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Abstract
ENABLING DECENTRALIZED PRIVACY PRESERVING DATA

PROCESSING IN SENSOR NETWORKS

In an age of rapid technological advancement, sensor networks have

emerged as transformative tools, capturing real-time data from the en-

vironment, thereby offering unprecedented insights into various physical

phenomena. These networks, now part of our modern ecosystems, hold

the potential to reshape several sectors, from healthcare and industry to

environmental monitoring. Yet, their accelerating adoption is not with-

out challenges. As these networks become deeply integrated in our daily

lives, concerns regarding privacy preservation, efficient data processing,

and resilience against centralized points of failure become paramount.

Guided by these challenges, this thesis delves deep into the realm of sen-

sor networks, specifically aiming to innovate solutions for decentralized

privacy-preserving in-network data processing.

Convolutional Neural Networks (CNNs) stand out for their prowess in

image processing tasks. Yet their versatility establishes them as viable

choice for various machine learning applications within sensor networks.

We begin by investigating how the computational load of convolutional

neural networks can be distributed across sensor nodes in a grid-shaped

architecture. Our findings suggest that by capitalizing on the kernel

shape and local node coordination, the convolutional layers of CNNs can

be processed in a distributed manner, enhancing privacy and efficiency

of the sensor network while reducing the inference response time.

Further, the thesis presents a privacy-preserving protocol that enables

sensor network nodes to jointly compute an arbitrary function without

disclosing their own private inputs. The computation takes place at

data source nodes, while computation instructions and intermediate re-

sults move across the network secured by cryptography. The protocol

relies on the Onion Routing technique to provide uniformly distributed

network traffic and confine the knowledge a foreign actor can gain from

monitoring messages traveling the network. We show that the commu-
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nication protocol is privacy-preserving against the external and internal

attacker models, and we validate our protocol implementation using the

NS3 network simulator.

In today’s expansive machine learning landscape, where robust data pro-

tection is paramount, we explored using our privacy-preserving protocol

for distributed machine learning. This method not only maximizes pri-

vacy by prioritizing in-situ data processing but also enhances efficiency

by performing the machine learning directly within the sensor network.

Our findings indicate that the results achieved by training machine learn-

ing models with our privacy-preserving protocol align closely with those

of the traditional centralized training approach. Moreover, simulation

studies demonstrate that applying the privacy-preserving protocol for

machine learning leads to a practical response time.

In our research, we evaluated the potential of blockchain technology

as a solution for sensor networks, aiming to address the inherent need

for trust and traceability in data operations. By integrating blockchain

with our privacy-preserving protocol, we established a foundation for

a decentralized, privacy-preserving, SPOF-free, and secure in-network

data analysis framework. Blockchain’s consensus protocol eliminates

the need for a third-party intermediary, ensuring decentralized trust.

Through this integration, we embed a foundational layer of trust right

from the most basic tier—the sensing layer, fundamentally enhancing

the potential of sensor networks.

Keywords: Sensor Networks, Privacy, Onion Routing, Distributed

Computing, Data Aggregation, Multy-Party Computation.



ABSTRACT ix



Povzetek
OMOGOČANJE DECENTRALIZIRANE OBDELAVE PODATKOV

Z VAROVANJEM ZASEBNOSTI V SENZORSKIH OMREŽJIH

V dobi hitrega tehnološkega napredovanja so senzorska omrežja postala

ključna orodja, ki v realnem času zajamejo podatke iz okolja, s čimer

omogočajo podroben vpogled v različne fizične pojave. Ta omrežja, ki

so danes nepogrešljiv del našega vsakdana, imajo potencial preobliko-

vanja mnogih sektorjev, od zdravstva do industrije in okoljskega nadzora.

Vendar pa njihova hitra rast prinaša tudi izzive. Ko postanejo senzorska

omrežja neločljiv del našega življenja, se povečujejo skrbi glede varstva

zasebnosti, učinkovite obdelave podatkov in odpornosti proti central-

iziranim točkam napak. Vodena z opisanimi izzivi, se ta doktorska naloga

poglobljeno posveča senzorskim omrežjem, z osrednjim ciljem razviti in-

ovativne rešitve za decentralizirano obdelavo podatkov z varovanjem za-

sebnosti v senzorskih omrežjih.

V disertaciji je preučena možnost porazdeljenega računanja konvoluci-

jskih nevronskih mrež (KNM) na vozlǐsčih senzorskega omrežja. Naša

analiza razkriva, da z izkorǐsčanjem oblike jedra in koordinacijo med

lokalnimi vozlǐsči lahko konvolucijske plasti KNM uspešno obdelamo na

decentraliziran način znotraj senzorskega omrežja. Tak pristop znatno

povečuje zasebnost in učinkovitost senzorskih omrežij ter skraǰsuje

odzivni čas sistema pri obdelavi KNM.

Nadalje delo predstavlja komunikacijski protokol, ki omogoča vozlǐsčem

senzorskega omrežja skupno računanje brez razkritja svojih zasebnih po-

datkov. Obdelava podatkov se izvaja neposredno na vozlǐsčih, medtem

ko navodila in vmesni rezultati, kriptografsko zaščiteni, potujejo skozi

omrežje. Naš protokol temelji na tehniki Onion Routing, ki zagotavlja

enakomerno porazdelitev omrežnega prometa in zmanǰsuje možnost, da

bi zunanji akter pridobil občutljive informacije z opazovanjem prometa.

Dokazali smo, da je naš komunikacijski protokol varen proti zunanjim in

notranjim grožnjam. Dokaze smo potrdili tudi z empiričnim testiranjem

komunicijskega protokol s simulatorjem NS3.

x
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Komunikacijski protokol je bil preizkušen tudi z vidika varovanja za-

sebnosti pri treniranju modelov strojnega učenja. Rezultati kažejo,

da so modeli strojnega učenja, trenirani z uporabo našega protokola,

v kakovosti primerljivi s tistimi, treniranimi s tradicionalnim central-

iziranim pristopom.

Z integracijo tehnologije veriženja blokov (blockchain) in našega komu-

nikacijskega protokola za varovanje zasebnosti smo postavili temelje za

decentralizirano ogrodje za analizo podatkov, ki zagotavlja zasebnost in

odpravlja centralne točke okvare (SPOF). To ogrodje je ključnega pom-

ena za zanesljivo, varno obdelavo podatkov z upoštevanjem zasebnosti,

pri čemer odpira pot za nadaljnje aplikacije in raziskave na področju

senzorskih omrežij.

Ključne besede: Senzorska omrežja, Zasebnost, Čebulno usmer-

janje, Porazdeljeno računanje, Agregacija podatkov, Večstransko

izračunavanje.



xii POVZETEK



Chapter 1

Introduction

Sensor networks are nowadays an integral part of the current techno-

logical landscape. The concept gained popularity due to critical ad-

vancements in wireless communication, embedded electronics, and sens-

ing technology that led to the development of low-cost, energy-efficient,

tiny devices capable of sensing, processing, and transmitting data. In

the literature, these small, low-power devices are commonly referred to

as sensor nodes. They are usually arranged in large numbers and share

a joint (typically wireless, but also sometimes wired) communication

medium, thus forming a sensor network [2]. In a traditional sensor net-

work architecture, sensor nodes perform measurements or detect events

and transmit the sensed data to sink nodes. A sink node serves as a

central point for data collection from the sensor nodes and then usually

forwards the data to external systems, such as a base station or a remote

server, for persistent storage, processing, and analysis. Nowadays, sensor

networks are used in a wide range of applications, from environmental

monitoring, healthcare to industrial automation, and have the potential

to revolutionize the way we collect and analyze data, as well as how we

understand and interact with the surrounding environment.

Despite their many benefits, sensor networks also have several limita-

tions that must be taken into account [2]. One of the main limitations is

the limited power and processing capabilities of sensor nodes, which can

constrain the amount and complexity of data that can be collected, pro-

cessed, and transmitted. Additionally, sensor networks can be vulnerable

to various types of failures, such as node failures, network partitioning,

and communication disruptions, which can lead to data loss, delays, and

reduced reliability. Another limitation is the potential for security and

1



2 CHAPTER 1. INTRODUCTION

privacy breaches, as sensor networks often collect sensitive information

and are exposed to various types of attacks [17].

The aforementioned limitations are particularly prominent in the tradi-

tional centralized sensor network architecture, where nodes collect and

transmit raw data to a remote system outside the sensor network for

processing and analysis. Thereby, the current sensor network implemen-

tations are transitioning towards a decentralized architecture where the

sensor network is sensing, processing, storing, and responding with infor-

mation instead of data when inquired [13, 6, 19]. This approach is driven

by the accelerating advancements in computing power and efficiency of

microelectronics and the emergence of edge computing [16]. Edge com-

puting is a distributed computing paradigm that involves performing

computational tasks as close as possible to the data source, such as on

the ”edge” of the network. In the context of sensor networks, edge com-

puting refers to processing data locally on the sensor nodes themselves

or on nearby devices. By leveraging the geographical proximity of data

and computational tasks, edge computing brings several advantages to

sensor networks.

First, by performing data processing and analysis close to the data ori-

gin, the amount of data that needs to be transmitted across the net-

work is significantly reduced. This is particularly important in resource-

constrained settings since it increases network efficiency and reduces net-

work congestion, leading to a more efficient and reliable system. More-

over, by processing data locally, instead of depending on distant data

centers, latency is reduced, enhancing system responsiveness.

Second, edge computing enables distributing processing tasks across mul-

tiple nodes, therefore preventing both the centralization of data, and the

appearance of a Single Point Of Failure (SPOF) in the network. Further-

more, through redundancy and load balancing algorithms, if a device or

node fails, the tasks can be seamlessly redirected to another node; there-

fore, improving the overall robustness and reliability of the network.

Finally, edge computing globally enhances the privacy and security as-

pects of sensor networks. By keeping data processing and analysis on the

nodes themselves, edge computing minimizes the exposure of sensitive

data to potential attackers or eavesdroppers, reducing the risk of data

breaches and privacy violations.

Despite the benefits of edge computing for sensor networks, current im-
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plementations of distributed computing frameworks have limitations.

For instance, there is no universal distributed computing framework that

supports arbitrary computation and is secure and efficient while being

applicable to sensor networks. While there are some existing distributed

computing frameworks for sensor networks that are optimized for specific

use cases, such as data aggregation [1], query processing [13] or machine

learning [5], they are tailored for specific tasks and could face challenges

when applied to different types of computations. Additionally, some

frameworks may lack the necessary security features to protect sensitive

data in sensor networks, while others may prove too resource-intensive

to operate in resource-constrained environments. As a result, there is a

need for research into developing new distributed computing solutions

that can address these limitations and provide a secure, efficient, and

versatile distributed computing platform for sensor networks.

