-covered vector space WCW(G) of a graph G as a vector space over the field of
real numbers, any well-covering system of G consists of linear equations involving real
numbers as coefficients. However, it often suffices to work with well-covering systems
whose coefficients belong to a particular subset of the set of real numbers. We say
that a well-covering system is unit if the matrix of the system has all the coefficients
in the set {−1, 0, 1}, integer if the system consists of linear equations involving only
integer coefficients, and rational if it consists of linear equations involving only rational
coefficients. Note that systems (9.2), (9.3), and (9.4) as well as the system from
Example 9.1.1 are all unit. Furthermore, the well-covering systems of fork-free graphs
constructed by the algorithm given by our main result (Theorem 9.5.5, pg. 126) are
also unit.

In some of our results, including the reduction based on modular decomposition
(Theorem 9.2.7), the following lemma based on Gaussian elimination will be useful.
We denote by ω < 2.3728596 the matrix multiplication exponent (see, e.g., [7]).

Lemma 9.1.2. Given an n-vertex graph G and a rational well-covering system Ŝ of
G, one can compute in time O(nω−1|Ŝ|) a linearly independent well-covering system
S ⊆ Ŝ of G such that |S| ≤ min{n, |Ŝ|}.

Proof. Let r = |Ŝ|. If r ≤ n, we are done, so assume r > n. Fix an arbitrary ordering
of the vertices of G and an arbitrary ordering of the equations in Ŝ. Let A ∈ Qr×n

be the corresponding matrix and let A⊤ be its transpose. Using Gaussian elimination,
we compute a basis B of A⊤ that is a maximal linearly independent subset of columns
of A⊤. This can be done in time O(rnω−1) (see [58]). Note that the vectors in B

correspond to certain equations in Ŝ. Let S ⊆ Ŝ consist of equations corresponding
to the vectors in B. Then S is a linearly independent well-covering system of G, and
clearly |S| ≤ min{n, r}. Since ω ≥ 2 and the matrix A and its transpose can be
computed in time O(rn), the algorithm runs in time O(rnω−1).

9.2 Reduction to prime induced subgraphs

In this section we explain how to efficiently compute a well-covering system of a graph
from well-covering systems of its maximal strong modules and of the representative
graph. Then we combine this result with modular decomposition and Gaussian elim-
ination to reduce the problem of computing a well-covering system of a graph to the
same problem on certain prime induced subgraphs of the graph. For preliminaries on
modular decomposition, see Section 2.4.

We start with a basic lemma characterizing the family of maximal independent sets
in a graph G whose vertex set is equipped with an arbitrary partition into modules.

Lemma 9.2.1. Let G be a graph, let P = {M1, . . . ,Mk} be an arbitrary partition
of V (G) into modules, and let G′ = G/P be the corresponding quotient graph, with
V (G′) = {v1, . . . , vk} where vj ∈ Mj for all j ∈ [k]. Then, a set X ⊆ V (G) is a
maximal independent set in G if and only if the following conditions hold.

i) For all j ∈ [k], the set X ∩Mj is either empty or a maximal independent set in
G[Mj].
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ii) The set X ′ = {vj ∈ V (G′) : X ∩Mj ̸= ∅} is a maximal independent set in G′.

Proof. First we show that the stated conditions are necessary. Let X ⊆ V (G) be a
maximal independent set in G. Consider an arbitrary j ∈ [k] such that X ∩Mj ̸= ∅.
We want to prove that X ∩Mj is a maximal independent set in G[Mj]. Since this set is
a subset of X, it is an independent set in G and hence also in G[Mj]. We have to prove
that it is a maximal one. Suppose for a contradiction that this is not the case, and let
x ∈Mj \X satisfy that (X ∩Mj)∪{x} is an independent set in G[Mj]. Then x has no
neighbors in X ∩Mj. Since X ∩Mj ̸= ∅, there exists a vertex y ∈ S ∩Mj. Note that x
and y are in the same module Mj, so they have the same neighborhood outside Mj in G.
In particular, this implies that NG(x)∩(X \Mj) = NG(y)∩(X \Mj) ⊆ NG(y)∩X = ∅,
where the second equality follows from the fact that y ∈ X and X is independent in
G. We already know that x has no neighbors in X ∩Mj, so it follows that x has no
neighbors in the set X at all. This implies that X ∪ {x} is the independent set in G,
a contradiction with the maximality of X in G. Hence, condition i) holds.

Next we show condition ii), that is, the set X ′ = {vj ∈ V (G′) : X ∩Mj ̸= ∅} is
a maximal independent set in G′. Let J = {j ∈ [k] : X ∩Mj ̸= ∅}. Vertices in X
are pairwise non-adjacent, so the modules Mj, j ∈ J , that contain vertices from X
are anticomplete to each other in G. By construction of the graph G′ it follows that
the corresponding vertices vj, j ∈ J , are pairwise non-adjacent in G′, hence X ′ is an
independent set in G′. It remains to prove maximality. Suppose for a contradiction
that there is a vertex vℓ ∈ V (G′) \X ′ such that X ′ ∪ {vℓ} is an independent set in G′.
Since vℓ /∈ S ′, it follows that ℓ /∈ J and thus X ∩Mℓ = ∅. However, since X ′ ∪ {vℓ} is
an independent set in G′, for all j ∈ J we have that vℓ /∈ NG′(vj), and it follows that
modules Mℓ and Mj are anticomplete to each other in G. Thus we can enlarge the
independent set X in G by adding to it any vertex from Mj. This contradicts the fact
that X is a maximal independent set in G.

The two conditions are also sufficient. Let X ⊆ V (G) and assume that conditions
i) and ii) from the lemma hold. We will prove that X is a maximal independent set
in G. Let J = {j ∈ [k] : X ∩Mj ̸= ∅}. Note that X =

⋃
j∈J(X ∩Mj). By condition i)

we have that for all j ∈ J the set X ∩Mj ⊆Mj is independent in Gj and hence in G.
By condition ii) we have that the set X ′ = {vj ∈ V (G′) : j ∈ J} is an independent set
in G′. It follows that all the modules Mj, j ∈ J , are pairwise anticomplete. Hence the
set X =

⋃
j∈J(X ∩Mj) is independent in G. It remains to show maximality. Suppose

for a contradiction that there exists a vertex v ∈ V (G)\X such that the set X ∪{v} is
independent in G. Let ℓ ∈ [k] such that v ∈Mℓ. Then (X∪{v})∩Mℓ is an independent
set in Gℓ, which implies that the set X ∩Mℓ is not a maximal independent set in Gℓ.
By condition i) it follows that X ∩Mℓ = ∅ and thus ℓ /∈ J . Since the set X ∪ {v} is
independent in G, the vertex v has no neighbors in the set X =

⋃
j∈J(X ∩Mj). As all

the sets Mj are modules in G, this implies that v has no neighbors in the set
⋃

j∈J Mj.
Consequently, the vertex vℓ corresponding to the module Mℓ in G′ has no neighbors in
the set X ′ = {vj : j ∈ J}, in G′. Hence the set X ′ ∪ {vℓ} is independent in G′. Since
vℓ ̸∈ X ′, this is a contradiction with the maximality of X ′, which is given by condition
ii). This shows that the set X is a maximal independent set in G.

We now use Lemma 9.2.1 to show how to efficiently compute a well-covering system
of a graph from well-covering systems of its maximal strong modules and of the rep-
resentative graph. We state the result more generally, for any graph equipped with a
partition of the vertex set into modules, since we will later apply this result to various
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scenarios depending on whether the graph is disconnected (in which case the modules
are the vertex sets of its connected components), the complement of the graph is dis-
connected (in which case the modules are the vertex sets of its cocomponents), or the
graph and its complement are both connected.

Lemma 9.2.2. Let G be a graph, let P = {M1, . . . ,Mk} be an arbitrary partition
of V (G) into modules, and let G′ = G/P be the corresponding quotient graph, with
V (G′) = {v1, . . . , vk} where vj ∈Mj for all j ∈ [k]. Let Sj be a well-covering system for
G[Mj] for all j ∈ [k] and let S ′ be a well-covering system of G′. Let I = {Ij : j ∈ [k]}
be an arbitrary but fixed collection of maximal independent sets Ij in G[Mj] for all
j ∈ [k]. For each equation s ∈ S ′, let us denote by ρI(s) the equation indexed by the
vertices of G obtained from s by iterating over all vertices vj of G′ and substituting
the variable xvj corresponding to the vertex vj with the sum

∑
v∈Ij xv (in particular,

the variables corresponding to vertices v of G that do not belong to the union
⋃

j∈[k] Ij
appear with zero coefficient). Then

S =

(
k⋃

j=1

Sj

)
∪
{
ρI(s) : s ∈ S ′

}
(9.5)

is a well-covering system of G. Furthermore, if the systems S1, . . . ,Sk and S ′ are all
rational (resp. integer or unit), then so is S.

Proof. Let Gj denote the graph G[Mj] for all j ∈ [k]. The proof of the lemma will be
based on the following observation.

Claim. Let w be a vertex weight function on G, and let w′ : V (G′) → R be defined
as w′(vj) = w(Ij) for all j ∈ [k]. Let also wj denote the restriction of w to V (Gj) for
all j ∈ [k]. Then G is w-well-covered if and only if G′ is w′-well-covered and for all
j ∈ [k], the graph Gj is wj-well-covered.

Let us first show that the claim implies the lemma. We show that the proposed
system of equations S given by (9.5) is a well-covering system of G by showing that,
for any vertex weight function w on G, it holds that w is a well-covered weighting of
G if and only if w satisfies all the equations of the system. Assume first that w is
a well-covered weighting of G. Then, by the claim G′ is w′-well-covered and for all
j ∈ [k], the graph Gj is wj-well-covered. Since G′ is w′-well-covered, w′ is a solution
of the system of equations S ′. Consider an arbitrary equation s ∈ S ′. Then there
exist real numbers avj , j ∈ [k], such that s equals the equation

∑k
j=1 avjxvj = 0.

Hence, the equation ρI(s) is equivalent to the equation
∑k

j=1 avj
∑

v∈Ij xv = 0. Since
setting xvj =

∑
v∈Ij w(v) for all vj ∈ V (G′) results in a solution of the equation s,

we infer that setting xv = w(v) for all v ∈ V (G) results in a solution of the equation
ρI(s). Similarly, for each j ∈ [k], setting xv = wj(v) = w(v) for all v ∈ V (Gj) yields
a solution of the system of equations Sj. It follows that setting xv = w(v) for all
v ∈ V (G) results in a solution of the system of equations

⋃k
j=1 Sj and thus of the entire

system of equations (9.5). Similar arguments show that if w is a solution of the system
of equations (9.5), then w is a well-covered weighting of G. The last statement of the
lemma, that the system S is rational (resp. integer or unit) whenever this is the case
for the systems S1, . . . ,Sk and S ′, is straightforward.

Now we show the claim. Assume that G is w-well-covered. First we show that
G′ is w′-well-covered. Let I and I ′ be two maximal independent sets in G′. Let
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J = {j ∈ [k] : vj ∈ I} and J ′ = {j ∈ [k] : vj ∈ I ′} be the corresponding index sets. By
Lemma 9.2.1, the sets

⋃
j∈J Ij and

⋃
i∈J ′ Ij are maximal independent sets in G. Since

G is w-well-covered, it follows that w
(⋃

j∈J Ij
)
= w

(⋃
i∈J ′ Ij

)
. Furthermore, we have

w′(I) =
∑
j∈J

w′(vj) =
∑
j∈J

w(Ij) = w

(⋃
j∈J

Ij

)
and

w′(I ′) =
∑
j∈J ′

w′(vj) =
∑
j∈J ′

w(Ij) = w

( ⋃
j∈J ′

Ij

)
.

Altogether, the above equations imply that w′(I) = w′(I ′) and since I and I ′ were
arbitrary maximal independent sets in G′, it follows that G′ is w′-well-covered.

Next, we show that for all j ∈ [k], the graph Gj is wj-well-covered. Let I and I ′ be
arbitrary maximal independent sets in Gj, and let S be a maximal independent set in
G′ such that vj ∈ S. Let also X =

⋃
{Iℓ : vℓ ∈ S \ {vj}}. By Lemma 9.2.1, the sets

I ∪ X and I ′ ∪ X are maximal independent sets in G. Since G is w-well-covered, we
have that w(I ∪X) = w(I ′ ∪X), and consequently

wj(I) = w(I) = w(I ∪X)− w(X) = w(I ′ ∪X)− w(X) = w(I ′) = wj(I
′) .

Since I and I ′ were arbitrary maximal independent sets in Gj, we infer that Gj is
wj-well-covered.

For the proof of the other direction, assume that G′ is w′-well-covered and that
Gj is wj-well-covered for all j ∈ [k]. We want to show that G is w-well-covered.
Let I and I ′ be maximal independent sets in G, and let J, J ′ ⊆ [k] be defined as
J = {j ∈ [k] : I ∩Mj ̸= ∅} and J ′ = {j ∈ [k] : I ′ ∩Mj ̸= ∅}. By Lemma 9.2.1, the sets
S = {vj ∈ V (G′) : j ∈ J} and S ′ = {vj ∈ V (G′) : j ∈ J ′} are maximal independent
sets in G′, and for all j ∈ J (resp. j ∈ J ′), the set I ∩Mj (resp. I ′ ∩Mj) is a maximal
independent set in Gj. Since for all j ∈ [k] we have that Gj is wj-well-covered, it
follows that

w(I ∩Mj) = wj(I ∩Mj) = wj(Ij) = w(Ij) = w′(vj) for all j ∈ J

and similarly

w(I ′ ∩Mj) = wj(I
′ ∩Mj) = wj(Ij) = w(Ij) = w′(vj) for all j ∈ J ′.

Thus, we have that w(I) =
∑

j∈J w(I ∩ Mj) =
∑

j∈J w
′(vj) = w′(S) and w(I ′) =∑

j∈J ′ w(I ′ ∩Mj) =
∑

j∈J ′ w′(vj) = w′(S ′). Since G′ is w′-well-covered, it follows that
w′(S) = w′(S ′) and consequently w(I) = w(I ′), as we wanted to show. The sets
I and I ′ were arbitrary maximal independent sets in G, hence it follows that G is
w-well-covered.

We now apply Lemma 9.2.2 to three different cases: when G is disconnected, when
the complement of G is disconnected, and when both G and its complement are con-
nected.

Corollary 9.2.3. Let G be a disconnected graph, with connected components
G1, . . . , Gk for some k ≥ 2, and let Sj be a well-covering system of Gj for all j ∈ [k].
Then S =

⋃k
j=1 Sj is a well-covering system of G that can be computed in time

O
(∑k

j=1 |Sj|
)
. Furthermore, if the systems S1, . . . ,Sk are all rational (resp. integer

or unit), then so is S.
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Proof. Let G be a graph with connected components G1, . . . , Gk. Then P =
{V (G1), . . . , V (Gk)} is a partition of V (G) into modules, and the corresponding quo-
tient graph G′ = G/P is the edgeless graph with k vertices. This implies that V (G′)
is the only maximal independent set in G′ and hence S ′ = ∅ is a well-covering system
of G′. By Lemma 9.2.2, it follows that the set

⋃k
j=1 Sj is a well-covering system of G.

This system can be computed in time O
(∑k

j=1 |Sj|
)
.

Corollary 9.2.3 implies the fact that the well-covered dimension of a graph is the
sum of the well-covered dimensions of its connected components (see [50]).

Corollary 9.2.4. Let G be a graph with disconnected complement, with cocomponents
G1, . . . , Gk, for some k ≥ 2, and let Sj be a well-covering system of Gj for all j ∈ [k].
Let Ij be a maximal independent set in Gj for j ∈ [k]. Then

S =

(
k⋃

j=1

Sj

)
∪

∑
v∈Ij

xv −
∑

v∈Ij+1

xv = 0 : j ∈ [k − 1]


is a well-covering system of G. In particular, given G, G1, . . . , Gk, and S1, . . . ,Sk as
above, a well-covering system of G with size

∑k
j=1 |Sj|+ k− 1 can be computed in time

O(|V (G)|+ |E(G)|+
∑k

j=1 |Sj|). Furthermore, if the systems S1, . . . ,Sk are all rational
(resp. integer or unit), then so is S.

Proof. Let G be a graph with cocomponents G1, . . . , Gk. Then P =
{V (G1), . . . , V (Gk)} is a partition of V (G) into modules, and the corresponding quo-
tient graph G′ = G/P is the complete graph on k vertices. Let V (G′) = {v1, . . . , vk}.
Since G′ is complete graph, the maximal independent sets in G′ are exactly the sin-
gletons {vj} for j ∈ [k]. Consequently, w′ is a well-covered weighting of G′ if and
only if w′(v1) = . . . = w′(vk), or equivalently, if for all j ∈ [k − 1] we have that
w′(vj) = w′(vj+1). It follows that the set S ′ = {xvj − xvj+1

= 0 : j ∈ [k − 1]}
is a well-covering system of G′. Let I = {Ij : j ∈ [k]}. We follow the no-
tation from Lemma 9.2.2 and for each s ∈ S ′ denote by ρI(s) the equation in-
dexed by the vertices of G obtained from s by replacing each variable xvj corre-
sponding to a vertex vj of G′ with the sum

∑
v∈Ij xv. By Lemma 9.2.2 it follows

that
(⋃k

j=1 Sj

)
∪
{
ρI(s) : s ∈ S ′

}
is a well-covering system of G. Thus, the set{

ρI(s) : s ∈ S ′
}

is equivalent to the set
{∑

v∈Ij xv −
∑

v∈Ij+1
xv = 0 : j ∈ [k − 1]

}
.

It follows that S =
(⋃k

j=1 Sj

)
∪
{∑

v∈Ij xv −
∑

v∈Ij+1
xv = 0 : j ∈ [k − 1]

}
is a well-

covering system of G, as claimed. Furthermore, this system is integer, resp. unit, if the
systems S1, . . . ,Sk are integer, resp. unit.

It remains to justify the time complexity. First, we compute for all j ∈ [k] a
maximal independent set Ij in the graph Gj. This can be done using a straightfor-
ward greedy algorithm in time O(

∑k
j=1(|V (Gj)| + |E(Gj)|)) = O(|V (G)| + |E(G)|).

We compute the system of equations
⋃k

j=1 Sj in time O(
∑k

j=1 |Sj|) and the system of

equations
{∑

v∈Ij xv −
∑

v∈Ij+1
xv = 0 : j ∈ [k − 1]

}
in time O

(∑k−1
j=1(|Ij+1|+ |Ij|)

)
=

O
(∑k

j=1 |Ij|
)

= O(|V (G)|). The total time complexity is O(|V (G)| + |E(G)| +∑k
j=1 |Sj|), as claimed.
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In the case when the graph and its complement are both connected, the correspond-
ing algorithmic consequence of Lemma 9.2.2 is as follows.

Corollary 9.2.5. Let G = (V,E) be a connected and coconnected graph, let
{M1, . . . ,Mk} be the partition of V (G) into maximal strong modules, and let G′ be
the representative graph of G. Let Ij be a maximal independent set in the graph G[Mj],
let Sj be a well-covering system for G[Mj] for all j ∈ [k], and let S ′ be a well-covering
system of G′. Then a well-covering system S of G with size

∑k
j=1 |Sj| + |S ′| can be

computed in time O
(
|V | · |S ′|+

∑k
j=1 |Sj|

)
. Furthermore, if the systems S1, . . . ,Sk and

S ′ are all rational (resp. integer or unit), then so is S.

Proof. Let I = {Ij : j ∈ [k]}. Using the notation of Lemma 9.2.2, the lemma implies
that it suffices to compute the system of equations S =

(⋃k
j=1 Sj

)
∪
{
ρI(s) : s ∈ S ′} .

This can be done in time

O

(
k∑

j=1

|Sj|+ |S ′|

(
k∑

j=1

|Ij|

))
= O

(
k∑

j=1

|Sj|+ |V | · |S ′|

)
,

as claimed.

For the proof of main result of this section, recall that a leaf of a rooted tree T is a
node without any successors, while an internal node of T is a node that is not a leaf.
Note that if T is a one-vertex rooted tree, then the unique vertex in T is both the root
and a leaf of T , but it is not an internal node. Given a rooted tree T , we denote by
ℓ(T ) the number of leaves of T and by i(T ) = |V (T )| − ℓ(T ) the number of internal
nodes of T . We will need the following well-known property of rooted trees. To keep
the thesis self-contained, we include a proof.

Lemma 9.2.6. Let T be a rooted tree in which each internal node has at least two
successors. Then ℓ(T ) ≥ i(T ) + 1.