Privacy is a major concern in sensor networks, the problem surges since

sensed features relate to people’s activities in the monitoring environ-

ment; therefore, the collected data is sensitive and deserves adequate

security measures [15]. Although applying the edge computing concept

and moving computational tasks as close as possible to the data origin

can help mitigate potential privacy flaws, privacy is still an open prob-

lem since some information must always travel to the network endpoints

to inform other parties [17]. Moreover, performing computational tasks

as close as possible to the data origin on sensor network nodes can pose

risks to data confidentiality. Specifically, in applications where multiple

nodes share data for computations. During such tasks, nodes handle

and decrypt data from other nodes for processing, giving them access to

potentially sensitive information from their peers. The relevance of this

issue is particularly emphasized by the sensor network settings, where

nodes are typically left unattended after deployment, leaving them vul-

nerable to tampering by malicious actors. Accordingly, an attacker could

tamper a small set of sensor nodes to obtain data from a much larger

one.

In the context of sensor networks, this problem was tackled with differ-

ent approaches. A large number of studies focus on the computational

task of in-network data aggregation [20]. The proposed solutions are ef-

ficient and effectively preserve privacy; however, the computational task

is often limited to simple aggregate functions and barely adaptable to

other computational tasks.Other literature derive from the research on
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Byzantine fault-tolerant systems describing techniques based on homo-

morphic encryption [3] or secure multiparty computation [21]. However,

fundamental protocols are computationally intensive and induce signif-

icant communication overhead, rendering them impractical for use in

sensor networks.

Despite the many advancements in cryptography, privacy remains a crit-

ical concern in sensor networks, particularly with respect to applications

harnessing the edge computing paradigm. Existing solutions have failed

to provide an effective, practical, and versatile approach that enables

in-network data processing while preserving privacy. Therefore, a signif-

icant research gap exists, demanding further investigation.

The primary objective of this thesis revolves around the exploration of

decentralized, privacy-preserving approaches for in-network data pro-

cessing within sensor networks. The research aims towards a framework

that supports machine learning and allows machine learning models to

be trained and executed on the network nodes while preserving the pri-

vacy of sensitive data against eavesdropping and attacks based on node

tampering.

While traditional sensor networks often depend on aggregator nodes,

this model introduces vulnerabilities. The use of aggregator nodes cre-

ates a Single Point Of Failure (SPOF) from both technical and privacy

perspectives. While such architecture is scalable and efficient, it can be

vulnerable to security breaches or network failures, potentially leading

to significant data loss and system downtime. Instead, we focus on a de-

centralized approach without aggregator nodes, where sensor nodes all

have the same role and behave in the same way, eliminating any SPOF.

In this thesis, we introduce two innovative approaches for distributing

computational tasks among sensor network nodes to leverage the ad-

vantages of the edge computing paradigm and the collective processing

power of the network. Central to both strategies is their decentral-

ized architecture enabling sensor networks to handle computationally

demanding applications such as machine learning without relying on ex-

ternal systems while minimizing data exposure by processing it as close

as possible to its source. To evaluate the benefits and drawbacks of the

two approaches, as well as their potential for enabling efficient, effective,

and privacy-preserving data processing, we carried out analytical studies

and ran simulations using the ns-3 simulator [8].
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1.1 In-Network Convolution in Grid Shaped Sensor

Networks

The computation load of a deep Convolutional Neural Network (CNN)

can be very high, making it infeasible to perform inference on a single

node of a sensor network. Moreover, the use of a CNNmodel sources data

from several sensor nodes to perform inference, which leads to sensitive

data being gathered at a central processing point, endangering the data

privacy of contributing nodes. This poses a significant challenge of how

to distribute the computation load of a CNN among sensor nodes for

real-time inference processing.

While there are several existing solutions [4, 14] for distributing the

computational load of feedforward artificial neural networks on sensor

network nodes, the research on distributing the convolutional layers is

still lacking. CNNs are known for their effectiveness in various appli-

cations that involve grid-shaped data (e.g., image and video analysis);

however, their use in the context of grid-shaped sensor networks has not

been fully explored.

In the context of this thesis, we designed a SPOF-free solution for dis-

tributing the computation load of a CNN’s convolutional layer across

sensor nodes in a grid-shaped sensor network. Our approach leverages

the inherent structure of CNN kernels and local node coordination to per-

form inference processing close to the source of the data. This minimizes

the exposure of sensitive data during transmission across the network.

The applicability of this solution is broad, as it has the potential to

enhance both privacy and efficiency in any grid-shaped sensor network

application that can benefit from the power of CNNs, such as activity

tracking, walking gait analysis, fall detection, or various types of au-

tomation systems.

1.2 A General Purpose Privacy Preserving Proto-

col for Sensor Networks

Privacy is a paramount concern in sensor networks due to the collected

data being sensitive. Traditional encryption techniques can secure data

during transmission; however, applications that process data from mul-

tiple nodes have access to cleartext data. Research to date has primarily
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focused on ensuring confidentiality during in-network data processing

through data transformation using cryptography or other obfuscation

techniques. This approach enables several nodes to operate on the trans-

formed data without the possibility of extracting private data from other

nodes involved in the processing. While this approach has led to the

development of several solutions, in solutions considered practical for

sensor networks, the technique used to conceal data restricts the set of

operations applicable to the transformed data.

To enhance privacy protection in sensor networks, we propose a solution

that moves computation rather than sensitive data using layered cryp-

tography. Our approach conveys computation instructions and partial

results for in-situ processing on nodes of a sensor network, eliminating

the need for sensitive data transfer and enhancing privacy protection

against eavesdropping and node tampering. Additionally, our approach

enables arbitrary computation to be performed on sensor network nodes,

facilitating privacy-preserving machine learning and data retrieval and

pushing research toward a decentralized, privacy-preserving, SPOF-free,

and secure in-network data analysis framework for sensor networks.

1.3 Research Questions and Hypothesis

RQ-1 and H-1

RQ-1: Can the grid-shaped structure of a sensor network be lever-

aged to distribute the computational load of CNN’s convolutional

layers among sensor nodes?

H-1: By leveraging the kernel shape and local node coordination,

the convolutional layer of a CNN can be processed in a distributed

manner across sensor nodes in a grid-shaped wired sensor network.

Addressed through the following contributions:

• Data about fall events and ordinary daily activities from a

sensorized smart floor
• In-Network Convolution in Grid Shaped Sensor Networks
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RQ-2 and H-2

RQ-2: How can privacy preservation in sensor networks be en-

hanced through the anonymous relocation of computation tasks,

instead of transferring sensitive data?

H-2: Leveraging layered cryptography can enable anonymous in-

situ computation on sensor network nodes, eliminating the need for

sensitive data transfer and thereby enhancing privacy protection

against eavesdropping and node tampering.

Addressed through the following contributions:

• A General Purpose Data and Query Privacy Preserving Pro-

tocol for Wireless Sensor Networks
• PPWSim: Privacy preserving wireless sensor network simula-

tor

RQ-3 and H-3

RQ-3: Is it possible for a decentralized privacy preserving ML ap-

proach that executes the ML model in-situ on a sensor node and

moves the model across several nodes within the sensor network to

achieve comparable results to traditional batch training approaches?

H-3: Conveying a data stream mining model through nodes of a

sensor network for training and inference will result in comparable

prediction accuracy to a model trained through traditional batch

training.

Addressed in the contribution: Privacy-Preserving Data Min-

ing on Blockchain-Based WSNs
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RQ-4 and H-4

RQ-4: Is it possible to implement a decentralized, privacy-

preserving, SPOF-free, and secure in-network data analysis frame-

work for sensor networks?

H-4: Utilizing layered cryptography for the anonymous conveyance

of computation tasks and leveraging blockchain technology as a de-

centralized fabric of trust can enable the implementation of a decen-

tralized privacy preserving, SPOF-free, and secure in-network data

analysis framework.

Addressed in the contribution: Privacy-Preserving Data Min-

ing on Blockchain-Based WSNs
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Year: 2021

Journal: Data in Brief

DOI: https://doi.org/10.1016/j.dib.2021.107253

Link:https://www.sciencedirect.com/science/article/pii/

S2352340921005370

9

https://doi.org/10.1016/j.dib.2021.107253
https://www.sciencedirect.com/science/article/pii/S2352340921005370
https://www.sciencedirect.com/science/article/pii/S2352340921005370


Data in Brief 37 (2021) 107253 

Contents lists available at ScienceDirect 

Data in Brief 

journal homepage: www.elsevier.com/locate/dib 

Data Article 

Data about fall events and ordinary daily 

activities from a sensorized smart floor 

Aleksandar Toši ́c 

a , b , ∗, Niki Hrovatin 

a , b , Jernej Vi ̌ci ̌c 

a , c 

a Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 

Koper SI-60 0 0, Slovenija 
b InnoRenew CoE, Livade 6, Izola 6310, Slovenija 
c Research Centre of the Slovenian Academy of Sciences and Arts, The Fran Ramovš Institute, Novi trg 2, Ljubljana 

10 0 0, Slovenija 

a r t i c l e i n f o 

Article history: 

Received 15 March 2021 

Revised 24 May 2021 

Accepted 1 July 2021 

Available online 6 July 2021 

Keywords: 

Fall detection 

Machine learning 

Elderly 

Smart floor 

Sensor networks 

a b s t r a c t 

A smart floor with 16 embedded pressure sensors was used 

to record 420 simulated fall events performed by 60 volun- 

teers. Each participant performed seven fall events selected 

from the guidelines defined in a previous study. Raw data 

were grouped and well organized in CSV format. 

The data was collected for the development of a non- 

intrusive fall detection solution based on the smart floor. In- 

deed, the collected data can be used to further improve the 

current solution by proposing new fall detection techniques 

for the correct identification of accidental fall events on the 

smart floor. 

The gathered fall simulation data is associated with partici- 

pants’ demographic characteristics, useful for future expan- 

sions of the smart floor solution beyond the fall detection 

problem. 
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Specifications Table 

Subject Computer Science Applications 

Specific subject area Fall detection, the act of differentiating ordinary daily activities from the 

accidental fall event. 

Type of data Table 

How data were acquired Data were acquired using the smart floor, a floor surface with embedded Force 

Sensing Resistors (FSR). The smart floor has 16 FSR sensors linked to an 

ArduinoMega microcontroller. Fall data is recorded using a Java program on a 

personal computer linked to the ArduinoMega. The Java program and the 

Arduino sketch are provided as supplementary material. 

Additional data was acquired using the questionnaire provided as 

supplementary material under the file name questionnaireExample.pdf . 

Data format Raw 

Parameters for data collection The data gathering was organized as an open event, where anyone could 

volunteer to contribute. We have not established any constraint on the age or 

physical traits of participants. Each participant performed 7 different fall 

events. 

Description of data collection The data were collected at a data gathering event organized in a gym. Each 

participant was asked to simulate 7 different fall events. The data was 

recorded using the smart floor [4] . A proprietary program that collects data 

from sensors and manages the data gathering process was used in the 

experiment. The program is added as part of the dataset, but it is also 

accessible on Gitlab: https://gitlab.com/Dormage/smart- floor- fall- detection . The 

version tag 031194d73413a7bbdb68825236bd96f457735b30 was used in data 

gathering process. A total of 420 fall events were recorded. 