Proof. By induction on i(T ). If i(T ) = 0, then the unique vertex in T is a leaf and
the inequality holds. Let now T be a tree with i(T ) ≥ 1 such that each internal node
of T has at least two successors, and assume that every tree T ′ with i(T ′) < i(T ) in
which each internal node has at least two successors satisfies that ℓ(T ′) ≥ i(T ′) + 1.
Let r be the root of T and let d be the number of successors of r. Since i(T ) ≥ 1,
the root of T is an internal node. Hence d ≥ 2. Let T1, . . . , Td be the rooted trees
obtained by the deletion of r from T , where for each j ∈ [r], the root of Tj is the
unique successor of r in Tj. Then for all j ∈ [r] we have that i(Tj) < i(T ), and
by the induction hypothesis every Tj satisfies that ℓ(Tj) ≥ i(Tj) + 1. Observe that
every internal node of Tj, j ∈ [d], is also internal in T , and node r is internal in T as
well, so we have i(T ) = 1 +

∑d
j=1 i(Tj). Since ℓ(T ) =

∑d
j=1 ℓ(Tj), we conclude that

ℓ(T ) ≥
∑d

j=1 (i(Tj) + 1) =
∑d

j=1 i(Tj)+d ≥ (i(T )−1)+2 = i(T )+1, which completes
the proof.

We now prove the main result of this section, a reduction of the problem of com-
puting a well-covering system of a graph to the same problem on certain prime induced
subgraphs of the graph. We say that a function f : R+ × R+ → R+ is nondecreasing
if 0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2 implies f(x1, y1) ≤ f(x2, y2), and superadditive if the
inequality

f(x1, y1) + f(x2, y2) ≤ f(x1 + x2, y1 + y2)
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holds for all x1, y1, x2, y2 ∈ R+. Note that every superadditive function is nondecreas-
ing.

Theorem 9.2.7. Let G be a class of graphs and G∗ the class of all prime induced
subgraphs of graphs in G. Assume that for each graph G in G∗ with n vertices and m ≥ 1
edges one can compute in time f(n,m) a rational (resp. integer or unit) well-covering
system of G with size at most n, where f is a superadditive function. Then for any
graph G in G with n vertices and m edges, one can compute in time O

(
f(2n,m)+nω+1

)
a rational (resp. integer or unit) well-covering system of G with size at most n.

Proof. Let G be a graph in G with n vertices and m edges. Let TG be the modular
decomposition tree of G. This tree can be computed in time O(n +m) [177]. Recall
that for a node t of TG, we denote by Gt the subgraph of G induced by the vertices
appearing in the one-vertex subgraphs labeling the leaves of the subtree of TG rooted
at t. Let nt = |V (Gt)| and mt = |E(Gt)|.

We traverse the tree TG bottom-up and for each node t ∈ V (TG) we recursively
compute a maximal independent set It in Gt and a well-covering system St of Gt with
size at most nt. It is important to note that we do not store a complete representation
of the graph Gt via adjacency lists, as that would additionally increase the time and
space complexity of the procedure. The ordering in which the nodes of tree TG are
traversed can be computed in time O(|V (TG)|) = O(n+m), for example, by reversing
the ordering in which the nodes of TG are visited by a breadth-first search from the
root node. For each node t of TG, we denote by Ct the set of all children of t in TG.

Assume first that t is a leaf node (that is, Ct = ∅). Then V (Gt) = {vt} where vt is
the vertex of G labeling t; in particular, nt = 1. Hence, It = V (Gt) is the only maximal
independent set in Gt and St = ∅ is a well-covering system of Gt that trivially satisfies
the inequality |St| ≤ nt. Both It and St can be computed in constant time.

Assume now that t is an internal node in TG. Then t is one of the types parallel,
series, or prime. Since the subtrees of TG rooted at the children of t are the modular
decomposition trees of the subgraphs of Gt induced by its maximal strong modules,
which form a partition of V (Gt), it follows that nt =

∑
u∈Ct

nu. For each child u of
t we have already computed a maximal independent set Iu in Gu and a well-covering
system Su of Gu with size at most nu. We explain how to efficiently combine these into
a maximal independent set It in Gt and a well-covering system St of Gt with size at
most nt for each of the three cases separately.

• If t is of type parallel, then Gt is a disconnected graph, with connected com-
ponents Gu, u ∈ Ct. We can thus take It =

⋃
u∈Ct

Iu and by Corollary 9.2.3,
St =

⋃
u∈Ct

Su. We have

|St| =
∑
u∈Ct

|Su| ≤
∑
u∈Ct

nu = nt.

Furthermore, by Corollary 9.2.3 the well-covering system St of Gt can be com-
puted in time O

(∑
u∈Ct

|Su|
)
= O

(
|St|
)
= O(nt). Since It can be computed in

time O(|V (Gt)|+ |E(Gt)|) = O(nt+mt), the total time complexity at the parallel
node t is O(nt +mt).

• If t is of type series, then the complement of Gt is disconnected, with cocompo-
nents Gu, u ∈ Ct. We select an arbitrary u ∈ Ct and set It = Iu. Furthermore,
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we fix an arbitrary ordering u1, . . . , up of the set Ct and set

Ŝt =

(⋃
u∈Ct

Su

)
∪

∑
v∈Iuj

xv −
∑

v∈Iuj+1

xv = 0 : j ∈ [p− 1]

 .

By Corollary 9.2.4, Ŝt is a well-covering system of Gt that can be computed in
time O(|V (Gt)|+ |E(Gt)|+

∑
u∈Ct

|Su|) = O(nt+mt). The size of Ŝt is bounded
as follows:

|Ŝt| =
∑
u∈Ct

|Su|+ |Ct| − 1 ≤
∑
u∈Ct

nu + nt − 1 = nt + nt − 1 = 2nt − 1.

Furthermore, Lemma 9.1.2 implies that a well-covering system St ⊆ Ŝt of Gt such
that |St| ≤ nt can be computed in time O(nω−1

t · |Ŝt|) = O(nω
t ). Altogether, this

implies that the independent set It and a well-covering system St of Gt with size
at most nt at the series node t can be computed in time O(nt+mt+n

ω
t ) = O(nω

t )
(since ω ≥ 2).

• Consider now the case when the node t is of type prime. In this case, the graph
Ht labeling the node t is a prime induced subgraph of Gt and hence of G. Each
child u of t in TG corresponds to a unique maximal strong module Mu of G. The
graph Ht is the representative graph of Gt, hence it contains a unique vertex vu
from each maximal strong module Mu of Gt.

Since Ht is a prime induced subgraph of G, it belongs to G∗ and hence, a well-
covering system S ′ of Ht with size at most |V (Ht)| can be computed in time
f(|V (Ht)|, |E(Ht)|). Next, we compute in time O(|V (Ht)|+ |E(Ht)|) a maximal
independent set I ′t in Ht. Let C ′

t = {u ∈ Ct : vu ∈ I ′t}. By Lemma 9.2.1, the
set It =

⋃
u∈C′

t
Iu is a maximal independent set in Gt. By Corollary 9.2.5, a

well-covering system Ŝt of Gt with size
∑

u∈Ct
|Su| + |S ′| can be computed in

time O
(
|V (Gt)| · |S ′| +

∑
u∈Ct

|Su|
)
. Since |S ′| ≤ |V (Ht)| ≤ nt, it follows that

|Ŝt| ≤
∑

u∈Ct
nu + nt = nt + nt = 2nt.

Using Lemma 9.1.2, a well-covering system St ⊆ Ŝt of Gt such that |St| ≤ nt

can be computed in time O
(
nω−1
t |Ŝt|

)
= O(nω

t ). The total time complexity of
computing St at the node t is

O

(
f(|V (Ht)|, |E(Ht)|) + |V (Gt)| · |S ′|+

∑
u∈Ct

|Su|+ nω
t

)
=O(f(|V (Ht)|, |E(Ht)|) + n2

t + nt + nω
t )

=O(f(|V (Ht)|, |E(Ht)|) + nω
t ),

while the independent set It can be computed in time O(|V (Ht)| + |E(Ht)| +
|V (Gt)|) = O(nt +mt).

Thus, the total time complexity at the prime node t is O(f(|V (Ht)|, |E(Ht)|) +
nω
t ).

It remains to sum up the time complexities over all nodes of TG. We compute
separately the sum over all leaves of TG and over all internal nodes of TG. Let us
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denote by L the set of all leaves of TG. Recall that by the definition of a modular
decomposition tree, the leaves of TG are in a bijective correspondence with the vertices
of G, and thus |L| = n. By Lemma 9.2.6 it follows that the number of internal nodes
of TG is at most n− 1. Note also that for each internal node t, the number of vertices
of Ht equals the number of children of t in TG, which implies that the total number
of vertices of the graphs Ht, summed up over all internal nodes t, equals the number
of edges of TG, which is at most |L| + |V (TG) \ L| − 1 ≤ n + (n − 1) − 1 = 2n − 2.
Furthermore, for each internal node t, the edges of Ht correspond to distinct edges of
G (joining two vertices of Gt from distinct maximal strong modules), and no two edges
from representative graphs of two different internal nodes correspond to the same edge
of G. This implies that the total number of edges of the graphs Ht, summed up over
all internal nodes t, is at most m.

We already saw that in each leaf t of TG the algorithm computes the independent set
It and the well-covering system St in constant time. Hence, summing over all leaves of
TG we obtain the time complexity of O(n). If t is an internal node, then the algorithm
computes It and St in time O(nt +mt) if t is of type parallel, in time O(nω

t ) if t is of
type series, and in time O(f(|V (Ht)|, |E(Ht)|)+nω

t ) if t is of type prime. Furthermore,
|E(Ht)| ≤ m.

The sum of time complexities over all the internal nodes of TG can thus be bounded
as follows.

O

( ∑
t∈V (TG)\L

(
f(|V (Ht)|, |E(Ht)|) + nω

t

))

=O

(
f

( ∑
t∈V (TG)\L

|V (Ht)|,
∑

t∈V (TG)\L

|E(Ht)|

)
+

∑
t∈V (TG)\L

nω
t

)
=

=O

(
f(2n,m) + nω+1

)
,

where the first equality holds since f is a superadditive function and the last one since∑
t∈V (TG)\L |V (Ht)| ≤ 2n− 2,

∑
t∈V (TG)\L |E(Ht)| ≤ m, and f is nondecreasing. Since

the time complexity over all leaves of TG is O(n), the total time complexity over all
nodes in TG is equal to O

(
f(2n,m) + nω+1

)
. Finally, recall that the algorithm first

needs O(n+m) time to compute the modular decomposition tree TG and an ordering
in which the nodes of TG are visited. Thus, altogether, the algorithm runs in time
O
(
n+m+ f(2n,m) + nω+1

)
= O

(
f(2n,m) + nω+1

)
.

Remark 9.2.8. One of the assumptions in Theorem 9.2.7 is that for each graph G in G∗

with n vertices and m edges one can compute in time f(n,m) a well-covering system
of G with size at most n. If instead, only an algorithm is available for computing an
arbitrary rational (resp. integer or unit) well-covering system of G ∈ G∗ in time f(n,m)
(that is, without a bound of n on the size of the system), then one can first combine
such an algorithm with Lemma 9.1.2. This would result in an algorithm that, given
a graph G from G with n vertices and m edges, in time O

(
f(2n,m) · nω−1 + nω+1

)
computes a rational (resp. integer or unit) well-covering system of G with size at most
n.
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9.3 Cographs

The proof of Theorem 9.2.7 relies on Gaussian elimination. If the input graph pos-
sesses some additional combinatorial structure, the use of Gaussian elimination may be
avoided, and this can lead to faster algorithms. As we show in this section, this is the
case for the class of cographs. Cographs are defined as graphs that can be constructed
starting from copies of the one-vertex graph using the operations of disjoint union
and complementation (see, e.g., [47]). Thus, the only prime cograph is the one-vertex
graph, and the modular decomposition tree of a cograph contains only parallel and
series nodes.

It follows from Theorem 9.2.7 that a well-covering system of a given cograph G
with n vertices can be computed in time O(nω+1). We improve this time complexity
as follows.

Theorem 9.3.1. Given a cograph G with n vertices and m edges, an integer well-
covering system of G with size at most n− 1 can be computed in time O(n(n+m)).

Proof. Let G be a cograph with n vertices and m edges. Let TG be the modular
decomposition tree of G. As before, given a node t ∈ V (TG), we denote by Gt the
subgraph of G induced by the vertices appearing in the one-vertex subgraphs labeling
the leaves of the subtree of TG rooted at t. Let nt = |V (Gt)| and mt = |E(Gt)|. Since
G is a cograph, every internal node of TG is of type either parallel or series. We traverse
the tree TG bottom-up and for each node t ∈ V (TG) we recursively compute a maximal
independent set It in Gt and a well-covering system St of Gt with size at most nt − 1.
For each node t of TG, we denote by Ct the set of all children of t in TG.

If t is a leaf node (that is, Ct = ∅), then It = V (Gt) is a maximal independent set
of Gt and St = ∅ is a well-covering system of Gt, with size 0 = nt − 1. Both It and
St can be computed in constant time. If t is an internal node in TG, then t is of type
either parallel or series. For each child u of t we have already computed a maximal
independent set Iu in Gu and a well-covering system Su of Gu with size at most nu−1.
We explain how to efficiently combine these into a maximal independent set It in Gt

and a well-covering system St of Gt with size at most nt − 1 for both cases. If t is of
type parallel, then Gt is a disconnected graph, with connected components Gu, u ∈ Ct.
We can thus take It =

⋃
u∈Ct

Iu and by Corollary 9.2.3, St =
⋃

u∈Ct
Su. We have

|St| =
∑
u∈Ct

|Su| ≤
∑
u∈Ct

(nu − 1) = nt − |Ct| ≤ nt − 1.

Furthermore, by Corollary 9.2.3 the well-covering system St of Gt can be computed in
time O

(∑
u∈Ct

|Su|
)
= O

(
|St|
)
= O(nt). Since It can be computed in time O(|V (Gt)|+

|E(Gt)|) = O(nt +mt), the total time complexity at the parallel node t is O(nt +mt).
If t is of type series, then the complement of Gt is disconnected, with cocomponents
Gu, u ∈ Ct. We fix an arbitrary ordering u1, . . . , up of the set Ct of children of t and
obtain the new maximal independent set It and a well-covering system St by setting
It = Iu1 and

St =

(⋃
u∈Ct

Su

)
∪

∑
v∈Iuj

xv −
∑

v∈Iuj+1

xv = 0 : j ∈ [p− 1]

 .
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By Corollary 9.2.4, the system St is indeed a well-covering system of Gt and can be
computed in time O(|V (Gt)| + |E(Gt)| +

∑
u∈Ct

|Su|) = O(nt +mt). The size of St is
bounded as follows:

|St| =
∑
u∈Ct

|Su|+ |Ct| − 1 ≤
∑
u∈Ct

(nu − 1) + |Ct| − 1 = nt − 1.

Altogether, this implies that the independent set It and a well-covering system St of
Gt with size at most nt − 1 at the series node t can be computed in time O(nt +mt).

Note that all the well-covering systems computed by the algorithm are integer. It
remains to estimate the time complexity of the algorithm. The tree TG can be computed
in time O(n+m) [177], and in the same time we can compute an ordering in which the
nodes of tree TG are traversed. Recall that the number of leaves of TG is equal to n,
while from Lemma 9.2.6 it follows that the number of internal nodes of TG is at most
n − 1. We already saw that in each leaf t of TG the algorithm spends only constant
time, while in each internal node t of TG the independent set It and a well-covering
system St of Gt can be computed in time O(nt +mt). Summing over all nodes of TG
we get the time complexity O(n+ (n− 1) · (n+m)) = O(n(n+m)). We infer that the
total time complexity of the algorithm is O(n(n+m)).

Let us mention two consequences of Theorem 9.3.1.
First, applying the theorem to a given n-vertex cograph G, we obtain in polyno-

mial time an integer well-covering system Ŝ with size at most n − 1. Using Gaussian
elimination (cf. Lemma 9.1.2), we can then compute in time O(nω) a linearly inde-
pendent well-covering subsystem S ⊆ Ŝ of G. Consequently, we can compute the
well-covered dimension of G as the difference n − |S|. This implies a result of Brown
and Nowakowski [50] who showed that the well-covered dimension of cographs can be
computed in polynomial time.

Second, a graph G has well-covered dimension equal to zero if and only if the only
well-covered weighting of G is the identically zero function, or, equivalently, if G admits
no well-covering system with size less than n. Therefore, Theorem 9.3.1 implies the
following.

Corollary 9.3.2. Every cograph has a strictly positive well-covered dimension.

An alternative proof of this result could be obtained by using the fact that every
cograph is equistable (see [171]).

9.4 Reduction to anti-neighborhoods

In this section we focus on the subgraphs of a given graph obtained by the deletion of
the closed neighborhood of some vertex in the graph. Given a graph G with vertex set
{v1, . . . , vn}, we denote by Gj the graph G−N [vj], for all j ∈ [n]. We first show that,
given a well-covering system of the graph Gj, for all j ∈ [n], we can efficiently compute
a well-covering system of G.

Lemma 9.4.1. Let G be a graph with vertex set {v1, . . . , vn}. For each j ∈ [n] let Sj

be a rational (resp. integer or unit) well-covering system of G−N [vj] and Ij a maximal
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independent set of G−N [vj]. Then(
n⋃

j=1

Sj

)
∪

 ∑
v∈Ij∪{vj}

xv −
∑

v∈Ij+1∪{vj+1}

xv = 0 : j ∈ [n− 1]


is a rational (resp. integer or unit) well-covering system of G.

Proof. Let G be a graph and let w be a vertex weight function on G. For each j ∈ [n]
let Gj denote the graph G−N [vj] and wj the restriction of w to V (Gj). We show the
following claim: G is w-well-covered if and only if for all j ∈ [n] it holds that Gj is
wj-well-covered and for all j ∈ [n − 1] it holds that w(Ij ∪ {vj}) = w(Ij+1 ∪ {vj+1}).
From the claim we get that the equations from the well-covering systems Sj of Gj, over
all j ∈ [n], along with the equations of the form∑

v∈Ij∪{vj}

xv −
∑

v∈Ij+1∪{vj+1}

xv = 0

for j ∈ [n− 1], form a well-covering system of G.
Let us prove the claim. Assume first that G is w-well-covered. Let j ∈ [n] and let

I and I ′ be maximal independent sets in Gj. Then the sets I ∪ {vj} and I ′ ∪ {vj} are
maximal independent sets in G. Since G is w-well-covered, it holds that w(I ∪{vj}) =
w(I ′ ∪ {vj}). Consequently, we have that

wj(I) = w(I) = w(I ∪ {vj})− w(vj) = w(I ′ ∪ {vj})− w(vj) = w(I ′) = wj(I
′) ,

and Gj is wj-well-covered. Consider now an arbitrary j ∈ [n − 1]. Since Ij and Ij+1

are maximal independent sets in Gj and Gj+1, respectively, the sets Ij ∪ {vj} and
Ij+1 ∪ {vj+1} are maximal independent sets in G. Since G is w-well-covered, it follows
that w(Ij ∪ {vj}) = w(Ij+1 ∪ {vj+1}), which is what we wanted to show.

For a proof of the other direction, assume that for all j ∈ [n] it holds that Gj is
wj-well-covered and for all j ∈ [n− 1] it holds that w(Ij ∪{vj}) = w(Ij+1 ∪{vj+1}). In
particular, this implies that w(Ij ∪ {vj}) = w(Ik ∪ {vk}) for all j, k ∈ [n]. We want to
prove that G is w-well-covered. Let I and I ′ be maximal independent sets in G and let
vj ∈ I and vk ∈ I ′. Note that I \{vj} and I ′ \{vk} are maximal independent sets in Gj

and Gk, respectively. By assumption Gj is wj-well-covered and Gk is wk-well-covered,
and thus we have that w(I \ {vj}) = wj(I \ {vj}) = wj(Ij) = w(Ij) and, similarly,
w(I ′ \ {vk}) = w(Ik). Consequently,

w(I) = w(I \ {vj}) + w(vj) = w(Ij) + w(vj) = w(Ij ∪ {vj})

and
w(I ′) = w(I ′ \ {vk}) + w(vk) = w(Ik) + w(vk) = w(Ik ∪ {vk}) .

The above two expressions are equal by assumption, so we get w(I) = w(I ′) and thus
G is w-well-covered.

Corollary 9.4.2. Let G be a graph with vertex set {v1, . . . , vn}. For each j ∈ [n] let Sj

be a rational (resp. integer or unit) well-covering system of G−N [vj]. Then a rational
(resp. integer or unit) well-covering system of G with size

∑n
j=1 |Sj| + n − 1 can be

computed in time O(n(n+m) +
∑n

j=1 |Sj|), where m = |E(G)|.
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Proof. In time O(n(n + m)) we compute the graphs G − N [vj] for all j ∈ [n] and a
maximal independent set Ij in each such graph. Then, using Lemma 9.4.1 we compute
a well-covering system of G in time O(

∑n
j=1 |Sj| + n2). The total complexity of this

approach is O(n(n+m) +
∑n

j=1 |Sj|), as claimed.

Using the above result, we give a more general statement, which will be an ingredient
of the main algorithm in this paper.

Theorem 9.4.3. Let G and G∗ be two graph classes such that for every graph G in
G and every vertex v of G the graph G − N [v] is in G∗. Assume that for each graph
G in G∗ with n vertices and m edges one can compute in time f(n,m) a rational
(resp. integer or unit) well-covering system of G with size at most g(n,m), where f
and g are nondecreasing functions. Then for any graph G in G with n vertices and m
edges, one can compute in time O(n · (n +m + f(n,m))) a rational (resp. integer or
unit) well-covering system of G with size at most n · g(n,m) + n− 1.

Proof. Let G be a graph in G with vertex set V (G) = {v1, . . . , vn} and let m = |E(G)|.
For all j ∈ [n], let Gj = G−N [vj]. The graphs Gj, j ∈ [n], can be computed in time
O(n(n+m)). By assumption, for each j ∈ [n] the graphGj is in G∗, and hence a rational
(resp. integer or unit) well-covering system Sj of Gj with at most g(|V (Gj)|, |E(Gj)|) ≤
g(n,m) equations can be computed in time f(|V (Gj)|, |E(Gj)|) ≤ f(n,m). Note also
that |Sj| ≤ f(|V (Gj)|, |E(Gj)|) ≤ f(n,m). By Corollary 9.4.2, a well-covering system
of G with size

∑n
j=1 |Sj| + n − 1 ≤ n · g(n,m) + n − 1 can be computed in time

O(n(n+m) +
∑n

j=1 |Sj|) = O(n · (n+m+ f(n,m)).

9.5 Fork-free graphs

By Theorem 9.3.1, a well-covering system of a given cograph can be computed in
polynomial time. In this section, we generalize the result of Theorem 9.3.1 to prove the
main result of this paper, a polynomial-time algorithm for computing a well-covering
system of a given fork-free graph. This is a significant generalization of Theorem 9.3.1,
since, more importantly, the class of fork-free graphs also generalizes the class of claw-
free graphs. Our approach combines the results from Sections 9.2 and 9.4 with a known
structural result on fork-free graphs, which allows us to reduce the problem to the class
of claw-free graphs, for which the following theorem applies.

Theorem 9.5.1 (Levit and Tankus [164]). There exists an O(n3m3/2) algorithm that
receives as input a claw-free graph G with n vertices and m ≥ 1 edges and computes a
unit well-covering system of G.

Following Remark 9.2.8 and the fact that the function f defined by the rule
f(n,m) = nω+2m3/2 for all m,n ≥ 0, is superadditive, Theorem 9.5.1 has the following
consequence.

Corollary 9.5.2. Let C be the class of all graphs G such that every prime induced
subgraph of G is claw-free. Then for any graph G in C with n vertices and m ≥ 1
edges, one can compute in time O

(
nω+2m3/2

)
a unit well-covering system of G with

size at most n.
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To apply Corollary 9.5.2, we use the following structural result on fork-free graphs
due to Lozin and Milanič [167,168].2

Theorem 9.5.3. Let G be a prime fork-free graph, let x be a vertex of G, and let G′

be a prime induced subgraph of the graph G−N [x]. Then G′ is claw-free.

Using Theorems 9.4.3 and 9.5.3 and Corollary 9.5.2, we can now derive the following.

Lemma 9.5.4. Given a prime fork-free graph G with n vertices and m ≥ 1 edges, a unit
well-covering system of G with size at most n can be computed in time O(nω+3m3/2).

Proof. Let F be the class of prime fork-free graphs and let F∗ be the class of all
graphs G such that every prime induced subgraph of G is claw-free. By Theorem 9.5.3,
for every graph G ∈ F and every vertex x ∈ V (G), the graph G − N [x] belongs
to F∗. By Corollary 9.5.2, given a graph G ∈ F∗ with n vertices and m edges one
can compute in time O

(
n+ nω+2m3/2

)
a unit well-covering system of G with size at

most n, where the additive O(n) term has only been added in order to allow for G
to be edgeless. Thus, by Theorem 9.4.3, given a graph G ∈ F with n vertices and
m ≥ 1 edges one can compute in time O

(
n ·
(
n+m+ nω+2m3/2

))
= O

(
nω+3m3/2

)
a

unit well-covering system Ŝ of G with size at most n2+n− 1. By Lemma 9.1.2, a unit
well-covering subsystem S ⊆ Ŝ of G, with size at most n, can be computed in time
O(nω−1|Ŝ|) = O(nω+1). The total time complexity of this approach is O

(
nω+3m3/2

)
+

O
(
nω+1

)
= O

(
nω+3m3/2

)
, as claimed.

We now have everything ready to prove the main result of the paper.

Theorem 9.5.5. Given a fork-free graph G with n vertices and m ≥ 1 edges, a unit
well-covering system of G with size at most n can be computed in time O(nω+3m3/2).

Proof. Let G be the class of fork-free graphs and G∗ the class of prime fork-free graphs.
Lemma 9.5.4 implies that given a graph G in G∗ with n vertices and m ≥ 1 edges, a unit
well-covering system of G with size at most n can be computed in time O(nω+3m3/2).
Let f(n,m) = nω+3m3/2. By Theorem 9.2.7, given a fork-free graph G with n vertices
and m ≥ 1 edges, a unit well-covering system S of G with size at most n can be
computed in time O(f(2n,m) + nω+1) = O((2n)ω+3m3/2 + nω+1), which simplifies to
O(nω+3m3/2).

We can determine if a graph G is well-covered by computing a well-covering system
of G and checking if the weight function assigning 1 to each vertex of G satisfies all the
equations in the system. This leads to the following consequence of Theorem 9.5.5.

Corollary 9.5.6. There is a polynomial-time algorithm to determine if a given fork-
free graph is well-covered.

2The result is stated incorrectly in the paper [167]. It is stated correctly in the conference version
of that work [168], as well as in the PhD thesis of the second-named author [182, Theorem 3.1.2]. The
result was reproved by Dyer et al. in [97].



Chapter 10

Fair Allocation of Indivisible Items
with Conflict Graphs

In this chapter we consider the fair allocation of indivisible items to several agents
and add a graph theoretical perspective to this classical problem. In particular, we
introduce an incompatibility relation between pairs of items described in terms of a
conflict graph. Therefore, we study the Fair k-Division Under Conflicts that
informally can be described as follows: given n items and k agents, where each agent
has its own additive utility function over the set of items, and given a graph G = (V,E)
of incompatibilities among items, compute an allocation of items to agents so minimal
utility over all agents is as large as possible (for a formal definition, see Section 10.1.
We study the complexity of Fair k-Division Under Conflicts and our results can
be summarized as follows:

(1) We show that the problem is strongly NP-hard for bipartite graphs and their line
graphs.

(2) We show that the problem is solvable in pseudo-polynomial time for the classes of
chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of
bounded treewidth.

(3) We show that the problem is solvable in pseudo-polynomial time for the class of
graphs of bounded clique-width.

The results (1) and (2) presented in this chapter are part of the following paper:
Chiarelli, N., Krnc, M., Milanič, M., Pferschy, U., Pivač, N., Schauer, J. Fair Allo-

cation of Indivisible Items with Conflict Graphs. Algorithmica 85, 1459–1489 (2023).
https://doi.org/10.1007/s00453-022-01079-8.

The result (3) is part of the following paper:
Chiarelli, N., Krnc, M., Milanič, M., Pferschy, U., Schauer, J. Fair allocation algo-

rithms for indivisible items under structured conflict constraints. Comp. Appl. Math.
42, 302 (2023). https://doi.org/10.1007/s40314-023-02437-0.

Result (3) was obtained during the writing of the first paper, but was published
within the second paper. Although I am not an author of the second paper, I have
participated in the discussions that led to the result (3) and the authors of the paper
agreed that this result should be part of my thesis and I thank them for that.
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10.1 Introduction

We study the allocation of n indivisible goods or items to a set of k agents where each
agent has its own profit function over the set of items. The aim is to assign every
item to exactly one of the agents so that the allocation is fair, that is, the minimal
total profit obtained by any of the agents should be maximized. This will be referred
to as a maxi-min allocation. Additionally, we restrict the set of feasible solutions by
introducing a notion of a conflict graph. A conflict graph is a graph G where V (G)
is the set of items and E(G) expresses the incompatibilities. This might suggest that
items restrict their shared usage, or it could be due to the fact that certain items are
identical (or similar) in type, making it nonsensical for one agent to receive multiple
copies of these items. In particular, given u, v ∈ V (G), it holds that uv ∈ E(G) if and
only if u and v are incompatible items.

Each agent receives the set of items that are not pairwise incompatible, that is,
every feasible allocation to one agent must be an independent set in the conflict graph,
and in general, we allow the partial distribution of items, meaning that possibly not
all items are distributed. Thus, the allocation of items to the agents corresponds to
a partial k-coloring of the conflict graph, where a partial k-coloring of a graph G is
a sequence (X1, . . . , Xk) of k pairwise disjoint independent sets in G, see [22, 90]. In
addition, every vertex/item has a profit value for every color/agent and the sum of
profits of vertices/items assigned to one color/agent should be optimized in a maxi-
min sense. Combining the profit structure with the notion of coloring we define for the
k profit functions p1, . . . , pk : V → Z+ and for each partial k-coloring c = (X1, . . . , Xk)
a k-tuple (p1(X1), . . . , pk(Xk)), called the profit profile of c. The minimum profit of a
profile, i.e., mink

j=1{pj(Xj)}, is the satisfaction level of c.
We consider the following problem. In the hardness reductions of this paper we

will frequently use the decision version of this problem: for a given q ∈ Z+, does there
exist a partial k-coloring of G with satisfaction level at least q?

Fair k-Division Under Conflicts
Instance: A graph G = (V,E), k profit functions p1, . . . , pk : V → Z+.
Question: Compute a partial k-coloring of G with maximum satisfaction level.

Note that an optimal partial k-coloring (X1, . . . , Xk) does not necessarily select all
vertices from V . However if there are no conflicts in an instance (meaning that the
graph G is edgeless) all vertices will be selected – this special case corresponds to Fair
k-Division of Indivisible Items.

Observation 10.1.1. Fair k-Division of Indivisible Items, even with k identical
profit functions, is weakly NP-hard for any constant k ≥ 2 and strongly NP-hard for k
being part of the input.

Note that for k = 2, the decision version of Fair k-Division of Indivisible
Items also generalizes the decision version of the Knapsack problem: Given a set
V = {1, . . . , n} of items with weights w1, . . . , wn ∈ Z+ and values v1, . . . , vn ∈ Z+, and
two positive integers W and C such that W <

∑
j∈V wj, is there a subset of the items

having total weight at most W and total value at least C? 1

1Indeed, by considering two profit functions p1, p2 : V → Z+ defined by p1(i) = ∆ · vi where
∆ =

∑
j∈V wj −W and p2(i) = C ·wi for all i ∈ V , it is not difficult to verify that such a set S exists

if and only if V admits an ordered 2-partition with satisfaction level at least C ·∆.
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It should be noted that Fair k-Division of Indivisible Items is still only weakly
NP-hard for constant k even for arbitrary profit functions, since we can construct a
pseudo-polynomial algorithm solving the problem with a k-dimensional dynamic pro-
gramming array.

For k = 1, the problem coincides with the Weighted Independent Set problem:
given a graph G = (V,E) and a weight function on the vertices, find an independent
set of maximum total weight. In particular, since the case of unit weights and k = 1
coincides with the Independent Set problem, we obtain the following result.

Observation 10.1.2. Fair 1-Division Under Conflicts is strongly NP-hard .

Thus, the addition of the conflict structure gives rise to a much more complicated
problem, since Fair k-Division of Indivisible Items (which arises naturally as
a special case for an edgeless conflict graph G) is trivial for k = 1 and only weakly
NP-hard for k ≥ 2.

Bipartite permutation graphs
PP

Biconvex bipartite graphs
PP (Thm. 10.4.4)

Bipartite graphs
sNPc (Thm. 10.3.1)

Permutation graphs
PP

Interval graphs
PP

Cocomparability graphs
PP (Thm. 10.4.2)

Chordal graphs
PP (Thm. 10.4.12)

Comparability graphs
sNPc

Perfect graphs
sNPc

Line graphs of bipartite graphs
sNPc (Thm. 10.3.2)

Graphs of bounded treewidth
PP (Thm. 10.4.13)

Graphs of bounded clique-width
PP (Thm. 10.4.14)

Forests
PP

Edgeless graphs
PP (Knapsack for k = 2)

Figure 10.1: Relationships between various graph classes and the complexity of Fair
k-Division Under Conflicts (decision version). An arrow from a class G1 to a class
G2 means that every graph in G1 is also in G2. Label ‘PP’ means that for each fixed k
the problem is solvable in pseudo-polynomial time in the given class, and label ‘sNPc’
means that for each fixed k ≥ 2 the decision version of the problem is strongly NP-
complete. For graph classes with round corners the result is shown in the cited theorem
of this paper. Results depicted in rectangles follow from the inclusion of graph classes.
For all graph classes in the figure, the problem is solvable in strongly polynomial time
for k = 1, as it coincides with the Weighted Independent Set problem.

We give a characterization of the computational complexity of Fair k-Division
Under Conflicts for different classes of conflict graphs and study the boundary
between strongly NP-hard cases and those where a pseudo-polynomial algorithm can
be derived for constant k. Observation 10.1.1 implies that this is the only type of
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positive result we can achieve. Moreover, considering Observation 10.1.2, it only makes
sense to consider graph classes where the Weighted Independent Set problem is
(pseudo-)polynomially solvable. One such prominent example is the class of perfect
graphs (see [128]). Thus, we mainly concentrate on various subclasses of perfect graphs
as depicted in Fig. 10.1. Additionally, we show how to adapt the algorithm for chordal
graphs to obtain a pseudo-polynomial algorithm for graphs of bounded treewidth.
For k = 2 our pseudo-polynomial dynamic programming approaches generalize the
standard dynamic program for the Knapsack problem.

10.2 General hardness results

We start with the following general property of graph classes. Let us call a graph
class G sustainable if every graph in the class can be enlarged in polynomial time to
a graph in the class by adding to it one vertex. More formally, G is sustainable if
there exists a polynomial-time algorithm that computes for every graph G ∈ G a graph
G′ ∈ G and a vertex v ∈ V (G′) such that G′ − v = G. Clearly, any class of graphs
closed under adding isolated vertices, or under adding universal vertices is sustainable.
This property is shared by many well known graph classes, including planar graphs,
bipartite graphs, chordal graphs, perfect graphs, etc. Furthermore, all graph classes
defined by a single nontrivial forbidden induced subgraph are sustainable.
Lemma 10.2.1. For every graph H with at least two vertices, the class of H-free
graphs is sustainable.
Proof. Let G be the class of H-free graphs and let G ∈ G. Since H has at least two
vertices, it cannot have both a universal and an isolated vertex. If H has no universal
vertex, then the graph obtained from G by adding to it a universal vertex results in a
graph in G properly extending G. If H has no isolated vertex, then the disjoint union
of G with the one-vertex graph results in a graph in G properly extending G.

For an example of a graph class G closed under vertex deletion that is not sustain-
able, consider the family of all cycles and their induced subgraphs. Then every cycle
is in G but cannot be extended to a larger graph in G. The importance of sustainable
graph classes for Fair k-Division Under Conflicts is evident from the following
theorem.
Theorem 10.2.2. Let G be a sustainable class of graphs and let k be a positive integer
such that the decision version of Fair k-Division Under Conflicts is (strongly)
NP-complete. Then, for every ℓ ≥ k, the decision version of Fair ℓ-Division Under
Conflicts with conflict graphs from G is (strongly) NP-complete.
Proof. Let G be a sustainable class of graphs for which the decision version of
Fair k-Division Under Conflicts is (strongly) NP-completeand let ℓ > k. Let
(G, p1, . . . , pk, q) be an instance of Fair k-Division Under Conflicts (decision
version) such that G ∈ G. Since G is sustainable, one can compute in polynomial time
a graph G′ ∈ G such that G′ − {x1, . . . , xℓ−k} = G for some ℓ − k additional vertices
x1, . . . , xℓ−k. We now define the profit functions p′1, . . . , p′ℓ : V (G′) → Z+. For all
j = 1, . . . , k, let

p′j(v) =

{
pj(v) if v ∈ V (G),

0 if v ∈ {xj | 1 ≤ j ≤ ℓ− k} .
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and in addition let, for all j = k + 1, . . . , ℓ, let

pj(v) =

{
q if v = xj−k,

0 if v ∈ V (G′) \ {xj−k} .

Observe that G′ has a partial k-coloring (X ′
1, . . . , X

′
k) such that p′j(X ′

j) ≥ q for all
j = 1, . . . , ℓ if and only if G has a partial k-coloring (X1, . . . , Xk) such that pj(Xj) ≥ q
for all j = 1, . . . , k. Since all the numbers involved in the reduction are polynomially
bounded, we conclude that Fair ℓ-Division Under Conflicts with conflict graphs
from G is also (strongly) NP-complete.

Since the Independent Set problem is a special case of Fair 1-Division Under
Conflicts, Theorem 10.2.2 immediately implies the following.

Corollary 10.2.3. Let G be a sustainable class of graphs for which the decision version
of Independent Set is NP-complete. Then, for every k ≥ 1, the decision version
of Fair k-Division Under Conflicts with conflict graphs from G is strongly NP-
complete.

It is known (see, e.g., [5]) that for every graph H that has a component that
is not a path or a subdivision of the claw (the complete bipartite graph K1,3), the
decision version of Independent Set is NP-completeon H-free graphs. Thus, for
every such graph H, Lemma 10.2.1 and Corollary 10.2.3 imply that for every k ≥ 1,
Fair k-Division Under Conflicts (decision version) with H-free conflict graphs is
strongly NP-complete. Further exploiting the relation to Independent Set, we also
get the following strong inapproximability result for general graphs. Its proof is closely
related to the inapproximability result for Independent Set, but to keep the paper
self-contained, we include it here.

Theorem 10.2.4. For every k ≥ 1 and every ε > 0, it is NP-hard to approximate
Fair k-Division Under Conflicts within a factor of |V (G)|1−ε, even for unit profit
functions.

Proof. Fix an integer k ≥ 1. We give a reduction from the Independent Set problem.
We construct a graph G′ by taking k copies of G and by adding all possible edges
between vertices from different copies. Furthermore we take k “unit” profit functions
p1, . . . , pk from V (G′) to {1}. We claim that the maximum size of an independent set
in G equals the maximum satisfaction level of a partial k-coloring in G′ (with respect
to the profit functions p1, . . . , pk). Given a maximum independent set I in G of size
q one can immediately obtain a partial k-coloring (X1, . . . , Xk) of G′ with satisfaction
level q by inserting all vertices of I in the j-th copy of G into Xj, for all j = 1, . . . , k.
On the other hand, given a partial k-coloring (X1, . . . , Xk) of G′ with satisfaction level
q, one can simply choose X1, which is an independent set completely contained in one
copy of G. Thus, X1 corresponds to an independent set in G of size q.

Here is a more detailed argument: We claim that the maximum size of an indepen-
dent set in G equals the maximum satisfaction level of a partial k-coloring in G′ (with
respect to the unit profit functions p1, . . . , pk). On the one hand, if I is an independent
set of size q in G, then a partial k-coloring (X1, . . . , Xk) of G′ with satisfaction level q
can be obtained by taking Xj to be a copy of I corresponding to the j-th copy of G in
G′. In particular, this shows that the maximum satisfaction level of a partial k-coloring
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in G′ is at least as large as the independence number of G. For the reverse direction,
consider a partial k-coloring (X1, . . . , Xk) of G′ with satisfaction level q. Since X1 is
an independent set in G′ and every two vertices of G′ belonging to different copies of
G are adjacent, X1 must be contained in a single copy of G. Thus, X1 corresponds to
an independent set of size at least q in G. This shows that the independence number
of G is at least the maximum satisfaction level of a partial k-coloring in G′.

Suppose that for some ε ∈ (0, 1) there exists a polynomial-time algorithm A that
approximates Fair k-Division Under Conflicts within a factor of |V (G)|1−ε on
input instances with unit profit functions. We will show that this implies the existence
of a polynomial-time algorithm A′ approximating the Independent Set problem
within a factor of |V (G)|1−ε′ where ε′ = ε/2. As shown by Zuckerman [234], this would
imply P = NP.

Consider an input graph G to the Independent Set problem. The algorithm A′

proceeds as follows. If |V (G)| < k2(1−ε)/ε, then the graph is of constant order and the
problem can be solved optimally in O(1) time. If |V (G)| ≥ k2(1−ε)/ε, then the graph
G′ is constructed following the above reduction, a partial k-coloring (X1, . . . , Xk) is
computed using algorithm A on G′ equipped with k unit profit functions, and a subset
of V (G) corresponding to X1 is returned. Clearly, the algorithm runs in polynomial
time and computes an independent set in G. Let q denote the maximum satisfaction
level of a partial k-coloring in G′. By the above claim, the independence number of G
equals q. Thus, to complete the proof, it suffices to show that |X1| ≥ q/(|V (G)|1−ε′).
By assumption on A, we have that |X1| ≥ q/(|V (G′)|1−ε). We want to show that
q/|V (G′)|1−ε ≥ q/|V (G)|1−ε′ , or, equivalently, 1/k1−ε|V (G)|1−ε ≥ 1/|V (G)|1−ε/2. After
some straightforward algebraic manipulations, this inequality simplifies to the equiva-
lent inequality |V (G)| ≥ k2(1−ε)/ε, which is true by assumption.