Data source location Koper - Slovenia 

Data accessibility Repository name: Zenodo Data identification number: 

https://doi.org/10.5281/zenodo.4605619 Direct URL to data: 

https://zenodo.org/record/4605619 Instructions for accessing these data: unzip 

the archive, all data is distributed in folders for easy access. There are two 

main folders: dataset and program. Data is distributed in csv format, each line 

represents one experiment (one person simulating the falls). 

Value of the Data 

• The data is useful for the development of fall detection systems and new methods to recog- 

nize accidental fall events among ordinary daily activities. The data can also be used for the 

development of new techniques for multivariate time-series analyses. 

• Accidental fall events are a significant threat to the health and independence of older adults 

[1] . Approximately 30% of people aged 65 fall each year, and the odds increase for those aged 

over 70 years [2] . Hence, the development of fall detection systems is crucial to identify a fall 

event and provide immediate help. 

• The provided participant’s demographic data acquired through the questionnaire can be used 

to explore future expansions of the smart floor solution beyond the fall detection problem. 

A similar solution [3] was developed to identify a person’s unique walking gait over a smart 

mat monitoring system. 

• The gathered fall simulation data can be used to investigate fall patterns, and how a person 

reacts during a fall event. 

1. Data Description 

We provide the data in two formats. The raw data as result of the data acquisition process is 

stored in the folder raw_data , and the CSV formatted data, which is a user-friendly representa- 

tion of the raw data. However, an accurate description of the data set is provided only for CSV 

formatted data. The CSV formatted data is contained in the folder csv_data . 
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Fig. 1. Visualisation of recorded sensor telemetry during a fall event. 

1.1. raw_data 

The folder raw_data contains raw data obtained as result of the data acquisition process 

described in Section c. The raw data consists of numerous files. Each file contains the recording 

of an activity and is associated with a person_ID . The person_ID links the recorded activity 

with other activities performed under the same person_ID , and with data acquired from the 

questionnaire. 

Pressure sensors are arranged on the smart floor as shown in Fig. 5 . An activity recording 

contains the value of the 16 pressure sensors recorded in a time interval ( Fig. 1 ). Each column 

represents measurements of a pressure sensor. The first column takes values of the sensor s 0 , 

the second column takes values of the sensor s 1 , and so on. The rightmost column takes values 

of the sensor s 15 . Sensor values are increasing proportionally to the force applied on the sensor. 

Measured values range from 0 to 65535 at the maximum applied force, which is a decimal rep- 

resentation of the 16-bit binary interval provided by the controller in the process of converting 

the analogue signal from the FRS. The measurements of all 16 pressure sensors is performed at 
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Table 1 

Example of data recorded from 16 pressure sensors contained in the raw_data folder. 

0 , 170 , 0 , 0 , 0 , 0 , 87 , 0 , 345 , 0 , 329 , 0 , 11 , 0 , 0 , 0 

0 , 174 , 0 , 0 , 0 , 0 , 87 , 0 , 346 , 0 , 319 , 0 , 11 , 0 , 0 , 0 

0 , 175 , 0 , 0 , 0 , 0 , 87 , 0 , 346 , 0 , 320 , 0 , 9 , 0 , 0 , 0 

0 , 171 , 0 , 0 , 0 , 0 , 85 , 0 , 349 , 0 , 319 , 0 , 10 , 0 , 0 , 0 

0 , 167 , 0 , 0 , 0 , 0 , 83 , 0 , 346 , 0 , 327 , 0 , 10 , 0 , 0 , 0 

0 , 144 , 0 , 0 , 0 , 0 , 15 , 0 , 141 , 0 , 14965 , 0 , 0 , 0 , 72 , 0 

0 , 141 , 0 , 0 , 0 , 0 , 19 , 0 , 111 , 0 , 22146 , 0 , 0 , 0 , 260 , 0 

0 , 79 , 0 , 0 , 0 , 0 , 5400 , 0 , 57 , 0 , 17287 , 0 , 0 , 0 , 325 , 0 

0 , 0 , 0 , 0 , 0 , 0 , 43451 , 0 , 15 , 0 , 12579 , 0 , 0 , 0 , 382 , 0 

0 , 27 , 0 , 0 , 0 , 0 , 51240 , 0 , 82 , 0 , 9981 , 0 , 4 , 0 , 424 , 0 

0 , 45 , 0 , 0 , 0 , 0 , 25581 , 0 , 110 , 0 , 7984 , 0 , 0 , 0 , 452 , 0 

0 , 21 , 0 , 0 , 0 , 0 , 10736 , 0 , 115 , 0 , 7254 , 0 , 0 , 0 , 450 , 0 

0 , 17 , 0 , 0 , 0 , 0 , 3879 , 0 , 125 , 0 , 6922 , 0 , 0 , 0 , 395 , 0 

0 , 26 , 0 , 0 , 0 , 0 , 1606 , 0 , 115 , 0 , 6415 , 0 , 0 , 0 , 421 , 0 

0 , 30 , 0 , 0 , 0 , 0 , 940 , 0 , 78 , 0 , 5701 , 0 , 0 , 0 , 414 , 0 

0 , 27 , 0 , 0 , 0 , 0 , 538 , 0 , 74 , 0 , 5619 , 0 , 4 , 0 , 408 , 0 

0 , 24 , 0 , 0 , 0 , 0 , 361 , 0 , 90 , 0 , 5619 , 0 , 6 , 0 , 423 , 0 

0 , 25 , 0 , 0 , 0 , 0 , 256 , 0 , 92 , 0 , 5305 , 0 , 2 , 0 , 433 , 0 

0 , 4 , 0 , 0 , 0 , 0 , 203 , 0 , 92 , 0 , 4945 , 0 , 0 , 0 , 428 , 0 

0 , 7 , 0 , 0 , 0 , 0 , 191 , 0 , 69 , 0 , 4875 , 0 , 0 , 0 , 420 , 0 

Table 2 

Name and description of attributes in the positiveSet.csv file. 

Attribute Description 

fall _ ID uniquely identifies the fall in the data file positiveSet.csv 

person_ID uniquely identifies the volunteer who has simulated the fall 

fall_category identifies the fall execution 

tick elapsed time of the recording, each tick counts 10 milliseconds 

s0...s15 takes the value of sensors on the smart floor ranging from 0 to 65535 

the same time. Measurements are collected every 10 milliseconds. An example of raw data from 

16 pressure sensors is provided in Table 1 . 

1.2. csv_data 

The folder csv_data contains CSV formatted data from the raw_data folder. The raw data 

was not filtered or altered. We just added headers and categorization attributes to enhance the 

dataset’s reusability. Each volunteer has a unique id ( person_ID ) associated with it’s data. The 

person_ID attribute links a volunteer across the data in the following files: 

• positiveSet.csv – data about simulated fall events 

• negativeSet.csv – data about ordinary daily activities 

• testSet.csv – data about ordinary daily activities that might cause false positives 

• surveyData.csv – data about participants obtained using a questionnaire 

The content of the folder csv_data is detailed in the sections below. 

1.3. csv_data/positiveSet.csv 

The file contains CSV formatted data from the raw data in the folder raw_data/positive . The 

file stores 420 simulated fall events recorded in a time interval (Table 4) . In Table 2 we give the 

description of each attribute. 
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Table 3 

Description of different fall executions identified by the fall_category attribute. Ending position of the described fall 

events is depicted in Fig. 6 . 

fall_category Description of the fall execution Duration (s) 

1 forward fall on the knees 5 

2 forward fall with forward arm protection 5 

3 forward fall ending laying flat 5 

4 forward fall on the knees with rotation, ending in the lateral position 5 

5 lateral fall ending laying flat 5 

6 lateral fall ending laying flat with recovery 10 

7 forward fall ending laying flat with recovery 10 

Table 4 

Example of data contained in positiveSet.csv. The first row details attribute names. The data is similarly structured also 

for negativeSet.csv and testSet.csv. 

fallID personID fall_cat. tick s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

1 1 1 0 0 137 0 0 0 0 92 0 409 0 367 0 23 0 0 0 

1 1 1 1 0 139 0 0 0 0 93 0 408 0 367 0 23 0 0 0 

1 1 1 2 0 140 0 0 0 0 94 0 409 0 363 0 23 0 0 0 

1 1 1 3 0 142 0 0 0 0 93 0 411 0 350 0 23 0 0 0 

1 1 1 4 0 142 0 0 0 0 93 0 411 0 340 0 24 0 0 0 

1 1 1 5 0 140 0 0 0 0 94 0 411 0 332 0 23 0 0 0 

1 1 1 6 0 138 0 0 0 0 94 0 411 0 328 0 23 0 0 0 

1 1 1 7 0 139 0 0 0 0 92 0 411 0 329 0 24 0 0 0 

1 1 1 8 0 137 0 0 0 0 92 0 411 0 327 0 24 0 0 0 

1 1 1 9 0 140 0 0 0 0 92 0 413 0 331 0 24 0 0 0 

1 1 1 10 0 139 0 0 0 0 93 0 413 0 332 0 24 0 0 0 

1 1 1 11 0 140 0 0 0 0 94 0 413 0 331 0 24 0 0 0 

1 1 1 12 0 140 0 0 0 0 96 0 414 0 332 0 24 0 0 0 

1 1 1 13 0 141 0 0 0 0 96 0 413 0 335 0 24 0 0 0 

1 1 1 14 0 141 0 0 0 0 96 0 413 0 339 0 24 0 0 0 

1 1 1 15 0 142 0 0 0 0 96 0 413 0 339 0 24 0 0 0 

1 1 1 16 0 144 0 0 0 0 95 0 413 0 342 0 24 0 0 0 

1 1 1 17 0 143 0 0 0 0 95 0 413 0 344 0 23 0 0 0 

1 1 1 18 0 143 0 0 0 0 96 0 413 0 347 0 24 0 0 0 

1 1 1 19 0 144 0 0 0 0 96 0 414 0 351 0 24 0 0 0 

1 1 1 20 0 142 0 0 0 0 96 0 414 0 351 0 24 0 0 0 

1 1 1 21 0 142 0 0 0 0 96 0 414 0 357 0 24 0 0 0 

1 1 1 22 0 142 0 0 0 0 96 0 414 0 359 0 24 0 0 0 

1 1 1 23 0 143 0 0 0 0 95 0 416 0 360 0 24 0 0 0 

1 1 1 24 0 144 0 0 0 0 95 0 414 0 357 0 23 0 0 0 

1 1 1 25 0 144 0 0 0 0 95 0 414 0 360 0 24 0 0 0 

1 1 1 26 0 143 0 0 0 0 95 0 413 0 360 0 24 0 0 0 

1 1 1 27 0 143 0 0 0 0 96 0 414 0 361 0 24 0 0 0 

1 1 1 28 0 143 0 0 0 0 95 0 411 0 350 0 24 0 0 0 

Each volunteer simulated 7 different fall events. Each fall was performed following a differ- 

ent fall execution. The attribute fall_category is used to identify the fall execution. In Table 3 , 

we describe the fall execution for each value of the attribute fall_category . The length of the 

recording time interval is expressed in seconds in the column duration. 