10.3 Bipartite graphs and their line graphs

In this section we show that for all k ≥ 2, Fair k-Division Under Conflicts is
NP-hard in two classes of graphs where the Weighted Independent Set problem
is solvable in polynomial time: the classes of bipartite graphs and their line graphs.
Recall that for a graph H, its line graph has a vertex for each edge of H, with two
distinct vertices adjacent in the line graph if and only if the corresponding edges share
an endpoint in H. Polynomial-time solvability of the Weighted Independent Set
problem in the class of bipartite graphs is well-known from a reduction to a network flow
problem (see, e.g., [141] or [216, Corollary 21.25a]). For line graphs of bipartite graphs
polynomial-time solvability follows from the facts that we can compute in linear time
a bipartite graph H such that the input graph G is the line graph of H [162,213] and
that the Weighted Independent Set problem on G is equivalent to the weighted
matching problem on H. Clearly, polynomial-time solvability for the two classes also
follows from the fact that both classes are subclasses of the class of perfect graphs
(cf. Fig. 10.1 and [216, Section 66.1]).

The proof for bipartite graphs shows strong NP-hardness even for the case when all
the profit functions are equal.

Theorem 10.3.1. For each integer k ≥ 2, the decision version of Fair k-Division
Under Conflicts is strongly NP-complete in the class of bipartite graphs.
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Proof. We use a reduction from the decision version of the Clique problem: Given a
graph G and an integer ℓ, does G contain a clique of size ℓ? Consider an instance (G, ℓ)
of Clique such that 2 ≤ ℓ < n := |V (G)|. We define an instance of Fair k-Division
Under Conflicts (decision version) consisting of a bipartite conflict graph G′, profit
functions p1, . . . , pk, and a lower bound q on the required satisfaction level. The graph
G′ = (A ∪ B,E ′) has a vertex for each vertex of the graph G as well as for each edge
of G and k new vertices x1, . . . , xk. It is defined as follows:

A = V (G) ∪ {x1} , B = E(G) ∪ {xi | 2 ≤ i ≤ k} ,
E ′ = {ve | v ∈ V (G) is an endpoint of e ∈ E(G)} ∪ {vxi | v ∈ V (G), 2 ≤ i ≤ k} .

The lower bound q on the satisfaction level is defined by setting q = n4+
(
ℓ
2

)
n+(n−ℓ).

For ease of notation we set N1 = n4 and we furthermore introduce a second integer N2

such that q = N2 +
(
m−

(
ℓ
2

))
n, where m = |E(G)|. (Note that N2 ≥ n3.) With this,

the profit functions pi : V (G′) → Z+, for all i ∈ {1, . . . , k}, are defined as

pi(v) =


1; if v ∈ V (G);
n; if v ∈ E(G);
N1; if v = x1;
N2; if v = x2;
q; if v = xj for some j ∈ {3, . . . , k}.

Note that all the profits introduced as well as the number of vertices and edges of G′

are polynomial in n. To complete the proof, we show that G has a clique of size ℓ if
and only if G′ has a partial k-coloring with satisfaction level at least q. First assume
that G has a clique C of size ℓ. We construct a partial k-coloring c = (X1, . . . , Xk) of
G′ by setting

X1 = {x1} ∪ {e ∈ E(G) | e ⊆ C} ∪ (V (G) \ C) ,
X2 = {x2} ∪ (E(G) \X1) ,

Xj = {xj} for 3 ≤ j ≤ k.

Observe that the partial k-coloring c gives rise to the corresponding profit profile with
all entries equal to q, which establishes one of the two implications.

Suppose now that there exists a partial k-coloring c = (X1, . . . , Xk) of G′ for which
the profit profile has all entries ≥ q. Since for each i ∈ {1, . . . , k}, the total profit
of the set V (G) ∪ E(G) is only mn + n < n4, the partial coloring c must use exactly
one of the k vertices x1, . . . , xk in each color class. We may assume without loss of
generality that xi ∈ Xi for all i ∈ {1, . . . , k}. Let U be the set of uncolored vertices in
G′ w.r.t. the partial coloring c. Since for each of the profit functions pi, the difference
between the overall sum of the profits of vertices of G′ and k · q is equal to ℓ, we
clearly have

∑
v∈U pi(v) ≤ ℓ < n, which implies that U ⊆ V (G). Next, observe that

every vertex of E(G) belongs to either X1 or to X2, since otherwise we would have
p1(X1) + p2(X2) < 2q, contrary to the assumption that the satisfaction level of c is at
least q.

Consider the sets W = X1 ∩ V (G) and F = X1 ∩E(G). Then X1 = {x1} ∪W ∪ F
and, since

∑
v∈X1

p1(v) ≥ q = N1+
(
ℓ
2

)
n+(n−ℓ), it follows that X1 contains exactly

(
ℓ
2

)
vertices from E(G) (if |F | >

(
ℓ
2

)
, then p2(X2) < q) and at least n−ℓ vertices from V (G).

Let C denote the set of all vertices of G′ with a neighbor in F . By the construction of
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G′ and since |F | =
(
ℓ
2

)
, it follows that C is of cardinality at least ℓ. Furthermore, since

X1 is independent, we have C ∩W = ∅. Consequently, n = |V (G)| ≥ |C| + |W | ≥
ℓ+ (n− ℓ) = n, hence equalities must hold throughout. In particular, C is a clique of
size ℓ in G.

Theorem 10.3.2. For each integer k ≥ 2, the decision version of Fair k-Division
Under Conflicts is strongly NP-complete in the class of line graphs of bipartite
graphs.

Proof. Note that it suffices to prove the statement for k = 2. For k > 2, Theorem 10.2.2
applies, since the class of line graphs of bipartite graphs is sustainable. Indeed, if G′ is
the line graph of a bipartite graph G, then the graph obtained from G′ by adding to it
an isolated vertex is the line graph of the bipartite graph obtained from G by adding
to it an isolated edge.

For k = 2, we use a reduction from the following problem: Given a bipartite graph
G and an integer Q, does G contain two disjoint matchings M1 and M2 such that M1

is a perfect matching and |M2| ≥ Q? This problem was shown to be NP-completeby
Pálvölgi (see [192]). Consider an instance (G,Q) of this problem such that 1 ≤ Q ≤ n/2
and n = |V (G)| is even. Then we define the following instance of the decision version
of Fair 2-Division Under Conflicts with a conflict graph G′, where G′ is the line
graph of G. The lower bound q on the satisfaction level is defined by setting q = n·Q/2.
The profit functions p1, p2 : V (G′) → Z+ are defined as p1(v) = Q for all v ∈ V (G′),
and p2(v) = n/2 for all v ∈ V (G′). Clearly, all the profits introduced as well as the
number of vertices and edges of G′ are polynomial in n. Recall that every matching in
G corresponds to an independent set in G′.

We now show that the instances of the two decision problems have the same answers.
Suppose first that G has two disjoint matchings M1 and M2 such that M1 is a perfect
matching and |M2| ≥ Q. Then the sequence (M1,M2) is a partial 2-coloring of G′ such
that

p1(M1) = Q|M1| = Q · n/2 = q and p2(M2) = (n/2) · |M2| ≥ (n/2)Q = q.

Conversely, suppose that G′ has a partial 2-coloring (X1, X2) with satisfaction level
at least q. Then the independent sets X1 and X2 in G′ are disjoint matchings in G.
Moreover, since

p1(X1) = Q|X1| ≥ q = Q · n/2 and p2(X2) = (n/2) · |X2| ≥ q = Q · n/2,

we obtain |X1| ≥ n/2 and |X2| ≥ Q. Thus, X1 is a perfect matching in G and any set
of Q edges in X2 is a matching in G disjoint from X1. This proves that the decision
version of Fair 2-Division Under Conflicts is strongly NP-complete in the class
of line graphs of bipartite graphs.

10.4 Pseudo-polynomial algorithms for special graph
classes

In this section we turn our attention to classes of graphs for which the Fair k-
Division Under Conflicts is solvable in pseudo-polynomial time. As shown in
Theorem 10.3.1, for each k ≥ 2, Fair k-Division Under Conflicts is strongly
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NP-complete in the class of bipartite graphs, and this rules out the existence of a
pseudo-polynomial time algorithm for the problem in the class of bipartite graphs, un-
less P = NP. We show that for every k there is a pseudo-polynomial time algorithm for
the Fair k-Division Under Conflicts in a subclass of bipartite graphs, the class of
biconvex bipartite graphs (see the definition in Section 10.4.2). The algorithm reduces
the problem to the class of bipartite permutation graphs. To solve the problem in the
class of bipartite permutation graphs, we develop a solution in a more general class of
graphs, the class of cocomparability graphs (containing permutation graphs). Further,
using a dynamic programming approach, we show that for every k there is a pseudo-
polynomial time algorithm for Fair k-Division Under Conflicts in the classes of
chordal graphs and graphs of bounded treewidth. It will be shown in Section 10.5 that
all these pseudo-polynomial dynamic programming algorithms allow the construction
of a fully polynomial time approximation scheme (FPTAS).

Let us first fix some notation. Given a graph G and k profit functions p1, . . . , pk :
V → Z+, we denote by n the number of vertices in G, n = |V (G)|. All pseudo-
polynomial results in this section depend on an upper bound on the maximum reachable
profit value Q = max1≤j≤k pj(V ). Given an integer k > 0, the addition and subtraction
of k-tuples is defined component-wise, and for all ℓ ∈ {1, . . . , k}, we denote by eℓ(x)
the k-tuple with all coordinates equal to 0, except that the ℓ-th coordinate is equal to
x.

10.4.1 Cocomparability graphs

A graph G = (V,E) is a comparability graph if it has a transitive orientation, that is, if
each of the edges {u, v} of G can be replaced by exactly one of the ordered pairs (u, v)
and (v, u) so that the resulting set A of directed edges is transitive (that is, for every
three vertices x, y, z ∈ V , if (x, y) ∈ A and (y, z) ∈ A, then (x, z) ∈ A). A graph G
is a cocomparability graph if its complement is a comparability graph. Comparability
graphs and cocomparability graphs are well-known subclasses of perfect graphs. The
class of cocomparability graphs is a common generalization of the classes of interval
graphs, permutation graphs, and trapezoid graphs (see, e.g., [46, 127]).

Since every bipartite graph is a comparability graph, Theorem 10.3.1 implies that
for each k ≥ 2, Fair k-Division Under Conflicts is strongly NP-complete in the
class of comparability graphs. For cocomparability graphs, we prove that the problem
is solvable in pseudo-polynomial time. The key result in this direction is the following
lemma.

Lemma 10.4.1. For every k ≥ 1, given a cocomparability graph G = (V,E) and k
profit functions p1, . . . , pk : V → Z+, the set of all profit profiles of partial k-colorings
of G can be computed in time O(nk+2(Q+ 1)k), where Q = max1≤j≤k pj(V ).

Proof. Let G be a cocomparability graph. In time O(n2), we compute the complement
of G and a transitive orientation D of it [219]. Since D is a directed acyclic graph, one
can compute in linear time a topological sort of D, that is, an ordering v1, . . . , vn of
the vertices such that if (vi, vj) is an arc of D, then i < j (see, e.g., [71]). Note that

(∗) a set X = {vi1 , . . . , vip} ⊆ V with i1 < . . . < ip is independent in G if and only if
(vi1 , . . . , vip) is a directed path in D.

Thus, a partial k-coloring in G corresponds to a collection of k vertex-disjoint directed
paths in D, and vice versa. We process the vertices of G in the ordering given by the
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topological sort of D and try all possibilities for the color (if any) of the current vertex
vj in order to extend a partial k-coloring of the already processed subgraph of G with
vj. (In terms of D, we choose which of the k directed paths will be extended into vj.)
To avoid introducing additional terminology and notation, we present the details of
the algorithm in terms of partial k-colorings of G instead of systems of disjoint paths
in D.

For each j ∈ {0, 1, . . . , n} and each k-tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k, we compute
the set Pj(i1, . . . , ik) of all k-tuples (q1, . . . , qk) ∈ Zk

+ such that there exists a partial
k-coloring (X1, . . . , Xk) of the subgraph of G induced by {v1, . . . , vj} (which is empty
if j = 0) such that qℓ = pℓ(Xℓ) and

iℓ =

{
max{r : vr ∈ Xℓ}, if Xℓ ̸= ∅;
0, if Xℓ = ∅ (10.1)

for all ℓ ∈ {1, . . . , k}. Note that for each ℓ ∈ {1, . . . , k}, the possible values of the
ℓ-th coordinate of any member of Pj(i1, . . . , ik) belong to the set {0, 1, . . . , Q} where
Q = max1≤j≤k pj(V ). Thus, each set Pj(i1, . . . , ik) has at most (Q+1)k elements. Note
also that the total number of sets Pj(i1, . . . , ik) is of the order O(nk+1).

In what follows we explain how to compute the sets Pj(i1, . . . , ik). For j = 0, the
only feasible choice for the k-tuple (i1, . . . , ik) is (0, . . . , 0) and we set P0(0, . . . , 0) =
{0}k = {(0, . . . , 0)}. This is correct since the only partial k-coloring of the graph
with no vertices is the k-tuple (∅, . . . , ∅). Suppose that j > 1 and that the sets
Pj−1(i1, . . . , ik) are already computed for all (i1, . . . , ik) ∈ {0, 1, . . . , j − 1}k. Fix a
k-tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k. To describe how to compute the set Pj(i1, . . . , ik),
we will use the following notation. We consider three cases. For each of them, we first
give a formula for computing the set Pj(i1, . . . , ik) and then we argue why the formula
is correct.

1. If j appears at least twice as a coordinate of (i1, . . . , ik), then we set

Pj(i1, . . . , ik) = ∅ . (10.2)

Note that since j appears at least twice as a coordinate of (i1, . . . , ik), there is no
partial k-coloring (X1, . . . , Xk) of the subgraph of G induced by {v1, . . . , vj} such
that equality (10.1) holds for all ℓ ∈ {1, . . . , k}. Thus, equation (10.2) is correct.

2. If j does not appear as any coordinate of (i1, . . . , ik), then we set

Pj(i1, . . . , ik) = Pj−1(i1, . . . , ik) . (10.3)

Since j does not appear as any coordinate of (i1, . . . , ik), every partial k-coloring
of the subgraph of G induced by {v1, . . . , vj−1} such that equality (10.1) holds
for all ℓ ∈ {1, . . . , k} is a partial k-coloring of the subgraph of G induced by
{v1, . . . , vj} and vice versa. This implies relation (10.3).

3. If j appears exactly once as a coordinate of (i1, . . . , ik), say is = j, then we set

Pj(i1, . . . , ik) =
⋃

{j′:j′=0 or
vj′∈N−

D
(vj)}

{q+ es(ps(vj)) | q ∈ Pj−1(i1, . . . , is−1, j
′, is+1, . . . , ik)} ,

(10.4)
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where N−
D (vj) denotes the set of all vertices vj′ such that (vj′ , vj) is an arc of D.

(Note that j′ < j for all vj′ ∈ N−
D (vj), since v1, . . . , vn is a topological sort of D.)

Let q = (q1, . . . , qk) ∈ Pj(i1, . . . , ik) and consider a partial k-coloring (X1, . . . , Xk)
of the subgraph of G induced by {v1, . . . , vj} such that pℓ(Xℓ) = qℓ and equal-
ity (10.1) holds for all ℓ ∈ {1, . . . , k}. Then max{q : vq ∈ Xs} = is = j. In
particular, vj ∈ Xs. Let X ′

s = Xs \ {vj} and let

j′ =

{
max{r : vr ∈ X ′

s}, if X ′
s ̸= ∅;

0, if X ′
s = ∅.

Note that if X ′
s ̸= ∅ then vj′ ∈ N−

D (vj). Indeed, digraph D is an orientation
of the complement of G, in which vertices vj′ and vj are adjacent (recall that
they belong to the independent set Xs in G). This implies that either (vj, vj′)
or (vj′ , vj) is an arc of D, but since j′ < j and v1, . . . , vn is a topological sort
of D, the pair (vj′ , vj) must be an arc of D. Let (i′1, . . . , i

′
k) be the k-tuple

obtained from (i1, . . . , ik) by replacing is with j′, and let (X ′
1, . . . , X

′
k) be the

k-tuple obtained from (X1, . . . , Xk) by replacing Xs with X ′
s. Then (X ′

1, . . . , X
′
k)

is a partial k-coloring of the subgraph of G induced by {v1, . . . , vj−1} such that
equality obtained from (10.1) by replacing Xℓ with X ′

ℓ and iℓ with i′ℓ holds for
each ℓ ∈ {1, . . . , k}. Furthermore, (p1(X1), . . . , pk(Xk)) = (p1(X

′
1), . . . , pk(X

′
k))+

es(ps(vj)). This shows that if q = (q1, . . . , qk) ∈ Pj(i1, . . . , ik), then the k-tuple
q belongs to the union⋃

{j′:j′=0 or vj′∈N
−
D (vj)}

{q+ es(ps(vj)) | q ∈ Pj−1(i1, . . . , is−1, j
′, is+1, . . . , ik)} .

For the converse direction, let j′ ∈ {0} ∪ {1 ≤ j′ ≤ j − 1 | vj′ ∈ N−
D (vj)}, let

(i′1, . . . , i
′
k) be the k-tuple obtained from (i1, . . . , ik) by replacing is with j′, and

let q = (q1, . . . , qk) ∈ Pj−1(i
′
1, . . . , i

′
k). Then, there exists a partial k-coloring

(X ′
1, . . . , X

′
k) of the subgraph of G induced by {v1, . . . , vj−1} such that for each

ℓ ∈ {1, . . . , k}, we have pℓ(X ′
ℓ) = qℓ and equality obtained from (10.1) by replac-

ing Xℓ with X ′
ℓ and iℓ with i′ℓ holds. Let (X1, . . . , Xk) be the k-tuple obtained

from (X ′
1, . . . , X

′
k) by replacing X ′

s with X ′
s ∪ {vj}. To show that (X1, . . . , Xk)

is a partial k-coloring of the subgraph of G induced by {v1, . . . , vj}, it suffices to
verify that Xs = X ′

s∪{vj} is an independent set in G. If X ′
s = ∅, then Xs = {vj}

is independent. Suppose that X ′
s ̸= ∅. Then, by (∗), X ′

s corresponds to a di-
rected path in D ending in vj′ . Extending this path with vertex vj ∈ N+

D (vj′)
results in a directed path in D with vertex set Xs, which shows, again by (∗),
that Xs is independent in G. Clearly, we have that max{r : vr ∈ Xs} = j,
and hence (X1, . . . , Xk) is a partial k-coloring of the subgraph of G induced
by {v1, . . . , vj} equality (10.1) holds for each ℓ ∈ {1, . . . , k}. Furthermore,
(p1(X1), . . . , pk(Xk)) = q + es(ps(vj)). This shows that if q ∈ Pj−1(i

′
1, . . . , i

′
k),

then the k-tuple q+es(ps(vj)) belongs to Pj(i1, . . . , ik). Therefore, equation (10.4)
is correct.

Finally, the set of all profit profiles of partial k-colorings of G equals to the union,
over all (i1, . . . , ik) ∈ {0, 1, . . . , n}k, of the sets Pn(i1, . . . , ik).

The algorithm can be easily modified so that for each profit profile also a cor-
responding partial k-coloring is computed. We would just need to store, for each
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j ∈ {0, 1, . . . , n}, each (i1, . . . , ik) ∈ {0, 1, . . . , j}k, and each k-tuple (q1, . . . , qk) ∈
Pj(i1, . . . , ik), one partial k-coloring (X1, . . . , Xk) of the subgraph of G induced by
{v1, . . . , vi} such that pℓ(Xℓ) = qℓ and equality (10.1) holds for all ℓ ∈ {1, . . . , k}.

It remains to estimate the time complexity of the algorithm. For each j ∈ {1, . . . , n}
and each of the O(nk) k-tuples (i1, . . . , ik) ∈ {0, 1, . . . , j}k, we can decide which of the
three cases (i)–(iii) occurs in time O(k). Step (10.2) takes constant time, step (10.3)
takes time O((Q + 1)k), and step (10.4) can be implemented in time O(n(Q + 1)k).
Altogether, this results in running time O(n(Q+1)k) for each fixed j ∈ {1, . . . , n} and
each k-tuple (i1, . . . , ik) ∈ {0, 1, . . . , j}k. Consequently, the total running time of the
algorithm is O(nk+2(Q+ 1)k).

Lemma 10.4.1 implies the following.

Theorem 10.4.2. For every k ≥ 1, Fair k-Division Under Conflicts is solv-
able in time O(nk+2(Q+ 1)k) for cocomparability conflict graphs G, where Q =
max1≤j≤k pj(V (G)).

Proof. By Lemma 10.4.1, we can compute the set Π of all profit profiles of partial k-
colorings of G in the stated running time. For each profit profile in Π, we can determine
the satisfaction level of the corresponding partial k-coloring of G. Taking the maximum
satisfaction level over all profiles gives the optimal value of Fair k-Division Under
Conflicts for (G, p1, . . . , pk).

10.4.2 Biconvex bipartite graphs

Recall from Theorem 10.3.1 that Fair k-Division Under Conflicts is strongly NP-
hard for bipartite conflict graphs. Thus, we consider in the following the more restricted
case of biconvex bipartite conflict graphs. Recall that a bipartite graph G = (A∪B,E)
is biconvex if it has a biconvex ordering, that is, an ordering of A and B such that for
every vertex a ∈ A (resp. b ∈ B) the neighborhood N(a) (resp. N(b)) is an interval of
consecutive vertices in the ordering of B (resp. ordering of A).

It is known that a connected biconvex bipartite graph G can always be ordered in
such a way that the first and last vertices on one side have a special structure. Fix a
biconvex ordering of G, say A = (a1, . . . , as) and B = (b1, . . . , bt). Define aL (resp. aR)
as the vertex in N(b1) (resp. N(bt)) whose neighborhood is not properly contained in
any other neighborhood set (see [1, Def. 8]). In case of ties, aL is the smallest such index
(and aR the largest). We always assume that aL ≤ aR, otherwise the ordering in A
could be mirrored. Under these assumptions, the neighborhoods of vertices appearing
in the ordering before aL and after aR are nested.

Lemma 10.4.3 (Abbas and Stewart [1]). Let G = (A∪B,E) be a connected biconvex
graph. Then there exists a biconvex ordering of the vertices of G such that:

1. For all ai, aj with a1 ≤ ai < aj ≤ aL we have N(ai) ⊆ N(aj).

2. For all ai, aj with aR ≤ ai < aj ≤ as we have N(aj) ⊆ N(ai).

3. The subgraph G′ of G induced by vertex set {aL, . . . , aR} ∪ B is a bipartite per-
mutation graph.
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Property (iii) can be put in context with Theorem 10.4.2. Indeed, it is known that
every permutation graph is a cocomparability graph (see, e.g., [46]). This gives rise to
the following result that Fair k-Division Under Conflicts on biconvex bipartite
graphs is indeed easier (from the complexity point of view) than on general bipartite
graphs. The high-level idea of the algorithm is illustrated in Algorithm 1.

Algorithm 1 Algorithmic Idea for a Connected Biconvex Graph G
apply Lemma 10.4.3 for getting the cocomparability graph G′ and vertices aL, aR
let AL := {a1, . . . , aL−1} and AR := {aR+1, . . . , as}
for all j ∈ {1, . . . , k} do

guess aj ∈ AL with largest index (resp. smallest index aj ∈ AR) included in Xj

end for
each such guess can be represented by a 2k-tuple σ = (a1, . . . , ak, a1, . . . , ak)
for each guess σ do

for all j ∈ {1, . . . , k} do
exclude all vertices v of the neighborhood N(aj) ⊆ B (and N(aj) ⊆ B)
from insertion into Xj by setting their profit pj(v) := 0

end for
apply Lemma 10.4.1 to the cocomparability graph G′ and the modified profit
functions to obtain the set Πσ of all profit profiles (q1, . . . , qk) of partial k-colorings
of G′ with respect to the modified profits
increase each profit profile by setting qj := qj + pj(aj) + pj(aj)

augment these profiles with vertices from AL and AR

end for
choose the best solution over all guesses σ

Theorem 10.4.4. For every k ≥ 1, Fair k-Division Under Conflicts is solvable
in time O(n3k+2(Q+ 1)k) for connected biconvex bipartite conflict graphs G, where
Q = max1≤j≤k pj(V (G)).

Proof. At first Lemma 10.4.3 is applied for obtaining from G the cocomparability
graph G′. However, we have to consider also the vertex sets AL := {a1, . . . , aL−1} and
AR := {aR+1, . . . , as}. This is done by considering assignments of vertices in AL ∪ AR

to the k subsets of a partial k-coloring of G in an efficient way as follows.
For every j ∈ {1, . . . , k}, we guess, by going through all possibilities, the largest in-

dex vertex aj ∈ AL (resp. smallest index aj ∈ AR) inserted in Xj. One can add an arti-
ficial vertex a0 (resp. as+1) to represent the case that no vertex from AL (resp. AR) is in-
serted in Xj. Thus, every guess is represented by a 2k-tuple σ = (a1, . . . , ak, a1, . . . , ak).
The total number of such guesses (i.e., iterations) is bounded by (n + 1)k for each of
AL and AR, i.e., O(n2k) selections to be considered in total.

For each such guess σ we perform the following computations. For every j ∈
{1, . . . , k} the vertices in the neighborhood N(aj) ⊆ B (and N(aj) ⊆ B) of the chosen
index must be excluded from insertion into the corresponding setXj. This can be easily
realized by setting to 0 the profits pj of all vertices in N(aj) (resp. N(aj)). With these
slight modifications of the profits we can apply Lemma 10.4.1 for the cocomparability
graph G′ and the modified profit functions pσj to obtain the set Πσ of all (pseudo-
polynomially many) profit profiles (q1, . . . , qk) of partial k-colorings of G′ with respect
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to pσ. Every entry qj of a profit profile in Πσ is increased by pj(aj)+pj(aj), to account
for inclusion of the vertices selected by the guess σ.

In every guess there are the two vertices aj and aj permanently assigned to Xj

for every j and their neighborhoods N(aj) and N(aj) are excluded from Xj. Now it
follows from properties (i) and (ii) of Lemma 10.4.3 that for each vertex a′ ∈ AL with
a′ < aj (resp. a′ ∈ AR with a′ > aj) the neighborhood N(a′) is a subset of N(aj) (resp.
N(aj)). Thus, these vertices a′ could also be inserted in Xj without any violation of the
conflict structure. Therefore, we can start from the set Πσ of profit profiles computed
for (G′, pσ) and consider iteratively (in arbitrary order) the addition of a vertex a′ ∈ AL

to one of the color classes Xj, as it is usually done in dynamic programming. Each a′

is considered as an addition to every profit profile (q1, . . . , qk) ∈ Πσ and for every index
j with a′ < aj yielding new profit profiles (q1, . . . , qj−1, qj + pj(a

′), qj+1, . . . , qk) to be
added to Πσ. An analogous procedure is performed for all vertices a′ ∈ AR where the
addition is restricted to indices j with a′ > aj.

For every guess σ, the running time is dominated by the effort of computing the
O((Q+ 1)k) profit profiles of (G′, pσ) according to Lemma 10.4.1, since adding any of
the O(n) vertices a′ requires only k operations for each profit profile.

In this way, we construct the set Πσ of all profit profiles of partial k-colorings of
G for each guess σ. It remains to identify the optimal solution in the set Π :=

⋃
σ Πσ

similarly as in the proof of Theorem 10.4.2. Going over all O(n2k) guesses σ, the total
running time can be given from Lemma 10.4.1 as O(n3k+2(Q+ 1)k).

For disconnected conflict graphs, we can easily paste together the profit profiles of
all connected components. Note that this construction applies to general graphs.

Lemma 10.4.5. Given a conflict graph G consisting of c > 1 connected components
Gℓ, ℓ = 1, . . . , c, each of them with a set of profit profiles Πℓ, where the size of each
Πℓ is of order O((Q + 1)k) with Q = max1≤j≤k pj(V (G)), Fair k-Division Under
Conflicts can be solved for G in time O((c− 1)(Q+ 1)2k).

Proof. We maintain a set of profit profiles Π, initialized by Π := Π1, and iteratively
merge each of the profit profiles Π2, . . . ,Πm with Π. To merge a set of profit profiles
Πℓ, we consider every pair of profiles from Π and Πℓ and perform a vector addition to
obtain a (possibly) new profit profile which is added to Π. At most (Q + 1)2k such
pairs may exist. In each of the c − 1 iterations the number of different profit profiles
in Π remains bounded by the trivial upper bound (Q+1)k. Finally, the best objective
function value is determined by evaluating all profit profiles. The total running time
of this procedure is of order O((c− 1)(Q+ 1)2k).

Running Algorithm 1 for all c components of a graph with n vertices can be done
in time O(n3k+2(Q + 1)k). Applying Lemma 10.4.5 on the resulting profit profiles,
we obtain the following corollary. Note that the computational complexity does not
depend on the size of the components.

Corollary 10.4.6. For every k ≥ 1, Fair k-Division Under Conflicts is solvable
in time O(n3k+2(Q+ 1)k + (c− 1)(Q+ 1)2k) for biconvex bipartite conflict graphs G
consisting of c connected components, where Q = max1≤j≤k pj(V (G)).

Note that the increased running time factor of (Q+ 1)2k cannot be easily avoided.
In particular, the natural idea of connecting the biconvex components by inserting
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dummy vertices to obtain a single connected biconvex graph does not work, as we show
in the rest of this section. Note first that biconvex bipartite graphs were characterized
by forbidden induced subgraphs by Tucker in [229] and the list of forbidden induced
subgraphs includes all cycles except the cycle of length four and five additional graphs,
including the two graphs F1 and F2 depicted in Fig. 10.2.

F1 F2

Figure 10.2: Two forbidden induced subgraphs for biconvex bipartite graphs.

Proposition 10.4.7. There exists a disconnected biconvex bipartite graph that is not
an induced subgraph of any connected biconvex bipartite graph.

Proof. Consider the graph G depicted in Fig. 10.3.

a3 b4

b3 a4a2

b2

b1 a6

a5

b5

b6a1

G

Figure 10.3: A 12-vertex biconvex bipartite graph and a biconvex labeling of it.

As shown by the vertex labeling in the figure, G is a biconvex bipartite graph.
Consequently, the graph G+K2, the disjoint union of G and a complete graph of order
two, is also a biconvex bipartite graph. We will show that G +K2 is not an induced
subgraph of any connected biconvex bipartite graph.

Fix a labeling of G as in Fig. 10.3, take a disjoint copy of K2, call it G′, and suppose
for a contradiction that the disjoint union G+G′ is an induced subgraph of a connected
biconvex bipartite graph H. Let A and B denote the two parts of a bipartition of H
so that {a1, . . . , a6} ⊆ A (and then {b1, . . . , b6} ⊆ B).

Since H is connected, it contains a path from V (G′) to V (G). Let P be a shortest
such path. Since the sets V (G) and V (G′) are disjoint and the are no edges between
them, P has at least three vertices. Let x be the only vertex on P that has a neighbor
in G, let y be the neighbor of x on P such that y ̸∈ V (G), and let z be defined as
follows:

z =

{
the neighbor of y on P other than x, if P has at least 4 vertices;
the neighbor of y in G′, if P has exactly three vertices.
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Since H is bipartite, it contains no cycle of length three. This implies that vertices x
and z are not adjacent to each other.

By symmetry of G, we may assume that x ∈ A (and thus y ∈ B and z ∈ A).
Furthermore, by the minimality of P , vertices y and z do not have any neighbors in
V (G). We make a series of observations about the neighborhood of x in V (G).

• Vertex x cannot be adjacent to both b3 and b4, since otherwise H would contain
an induced F1 with vertex set {x, y, z, b3, a2, b4, a5}.
By symmetry, we may assume that x is not adjacent to b4.

• Vertex x is not adjacent to b5. Suppose that it is. Then x is not adjacent to b3,
since otherwise the set {x, b3, a3, b4, a5, b5} would induce a 6-cycle in H. But now,
H contains an induced F1 with vertex set {x, b5, a4, b3, a2, b4, a6}, a contradiction.

• Vertex x is adjacent to b3. Suppose that this is not the case. Then x is not adja-
cent to bi for i ∈ {1, 2}, since otherwise H would contain an induced F1 with ver-
tex set {x, bi, a3, b3, a1, b4, a5}. Therefore, the only possible neighbor of x in V (G)
is b6. But now, H contains an induced F1 with vertex set {x, b6, a4, b3, a1, b4, a5},
a contradiction.

• Vertex x is adjacent to b2, since otherwise H would contain an induced F1 with
vertex set {y, x, b3, a2, b2, a4, b5}.

To conclude the proof, we observe that H contains an induced F2 with vertex set
{z, y, x, b2, a3, b3, a1, b4, a5}, a contradiction.

10.4.3 Chordal graphs

In this section we present a pseudo-polynomial time algorithm that solves the Fair
k-Division Under Conflicts on chordal graphs. Recall that a graph is chordal if
all its induced cycles are of length three. First we recall some definitions and state
some known results on chordal graphs and their tree decompositions.

Recall that a tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )) where
T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G) called a bag such
that the following conditions are satisfied:

• Every vertex of G is in at least one bag.

• For every edge {u, v} ∈ E(G) there exists a node t ∈ V (T ) such that Xt contains
both u and v.

• For every vertex u ∈ V (G) the subgraph of T induced by the set {t ∈ V (T ) :
u ∈ Xt} is connected (that is, a tree).

A tree decomposition (T, {Xt}t∈V (T )) is rooted if we distinguish one vertex r of
T which will be the root of T . This introduces natural parent-child and ancestor-
descendant relations in the tree T . Following [82], we will say that a tree decomposition
(T, {Xt}t∈V (T )) is nice if it is rooted and the following conditions are satisfied:

• If t ∈ V (T ) is the root or a leaf of T , then Xt = ∅;

• Every non-leaf node t of T is one of the following three types:
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– Introduce node: a node t with exactly one child t′ such that Xt = Xt′∪{v}
for some vertex v ∈ V (G) \Xt′ ;

– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v}
for some vertex v ∈ Xt′ ;

– Join node: a node t with exactly two children t1 and t2 such that Xt =
Xt1 = Xt2 .

The width of a tree decomposition (T, {Xt}t∈V (T )) of a graph G is defined as
maxt∈V (T ) |Xt| − 1. Lemma 7.4 from [82] shows that every tree decomposition of width
at most ℓ can be transformed in polynomial time into a nice tree decomposition of
width at most ℓ. The proof actually shows the following statement, which will be
useful for our purpose.

Lemma 10.4.8. Given a tree decomposition T = (T, {Xt}t∈V (T )) of an n-vertex graph
G, one can in time O(n2 ·max{n, |V (T )|}) compute a nice tree decomposition T ′ of G
that has at most O(n2) nodes and such that every bag of T ′ is a subset of a bag of T .

Let us now apply these concepts to chordal graphs. A clique tree of a graph G is a
tree decomposition (T, {Xt}t∈V (T )) such that the bags are exactly the maximal cliques
of G. It is well known (see, e.g., [27]) that a graph is chordal if and only if it has
a clique tree, and in such a case a clique tree can be constructed in linear time (see,
e.g., [220]). Furthermore, every chordal graph G has at most |V (G)| maximal cliques
(see, e.g., [27]).

Lemma 10.4.9. Given an n-vertex chordal graph G, we can compute in linear time a
tree decomposition (T, {Xt}t∈V (T )) of G with O(n) bags, all of which are cliques.

Combining Lemmas 10.4.8 and 10.4.9 yields the following.

Lemma 10.4.10. Given an n-vertex chordal graph G, we can compute in time O(n3)
a nice tree decomposition (T, {Xt}t∈V (T )) of G with O(n2) bags, all of which are cliques.

We will also need the following technical lemma about tree decompositions (see,
e.g., [82]).

Lemma 10.4.11. Let (T, {Xt}t∈V (T )) be a tree decomposition of a graph G and let
{a, b} be an edge of T . The forest T − {a, b} obtained from T by deleting edge {a, b}
consists of two connected components Ta (containing a) and Tb (containing b). Let
A =

(⋃
t∈V (Ta)

Xt

)
\ (Xa ∩Xb) and B =

(⋃
t∈V (Tb)

Xt

)
\ (Xa ∩Xb). Then no vertex in

A is adjacent to a vertex in B.

Before we proceed to the main result for chordal graphs, we need to introduce an
auxiliary definition. Let G = (V,E) be a graph, let U ⊆ V , let c = (X1, . . . , Xk) be a
partial k-coloring of G[X], and let c′ = (Y1, . . . , Yk) be a partial k-coloring of G. We
say that c′ agrees with c on U if Xj ∩ U = Yj for all j ∈ {1, . . . , k}.

Theorem 10.4.12. For every k ≥ 1, Fair k-Division Under Conflicts is
solvable in time O(nk+2(Q+ 1)2k) for a chordal conflict graph G, where Q =
max1≤j≤k pj(V (G)).
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Proof. Fix k ≥ 1 and letG be a chordal graph equipped with profit functions p1, . . . , pk :
V (G) → Z+. We will show that we can compute the set Π of all profit profiles of partial
k-colorings of G in the stated running time. The maximum satisfaction level over all
profit profiles will then give the optimal value of Fair k-Division Under Conflicts
for (G, p1, . . . , pk).

We first apply Lemma 10.4.10 and compute in time O(n3) a nice tree decomposition
(T, {Xt}t∈V (T )) of G with O(n2) bags, all of which are cliques. Recall that by definition
T is a rooted tree decomposition of G. Let r be the root of T . For every node
t ∈ V (T ), we denote by Vt the union of all bags Xt′ such that t′ ∈ V (T ) is a (not
necessarily proper) descendant of t in T .

We traverse tree T bottom-up and use a dynamic programming approach to com-
pute, for every node t ∈ V (T ) and every partial k-coloring c of G[Xt], the family P (t, c)
of all profit profiles of partial k-colorings of G[Vt] that agree with c on Xt.

Since (T, {Xt}t∈V (T )) is a nice tree decomposition, we have Xr = ∅; in particular,
the trivial partial k-coloring ∅k consisting of k empty sets is the only partial k-coloring
of G[Xr]. Thus, since Vr = V (G) and every partial k-coloring of G agrees with the
trivial partial k-coloring of G[Xr] on Xr, the set P (r, ∅k) is the set of all profit profiles
of partial k-colorings of G, which is what we want to compute.

We consider various cases depending on the type of a node t ∈ V (T ) in the nice
tree decomposition. For each of them we give a formula for computing the set P (t, c)
from the already computed sets of the form P (t′, c′) where t′ is a child of t in T , and
argue why the formula is correct.

1. t is a leaf node.

By the definition of a nice tree decomposition it follows that Xt = ∅. Thus,
the only partial k-coloring of G[Xt] is the trivial one, ∅k. Clearly, P (t, ∅k) =
{(0, . . . , 0)}.

2. t is an introduce node.

By definition, t has exactly one child t′ and Xt = Xt′ ∪ {v} holds for some
vertex v ∈ V \ Xt′ . Clearly, Vt = Vt′ ∪ {v}, and this is a disjoint union. (If
v ∈ Vt′ , then the subtree of T consisting of all bags Xτ such that v ∈ Xτ is
not connected; a contradiction.) Consider an arbitrary partial k-coloring c =
(X1, . . . , Xk) of G[Xt]. We want to compute P (t, c) using the set P (t′, c′), where
c′ = (X1 \ {v}, . . . , Xk \ {v}). (Note that c′ is a partial k-coloring of G[Xt′ ].) We
claim that the following equality holds:

P (t, c) =

{
{q+ ej(pj(v)) | q ∈ P (t′, c′)}, if v ∈ Xj for some j ∈ {1, . . . , k};
P (t′, c′), otherwise.

To show the recurrence, note first that if for all j ∈ {1, . . . , k} we have v /∈
Xj, then c′ = c and thus P (t, c) = P (t′, c′) in this case. If, however, v ∈ Xj

for some j ∈ {1, . . . , k}, then there can only be one such j, and thus c′ =
(X1, . . . , Xj−1, Xj \ {v}, Xj+1, . . . , Xk). In this case, we will need the fact that
v is not adjacent to any vertex of Vt′ \Xt′ . Indeed, applying Lemma 10.4.11 to
a = t and b = t′ shows that no vertex of V (G) \ Vt′ is adjacent to any vertex of
Vt′ \Xt′ , hence the statement follows since v ∈ V (G) \ Vt′ .
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The fact that all neighbors of v in the set Vt′ are contained in Xt′ implies that for
every partial k-coloring of G[Vt′ ] that agrees with c′ on Xt′ , adding v to the j-th
color class will result in a partial k-coloring of G[Vt] that agrees with c on Xt.
Thus, there is a bijective correspondence between the set of partial k-colorings
of G[Vt] that agree with c on Xt and those of G[Vt′ ] that agree with c′ on Xt′ ,
given by removing v from the j-th color class. This implies the claimed equality
P (t, c) = {q+ ej(pj(v)) | q ∈ P (t′, c′)}.

3. t is a forget node.

By definition, t has exactly one child t′ in T and Xt = Xt′ \ {v} holds for some
vertex v ∈ V \ Xt. Thus, Vt = Vt′ . Consider an arbitrary partial k-coloring
c = (X1, . . . , Xk) of G[Xt]. We claim that the following equality holds:

P (t, c) = P (t′, c) ∪
⋃

j:Xj=∅

P (t′, (X1, . . . , Xj−1, {v}, Xj+1 . . . , Xk)) .

Consider an arbitrary partial k-coloring (Y1, . . . , Yk) of G[Vt] that agrees with c on
Xt. If v ̸∈ Yj for all j ∈ {1, . . . , k}, then (Y1, . . . , Yk) agrees with c onXt′ . Suppose
now that v ∈ Yj for some j ∈ {1, . . . , k}. Then, j is unique. Furthermore, since
Xt′ is a clique in G and hence in G[Vt′ ], the fact that v ∈ Yj implies that Yj∩Xt′ =
{v}, and consequently Xj = Yj ∩ Xt = ∅. In this case, the partial k-coloring
(Y1, . . . , Yk) agrees with the partial k-coloring (X1, . . . , Xj−1, {v}, Xj+1, . . . , Xk)
of G[Vt′ ] on Xt′ . Thus, every partial k-coloring of G[Vt] that agrees with c on
Xt either agrees with c on Xt′ or agrees with (X1, . . . , Xj−1, {v}, Xj+1 . . . , Xk) on
Xt′ for some j ∈ {1, . . . , k} such that Xj = ∅. Similar arguments can be used to
show the converse inclusion, that is, any partial k-coloring of G[Vt′ ] that satisfies
one of the above conditions is a partial k-coloring of G[Vt] that agrees with c on
Xt. This implies the claimed equality.