1.4. csv_data/negativeSet.csv 

The file contains CSV formatted data from the raw data in the folder raw_data/negative . The 

file stores 30 ordinary daily activities recorded in a time interval. In Table 5 , we give the de- 

scription of each attribute. 
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Table 5 

Name and description of attributes in the negativeSet.csv file. 

Attribute Description 

neg_ID uniquely identifies the ordinary daily activity in the data file negativeSet.csv 

person_ID uniquely identifies the volunteer who has simulated the ordinary daily activity 

neg_category identifies the type of ordinary daily activity 

tick elapsed time of the recording, each tick counts 10 milliseconds 

s0...s15 takes the value of sensors on the smart floor ranging from 0 to 65535 

Table 6 

Description of different ordinary daily activities identified by the neg_category attribute. 

neg_category Description of the ordinary daily activity Duration 

1 random walking and random stop 8 minutes 

2 empty floor 10 seconds 

3 one step forward then waiting 5 seconds in position, repeat 1 minute 

4 random walking 10 seconds 

Table 7 

Name and description of attributes in the testSet.csv file. 

Attribute Description 

test_ID uniquely identifies the ordinary daily activity in the data file testSet.csv 

person_ID uniquely identifies the volunteer who has simulated the ordinary daily activity 

test_category identifies the type of ordinary daily activity 

tick elapsed time of the recording, each tick counts 10 milliseconds 

s0...s15 takes the value of sensors on the smart floor ranging from 0 to 65535 

Table 8 

Description of different ordinary daily activities identified by the test_category attribute. 

TEST_CATEGORY Description of the ordinary daily activity Duration 

1 a chair is positioned on the smart floor, and the volunteer will 

sit on the chair 

5 seconds 

2 a volunteer is sitting on a chair positioned on the smart floor, 

the volunteer will stand up from the chair 

5 seconds 

3 a volunteer will bend down and catch something on the smart 

floor 

5 seconds 

4 a volunteer will jump on the smart floor 5 seconds 

The file consists of 4 different types of ordinary daily activities. Each activity type is identified 

by the attribute neg_category . 

In Table 6 , we describe the ordinary daily activity type for each value of the attribute 

neg_category . The length of the recording time interval is expressed in the column duration. 

1.5. csv_data/testSet.csv 

The file contains CSV formatted data from the raw data in the folder raw_data/test . The file 

stores 12 ordinary daily activities recorded in a time interval. In Table 7 , we give the description 

of each attribute. 

The file consists of 4 different types of ordinary daily activities. Each activity type is identified 

by the attribute test_category . In Table 8 , we describe the ordinary daily activity type for each 
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Table 9 

Basic summary of the participants (surveyData.csv). 

variable min max mean median sd n q25 q75 

age 12 51 28.63 27 8.07 60 22 33.25 

weight 40 120 72.73 72 16.22 60 60 83.5 

height 150 197 174.98 176 11.69 60 165.75 183.25 

sportActive 1 5 3.1 3 1.1 60 2 4 

worried 1 3 1.58 1 0.72 60 1 2 

fallEvents 0 4 1.25 1 1.45 60 0 2 

Table 10 

Example of data contained in (surveyData.csv). The first row details attribute names. 

person_ID sex age weight height sportActive worried fallEvents 

1 M 21 95 190 3 1 1 

2 M 24 80 188 5 1 0 

3 M 23 85 190 4 1 2 

4 F 15 50 156 5 1 0 

5 F 33 74 160 4 3 1 

6 M 22 83 192 3 3 0 

7 F 12 40 150 5 1 4 

8 M 26 90 182 4 1 4 

9 F 20 101 168 2 2 1 

10 M 28 93 180 2 1 1 

value of the attribute test_category . The length of the recording time interval is expressed in 

the column duration. 

1.6. csv_data/surveyData.csv 

The file contains CSV formatted data obtained using a questionnaire. An example copy of the 

questionnaire is provided under the filename questionnaireExample.pdf . Every volunteer fulfilled 

the questionnaire before the data acquisition. Data from the questionnaire is linked through the 

attribute person_ID with the data in the following files: positiveSet.csv, negativeSet.csv and test- 

Set.csv . 

The file surveyData.csv contains the following basic demographic data: sex (m/f), age (years), 

weight (kg) and height (cm) (Table 10) . The attribute person_ID uniquely identifies the volun- 

teer. The attribute sportActive represents the self evaluation of sport activity, ranging from (1- 

not active) (5-very active). The attribute worried represents anxieties linked with the data ac- 

quisition process, ranging from (1-not at all) to (5-very worried). The attribute fallEvents rep- 

resents the number of fall events experienced by the volunteer during this year ranging from (0 

- zero fall events) to (4 - four or more). A summary of the dataset is provided in Table 9 and 

Fig. 2 . 

2. Experimental Design, Materials and Methods 

Data were acquired using the smart floor displayed in Fig. 3 , and described in [4] . The smart 

floor has 16 embedded Force Sensing Resistor (FSR) sensors linked to analog inputs of an Ar- 

duinoMega microcontroller. The ArduinoMega runs the code/readData.ino program, which trig- 

gers sensor reading every 10 milliseconds. Sensor data is sent to a personal computer linked to 

the ArduinoMega via serial communication. The java based client records the sensor data pro- 

vided in code/dataCollection . The whole data collection set-up is shown in Fig. 4 . 
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Fig. 2. The collected demographic data represented in boxplots. 

Fig. 3. The smart floor without the laminate layer. In the picture are displayed the 16 FSR pressure sensors, and the 

enclosure of the ArduinoMega. 

The data gathering process was conducted in a properly equipped gym as depicted in Fig. 4 . 

Each participant was informed orally and in written form about the aims of the experiment and 

possible risk hazards. Adequate protections for elbows and knees were offered to participants. 

Before the fall simulation, each participant fulfilled the questionnaire questionnaireExample.pdf . 

Each participant was asked to simulate 7 different fall events on the smart floor surface. 

The fall events were selected from the article [5] , which tackles the problem of fall simulation. 

Selected fall events are described in Table 3 . All simulated fall events were recorded following 

the next procedure: 

(note: we refer to the person that conducts the data collection as the data collector) 

1. The participant stand on the right side of the smart floor as shown in Fig. 5 , and waits for 

the signal. The participant must not step on the smart floor. 

2. The data collector starts recording with the laptop and signals the participant. 

3. The participant simulate the fall, and holds the ending position. The position must be main- 

tained as if a real debilitating fall occurred. 
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Fig. 4. Data collection set-up: The smart floor is the white square surface surrounded by landing mats. It differs from 

Fig. 3 , because covered with the laminate layer. Notice the laptop linked to the smart floor for data acquisition. 

Fig. 5. Participant starting position before each fall event in relation to sensor placement on the smart floor. Sensors on 

the smart floor are described with the notation from s0 to s15 , the same notation is used across all the provided data 

in CSV files. 

4. After the recording interval is expired, the data collector notifies the participant, to release 

the ending position and leave the smart floor. 

Other ordinary daily activities were recorded similarly but without any precondition on the 

starting position of the participant. 
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Fig. 6. All possible ending position of seven simulated fall events described in Table 3 . 
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Abstract

Gathering information is the primary purpose of a Sensor Network. The
task is performed by spatially distributed nodes equipped with sensing,
processing, and communication capabilities. However, data gathered from
a sensor network must be processed, and often the collective computation
capability of nodes forming the sensor network is neglected in favor of data
processing on cloud systems. Nowadays, Edge Computing has emerged as
a new paradigm aiming to migrate data processing close to data sources. In
this contribution, we focus on the development of a sensor network designed
to detect a person’s fall. We named this sensor network the smart floor. Fall
detection is tackled with a Convolutional Neural Network, and we propose
an approach for in-network processing of convolution layers on grid-shaped
sensor networks. The proposed approach could lead to the development of a
sensor network that detects falls by performing CNN inference processing on
the edge. We complement our work with a simulation using the simulator ns-
3. The simulation is designed to emulate the communication overhead of the
proposed approach applied to a wired sensor network that resembles the smart
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floor. Simulation results provide evidence on the feasibility of the proposed
concept applied to wired grid shaped sensor networks.

Keywords: Sensor networks, edge computing, fall detection, convolutional
neural networks, network simulator ns-3.

1 Introduction

A sensor network consists of spatially distributed nodes deployed in a
dynamic environment for specific monitoring purposes. Several current and
potential applications exist ranging from the military domain, environmental
monitoring, healthcare, industrial manufacturing monitoring etc. [21]. Typi-
cal sensor networks count hundred or thousand of densely deployed nodes.
Nodes are devices constrained in processing and communication capabilities,
equipped with one or multiple sensors. Such large networks of sensors
provide a detailed view of the environment in which they are deployed.

In this contribution, we consider a sensor network deployed to detect
events using a Convolutional Neural Network (CNN) that feeds on input from
multiple sensor nodes. Since the CNN inference process requires data from
multiple sensor nodes, typical solutions convey all the nodes’ data to a central
processing point usually in the cloud. Therefore computing capabilities of
nodes forming the network are not used. Furthermore, transferring data to
remote systems like cloud services could introduce security concerns [24]
and a substantial latency between event occurrence and detection [18].

Nevertheless, we have recently witnessed the emergence of edge comput-
ing [1, 29], a paradigm aiming to move computation as close as possible to
data sources. In the present research, we tackle the problem of distributing
CNN processing load across sensor nodes’ actual data sources of the sensor
network. Precisely we propose a technique applicable only to grid-shaped
sensor networks, in which neighboring sensor nodes are interchanging sensor
readings to conjointly compute Convolution Layers of a CNN on sensor
nodes. Additionally, we discuss applying the proposed technique on our non-
intrusive fall detection sensor network dubbed smart floor. The smart floor is
a grid-shaped sensor network in which each sensor node is sensing the local
force applied on the floor. A CNN is used to recognize if the activity occurring
over the smart floor is a person that fell on the floor or just activities of daily
living like walking, moving objects, etc.

Although the proposed concept takes advantage of the processing power
of sensor nodes, substantial communication overhead is generated since each
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sensor node is interchanging sensor readings with neighbors. In this study, we
address concerns regarding the communication overhead with a simulation
based on the ns-3 simulator [11]. The simulation is designed to emulate the
communication overhead of the proposed concept applied to a wired grid
shaped sensor network that resembles the smart floor. Simulation results show
that the communication overhead only leads to severe network congestion
if low bit-rate links are used with a large convolution kernel. Furthermore,
the examination considers two network topologies, showing a significant
difference in the number of packet drops and packet traveling time.