4. t is a join node.

By definition, t has exactly two children t1 and t2 in T and it holds that Xt =
Xt1 = Xt2 . We claim that Vt1 ∩ Vt2 = Xt. It is clear that Xt ⊆ Vt1 ∩ Vt2 . Assume
for contradiction that there is a vertex v ∈ V (G) such that v ∈ (Vt1 ∩ Vt2) \Xt.
Then there are nodes t′1 and t′2 of T such that v ∈ Xt′1

, v ∈ Xt′2
, and t′1 and t′2 are

(possibly not proper) descendants of t1 and t2, respectively. It follows that the
subgraph of T consisting of all bags containing v is not connected; a contradiction.
Thus Xt = Vt1 ∩Vt2 , as claimed. Furthermore, applying Lemma 10.4.11 to a = t1
and b = t we can show that no vertex of Vt1 \Xt is adjacent in G to any vertex
of V (G) \ Vt1 . Since Vt2 \Xt ⊆ V (G) \ Vt1 , this implies that no vertex in Vt1 \Xt

is adjacent in G to any vertex of Vt2 \Xt.

Consider now an arbitrary partial k-coloring c = (X1, . . . , Xk) of G[Xt] (observe
that c is also a partial k-coloring of G[Xt1 ] and G[Xt2 ]). In this case, we have the
following recurrence relation:

P (t, c) = {q1 + q2 − (p1(X1), . . . , pk(Xk)) | q1 ∈ P (t1, c),q2 ∈ P (t2, c)} .

It is clear that for any partial k-coloring (X ′
1, . . . , X

′
k) of G[Vt] that agrees with c

on Xt, the k-tuples (X ′
1∩Vt1 , . . . , X ′

k∩Vt1) and (X ′
1∩Vt2 , . . . , X ′

k∩Vt2) are partial
k-colorings of G[Vt1 ] and G[Vt2 ] that agree with c on Xt1 and Xt2 , respectively.
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The fact that no vertex in Vt1 \Xt is adjacent in G to any vertex in Vt2 \Xt implies
that the other direction is also true: given partial k-colorings (X ′

1, . . . , X
′
k) and

(X ′′
1 , . . . , X

′′
k ) of G[Vt1 ] and G[Vt2 ] that agree with c on Xt1 and Xt2 , respectively,

we haveX ′
j∩Xt = X ′′

j ∩Xt = Xj for all j ∈ {1, . . . , k}, and thus (X ′
1∪X ′′

1 , . . . , X
′
k∪

X ′′
k ) is a partial k-coloring of G[Vt] that agrees with c on Xt. Furthermore, for

all j ∈ {1, . . . , k}, the fact that Vt1 ∩ Vt2 = Xt implies that X ′
j ∩X ′′

j = Xj, and
hence pj(X ′

j ∪X ′′
j ) = pj(X

′
j) + pj(X

′′
j )− pj(Xj). The claimed equality follows.

It remains to estimate the time complexity of the algorithm. We compute a nice
tree decomposition of G in time O(n3). Each of the O(n2) bags is a clique, so in total
we have O(nk) partial k-colorings per bag. Furthermore, note that for each partial
coloring (X1, . . . , Xk) of any induced subgraph of G and each j ∈ {1, . . . , k}, we have
pj(Xj) ∈ {0, 1, . . . , Q}. Thus, each set P (t, c) has at most (Q+1)k elements. For each
of the O(nk+2) pairs (t, c) where t is a node of T and c is a partial k-coloring of G[Xt],
we compute the set P (t, c) using the formula corresponding to the type of node t. The
time complexity of this step depends on the type of the node. Case 1 takes constant
time. In Case 2, we check in constant time whether v ∈ Xj for some j ∈ {1, . . . , k}
and then compute the set P (t, c) in time O((Q+ 1)k). In Case 3, we first compute in
(constant) time O(k) the set of indices j ∈ {1, . . . , k} such that Xj = ∅. Then, the
union given by the formula can be computed in time O((Q+ 1)k), simply by iterating
over all families in the union and keeping track of which of the O((Q + 1)k) profit
profiles appear in any of the families. Finally, Case 4 can be done in time O((Q+1)2k).
Altogether, this results in running time O((Q+1)2k) for each fixed t ∈ V (T ) and each
partial k-coloring c of Xt. Consequently, the total running time of the algorithm is
O(nk+2(Q+ 1)2k).

10.4.4 Graphs with bounded treewidth

Recall that the width of a tree decomposition (T, {Xt}t∈V (T )) of a graph G is defined as
maxt∈V (T ) |Xt|−1. The treewidth of a graph G is the minimum possible width of a tree
decomposition of G. A graph class G is said to be of bounded treewidth if there exists
a nonnegative integer ℓ such that each graph in G has treewidth at most ℓ. For each
fixed treewidth bound ℓ, given a graph G of treewidth at most ℓ, a tree decomposition
of G of width at most ℓ can be computed in linear time [31]. Such a decomposition
leads to linear-time algorithms for many problems that are generally NP-hard (see,
e.g., [11, 77]).

A similar approach as the one used in the proof of Theorem 10.4.12 for solving
the Fair k-Division Under Conflicts on chordal graphs can be used on graphs of
bounded treewidth.

Fix k, ℓ ≥ 1 and let (G, p1, . . . , pk) be the input to Fair k-Division Under Con-
flicts such that the treewidth of G is at most ℓ. In time ℓO(ℓ3)n we can compute a tree
decomposition of G a width at most ℓ using the algorithm of Bodlaender [31]. Clearly,
the obtained tree decomposition has at most ℓO(ℓ3)n bags. By Lemma 10.4.8 it follows
that we can compute in time O(ℓO(ℓ3)n3) a nice tree decomposition T = (T, {Xt}t∈V (T ))
of G of width at most ℓ, with O(n2) bags. Every bag has at most ℓ+ 1 vertices, so for
every bag we have at most a constant number, (ℓ+ 1)k+1, partial k-colorings, which
in total gives O(n2) pairs (t, c) of a node t ∈ V (T ) and a partial k-coloring c of t. For
each such pair (t, c), we again compute the family P (t, c) of all profit profiles of partial
k-colorings of G[Vt] that agree with c on Xt. Since T is a nice tree decomposition, every
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node is of one of the four possible types, and in Cases 1, 2, and 4 we have identical
equalities as in the corresponding cases in the proof of Theorem 10.4.12, while in Case 3
the union over all j such that Xj = ∅ of the sets P (t′, (X1, . . . , Xj−1, {v}, Xj+1 . . . , Xk))
is replaced by the union over all j such that Xj ∪{v} is an independent set in G of the
sets P (t′, (X1, . . . , Xj−1, Xj ∪ {v}, Xj+1 . . . , Xk)). Since we can compute the adjacency
matrix of G in time O(n2), we may assume that adjacency checks can be done in con-
stant time. Thus, the expressions in the formulas corresponding to each of the Cases 2
and 3 can be evaluated in time O((Q+ 1)k), while the corresponding time complexity
of Case 4 is O((Q+1)2k). Altogether, this gives us the claimed running time and yields
the following theorem (where the constant hidden in the O notation depends on k and
ℓ).

Theorem 10.4.13. For every k ≥ 1 and ℓ ≥ 1, Fair k-Division Under Conflicts
is solvable in time O(n2(n + (Q + 1)2k)) for a graph G of treewidth at most ℓ, where
Q = max1≤j≤k pj(V (G)).

It turns out that this result can be generalized by constructing the polynomial-time
algorithm for graphs of bounded clique-width.

10.4.5 Graphs of bounded clique-width

In this section we present a pseudo-polynomial time dynamic programming algorithm
for Fair k-Division Under Conflicts for conflict graphs of bounded clique-width.
This is an improvement over the result for graphs of bounded treewidth, which was so
far the only positive result for non-perfect graphs.

Clique-width, introduced in 1993 [79], is a parameter defined by a construction
process where only a limited number of vertex labels are available. Vertices with the
same label at some point must be treated uniformly in subsequent steps (see below).
The clique-width cw(G) of a graph G is the minimum number of labels that suffice
to construct G in this way. NP-completeness and inapproximability of the clique-
width of a graph were shown in [105]. For graphs of bounded clique-width many hard
optimization problems admit polynomial-time algorithms, see, e.g., [80, 99,124,210].

Relations between treewidth and clique-width were elaborated in [81]. In particular,
bounded treewidth tw(G) of a graph G implies bounded clique-width since cw(G) ≤
3 · 2tw(G) − 1 as shown by [74]. However, the opposite implication is not true as can
be seen from the family of complete graphs which have clique-width 2 but treewidth
|V | − 1.

Another parameter of a graphG related to treewidth is rank-width rw(G) introduced
in [191]. Rank-width is also derived from a hierarchical decomposition of the graph.
Informally speaking, treewidth measures the width of a separation into two sides,
whereas rank-width measures the rank of the adjacency matrix of the edges between
the two sides of the separation. Without going into more details, let us just mention
that it was shown in [191] that rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1. Therefore, bounded
clique-width is equivalent to bounded rank-width.

In the following we will describe the labelling process of the graph decomposition
associated to clique-width in more detail.

A labeled graph is a graph in which every vertex is assigned some label from N. If all
vertex labels belong to the set [k], then we say that the graph is k-labeled. The clique-
width of a graph G is defined as the smallest positive integer k such that a k-labeled
graph isomorphic to G can be constructed with the following operations:
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• i(v): creating a new one-vertex graph with vertex v labeled i,

• G⊕H: disjoint union of two already constructed labeled graphs G and H,

• ηi,j, for i ̸= j: adding to G all edges between vertices labeled i and vertices
labeled j,

• ρi→j, for i ̸= j: relabeling every vertex labeled i with label j.

A construction of a graph G with the above four operations can be represented by an
algebraic expression, which is called a k-expression if it uses at most k labels. Given a
k-expression σ, we denote by |σ| its encoding length. A graph class G is said to be of
bounded clique-width if there exists a nonnegative integer k such that each graph in G
has clique-width at most k.

Polynomial-time algorithms for graphs with bounded clique-width are typically de-
veloped using dynamic programming based on a k-expression building the input graph.
If a k-expression is not available, then one can use any of the available algorithms in
the literature for computing an expression with at most f(k) labels for some exponen-
tial function f (see [109,145,190,191]). The currently fastest such algorithm is due to
Fomin and Korhonen [109]; for an integer k and an n-vertex graph G, it runs in time
22

O(k)
n2 and either computes a (22k+1− 1)-expression of G or correctly determines that

the clique-width of G is more than k.
We can now proceed to prove the following theorem.

Theorem 10.4.14. For every two positive integers k and ℓ, Fair k-Division Under
Conflicts is solvable in time O

(
4kℓ|σ|(Q+ 1)2k

)
, if the conflict graph G has clique-

width at most ℓ and is given by an ℓ-expression σ, where Q = max1≤j≤k pj(V (G)).

Proof. We extend the standard dynamic programming algorithm for graphs of bounded
clique-width for the case k = 1, that is, the maximum weight independent set problem
(see, e.g., [131]). Given a partial k-coloring c = (X1, . . . , Xk) of an ℓ-labeled graph H,
the label profile of c (with respect to H) is the k-tuple (L1, . . . , Lk) where Lj is the set of
labels in [ℓ] appearing on some vertex of Xj, for all j ∈ [k]. For each labeled subgraph
H of G that appears in the process of constructing G using σ and each k label sets
L1, . . . , Lk ⊆ [ℓ], we compute the set P (H,L1, . . . , Lk) of all profit profiles (q1, . . . , qk)
of partial k-colorings c of H such that the label profile of c equals (L1, . . . , Lk). We
then have four cases depending on the type of H. In each case, we derive a formula
of how to compute the set P (H,L1, . . . , Lk) from the previously computed sets of this
type.

1. H is a one-vertex graph consisting of a vertex v labeled i.

There are only k + 1 partial k-colorings of H: the trivial partial k-coloring ∅k
consisting of k empty sets, and, for each j ∈ [k], the partial k-coloring cj =
(X1, . . . , Xk) where Xj = {v} and Xj′ = ∅ for all j′ ∈ [k] \ {j}. The label profile
of ∅k is ∅k. For each j ∈ [k], the label profile of cj is the k-tuple (L1, . . . , Lk)
where Lj = {i} and Lj′ = ∅ for all j′ ̸= j. Thus, denoting by ej(pj(v)) the
k-tuple in Zk

+ with j-th coordinate equal to pj(v) and all the other coordinates
equal to 0, we have the following formula:

P (H,L1, . . . , Lk) =


{ej(pj(v))}, if Lj = {i} and Lj′ = ∅ for all j′ ̸= j ,
{(0, . . . , 0)}, if Lj = ∅ for all j ∈ [k] ,
∅, otherwise.
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While in the remaining three cases, the assumptions on H are different, we always
describe how to compute the set P (H,L1, . . . , Lk) for an arbitrary but fixed
collection of k label sets L1, . . . , Lk ⊆ [ℓ].

2. H is the disjoint union of two labeled graphs H1 and H2.

Let c = (X1, . . . , Xk) be a partial k-coloring of H with label profile (L1, . . . , Lk).
Then for i ∈ {1, 2} we have that ci = (X1 ∩ V (Hi), . . . , Xk ∩ V (Hi)) is a par-
tial k-coloring of Hi. Let us denote by (L′

1, . . . , L
′
k) and (L′′

1, . . . , L
′′
k) the label

profiles of c1 and c2, respectively. Then Lj = L′
j ∪ L′′

j for all j ∈ [k]. Fur-
thermore, the converse direction holds as well: for any two partial k-colorings
c1 = (X ′

1, . . . , X
′
k) and c2 = (X ′′

1 , . . . , X
′′
k ) of H1 and H2, respectively, the k-

tuple c = (X ′
1 ∪X ′′

1 , . . . , X
′
k ∪X ′′

k ) is a partial k-coloring of H with label profile
(L′

1 ∪ L′′
1, . . . , L

′
k ∪ L′′

k), where (L′
1, . . . , L

′
k) and (L′′

1, . . . , L
′′
k) are the label pro-

files of c1 and c2, respectively. This bijective correspondence yields the following
formula:

P (H,L1, . . . , Lk) =
=
⋃
{q1 + q2 | q1 ∈ P (H1, L

′
1, . . . , L

′
k),q2 ∈ P (H2, L

′′
1, . . . , L

′′
k)} ,

where the union is taken over all collections (L′
1, . . . , L

′
k) and (L′′

1, . . . , L
′′
k) of label

sets such that L′
j ∪ L′′

j = Lj for all j ∈ [k].

3. H is obtained from a labeled graph H ′ by adding all edges between
vertices labeled i and vertices labeled j where i ̸= j.

Assume first that there exists some s ∈ [k] such that {i, j} ⊆ Ls and let c =
(X1, . . . , Xk) be a partial k-coloring of H with label profile (L1, . . . , Lk). Since
{i, j} ⊆ Ls, there are vertices v1 and v2 of H labeled i and j, respectively, such
that {v1, v2} ⊆ Xs. By the assumption on H all vertices labeled i are adjacent in
H to all vertices labeled j, so it is not possible that {v1, v2} ⊆ Xs, since Xs is an
independent set inH; a contradiction. It follows that there is no partial k-coloring
of H with label profile (L1, . . . , Lk), so in this case P (H,L1, . . . , Lk) = ∅.
Assume now that for every s ∈ [k] we have that |Ls ∩ {i, j}| ≤ 1. In this case,
every partial k-coloring of H with label profile (L1, . . . , Lk) is also a partial k-
coloring of H ′ with the same label profile (with respect to H ′), and vice versa. It
follows that P (H,L1, . . . , Lk) = P (H ′, L1, . . . , Lk).

Altogether, we have the following equality:

P (H,L1, . . . , Lk) =

{
P (H ′, L1, . . . , Lk), if |{i, j} ∩ Ls| ≤ 1 for all s ∈ [k],
∅, otherwise.

4. H is obtained from a labeled graph H ′ by relabeling all vertices labeled
i to vertices labeled j.

Let c = (X1, . . . , Xk) be a partial k-coloring of H with label profile (L1, . . . , Lk).
Observe that it follows from the assumption on H that no vertex in H has label
i.

If there exists some s ∈ [k] such that i ∈ Ls, then there is a vertex v ∈ Xs labeled
i; a contradiction. It follows that there is no partial k-coloring of H with label
profile (L1, . . . , Lk), and we have that P (H,L1, . . . , Lk) = ∅ in this case.



150 10.4. PSEUDO-POLYNOMIAL ALGORITHMS FOR SPECIAL GRAPH CLASSES

Assume now that for all s ∈ [k] we have that i /∈ Ls. Let I = {s ∈ [k] | j ∈ Ls}
and consider an arbitrary s ∈ I. The vertices in Xs form an independent set in
H and thus also in H ′. Since j ∈ I, the set Ls contains j and therefore there
exists a vertex v ∈ Xs such that the label of v in H is j. Thus, the set Xsj of all
vertices in Xs labeled j in H is nonempty. Furthermore, since the label in H ′ of
any vertex in Xsj is either i or j, the label set of Xs in H ′ depends on whether
there exists a vertex in Xsj labeled i in H ′ and whether there exists a vertex in
Xsj labeled j in H ′. More precisely, the dependency is as follows.

• If there exists a vertex in Xsj labeled i in H ′ as well as one labeled j in H ′,
then the label set of Xs in H ′ is Ls ∪ {i} (recall that j ∈ Ls).

• If all vertices in Xsj are labeled i in H ′, then the label set of Xs in H ′ is
(Ls \ {j}) ∪ {i}.

• If all vertices in Xsj are labeled j in H ′, then the label set of Xs in H ′ is Ls.

We conclude that the vertices of Xs form in H ′ an independent set with label set
being equal either to Ls, to (Ls\{j})∪{i}, or to Ls∪{i}. Therefore, c is a partial
coloring of H ′ with label profile (L′

1, . . . , L
′
k) such that for all s ∈ I we have L′

s ∈
{Ls, (Ls \{j})∪{i}, Ls∪{i}}, and for all s ∈ [k]\I we have L′

s = Ls. Conversely,
for any k label sets L′

1, . . . , L
′
k ⊆ [ℓ] such that L′

s ∈ {Ls, (Ls \{j})∪{i}, Ls∪{i}}
for all s ∈ I and L′

s = Ls for all s ∈ [k] \ I, any partial coloring of H ′ with label
profile (L′

1, . . . , L
′
k) is a partial coloring of H with label profile (L1, . . . , Lk).

Altogether, we thus obtain the following equality:

P (H,L1, . . . , Lk) =

{
∅, if i ∈ Ls for some s ∈ [k]⋃
P (H ′, L′

1, . . . , L
′
k), otherwise,

where the union in the second case is taken over all k-tuples of label sets
L′
1, . . . , L

′
k ⊆ [ℓ] such that for all s ∈ I we have L′

s ∈ {Ls, (Ls\{j})∪{i}, Ls∪{i}},
and for all s ∈ [k] \ I we have L′

s = Ls.

Time complexity analysis. From the ℓ-expression σ we compute in time |σ| a
rooted tree T describing the construction of G. Each node of T corresponds to a labeled
subgraph H of G. For each such subgraph H we consider all the 2ℓk different collections
of k label sets (L1, . . . , Lk), obtained by choosing a subset of [ℓ] for each coordinate.
We explain the time complexity separately for Case 2. For Case 2, we can initialize
all the sets P (H,L1, . . . , Lk) to be empty and iterate over all 4kℓ pairs of collections
(L′

1, . . . , L
′
k) and (L′′

1, . . . , L
′′
k) of label sets of H1 and H2. For each such iteration we add

to P (H,L1, . . . , Lk), where Lj = L′
j∪L′′

j for all j ∈ [k], the elements of the set {q1+q2 |
q1 ∈ P (H1, L

′
1, . . . , L

′
k),q2 ∈ P (H2, L

′′
1, . . . , L

′′
k)} in time (Q+ 1)2k. Hence, the overall

time complexity for a graph H in Case 2 is O(4kℓ(Q + 1)2k). For the remaining three
cases, we estimate the running time separately for each set P (H,L1, . . . , Lk). The
expressions in the formulas for computing P (H,L1, . . . , Lk) can be evaluated in time
O(kℓ) in Case 1, in time O(kℓ+ (Q+ 1)k) in Case 3, and in time O(kℓ · 3k · (Q+ 1)k)
in Case 4. Since Case 4 dominates the other two cases, the overall time complexity for
a graph H resulting from Cases 1, 3, and 4 is given by O(2kℓ · kℓ · 3k(Q + 1)k). Since
kℓ ≤ 2kℓ and 3k ≤ (Q+1)k for all Q ≥ 2, the overall time complexity of Cases 1, 3, and
4 is dominated by the effort for Case 2, which yields the claimed running time bound.
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(The special case Q = 1 would imply that for each agent, only one item has a non-zero
profit. This could be solved trivially in time O(k).)