Section 2 gives an overview of the related literature about in-network
neural network inference in sensor networks. In Section 3 we discuss fall
detection and we give an overview of the current development of the smart
floor. In Section 4 we present a technique to in-network compute 3D discrete
convolution on sensor nodes of a grid shaped sensor network. Section 5
presents the experimental setup and results of the simulation. Conclusion and
future work is given in Section 6.

2 Related Work

Several studies in the Internet of Things (IoT) field are addressing deep
learning inference on low-power mobile devices. DeepX [13] is a software
accelerator based on runtime layer compression and deep architecture decom-
position able to allocate data and model operations optimally across diverse
processor types. The Big-Little approach [3] uses small deep learning models
that are located on embedded devices (the Little role) to perform inference on
a restricted set of events. However, for some critical situations that require a
reliable inference, the collected data is also sent to processors in the cloud
(the Big role) to perform the inference process on a larger deep learning
model.

An interesting approach aiming at the reduction of the communication
overhead in IoT networks was proposed in [5]. The proposed architecture
moves the deep learning model from the base station towards the data source
nodes. However, deep learning models are only partially moved. Models
located on data source nodes are small and resource-efficient, designed to
output a limited set of codes. The codes are then used to perform the
final inference on powerful base-station nodes using large inference models.
Although the proposed approach could reduce the communication overhead,
it is designed for inference over data sourcing from one device and not from
multiple devices, as required in the CNN implemented in the smart floor.
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In-network computing involves the processing of data as it travels via
the sensor network to the sink node. The sink node in a sensor network is
the node that acts as a gateway between the sensor network and external
systems and usually has greater processing and storage capabilities than other
nodes in the sensor network. In-network computing was already applied to
the deep learning concept in [12]. They proposed a distributed deep learning
architecture that assigns processing roles to sensor network nodes. Data is
gathered on those sensor nodes, processed, and sent to the next node in the
chain. Each node in the chain is computing a layer of the convolutional neural
network. The sink node is computing the end fully connected layers. The
proposed approach effectively distributes a convolutional neural network’s
computation load among multiple nodes of a sensor network. However, this
causes a high load on nodes in the computation chain, especially on the first
node that must gather data from all sensing nodes.

Fukushima et al. [8] addressed this problem with a framework for
distributed deep learning in wireless sensor networks based on node coor-
dination. They assume that a Wireless Sensor Network (WSN) can resemble
a grid structure, and they map CNN neurons to physical nodes of a WSN.
Therefore the whole CNN is statically built on the WSN and is trained to
work only with that precise deployment of sensor nodes. They demonstrated
this approach’s feasibility with a simulation and two experiments. Although
the research conducted by Fukushima et al. includes a sensor network able to
detect fall events, the research does not consider event localization.

In the present contribution, we propose a slightly different approach moti-
vated by the need to detect fall events and the smart floor properties of being
grid-shaped, wired, and having a high node density. In our proposed solution,
we map to sensor nodes only the convolution layers. A procedure will then
extract processed activities from the sensor network and send them to a sink
node that will complete the inference using the fully connected layers of the
CNN. Therefore, event location can be determined from the location of data
reporting nodes. Moreover, the solution differs from the approach proposed
by Fukushima et al. since it allows the application of a once trained and
well-tested CNN in different network deployments. Training a CNN with
neurons built into nodes of a sensor network could lead to slightly different
predictions at sensor networks having diverse shapes even if the same training
data is used. The root cause of this alteration of predictions is the shape of the
building in which the sensor network is placed, physically constraining the
shape of the network and the number of senor nodes. Therefore by applying
the technique presented by Fukushima et al. the CNNs deployed into different
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sensor networks will have a different number of neurons and disposition of
holes. (Fukushima et al. were referring to holes, as locations of the monitored
environment without sensor nodes.) In the fall detection scenario holes might
be numerous due to the irregular shapes of rooms and disposition of walls
inside buildings. Inference alteration due to changes in the number of neurons
in Artificial Neural Networks is well known [2, 28]. And inference alteration
due to changes in the number of holes is documented by Fukushima et al.

A fall detection system must ensure that each fall event is detected and
correctly reported. Since undetected fall events can have repercussions on
the health of the fallen person, each wrongly predicted fall event must be
investigated to find the root cause and prevent similar occurrences. Having the
exact inference mechanism on different deployments allows the adjustment
of every system instance if eventual flaws are discovered.

3 Non-Intrusive Fall Detection Using Smart Floor

Falls are unpredictable accidental events. Common in childhood, rare in
adulthood, but a significant problem among the elderly. The report Fall
Prevention in older Age [20] carried out by the World Health Organization
state that approximately 30% of people aged 65 fall each year, and the odds
increase for those over 70 years of age. Falls are critical events in the elderly,
which can result in severe injuries or fatalities. More than 50% of injury-
related hospitalization among people over 65 years is a fall consequence. The
research [10] pointed out the need to provide immediate help after a fall event
to prevent severe or fatal consequences.

While fall prevention is enhanced by behavioral, environmental, socioe-
conomic, and biological risk reduction [20], the fall recognition problem
is widely addressed with the use of technological solutions. The literature
review conducted by Singh et al. [23] investigates different fall detection
systems categorizing them into wearable, ambiance, and hybrid systems.
Wearable systems are based on accelerometer or gyroscope sensor technol-
ogy embedded in items or smartphones. Wearable solutions are low cost
solutions that can detect a fall effectively; however, the user must actively
wear and maintain these systems. Ambiance fall detection systems are
embedded in the monitored environment. Image sensors, acoustic sensors,
pressure sensors, infrared sensors, radar sensors or a combination of them is
used to monitor user activity and detect falls. Ambiance systems provide good
fall detection performance, they usually incur higher costs, but they eliminate
the active interaction between user and system. Technology acceptance by
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Figure 1 The picture was taken during the data collection event, where fall events were
simulated following safety precautions. The smart floor is the white surface surrounded by
landing mats.

older adults is a recognized problem, drastically emphasized in monitoring
systems [14]. Fall detection technology must be constantly present in the
user’s life, to assure benefit; hence solutions based on wearable devices or
image sensors are considered highly intrusive [6, 23] since users are always
aware of the system. A systematic review conducted by Yusif et al. [30],
suggests that the main adoption barriers between older people and assistive
technologies are: privacy, trust, added value, cost, ease of use, perception of
no need, stigma etc. (sorted by importance). The mentioned factors are raising
the need to design a fall detection system able to effectively detect falls while
being non-intrusive, privacy-aware, and cost-effective.

The literature review conducted by Singh et al. [23] provides many
insights about different sensor technologies used in fall detection systems.
Analyses suggest that systems based on passive Infra-red (PIR) radiation
sensors are the only ones achieving a high fall detection rate while being
non-intrusive, privacy-aware, and cost-effective. These systems are usually
structured as vertical arrays of many PIR sensors positioned on a room wall,
designed to detect the fall vertical motion. A PIR fall detection system was
developed by Fukushima et al. [8], relying on a 6 × 6 grid-shaped wireless

CHAPTER 2. PUBLISHED PAPERS 27



In-Network Convolution in Grid Shaped Sensor Networks 81

sensor network able to detect falls using a CNN. The system achieved good
fall detection performance. However, such systems are subject to the risk of
obstruction of the sensing range if an object is located between the sensor
and the monitored user. An interesting alternative to PIR systems highlighted
by Singh et al. are floor pressure sensor systems, which can achieve high fall
detection rates while being privacy-aware and non-intrusive. The reviewed
solutions rely on complex sensing technologies resulting in high implemen-
tation prices, like floor pressure sensing using optical fibers [7]. However, a
commercial solution based on capacitive sensor technology embedded in the
flooring material has already been released on the market under the name
SensFloor [25].

In this contribution, we present recent development of our fall detection
solution based on the smart floor implementation presented in [27], which
relies on widely available and cheap Force-Sensing Resistor (FSR) technol-
ogy; adequate to be embedded in a vast choice of flooring materials. The
smart floor was recently the object of study in a master thesis [19], intend-
ing to establish solid foundations for developing a non-intrusive privacy-
preserving fall detection system. A dataset [26] consisting of 420 simulated
fall events was collected using the smart floor. In Figure 1, the smart floor
during the data collection event. The collected data was used to train dif-
ferent machine learning models and results shown the notable accuracy of
CNN in distinguishing activities of daily living from simulated fall events.
The effectiveness of CNNs applied to floor pressure sensing systems was
highlighted by the contribution [22], where a CNN was used to identify the
person’s unique walking gait over a smart mat monitoring system. The system
was also proposed for fall detection, but further analyses must be conducted.

However, our system’s uniqueness does not reside in the machine learn-
ing component but rather in the end goal of developing a modular tile
system, where each tile will be the sensor node of a distributed sen-
sor network designed to detect fall events while being non-intrusive and
privacy-preserving.

4 In-Network Convolution In Grid Shaped Sensor Networks

In this section, we first present the sensor network model taken into account
to develop our solution. Then we show how to perform the in-network
3D discrete convolution on grid-shaped sensor networks. Furthermore, we
discuss applying the presented technique to in-network compute multiple
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convolution layers and pooling layers on the smart floor. We end with a brief
description of our in-network fall detection solution.

4.1 The Sensor Network Model

We consider a sensor network resembling the smart floor described in
[19, 26, 27]. The network consists of two types of nodes, the majority are
sensor nodes, which are nodes equipped with sensor technology sensing
a physical quantity in time. These nodes are limited in computational and
memory capabilities as they are designed to be cheap. The other type of node
is named sink node, which purpose is to gather data sensed by sensor nodes,
store it, process it, and interact with external systems. The sink node also has
greater computational and storage capabilities than sensor nodes.

Sensor nodes are deployed in a plane following a grid structure; each
sensor node is equidistant from the closest sensor nodes in cardinal directions.
Sensor nodes are linked via a point-to-point link with each sensor node in
their neighborhood. We refer to the neighborhood of a sensor node as the
eight closest sensor nodes. In each cardinal and intercardinal direction relative
to a sensor node, lies one and only one sensor node from its neighborhood.
Sensor nodes can directly interchange sensor readings with nodes in their
neighborhood. However, sensor nodes can also retrieve sensor readings from
nodes outside their neighborhood and communicate with the sink node using
a multi-hop routing strategy based on grid coordinates similar to [16]. A sen-
sor node can be uniquely identified in the network using the IP-address or
gird coordinates (e.g. (x, y)). For convenience, we assume that the sink node
acts like a central coordination authority that knows grid coordinates and
IP-addresses of each sensor node in the network. A sensor node can request
the sink node to reveal other sensor node’s grid coordinates based on the node
IP-address or vice-versa.

4.2 In-network 3D Convolution on Grid-shaped Sensor Network

The 2D discrete convolution technique is widely used in image processing [9]
to apply smoothing filters, image sharpening, identify edges, and classify
images in conjunction with machine learning methods [15]. Images are repre-
sented as matrices of n×m pixels with variable intensities. The convolution
operation will slide a kernel of size k × k, k < m over each pixel of the
image, performing an elementwise multiplication between the kernel and the
covered part, summing up results into one single output value. The kernel
repeats this process for every pixel it slides over, generating a new 2D matrix.
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Figure 2 The figure presents the 3D convolution operation. Each square in the white plane
represents a sensor node. The green area indicates sensor readings needed to compute a
fragment of the convolution operation on the node a, b using the kernel of size k× k× t. The
red grid is the result of the convolution operation over the grid of sensor nodes, highlighted
with blue color the convolution result of sensor node on coordinates a, b.

Our proposed distributed solution is based on the assumption of the sensor
network’s physical grid structure introduced in Section 4.1. The grid-shaped
sensor network resembles a matrix on which to perform the convolution
operation with a kernel. However, we will not slide the kernel over the matrix
of sensor nodes. Instead, each sensor node will compute a fragment of the
entire convolution operation.

Since fall events occur over a surface during a time interval, the appli-
cation of 3D convolution to the smart floor will certainly enhance prediction
accuracy as 3D CNNs [17] can operate on planar and temporal dimensions.

To perform the 3D discrete convolution operation on the grid shaped
sensor network, we take into account the two planar dimensions and a time
dimension detailing the change in sensor values over time. Sensor nodes share
the same kernel with all other sensor nodes in the network. For convenience,
we describe the procedure only for kernels of size k× k× t. k× k the planar
dimensions, and t the time dimension as it is shown on Figure 2.

To compute a fragment of the convolution operation, a sensor node
located in the grid-shaped sensor network at coordinates (x, y) will first
gather t sensor readings from each sensor node located at coordinates
(x + i, y + j), where−bk2c ≤ i, j ≤ bk2c+v. Figure 3 shows such operation.
If the kernel dimension k is an odd number, the variable v = 0, otherwise
v = −1. If sensor node coordinates are outside the physical network, zero
padding is applied.
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Figure 3 The figure illustrates how a sensor node located at grid coordinates (6, 8) gathers
data from other sensor nodes to compute a fragment of the convolution operation with a kernel
of size 3× 3× t. Sensor nodes are drawn with circles, and data from diverse sensor nodes is
represented with a different color.

Then the sensor node will perform the elementwise multiplication
between the kernel, its sensor value, and sensor values collected from local
sensor nodes, results are summed up in one single output value. We refer to
this value as a fragment, and to local sensor nodes as the sensor nodes whose
values were used to compute the fragment. Since each sensor node knows
its and local sensor nodes’ location as coordinates in a grid-shaped sensor
network, fragments are computed respecting the same kernel orientation
on all sensor nodes. Therefore, each sensor node holds a fragment of the
resulting convolution operation between the grid-shaped sensor network and
the selected kernel.

4.2.1 Multi-layer convolutional neural network
The proposed technique can be applied to multi-layer CNN such that the first
convolution layer is computed on sensor readings as described in the upper
section. Outputs from the first layer reside on sensor nodes, maintaining the
grid structure. Hence it is possible to compute the next convolution layer
following the same principle but on previous layer outputs instead of sensor
readings. This concept was already proposed by Fukushima et al. [8], where
a multi-layer CNN was built on a wireless sensor network.

They proposed the application of this concept also to in-network compute
the pooling layer. Pooling layers are used to reduce the dimension of data by
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combining multiple values into one single value using the average or max
function. However, considering our the smart floor needs, the pooling layer
will be implemented only on the time dimension, as we want to maintain
as much planar information as possible. Hence the pooling layer can be
computed on sensor nodes without the need for data from other sensor nodes.

4.2.2 Communication overhead
The in-network processing of convolution layers requires a noticeable
communication overhead. Each sensor node computes a fragment of the
convolution layer by gathering data from other sensor nodes. Hence the
communication overhead is increased locally to sensor nodes involved in
the computation. Fukushima et al. demonstrated the manageability of this
concept with two experiments, and they provided a simulation to determine
how kernel size affects the communication overhead. The simulation revealed
that kernels k × k × t of size k ≤ 5 does not generate a concerning
communication overhead.

Our research considers the communication overhead generated in wired
sensor networks with a simulation using the network simulator ns-3. Simula-
tion results are presented in Section 5.

4.3 Fall Detection Using In-network Convolution

Our proposed fall detection solution is based on the grid-shaped sensor
network model introduced in Section 4.1, a CNN designed to process part
of the inference on sensor nodes, and a procedure to extract the field of
interest for further processing at sink nodes. Since the sensor network will
be deployed in many rooms or an entire building, the whole system must
be modular and adaptable to fit any room shape and deployment extensions.
Therefore, we will not train a CNN on the whole sensor network, like were
done by Fukushima et al. [8], as this will generate different CNNs at each
deployment which might produce slightly different inference outcomes.

Our system is designed to work on a CNN trained on the smart floor
described in Section 3, composed of 16 pressure sensors. This limits the CNN
input to readings from only 16 sensor nodes structured like a 4 × 4 grid.
Hence, we need a mechanism to extract activities happening on the sensor
network and feed them in the CNN for inference.

The activity extraction starts from sensor nodes which are constantly
sensing the pressure applied on them. However, they will proceed with
further processing only if they identify a significant change in the sensed
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pressure, which signals an activity on them. Triggered sensor nodes will
in-network compute convolution layers of the CNN using the technique
explained in Section 4.2. Adjacent convolution layer results are grouped via
node coordination, and the grouped result is sent to a sink node. The sink node
will complete the inference by processing convolution layer results with the
CNN’s fully connected layers. The exact event location can be determined
from the location of nodes reporting the grouped result.

5 Evaluation

This section presents results obtained from a simulation using the ns-3 simu-
lator [11]. Via a simulation, we aim to evaluate whether the proposed concept
of in-network computing convolution layers in wired grid shaped sensor
networks generates a communication overhead that leads to a severe network
congestion. Precisely in the simulation, we try to model the smart floor.
Additionally, we compare two network topologies, the plain grid in which
sensor nodes are linked with four neighboring nodes, one link in each cardinal
direction, and the diagonal grid in which each sensor nodes are linked with
eight neighboring nodes, one link in each cardinal and intercardinal direction.
Topologies are illustrated in Figure 4. Although the two network topologies
have numerous redundant links, we selected them since our end goal is the
development of the smart floor as a modular tile system, where each tile
will be a sensor node able to link with adjacent sensor nodes through wired
point to point links embedded in the tiles. To perform this investigation, we
examine how kernel size and link bitrate affects the traveling time (TT) of
datagrams in the network. We define the TT of packets in the network as
the elapsed time between the issuing of the packet by a sensor node, and the
receipment of the packet from the destination node.

(a) (b)

Figure 4 Network topologies considered in the simulation: plain grid in (a), diago-
nal grid in (b).
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5.1 Experimental Setup

The simulated network is designed to resemble the smart floor, a grid shaped
sensor network in which each sensor node is sensing the force applied on it
(see Section 3). Sensor nodes are measuring the applied force 100 times per
second [26], converting the force into an integer value. Therefore, a smart
floor sensor node is generating 400B/s of data at fixed-length encoding using
32b integers. In the simulated network, we approximate this bitrate using
packets of 512B. Each sensor node in the simulation generating a batch of
packets each second, and sending one packet of the batch to each of its local
sensor nodes. We refer to local sensor nodes of a node at coordinates (x, y) as
the sensor nodes whose coordinates are in the range (x±bk2c, y±bk2c), (x, y)
excluded, k one dimension of a k× k kernel. Clocks of all nodes are synced,
and a batch identifier is applied to packets. Packets are not sent all at the same
time, but each packet is sent at a randomly chosen time in a 1 − ∆t second
time interval (∆t computed from the kernel size and link bitrate to allow the
packets to reach the destination before the next batch of packets commences
issuing). Packets that do not reach the destination within one second after
their batch starts issuing are counted as lost packets.

The simulated network consists of a 15× 15 grid of sensor nodes. Nodes
are linked following two network topologies the plain grid, and the diagonal
grid. Links between nodes are full-duplex point-to-point links of bitrate dr.
dr being an independent variable of values dr = {0.125, 0.25, 0.5, 1, 5, 10}–
Mbps. Bitrate values of dr were chosen to approximate bitrate values of
commonly used communication standards in IoT and sensor networks (e.g.,
RS-232, UART, USB, and Ethernet). Each sensor node acts also as a router.
Routing tables of nodes are statically computed at network deployment using
the Dijkstra Shortest Path First algorithm [4]. A simulation was ran for each
combination of independent variables network topology, link bitrate dr, and
kernel size k. Kernel size values of k = {3, 5, 7} should be appropriate since,
on the smart floor, a larger kernel size will cover an area much larger than the
interested detection area of a fall event. (The smart floor includes 16 pressure
sensors deployed on a surface of 1.2 m2.)

Data were collected only from one sensor node during the simulation,
the one located in the middle of the grid, precisely at coordinates (7, 7).
Only this node was monitored since it is located in the central portion of
the network, where the communication overhead is condensed. The recorded
data include TT of packets reaching the monitored node and packet loss
throughout the whole network. Figures 5 and 6 display scatter plots of
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Figure 5 Scatter plots of packets TT, at combinations of independent variables: topology
plain grid, bitrate dr = {0.125, 0.25, 0.5, 1, 5, 10}–Mbps and kernel size k = {3, 5, 7}.
Data from the node at coordinates (7, 7).

Figure 6 Scatter plots of packets TT, at combinations of independent variables: topology
diagonal grid, bitrate dr = {0.125, 0.25, 0.5, 1, 5, 10}–Mbps and kernel size k = {3, 5, 7}.
Data from the node at coordinates (7, 7).
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Figure 7 Percentage of packets sourcing from sensor nodes at coordinates (7 +X, 7 + Y )
that do not reach the monitored node within one second after their batch starts issuing. The
monitored node is at coordinates (7, 7). Figure (a) diagonal grid topology. Figures (b),(c),(d)
plain grid topology. We have not observed packet loss on the monitored node in other
combinations of considered independent variables topology, bitrate, and kernel size.

packet TT. In the former, the network is deployed following the plain grid
topology, and in the latter, the network is deployed following the diagonal
grid topology. Table 1 presents summary statistics of packet TT and packet
loss. Figure 7 display the percentage of packets sourcing from sensor nodes
local to the monitored node that do not reach the monitored node.