We conclude this section with some remarks about another, more general solution
approach to Fair k-Division Under Conflicts for graphs of bounded clique-width.
The unweighted version of Fair k-Division Under Conflicts (in its decision ver-
sion) takes a graph G and an integer q as input and asks about the existence of a partial
k-coloring in G in which all the color classes have cardinality at least q. The existence
of a pseudo-polynomial-time algorithm for this problem on graphs with bounded clique-
width follows from a metatheorem of Courcelle and Durand [78, Theorem 27], and it is
plausible that with a suitable adaptation of their approach, a solution for the general
Fair k-Division Under Conflicts problem might also be developed. However, as
the algorithms constructed in [78] are very general, their running times are not specified
precisely. In contrast, our algorithm given in the proof of Theorem 10.4.14 is directly
tailored for Fair k-Division Under Conflicts and it is not difficult to analyze its
running time.

10.5 Approximation

All the pseudo-polynomial dynamic programming algorithms presented in this paper
share the following characteristics. Throughout the execution feasible states are com-
puted, where every state describes a profit allocation given by a feasible solution of Fair
k-Division Under Conflicts. Each such state is represented by a k-dimensional
vector (q1, . . . , qk) ∈ Zk

+, where every entry qj describes the profit pj(Xj) assigned
to agent j by a partial coloring (X1, . . . , Xk). While Pareto-dominated states can be
eliminated, the total number of states remains trivially bounded by (Q + 1)k, where
Q = max1≤j≤k pj(V (G)). The optimal solution with maximum satisfaction level can
be determined at the end of such an algorithm by simply going through all generated
states and inspecting their satisfaction levels.

In a canonical step of our algorithms a vertex v (resp. item) is feasibly assigned to
an agent j thereby generating a new state (q1, . . . , qj−1, qj + pj(v), qj+1, . . . , qk) from
a previous state (q1, . . . , qk). The decisions taken by the algorithms depend only on
the graph but not on the profit values of previously generated states. Every vertex is
assigned to each agent at most once.

Under these preconditions, we can derive a fully polynomial time approximation
scheme (FPTAS) for each such dynamic programming algorithm (considering k as a
constant). For an optimal satisfaction level z∗, an FPTAS computes for every given
ε > 0, an approximate solution with satisfaction level zA fulfilling zA ≥ z∗/(1+ε) with
running time polynomial in the size of the encoded input and in 1/ε.

The FPTAS is based on the observation that the k profit values of a solution can
also be seen as k objective function values in a multiobjective optimization problem.
Thus, the technique for deriving an FPTAS for the multiobjective knapsack problem
described in [98] can be applied as follows.

Denote the upper bound for the profit assigned to agent j by UBj = pj(V (G)) and
set uj = ⌈nlog1+ϵUBj⌉, where, as usual, n = |V (G)|. Partition the profit range for
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each agent j into uj intervals

[1, (1 + ε)1/n), [(1 + ε)1/n, (1 + ε)2/n), [(1 + ϵ)2/n, (1 + ε)3/n), . . .

[(1 + ε)(uj−1)/n, (1 + ε)uj/n] .

To obtain an FPTAS from the generic dynamic programming algorithm indicated above
we restrict the possible profit values qj allocated to agent j to the lower interval end-
points of these intervals. The FPTAS mimics exactly the operations of the exact dy-
namic program, but whenever a vertex v is assigned to j, the resulting profit qj +pj(v)
is rounded down to the nearest interval endpoint. Note that this does not change the
steps of the dynamic program since we assumed that its decisions do not depend on
the profit values of states.

The bound uj = ⌈n log1+ε UBj⌉ is in O(n/ε · log2(UBj)), which is polynomial in the
encoding length of the input, since

log1+ε UBj = (ln 2 log2 UBj)/ ln(1 + ε) ≤ (2 ln 2 log2 UBj)/ε ,

for all ε ∈ (0, 1). The above inequality follows from x ≤ 2 ln(1 + x), which can be
verified to hold for all x ∈ (0, 1) by standard calculus. Thus, the total number of states
in the modified algorithm is bounded by O((n/ε)k(log2Q)

k).
Concerning the loss of accuracy we can proceed similarly to [98] and compare an

arbitrary state (q1, q2, . . . , qk) of the exact dynamic program to some state of the FPTAS
consisting of lower interval endpoints (q̃1, q̃2, . . . , q̃k). For every state (q1, . . . , qj, . . . , qk)
generated by the exact algorithm after assigning i vertices to agent j, we claim that in
the FPTAS there exists a state (q̃1, q̃2, . . . , q̃k) of lower interval endpoints such that

qj ≤ (1 + ε)i/nq̃j . (10.5)

This claim can be shown by induction. For i = 1, there was one vertex v assigned to
agent j giving profit qj = pj(v). In the FPTAS, there will be a state where q̃j is the
largest lower interval endpoint not exceeding qj. By construction of the intervals, we
have (1 + ε)1/nq̃j ≥ qj.

Assuming the claim to be true for some i − 1, we consider the i-th assignment of
a vertex v to j. In the exact algorithm, pj(v) is added to some value qj for which
there exists a lower interval endpoint q̃j fulfilling qj ≤ (1 + ε)(i−1)/nq̃j. During the
FPTAS, pj(v) will also be added to q̃j and the result will be rounded down to a
lower interval endpoint q̃′ with (1 + ε)1/nq̃′ ≥ q̃j + pj(v) ≥ (1 + ε)−(i−1)/nqj + pj(v) ≥
(1 + ε)−(i−1)/n(qj + pj(v)). Moving terms around, this proves (10.5) for the new profit
qj + pj(v).

Since there can be at most n vertices assigned to any agent, (10.5) holds also for
the satisfaction level of the optimal solution.

Summarizing the above discussion and the proofs of Theorem 10.4.2, Corol-
lary 10.4.6, Theorem 10.4.12, and Theorem 10.4.13, we conclude:

Theorem 10.5.1. Fair k-Division Under Conflicts with constant k admits an
FPTAS if the conflict graph is a cocomparability graph, a biconvex bipartite graph, a
chordal graph, or a graph of bounded treewidth.

To put Theorem 10.5.1 in perspective, recall that by Theorem 10.2.4 no constant-
factor approximation for Fair k-Division Under Conflicts exists for general
graphs, unless P = NP.
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Final Remarsks to Part II

In this section we give some final thoughts and possible future research directions
related to Part II of this thesis.

11.1 Well-Covered Vector Spaces

In Sections 9.2 and 9.4 we developed two general reductions for the problem of com-
puting a well-covering system of a given graph, that is, a system of linear homogeneous
equations representing the well-covered vector space of the graph. Using these reduc-
tions, we showed that the problem can be solved in polynomial time in the class of
fork-free graphs. For the special case of cographs, a faster algorithm was developed.

As a promising avenue for future research, it would be interesting to study the prob-
lem in further generalizations of the class of cographs, for example, in the classes consid-
ered in [8, 9], including classes of bounded clique-width, in which the well-coveredness
property can be recognized in FPT time (with clique-width as the parameter, see [8]).
The complexity of computing the well-covered dimension of a graph, as well as the
special case of recognizing graphs with positive well-covered dimension also seem to be
questions worthy of further consideration.

11.2 Fair Allocation of Indivisible Items

In Chapter 10 we introduced the Fair k-Division Under Conflicts problem and
studied it from a computational complexity point of view, with respect to various
restrictions on the conflict graph. In particular, we could show that the problem is
strongly NP-hard on general bipartite conflict graphs, but can be solved in pseudo-
polynomial time on biconvex bipartite graphs, on chordal graphs, on cocomparability
graphs, on graphs of bounded treewidth and, more generally, on graphs of bounded
clique-width. There are other graph classes sandwiched between the two classes of our
results, for which the complexity of Fair k-Division Under Conflicts remains
open.

Of particular interest is the following sequence of inclusions: biconvex bipartite ⊆
convex bipartite ⊆ interval bigraph ⊆ chordal bipartite ⊆ bipartite. Outside this chain
of inclusions, we pose the complexity of the problem for planar bipartite conflict graphs
as another interesting open question.

153
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Recently, Chiarelli et al. [61] developed dynamic programming pseudo-polynomial
time algorithms for the classes of convex bipartite graphs and graphs of bounded
tree-independence number. The result for the classes of graphs of bounded tree-
independence number extends the result presented in this thesis for the classes of
graphs of bounded treewidth. Furthermore, the result for the class of convex bipartite
graphs extends the result presented in this thesis for convex bipartite conflict graphs,
although the algorithm given by Chiarelli et al. [61] relies on a totally different strategy.
As mentioned in [61], a natural question that arises in the study of Fair k-Division
Under Conflicts is the identification of further graph width parameters leading to
pseudo-polynomial algorithms. One such parameter is thinness (see [175]) for which
the framework of Bonomo and de Estrada [38] can be adapted to Fair k-Division
Under Conflicts. In particular, this leads to an alternative pseudo-polynomial-time
algorithm for the class of convex bipartite graphs, and even for the more general class
of interval bigraphs [207]. This provides a response to a question stated in the above
sequence of inclusions, and leaves the class of chordal bipartite graphs as the remaining
open case.

Question 11.2.1. What is the complexity of Fair k-Division Under Conflicts for
planar bipartite conflict graphs, and for chordal bipartite conflict graphs?

Finally, observe that the Independent Set problem in a sense connects Fair
k-Division Under Conflicts and tame graph classes, studied in Chapter 4, since
Independent Set can be solved in polynomial time in tame graphs classes and its
weighted version corresponds to Fair 1-Division Under Conflicts. An interesting
question that arises here is the following.

Question 11.2.2. What is the complexity of Fair k-Division Under Conflicts
when the conflict graph belongs to some fixed tame graph class?

We conclude this chapter with a remark about the k-Coloring problem. As
observed by Pilipczuk and Rzążewski [200], there exist tame graph classes for which
k-Coloring is NP-complete for some fixed k. Indeed, the main result of [200] implies
that the class of P6-free graphs with clique number at most 5 is tame. On the other
hand, Huang [143] showed that 5-Coloring is NP-complete for P6-free graphs, hence,
the problem remains NP-complete for P6-free graphs with clique number at most 5.
Although any 5-coloring of a graph represents a solution to Fair 5-Division Under
Conflicts, in Fair k-Division Under Conflicts we allow a partial coloring of a
graph, so the result by Pilipczuk and Rzążewski cannot be easily adapted to show that
for some k Fair k-Division Under Conflicts is strongly NP-hard in some tame
graph class.
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Povzetek v slovenskem jeziku

Osrednja tema doktorske disertacije sodi na področje diskretne matematike, oz.
natančneje, na področje teorije grafov. Graf G je matematična struktura, ki se
uporablja za modeliranje binarnih relacij med objekti in sestoji iz množice točk
V = V (G) in množice povezav E = E(G), pri čemer so povezave neurejeni pari točk.
Veliko praktičnih problemov lahko predstavimo z grafi. Tako grafe lahko uporabimo za
modeliranje različnih odnosov in procesov v fizikalnih, bioloških, družbenih in informa-
cijskih sistemih. Prvi članek v zgodovini teorije grafov je leta 1736 objavil Leonhard
Euler [100], medtem ko je izraz “graf” uvedel Sylvester v članku, objavljenem leta
1878 [222].

Dve točki a in b v grafu G sta sosednji v G, če obstaja povezava ab ∈ E(G), ki ju
povezuje; v tem primeru rečemo, da sta a in b soseda v G. Množici vseh sosedov točke v
v grafu G rečemo soseščina točke v v G. Z leti so bili predstavljeni in študirani različni
koncepti v grafih. Za disertacijo sta še zlasti pomembna koncepta minimalnega separa-
torja in neodvisne množice. Minimalen separator v grafu G je taka minimalna množica
točk grafa, katere odstranitev povzroči, da dve fiksni točki grafa postaneta nepovezani.
Neodvisna množica v grafu G je množica paroma nesosednjih točk. Problem iskanja
največje take množice v grafu je znan NP-težek problem [146].

V doktorski disertaciji študiramo minimalne separatorje in neodvisne množice v
grafih. S tem namenom je disertacija razdeljena na dva dela. Prvi del je namenjen
študiju minimalnih separatorjev, drugi pa obravnava nekatere stare in nove algorit-
mične probleme, povezane s problemom neodvisnih množic. Osrednja skupna tema
obeh delov je študija razredov grafov, tj. množic grafov, zaprtih za izomorfizem.

Prvi del

V prvem delu doktorske disertacije se osredotočimo na študij minimalnih separatorjev
v grafih. Za graf G in dve nesosednji točki a in b v G rečemo, da je množica S ⊆ V (G)\
{a, b} (a, b)-separator, če sta točki a and b vsebovani v različnih povezanih komponentah
grafa G − S. Če množica S ne vsebuje nobenega drugega (a, b)-separatorja kot pravo
podmnožico, potem je S minimalen (a, b)-separator. Minimalen separator v grafu G je
vsaka množica S ⊆ V (G), ki je minimalen (a, b)-separator za nek par nesosednjih točk
a in b. Pri tem je možno, da je S minimalen separator grafa G, čeprav je neka množica
S ′ ⫋ S tudi separator grafa G. Dejansko lahko obstaja tak par a, b nesosednjih točk,
da je S minimalen (a, b)-separator v G, pa tudi kakšen tak drug par a′, b′ nesosednjih
točk, da je nek S ′ ⫋ S (a′, b′)-separator v G.

Graf je tetiven, če ne vsebuje induciranih ciklov dolžine vsaj štiri. Študije mini-
malnih separatorjev v grafih so se začele vsaj v šestdesetih let 20. stoletja, ko so bili
tetivni grafi karakterizirani kot natanko tisti grafi, v katerih so vsi minimalni sepa-
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ratorji klike [95]. Minimalni separatorji so bili kasneje študirani v [24] v kontekstu
mopleksov, igrali so pomembno vlogo pri računanju z redkimi matrikami z uporabo
minimalnih triangulacij (glej npr. pregledni članek [139]) in imeli so tudi številne
uporabe pri razvoju algoritmov (glej npr. [12,33,41,226]). Posledično danes obstajajo
številni algoritmi in karakterizacije grafov, ki temeljijo na minimalnih separatorjih (glej
npr. [12, 24, 33, 34, 35, 41, 62, 76, 95, 153, 193]). V doktorski disertaciji obravnavamo tri
medsebojno povezane probleme o minimalnih separatorjih. Preden jih predstavimo,
potrebujemo nekaj definicij.

Graf F je induciran podgraf grafa G, če velja V (F ) ⊆ V (G) in E(F ) = {uv ∈
E(G) | {u, v} ⊆ V (F )}. V tem primeru rečemo, da je F podgraf grafa G, induciran z
V (F ). Za množico S ⊆ V (G) označimo z G[S] podgraf grafa G, induciran z množico S.
Če sta F in G grafa, za katera velja, da noben induciran podgraf grafa G ni izomorfen
F , potem za graf G pravimo, da je F -prost. Če je F družina grafov, rečemo, da je
graf G F-prost, če noben induciran podgraf grafa G ni izomorfen nobenemu grafu iz
družine F . Krčenje povezave e = uv v grafu G je operacija zamenjave točk u in v v G z
novo točko w, ki je sosednja natanko vsem točkam v (NG(u)∪NG(v))\{u, v}; dobljeni
graf je označen z G/e. Minor grafa G je graf, dobljen iz G z zaporedjem brisanja
točk, brisanja povezav in krčenja povezav. Induciran minor grafa G je poljuben graf,
dobljen iz G z operacijama brisanja točk in krčenja povezav. Subdivizija grafa G je vsak
graf, dobljen z zaporednim ponavljanjem operacije ‘vstavi točko v povezavo’: zamenjaj
povezavo uv s povezavami uw in wv, kjer je w nova točka. Induciran topološki minor
grafa G je poljuben graf H, za katerega velja, da je neka subdivizija grafa H induciran
podgraf grafa G. Če graf H ni izomorfen nobenemu induciranemu minorju (ali in-
duciranemu topološkemu minorju) grafa G, potem rečemo, da graf G ne vsebuje grafa
H kot induciran minor (oziroma kot induciran topološki minor). Za več informacij o
osnovnih konceptih v grafih bralca napotujemo na [93].

Številni algoritmi na grafih (glej, npr., [42, 112, 185]) v nekem koraku svojega
izvajanja enumerirajo vse minimalne separatorje vhodnega grafa. Število minimal-
nih separatorjev grafa torej neposredno vpliva na čas izvajanja takih algoritmov.
Fomin idr. so pokazali v [110], da je največje število minimalnih separatorjev v poljub-
nem n-točkovnem grafu navzdol omejeno z Ω(3n/3) in navzgor omejeno z O(1,708n).
Kasneje so to mejo neodvisno izboljšali Fomin in Villanger [113] ter Gaspers in Mack-
enezie [123]. Pokazali so, da je največje število minimalnih separatorjev v grafu navzgor
omejeno z O(ρnn), kjer je ρ = (1+

√
5)/2. Izkaže se, da za razrede grafov, v katerih je

število minimalnih separatorjev omejeno z nekim polinomom, algoritmi iz [42,112,185]
delujejo v polinomskem času. Veliko problemov, ki so NP-težki za splošne grafe tako
postane rešljivih v polinomskem času za razrede grafov s polinomsko omejenim številom
minimalnih separatorjev. To velja za Drevesno širino in Minimalno dopol-
nitev [42], za Največjo neodvisno množico, Povratno množico točk in,
splošneje, za problem iskanja največjega induciranega podgrafa, katerega drevesna ši-
rina je največ neka konstanta t [112], ter za d-Razdaljno neodvisno množico, za
sodo število d [185].

Rezultat Fomina in Villangerja iz [112] so leta 2015 posplošili Fomin, Todinca in
Villanger [111], tako da so razvili algoritmičen metaizrek o induciranih podgrafih z last-
nostmi, ki jih je mogoče izraziti v določenem logičnem sistemu. Njihov pristop zajema
številne probleme, vključno z Največjim induciranim prirejanjem, Najdaljšo
inducirano potjo, Največjim induciranim podgrafom brez ciklov dolžine
0 po modulu m, kjer je m poljubno fiksno pozitivno celo število, in Največjim in-
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duciranim podgrafom brez minorja iz F , kjer je F katerakoli množica grafov,
ki vsebuje nek ravninski graf.

Zaradi vseh teh rezultatov je pomembno identificirati razrede grafov s polinomsko
omejenim številom minimalnih separatorjev. Znani razredi s to lastnostjo vključu-
jejo tetivne grafe [212] in njihove posplošitve, šibko tetivne grafe [41], permutacijske
grafe [32,148] in bolj splošno neprimerljivostne grafe omejene intervalne dimenzije [92],
grafe krožnih lokov [154], krožne grafe [149], poligonske krožne grafe [221], razdaljno-
hereditarne grafe [55, 150], grafe, za katere niti graf, niti njegov komplement ne vse-
bujeta asteroidalne trojice [155], P4-redke grafe [187, 196] in grafe z minimalnimi sep-
aratorji omejene velikosti [218]. Poleg tega je znano, da ima poljuben razred grafov
polinomsko omejeno število minimalnih separatorjev natanko takrat, ko ima polinom-
sko omejeno število potencialnih maksimalnih klik [42].

Krotki razredi grafov. Zgoraj našteti rezultati nas pripeljejo do prvega ključnega
vidika razredov grafov, študiranega v tej doktorski disertaciji. Razredu grafov pravimo,
da je krotek, če imajo grafi v razredu polinomsko omejeno število minimalnih separa-
torjev. Natančneje, razred grafov G je krotek, če obstaja tak polinom p : R → R, da
za vsak graf G ∈ G velja s(G) ≤ p(|V (G)|), kjer je s(G) število minimalnih separator-
jev v G. Razredu grafov G pravimo, da je divji, če obstaja tako število c > 1, da za
vsako poljubno veliko število n obstaja n-točkoven graf v razredu, ki ima cn minimalnih
separatorjev.