5.2 Experimental Results

From plots in Figures 5 and 6 can be seen, that the data is not normally
distributed. We believe that the reason behind the non-normal distribution
of packet TT is that packets are traveling through multiple nodes to reach the
destination, some packets traveling through more nodes than other packets
due to kernel size. Moreover, we notice that at lower datarates (dr ≤ 0.5),
packet TT begin to spread. A possible cause for the spread of TT is traffic
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Table 1 Summary statistics of packet TT recorded at the node at coordinates (7, 7). The
column % packet loss expresses the packet loss of the whole network at selected independent
variables
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Plain grid 3 0.125 0.03482 0.05443 0.11952 0.01915 0.03488 0.06963 0.06976

0.25 0.01741 0.0266 0.05191 0.00906 0.01744 0.03432 0.03488

0.5 0.0087 0.01313 0.02246 0.00439 0.00872 0.01478 0.01744

1 0.00435 0.00656 0.0117 0.00219 0.00436 0.00789 0.00872

5 0.00087 0.00131 0.00175 0.00044 0.00087 0.00131 0.00174

10 0.00044 0.00065 0.00131 0.00022 0.00044 0.00065 0.00087

5 0.125 0.03482 0.14719 0.43254 0.07272 0.09082 0.13952 0.19282 1.7

0.25 0.01741 0.05089 0.14889 0.02183 0.03488 0.05232 0.06825

0.5 0.0087 0.02324 0.05463 0.0093 0.01744 0.02611 0.02843

1 0.00435 0.01122 0.02645 0.00443 0.00872 0.01306 0.0131

5 0.00087 0.00219 0.00461 0.00085 0.00174 0.00261 0.00262

10 0.00044 0.00109 0.00218 0.00042 0.00087 0.00131 0.00131

7 0.125 0.10553 0.39668 0.67717 0.15938 0.27151 0.38481 0.51607 86.9

0.25 0.01741 0.14409 0.49108 0.0792 0.08454 0.13234 0.19204 5

0.5 0.0087 0.03858 0.12956 0.0174 0.02616 0.03668 0.04988

1 0.00435 0.01658 0.04086 0.00686 0.01306 0.01741 0.0218

5 0.00087 0.0031 0.00646 0.00123 0.00261 0.00348 0.00435

10 0.00044 0.00154 0.00318 0.00061 0.00131 0.00174 0.00218

Diagonal grid 3 0.125 0.03482 0.03487 0.03494 4e-05 0.03482 0.03488 0.03488

0.25 0.01741 0.01743 0.01747 2e-05 0.01741 0.01744 0.01744

0.5 0.0087 0.00872 0.00874 1e-05 0.0087 0.00872 0.00872

1 0.00435 0.00436 0.00437 1e-06 0.00435 0.00436 0.00436

5 0.00087 0.00087 0.00087 1e-06 0.00087 0.00087 0.00087

10 0.00044 0.00044 0.00044 1e-07 0.00044 0.00044 0.00044

5 0.125 0.03482 0.0667 0.17552 0.02454 0.03494 0.06976 0.07564

0.25 0.01741 0.03059 0.07342 0.00979 0.01744 0.03488 0.03494

0.5 0.0087 0.01483 0.03921 0.00442 0.00872 0.01744 0.01744

1 0.00435 0.00736 0.01476 0.00214 0.00436 0.00872 0.00872

5 0.00087 0.00146 0.00262 0.00041 0.00087 0.00174 0.00174

10 0.00044 0.00073 0.00131 0.00021 0.00044 0.00087 0.00087

7 0.125 0.03482 0.19328 0.56775 0.10669 0.10756 0.18028 0.26753 8

0.25 0.01741 0.05129 0.14832 0.02147 0.03488 0.05232 0.06473

0.5 0.0087 0.02204 0.05592 0.00785 0.01744 0.02611 0.02621

1 0.00435 0.01054 0.02346 0.00353 0.00872 0.01306 0.01308

5 0.00087 0.00205 0.0041 0.00066 0.00174 0.00261 0.00262

10 0.00044 0.00102 0.00175 0.00033 0.00087 0.00131 0.00131

congestion; packets are waiting for links to be freed. In Figure 7 can be seen,
that at kernel size k = 7 and bitrate dr = 0.125 Mbps, there is a considerable
difference in packet loss between plain grid and diagonal grid topology. The
difference can be noticed also in Table 1. Furthermore, in Table 1 can be
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seen that severe network congestion occurs only at plain grid topology at
parameters: k = 7 and bitrate dr = 0.125 Mbps with packet loss ratio at
87%. A two-tailed Mann-Whitney U test showed that there is a significant
difference in packet TT between a network deployed following the plain grid
topology and one deplyoed following the diagonal grid topology. We ran the
test at bitrate dr = 10 Mbps and kernel size k = {3, 5, 7}. Test results:
k = 3 (W = 176082, p-value < 2.2e−16), k = 5 (W = 1516573, p-value
< 2.2e−16),k = 7 (W = 5879408, p-value < 2.2e−16).

6 Conclusion and Future Work

In this contribution, we depicted the future development of our smart floor
as a non-intrusive fall detection system. We gave a brief overview of
the fall detection problem and how it is solved using technology solutions,
highlighting our system’s potential.

We proposed a technique to partially process the CNN inference on sensor
nodes of a grid-shaped sensor network, and we discussed the application of
this technique to our system. The proposed solution that will fit the smart
floor needs is able to adapt to changes in the sensor network topology, does
not require a new CNN training for each deployment, effectively reduces
computation load on the end system, and the activity extraction procedure
cuts the data transfer overhead in the sensor network.

Our research is complemented by a simulation designed to emulate the
communication overhead of the proposed technique in grid-shaped wired
sensor networks. Simulation results show that severe network congestion
occur at plain grid topology when large convolution kernels are used (k > 5)
in networks with low bitrate links (dr ≤ 0, 125 Mbps). Interestingly, at
the same configuration parameters, the severe network congestion was not
observed at diagonal grid topology.

Considerably more research will need to be done on the activity extraction
procedure since the end objective is to develop a privacy-preserving system,
and the activity extraction procedure could potentially provide location pri-
vacy by removing any linkage to the source of the data through the grouping
of data in anonymous ready to process chunks.

An advanced activity extraction procedure could be applied to coordinate
sensor nodes and in-network perform the whole CNN inference processing.
Therefore, the sensor network will communicate with external systems only
to report falls.

38 2.2. PAPER 2



92 N. Hrovatin et al.

Acknowledgements

The authors gratefully acknowledge the European Commission for funding
the InnoRenew project (Grant Agreement #739574) under the Horizon2020
Widespread-Teaming program and the Republic of Slovenia (Investment
funding of the Republic of Slovenia and the European Regional Development
Fund). They also acknowledge the Slovenian Research Agency ARRS for
funding the project J2-2504.

References

[1] Ejaz Ahmed, Arif Ahmed, Ibrar Yaqoob, Junaid Shuja, Abdullah Gani,
Muhammad Imran, and Muhammad Shoaib. Bringing computation
closer toward the user network: Is edge computing the solution? IEEE
Communications Magazine, 55(11):138–144, 2017.

[2] F Arifin, H Robbani, T Annisa, and NNMI Ma’Arof. Variations in
the number of layers and the number of neurons in artificial neural
networks: Case study of pattern recognition. In Journal of Physics:
Conference Series, volume 1413, page 012016. IOP Publishing, 2019.

[3] Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez,
Pieter Simoens, Piet Demeester, and Bart Dhoedt. Distributed neural
networks for internet of things: The big-little approach. In Internet
of Things. IoT Infrastructures, pages 484–492. Springer International
Publishing, 2016.

[4] Stuart E Dreyfus. An appraisal of some shortest-path algorithms. Oper-
ations research, 17(3):395–412, 1969.

[5] Rong Du, Sindri Magnusson, and Carlo Fischione. The internet of things
as a deep neural network. IEEE Communications Magazine, 58(9):20–
25, 2020.

[6] Le Fang, Yu Wu, Chuan Wu, and Yizhou Yu. A non-intrusive elderly
home monitoring system. IEEE Internet of Things Journal, 2020.

[7] Guodong Feng, Jiechao Mai, Zhen Ban, Xuemei Guo, and Guoli Wang.
Floor pressure imaging for fall detection with fiber-optic sensors. IEEE
Pervasive Computing, 15:40–47, 03 2016.

[8] Yuta Fukushima, Daiki Miura, Takashi Hamatani, Hirozumi Yam-
aguchi, and Teruo Higashino. Microdeep: In-network deep learning
by micro-sensor coordination for pervasive computing. In 2018 IEEE
International Conference on Smart Computing (SMARTCOMP), pages
163–170. IEEE, 2018.

CHAPTER 2. PUBLISHED PAPERS 39



In-Network Convolution in Grid Shaped Sensor Networks 93

[9] Rafael C Gonzalez, Richard E Woods, and Barry R Masters. Digital
image processing third edition. Pearson Prentice Hall, pages 743–747,
2008.

[10] R Jan Gurley, Nancy Lum, Merle Sande, Bernard Lo, and Mitchell H
Katz. Persons found in their homes helpless or dead. New England
Journal of Medicine, 334(26):1710–1716, 1996.

[11] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dow-
ell, and Joseph Kopena. Network simulations with the ns-3 simulator.
SIGCOMM demonstration, 14(14):527, 2008.

[12] Nada B Jarah. Deep learning in wireless sensor network. Journal of Al-
Qadisiyah for computer science and mathematics, 13(1):Page–11, 2021.

[13] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile devices.
In 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 1–12. IEEE, 2016.

[14] F Le Deist and M Latouille. Acceptability conditions for telemonitoring
gerontechnology in the elderly: optimising the development and use of
this new technology. Irbm, 37(5-6):284–288, 2016.

[15] Zewen Li, Wenjie Yang, Shouheng Peng, and Fan Liu. A survey of
convolutional neural networks: analysis, applications, and prospects.
arXiv preprint arXiv:2004.02806, 2020.

[16] Wen-Hwa Liao, Jang-Ping Sheu, and Yu-Chee Tseng. Grid: A fully
location-aware routing protocol for mobile ad hoc networks. Telecom-
munication systems, 18(1):37–60, 2001.

[17] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan Kautz. Hand
gesture recognition with 3d convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
workshops, pages 1–7, 2015.

[18] Mithun Mukherjee, Rakesh Matam, Constandinos X Mavromoustakis,
Hao Jiang, George Mastorakis, and Mian Guo. Intelligent edge comput-
ing: Security and privacy challenges. IEEE Communications Magazine,
58(9):26–31, 2020.

[19] Hrovatin Niki. Neintruzivna identikacija padcev s pomočjo pametnih
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1. Motivation and significance

Wireless Sensor Networks (WSN) commonly consist of a large
number of sensing nodes deployed in a dynamic environment
for specific monitoring purposes. Nodes must self-configure and
collaborate with other nodes to autonomously form a network
without infrastructure where data can flow from sensor nodes to
external actors interacting with sink nodes. Sensor nodes are low-
cost devices equipped with sensors and constrained in processing,
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bandwidth, storage, and energy resources. On the other hand, sink
nodes are not severely resource-constrained, and their role is to
act as a gateway to external systems requiring data from sensor
nodes. However, these particular WSN characteristics of low-cost
devices, multi-hop routing, and no infrastructure that shape the
versatility of WSNs make them subject to various attacks [1].