K znanju o krotkih razredih grafov smo prispevali iz nekaj medsebojno povezanih
zornih kotov. Najprej smo analizirali operacije na grafih, ki ohranjajo krotke razrede
grafov. Pokazali smo, da je hereditaren razred grafov G krotek natanko takrat, ko je
podrazred, sestavljen iz grafov v G brez prereznih klik, krotek (izrek 4.2.3). Podali smo
primere grafov z eksponentno mnogo minimalnimi separatorji in pregledali literaturo
ter povzeli znane družine grafov, ki niso krotki. S tem smo identificirali potrebne
pogoje, ki naj bi jih izpolnjeval vsak krotek razred grafov. Vsak tak pogoj nam da neko
neskončno družino krotkih razredov grafov. Ta rezultat in Ramseyjev izrek vodita do
več vrst zadostnih pogojev za to, da je razred grafov krotek. Omenjeni rezultati vodijo
do dihotomij, ki loči krotke razrede grafov od nekrotkih znotraj družin razredov grafov,
definiranih s seznamom prepovedanih grafov glede na določeno relacijo vsebovanosti.
V razdelku 4.4 smo karakterizirali krotke razrede grafov v družini razredov grafov,
definirane s prepovedanimi induciranimi podgrafi na največ štirih točkah (izrek 4.4.21).
V razdelku 4.5 smo karakterizirali krotke razrede grafov v družini razredov grafov,
definiranih s posameznim prepovedanim induciranim minorjem, oziroma induciranim
topološkim minorjem (izreka 4.5.6 in 4.5.7). Študirali smo prepoznavanje določenih
razredov grafov dobljenih v teh raziskavah, in pokazali, da obstajajo algoritmi, ki v
polinomskem času prepoznajo grafe, ki ne vsebuje hiše kot induciran topološki minor
ali metulja kot induciran minor (glej spodnjo sliko).

metulj hiša

Rezultati predstavljeni v izrekih 4.4.21, 4.5.6 in 4.5.7 so na ta način prispevali k
seznamu dihotomij v teoriji grafov. V literaturi obstajajo podobni rezultati za številne
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probleme z različnih področjih matematike, vključno s teorijo grafov. To vključuje di-
hotomije, povezane z omejeno klično širino [84], omejenim kromatičnim številom usmer-
jenih grafov [23], ceno povezanosti in neodvisnosti [83, 135] ter računsko zahtevnostjo
številnih algoritmčnih problemov, kot so Homomorfizem grafa [140], Izomorfizem
grafa [217], Dominantna množica [174] in različni problemi barvanja grafov [125]
ter problemi pakiranja [48,166].

Kot odprta vprašanja smo postavili karakterizacijo krotkih grafov z enim samim
prepovedanim minorjem. Drugo odprto vprašanje pa predstavlja posplošitev naših
rezultatov, v smislu karakterizacije krotkih grafov s poljubno družino prepovedanih
induciranih minorjev ali induciranih topoloških minorjev.

Ekstremalno število minimalnih separatorjev. Med grafi, ki imajo polinomsko
omejeno število minimalnih separatorjev, so posebej zanimivi grafi, v katerih je to
število linearno in so posledično omenjeni algoritmi na teh grafih posebej učinkoviti.
Na primer, n-točkovni razcepljeni grafi nimajo več kot n minimalnih separatorjev [196]
in, splošneje, enako velja tudi za tetivne grafe [212] in 2P2-proste grafe. Nikolopoulos
in Palios sta za n-točkovne kografe in, bolj splošno, n-točkovne P4-redke grafe določila
zgornjo mejo števila minimalnih separatorjev, ki znaša 2n/3 [187] .

V doktorski disertaciji smo obravnavali ekstremalno vprašanje izračuna največjega
števila minimalnih separatorjev v n-točkovnem grafu iz danega razreda, za več med-
seboj povezanih razredov grafov z največ linearnim številom minimalnih separatorjev:
pragovni grafi, razcepljeni grafi, kografi, trivialno popolni grafi in njihovi komplementi,
psevdo-razcepljeni grafi in 2P2-prosti grafi. Omenjeni razredi grafov so bili študirani
iz različnih zornih kotov (glej [46]) in dopuščajo različne karakterizacije; zlasti jih je
mogoče vse definirati z majhno množico prepovedanih induciranih podgrafov, ki je
podmnožica množice {2P2, P4, C4, C5}, pri čemer je Pn pot na n točkah, in Cn cikel na
n točkah.

Če imamo podan razred grafov G in pozitivno celo število n, označimo z fG(n)
največje število minimalnih separatorjev po vseh n-točkovnih grafih G ∈ G (pri čemer
fG(n) = 0, če G ne vsebuje n-točkovnega grafa). Če je G razred vseh grafov, potem je
fG(n) enako O

(
((1 +

√
5)/2)n · n

)
[113, 123]. V disertaciji zračunamo točno vrednost

fG(n) za vseh sedem zgoraj naštetih razredov grafov in za vse vrednosti števila n.
Dobljeni rezultati so predstavljeni v tabeli spodaj in podrobno v razdelku 5. Funkciji
a in b v desnem stolpcu tabele zadoščata naslednjim pogojem: a : N → {0, 1} in
b : N → {−1, 0, 1, 2}. Označimo log n = log2 n.

Dobljeni rezultati so predstavljeni v naslednji tabeli.

Razredi grafov G Prepovedani ind. podgrafi fG(n)

pragovni grafi [67] {2P2, P4, C4} ⌈(n− 1)/2⌉
trivialno popolni grafi [126] {P4, C4} ⌈(n− 1)/2⌉
ko-trivialno popolni grafi {2P2, P4} ⌈2n/3⌉ − 1

kografi [73] {P4} ⌈2n/3⌉ − 1

razcepljeni grafi [108] {2P2, C4, C5} n− ⌊log n⌋ − a(n)

psevdo-razcepljeni grafi [169] {2P2, C4} n− ⌊log n⌋+ b(n)

2P2-prosti grafi {2P2} n

Študijo predstavljeno v 5. poglavju lahko nadaljujemo tako, da določimo fG(n) za
določeno izbiro razreda G. Ta koncept pa lahko tudi posplošimo, z uvedbo razreda
grafov, v katerem je število minimalnih separatorjev vsakega grafa iz razreda omejeno



Povzetek v slovenskem jeziku 175

navzgor s številom točk grafa. Znotraj tega razreda so posebej zanimivi grafi, v katerih
obstaja točka, ki jo lahko zbrišemo, pri čemer se število minimalnih separatorjev v
grafu zmanjša največ za ena. Posledično lahko definiramo tako eliminacijsko shemo
točk, da se število minimalnih separatorjev na vsakem koraku brisanja točk zmanjša
za največ ena. Pokažemo lahko da npr. univerzalne, izolirane in simplicialne točke
zadoščajo tej lastnosti (glej poglavje 7). Želeli bi pa karakterizirati vse take točke, ali
študirati minimalne primere grafov, v katerih take točke ne obstajajo.

Bisimplicialni separatorji. Spomnimo, da so tetivni grafi karakterizirani kot
natanko tisti grafi, v katerih so vsi minimalni separatorji klike [95]. V poglavju 6
smo posplošili ta koncept tako, da smo študirali grafe, v katerih lahko vsak minimalen
separator izrazimo kot unijo največ k klik, za neko nenegativno celo število k. V
splošnem, za dan razred grafov C, označimo z GC razred vseh grafov G, za katere velja,
da vsak minimalen separator v G inducira graf iz C. Polni grafi nimajo separatorjev,
ter za vsako izbiro razreda C, velja, da razred GC vsebuje vse polne grafe. Za nenega-
tivno celo število k označimo z Gk razred vseh grafov G, ki imajo lastnost, da je vsak
minimalen separator v G k-simplicialen, tj. unija k (lahko praznih) klik. Če je k = 1
(ali k = 2), terminologijo poenostavimo, in termin k-simplicialen nadomestimo s sim-
plicialen (oziroma bisimplicialen). Očitno je G0 ⊆ G1 ⊆ G2 ⊆ . . . . Opazimo, da je G0

razred vseh disjunktnih unij polnih grafov in (kot sledi iz [95]) G1 razred vseh tetivnih
grafov.

V disertaciji smo študirali grafovske razrede oblike GC, kjer je C hereditaren razred
grafov, tj. razred grafov, zaprt za operacijo brisanja točk. Poseben poudarek smo dali
razredom Gk, še posebej razredu G2. Kot omenjeno, je razred G2 razred vseh grafov, ki
imajo bisimplicialne separatorje, in vsebuje vse tetivne grafe. Poleg tega je enostavno
videti, da je razred vseh grafov krožnih lokov (to so presečni grafi lokov na krogu)
vsebovan v razredu G2. To motivira tako študijo zahtevnosti posameznih algoritmičnih
problemov na grafih v razredu Gk, za k ≥ 2, kot tudi študijo strukture grafov, ki
pripadajo Gk, s posebnim poudarkom na primeru k = 2.

Študirali smo vpliv različnih operacij grafov na strukturo grafov v razredu Gk, za
poljubno nenegativno celo število k. Posebej zanimiva je operacija krčenja povezav, ki
v kombinaciji z brisanjem točk vodi do relacije vsebovanosti induciranega minorja.
Za vsak k ≥ 0 smo karakterizirali družino F , za katero velja, da je vsak graf iz
F prepovedan za Gk kot induciran minor (izrek 6.2.1). Kot posledico smo opisali
seznam grafov, ki so minimalni prepovedani inducirani minorji za razred G2 (posled-
ica 6.2.8). Zatem smo pokazali, da je vsaka LexBFS razvrstitev točk grafa v Gk v
bistvu k-simplicialna razvrstitev točk istega grafa (izrek 6.3.2). Ta rezultat predstavlja
posplošitev rezultata za tetivne grafe od Rosa, Tarjana, in Luekerja [212], kar ustreza
primeru k = 1 našega rezultata. Posledično, pokazali smo, da za vsako pozitivno celo
število k vsak neničeln graf v Gk vsebuje k-simplicialno točko (to je, točko v G, katere
soseščina v grafu G je unija k klik), glej Posledico 6.3.4.

V razdelku 6.4 smo pokazali, da je prepoznavanje grafov v Gk za k ≥ 3 NP-težko.
Prepoznavanje grafov v G2 je odprt problem. Posledično smo študirali podrazrede
razreda G2, in sicer: preseke razreda G2 z grafi omejenega kličnega števila, popolnimi
grafi in grafi brez diamantov (glej poglavje 6.5). Za le-te smo dobili strukturne karak-
terizacije in posledično polinomske algoritme za prepoznavanje. Kot posledico zgornjih
strukturnih rezultatov smo dobili polinomske algoritme, ki rešijo določene grafovske
probleme v omenjenih razredih grafov. Računske zahtevnosti določenih problemov so
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povzete v tabeli spodaj (število točk in povezav vhodnega grafa sta označena z n in
m, z ω < 2.3728596 pa označimo eksponent množenja matrik (glej [7]).

grafi brez diamantov
grafi v G2 G2 Gk (k ≥ 3)

prepoznavanje O(nω log n) ? NP-težko
Najtežja klika O(nω log n) O(n3+o(1)) NP-težko
Najtežja neodvisna
množica O(n2(n+m)) O(n5) O(n2k+2)
Točkovno barvanje O(nω log n) NP-težko NP-težko

Drugi del

Ko imamo podan graf G in celo število k, lahko definiramo problem Neodvisne
Množice kot odločitven problem, ali v grafu G obstaja neodvisna množica moči k.
Neodvisna množica je znan NP-poln problem [146]. Neodvisna množica v grafu G je
maksimalna, če ji ne moremo dodati nobene točke, ne da bi s tem izgubili pogoj neod-
visnosti, in največja, če v grafu G ni neodvisne množice, ki ima večjo moč. V tem delu
doktorske disertacije smo obravnavali dva različna problema, povezana s problemom
neodvisne množice. Prvič, študirali smo problem izračuna vektorskega prostora, ki
sestoji iz vseh utežnih funkcij na točkah grafa, glede na katere imajo vse maksimalne
neodvisne množice grafa enako težo. Drugi problem je problem poštene razdelitve:
problem izračuna optimalne razdelitve nedeljivih predmetov agentom, pri čemer up-
oštevamo konflikten graf in določene kriterije poštene razdelitve. S konfliktnim grafom
lahko prepovemo hkratno uporabo določenih predmetov, tako da vsaka množica pred-
metov, ki je dodeljena določenemu agentu, predstavlja neodvisno množico konfliktnega
grafa.

Vektorski prostori dobrega pokritja. Graf je dobro pokrit, če imajo vse njegove
maksimalne neodvisne množice isto moč. Dobro pokrite grafe je uvedel Plummer leta
1970 [201] in v literaturi so bili obsežno študirani (glej [137] za uvod in [202] za pregled
področja). Če vsaki točki grafa G pripišemo realno število, to je utež točke, govorimo
o uteženem grafu. Teža množice S ⊆ V (G) v uteženem grafu G, z utežno funkcijo
w : V (G) → R, je definirana kot w(S) =

∑
v∈S w(v). Utežen graf G z utežno funkcijo

w : V (G) → R je w-dobro-pokrit, če so vse maksimalne neodvisne množice v grafu G
enake teže glede na utežno funkcijo w. Koncept w-dobro-pokritih grafov so predstavili
Caro, Ellingham in Ramey leta 1998 [52] v bolj splošnem kontekstu utežnih funkcij, ki
preslikajo točke grafa v elemente abelske grupe (glej tudi [50]).

Dobro pokritje grafa G je poljubna taka realna utežna funkcija w na V (G), za katero
velja, da je G w-dobro-pokrit. Znano je, da množica vseh dobrih pokritij grafa G, ki
jo označimo z WCW(G), tvori vektorski prostor nad poljem realnih števil (glej [50,
54]). Imenujemo ga dobro pokrit prostor grafa G. Vsak sistem linearnih enačb, ki
opiše vektorski prostor WCW(G), bo poimenovan sistem dobrega pokritja grafa G. V
doktorski disertaciji smo študirali naslednji problem.
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Sistem Dobrega Pokritja
Input: Graf G = (V,E).
Task: Izračunaj sistem dobrega pokritja grafa G.

Graf G je dobro pokrit natanko takrat, ko utežna funkcija, ki je konstantno enaka 1,
pripada dobro pokritemu prostoru grafa G. Problem prepoznavanja dobro pokritih
grafov je co-NP-poln problem (glej [68, 214]) in posledično je tudi bolj splošen prob-
lem Sistem dobrega pokritja co-NP-težek. Dobro pokrite prostore grafov, ki ne
vsebujejo ciklov dolžine 4, so študirali Brown, Nowakowski in Zverovich [51]. Sis-
tem dobrega pokritja je mogoče rešiti v polinomskem času v razredih grafov z
omejeno maksimalno stopnjo točke, kot so pokazali Caro, Ellingham in Ramey [52], v
razredu grafov s premerom najmanj 7, kot sta pokazala Caro in Yuster [54], v razredu
grafov brez krempljev, kot sta pokazala Levit in Tankus [164] (kjer je krempelj graf na
štirih točkah, pri čemer ima ena točka stopnjo 3, tri točke pa stopnjo 1) ter v razredu
grafov brez ciklov dolžin 4, 5 in 6 [165]. V disertaciji smo posplošili rezultat dobljen
v [164] tako, da smo pokazali, da omenjeni problem lahko rešimo v polinomskem času
v razredu grafov brez vilic (pri čemer je vilica graf z množico točk {v1, v2, v3, v3, v5}
in množico povezav {v1v2, v2v3, v3v4, v3v5}). Bolj podrobno, rezultate iz tega poglavlja
lahko povzamemo, kot sledi. Podali smo dve prevedbi problema: eno, ki temelji na
nesoseščinah (izrek 9.4.3) in drugo, ki temelji na modularni dekompoziciji, v kombi-
naciji z Gausovo eliminacijo (izrek 9.2.7). Razvili smo polinomski algoritem za izračun
sistema dobrega pokritja grafa brez vilic (izrek 9.5.5), kar posploši rezultat od Levita in
Tankusa, kjer je problem rešen za grafe brez krempljev. Naš pristop implicira polinom-
sko prepoznavanje dobro-pokritih grafov brez vilic in posploši določene znane rezultate
na kografih (izrek 9.3.1).

Poštena razdelitev s konfliktnim grafom. Razdelitev dobrin več agentom na
zadovoljiv način je klasičen problem na področju kombinatorične optimizacije, kjer
ima vsak agent svojo lastno aditivno funkcijo nad množico predmetov, cilj pa je do-
deliti vsak predmet točno enemu od agentov, tako da je najmanj zadovoljen agent čim
bolj zadovoljen (glej npr. [44,227]). Po navadi so problemi razdelitve opremljeni z neka-
terimi dodatnimi omejitvami za dopustno razdelitev, obstajajo pa tudi različni modeli
preferenc, ki jih lahko imajo agenti, in različne kriterijske funkcije, ki izhajajo iz teh.
Klasični problem Poštena k-Razdelitev Nedeljivih Predmetov kot vhod pre-
jme množico V sestavljeno iz n elementov, in k profitnih funkcij p1, . . . , pk : V → Z in
izračuna tako k-particijo točk V , ki maksimizira minimalno zadovoljstvo vseh agentov.

V doktorski disertaciji smo študirali pošteno razdelitev n nedeljivih dobrin ali pred-
metov na množico k agentov s stališča teorije grafov in smo ji dodali nov vidik, tako
da med pari predmetov dopuščamo nekompatibilnosti, ki so opisane s pomočjo kon-
fliktnega grafa. To lahko odraža dejstvo, da predmeti izključujejo njihovo skupno
uporabo, ali preprosto dejstvo, da so nekateri predmeti enake (ali podobne) vrste in ni
smiselno, da en agent prejme več kot enega izmed teh predmetov. Takšna relacija je
predstavljena s konfliktnim grafom G = (V,E), kjer je V množica predmetov, povezave
pa predstavljajo nekompatibilnosti med pari predmetov. Če sta dva elementa i in j
povezana s povezavo ij ∈ E, potem i in j ne smeta biti vključena v isto podmnožico
particije. Jasno je, da vsaka podmnožica elementov, dodeljenih enemu agentu, tvori
neodvisno množico v tem grafu, v splošnem pa dovolimo delno razdelitev elementov,
kar pomeni, da se lahko zgodi, da določeni elementi ostanejo nerazdeljeni. Takšna do-
delitev predmetov agentom ustreza delnemu barvanju konfliktnega grafa, kjer je delno
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k-barvanje grafa G zaporedje (X1, . . . , Xk) k paroma disjunktnih neodvisnih množic
grafa G, glej [22, 90]. Nekaj svežih rezultatov s tega področja, ki vsebujejo številne
napotke na literaturo in preučujejo vprašanja poštene razdelitve, tudi v povezavi s
strukturo grafov v ozadju problema, je dostopnih v [16,43]. Raven zadovoljstva delnega
k-barvanja (X1, . . . , Xk) grafa G (glede na profitne funkcije p1, . . . , pk) je definirana kot
minimum vseh rezultirajočih profitov pj(Xj) :=

∑
v∈Xj

pj(v), kjer j ∈ {1, . . . , k}. Vse
to nas pripelje do študije naslednjega problema.

Poštena k-razdelitev s konflikti
Input:Graf G = (V,E), k profitnih funkcij p1, . . . , pk : V → Z+.
Task:Poišči delno k-barvanje grafa G z maksimalno ravnijo zadovoljstva.

Z nekaj truda lahko vidimo, da je, tudi brez upoštevanja konfliktov, problem
Poštene k-razdelitve nedeljivih predmetov šibko NP-težek za vsako konstanto
k ≥ 2 in krepko NP-težek, če je k del vhodnih podatkov. To velja tudi za k iden-
tičnih profitnih funkcij. Tako je obstoj psevdopolinomskih algoritmov za Pošteno
k-razdelitev s konflikti možen le za konstanten k (razen če velja P=NP).

Opazimo, da v primeru, ko je k = 1, problem sovpada s problemom Najtežje
neodvisne množice: v podanem grafu G = (V,E) z utežno funkcijo na točkah grafa
G poišči najtežjo neodvisno množico. V primeru, ko imamo enotne uteži in je k = 1,
dobimo posplošitev problema Neodvisne množice, in zato sklepamo, da je Poštena
1-razdelitev s konflikti krepko NP-težek problem.

V doktorski disertaciji smo obravnavali zahtevnost problema Poštene k-
razdelitve s konflikti za različne razrede konfliktnih grafov. Študirali smo mejo
med krepko NP-težkimi primeri in tistimi, kjer lahko za vsako konstanto k zagotovimo
obstoj psevdo-polinomskega algoritma.

Najprej pokažemo, da je za vse k ≥ 1 pod določenimi pogoji odločitvena verzija
problema Poštene k-razdelitve s konflikti krepko NP-polna za grafe konfliktov
iz razreda G, v katerem je problem Neodvisna množica NP-poln (glej poglavje 10.2).

Ko je graf konfliktov dvodelen, ali povezavni graf dvodelnega grafa, pokažemo, da
je problem Poštene k-razdelitve s konflikti krepko NP-težek (izreka 10.3.1 in
10.3.2). Zanimivo je, da v omenjenih razredih grafov problem Neodvisne množice
lahko rešimo v polinomskem času (glej [162,213,216]).

Po drugi strani pa, v primeru ko konfliktni graf pripada razredu bikonveksnih
dvodelnih grafov, pokažemo, da je problem Poštene k-razdelitve s konflikti
mogoče rešiti v psevdopolinomskem času (glej izrek 10.4.4). Ta rezultat temelji na psev-
dopolinomskem algoritmu za isti problem v primeru, ko konfliktni graf pripada razredu
neprimerljivostnih grafov. Poleg naštetih rezultatov predstavimo polinomske algoritme,
ki temeljijo na dinamičnem programiranju in rešijo problem za primer ko konfliktni graf
pripada enem izmed naslednjih razredov grafov: tetivni grafi (izrek 10.4.12), grafi ome-
jene drevesne širine (izrek 10.4.13), in grafi omejene klične širine (izrek 10.4.14).
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