The large number of sensor nodes composing a WSN allows
very granular monitoring of the environment; nonetheless, a
large number of sensing nodes imply large amounts of data, and
data must be processed to extract valuable information. How-
ever, typical solutions convey all the sensed data to a central
processing point, usually in the cloud. Therefore, missing the
opportunity to take advantage of the computing power of nodes

https://doi.org/10.1016/j.softx.2022.101067
2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The figure displays the onion message and its circuit-like path in the WSN. The onion message path is encoded in the onion head. The onion body carries
computer code and a binary string used to store an aggregated value. The computer code executes at sensor nodes in the onion message path, embedding the
execution result in the carried binary string.

forming the WSN and overloading the multi-hop network raised
by resource-constrained technology. Several privacy-preserving
data aggregation solutions emerged [2–5] to preserve privacy
against attackers, reduce the communication overhead, and em-
ploy sensor node processing capabilities. These solutions work by
aggregating sensor readings from multiple nodes along routing
paths as data travel toward the sink node. The feasibility, and
effectiveness of these solutions are usually tested in simulation
environments before deployment. However, even popular net-
work simulators such as NS3 [6] lack a generalized framework
for WSN simulations that would serve as a common denominator
for reproducibility of research results. In this paper, we present
a simulation framework for WSN using NS3. We validate our
approach using the framework to implement a general purpose
data and query privacy preserving protocol for wireless sensor
networks using onion routing [7].

2. Problem overview

PPWSim was developed to study the implementation of the
privacy-preserving communication protocol [7] in a WSN and:
(a) assess the response time, (b) conduct a scalability study, (c)
determine if the network topology significantly affects the pro-
tocol performance. The software released with this manuscript
is an extended version allowing broader manipulation of the
simulation environment for future research.

The communication protocol design is characterized by mes-
sages containing a layered object made of several encryption
layers similar to the one employed in the Onion Routing [8].
Besides the layered object, messages defined by our protocol also
contain a payload. By our protocol design, the payload consists
of information related to edge data processing (general-purpose
computer code) and a binary string whose purpose is to carry
an aggregated value. In the rest of the manuscript, the software,
and the documentation, we refer to the onion head as the layered
object, the onion body as the message payload, and the onion
message as the message consisting of the onion head and the
onion body. The onion message is depicted in Fig. 1.

The communication protocol leads computer code and a par-
tial result through WSN nodes, each node in the message path ex-
ecuting the computer code and contributing with its sensed value
to the partial result. When the message returns back to the issuer
sink node, it contains the required aggregated value computed on
sensor readings of nodes specified at message construction.

The simulator implementation differs from the technique pre-
sented in [7] by the following aspects: (1) the simulator does not
constrain processing time of the onion message at sensor nodes,
(2) the simulator forwards padding bytes instead of computer
code, (3) onion head layers does not include symmetric encryp-
tion keys (the onion message is processed alike on each sensor
node in the onion message path).

3. Software description

To pursue research questions raised by the conceptualized
privacy-preserving data aggregation protocol, we developed a
simulator based on the NS3 [6] simulation environment. The sim-
ulator allows the user to manipulate various parameters affecting
the traveling time of onion messages. We refer to the traveling
time of onion messages as the elapsed time between issuing the
onion message from the sink node and the return of the issued
onion message to the issuer sink node.

3.1. Software functionalities

This section describes software functionalities and parameters
affecting the simulator output. To facilitate the use of the simula-
tor, we implemented the setup of simulation parameters through
a configuration file. Moreover, parameters simulation name,
simulation seed, routing, topology, and number of nodes
in the network can be set through command-line arguments.
An accurate description of the software parameters can be found
in the software repository.

The simulator constructs a network consisting of s sensor
nodes and one sink node. Sensor nodes are deployed on a plane
based on one of the following deployment schemes: the grid

2
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topology (GT) and the random disc topology (RDT). In the former,
sensor nodes are deployed according to a grid structure; each sen-
sor node is equidistant from the closest sensor nodes in cardinal
directions. In the latter, sensor nodes are randomly deployed on a
disc-shaped plane. The sink node is deployed in the center of the
network in both GT and RDT. Both deployment schemes allow the
user to maintain the same average node density at diverse values
of s.

The wireless communication in the simulated network ad-
heres to the IEEE 802.11n standard for local wireless networks.
Our simulator allows the choice between the 2.4 GHz and 5 GHz
carrier frequency and various modulation coding schemes [9].

Each node in the WSN has installed the IP protocol, and mes-
sages are transmitted over the TCP protocol to ensure a reliable
in-order data delivery. Since WSNs are usually characterized by a
small Maximum Segment Size (MSS) and Maximum Transmission
Unit (MTU) [10], the simulator allows to set these parameters
to the required value. Messages are routed using a routing algo-
rithm for multi-hop ad-hoc wireless networks provided by the
NS3 environment. We implemented a simplified procedure for
the installation of the routing algorithm by setting the specific
parameter. The supported routing algorithms for multi-hop ad-
hoc wireless networks are: Ad Hoc On-Demand Distance Vector
(AODV) [11], Dynamic Source Routing (DSR) [12], Optimized Link
State Routing Protocol (OLSR) [13] and Destination-Sequenced
Distance Vector (DSDV) [14].

Our simulator implements cryptographic operations using the
Libsodium library [15]. Layers of the onion head are encrypted
by applying the Sealed box, a public-key cryptosystem based on
the Curve25519 [16] with the key length of 256b. Therefore, each
encryption layer increases the onion head size by 48bytes due to
the shared secret.

Onion messages are executing in the WSN as explained in
Section 2; moreover, the simulator allows to control the following
properties of onion messages:

• Onion message path length: number of sensor nodes to in-
clude in the onion message path.

• Uniform onion head size: the onion head size is maintained
uniform by adding padding to the onion head when a layer
of the onion head is decrypted.

• No onion body: onion messages will not include the onion
body.

• Onion body size: set the onion body size to emulate the
transportation of computer code in the onion body.

• Data aggregation: the onion body contains a value, and each
sensor node aggregates its sensor reading to the value car-
ried in the onion body.

Due to the high error rate of wireless multi-hop networks
and the usually large size of onion messages, we implemented a
watchdog timer to interrupt the forwarding of an onion message
if it does not reach the next hop within the selected time frame.
Furthermore, the watchdog timer will also trigger the issuing of a
new onion message having the same properties as the interrupted
one.

3.1.1. Simulator output
The simulator output is written on the stdout and on an out-

put file. An example of the output file content is listed as given in
Box I.

The output file contains a description of the parameters used
to run the simulation and four CSV headers. The CSV headers de-
scribe the data rows of the output file. In the following paragraph,
we describe the data output of the simulation.

The onion_details rows include the traveling time of onion
messages, which is measured from the issuing by the sink node

until the onion message returns to the sink node. onion_routing
rows enclose the time an onion message travels from one node
in the onion message path to the next node in the onion message
path. Both onion_details and onion_routing include details
about the onion message size in bytes and the onionId an iden-
tifier to uniquely identify an onion message among data rows.
timeout rows notify interrupted onion messages. The
node_details rows report (X,Y) coordinates of nodes able to
communicate with the sink node (sensor nodes listed in the
⟨IP, public−key⟩ structure, as explained in Section 3.2). Moreover,
if OLSR routing is selected, also the node degree is reported. We
refer to the node degree as the number of one-hop neighbors of
a node.

Besides the mentioned output file, each simulation run ad-
ditionally produces statistics about the communication traffic
generated during the simulation. The communication traffic is
measured at MAC and application layers separately. Therefore,
allowing to compare the ratio between the data transmitted
at the application layer and the total communication overhead
generated in the network.

3.2. Illustrative example

The simulator provides a simulation environment for the
privacy-preserving data aggregation protocol described in Sec-
tion 2, allowing the user to adjust parameters described in Sec-
tion 3.1 by setting a configuration file. The simulator is launched
by executing one of the following commands in the NS3 home di-
rectory. The second command demonstrates the use of command-
line arguments.

$ ./waf −−run onion−routing−wsn
$ ./waf −−run "onion−routing−wsn −−a_simNum=0 −−a_name=test
−−a_routing=olsr −−a_topology=grid −−a_nodeNumber=10 "

At simulator start-up, the configuration file is read, and simu-
lation parameters are set up. Then, the network is constructed
according to the selected network topology, and applications
are installed on nodes. Since in the RDT, nodes are deployed at
random locations in the available disc-shaped space, some nodes
might not be able to communicate with the sink node. Therefore,
the simulator works in two phases; the first phase is meant to
identify sensor nodes reachable by the sink node.

In the first phase, sensor nodes start up sequentially to prevent
network congestions, each sensor node sending its public key
to the sink node. The sink node holds a list of reachable nodes
consisting of pairs ⟨IP, public − key⟩, each entry corresponding to
a sensor node able to communicate with the sink node.

In the second phase, the sink node starts constructing an
onion message by selecting sensor nodes to include in the onion
message path. Sensor nodes are randomly selected from the list
of reachable nodes. Onion messages are issued by the sink node
sequentially; after an onion message returns at the sink node, the
following onion message is issued. Onion messages are processed
on sensor nodes conditional to parameters set in the configura-
tion file and mentioned in Section 3.1. The simulator ends when
all onion messages specified in the configuration file complete
their execution.

3.3. Software architecture

The software architecture is presented using the UML class
diagram in Fig. 2 to describe the structure and the UML compo-
nent diagram in Fig. 3 to show the interaction with NS3 modules.
At simulator start-up, the WsnConstructor component reads pa-
rameters defined in the configuration file using the ConfigStore
module, creates nodes and network devices using the Network
module, builds the network topology using the Mobility module,

3
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−−−−−−−−−−−−−−−−−−−−−−−−−−Simulation description−−−−−−−−−−−−−−−−−−−−−−−−−−
Simulation name: test_OLSR_GRID_10_0
Simulation randomstream setup, run: 1, seed:1
Total sensornodes: 10 and 1 sink node
Wireless: IEEE 802.11n at 2.4GHz, , DataMode: HtMcs1, ControlMode: HtMcs1, MTU:1280, MSS:536
Network topology: GRID with row size: 3.
Distance between nodes on X−axis: 60m. Distance between nodes on Y−axis: 60m. Sink node located at x:60,y:60
Routing: OLSR
Routing setup time: 60s, nodes are starting sequentially with 200ms interval, onion starts at: 67s
Onion path lengths: 5 10 15 repeated each path length 1 times.
Simulation started at: Mon Nov 22 15:14:57 2021
−−csv headers−−
onion_details,sim_name,sim_num,num_of_nodes,topology,routing,onion_id,packet_size,onion_head_size

,onion_body_size,onion_path_length,sent_at,recv_at,query_time_to_return
onion_routing,sim_name,sim_num,num_of_nodes,topology,routing,onion_id,send_ip,recv_ip,packet_size

,onion_head_size,onion_body_size,sent_at,recv_at,hop_time
timeout,sim_name,sim_num,num_of_nodes,topology,routing,onion_id,onion_path_length,abort_time
node_details,sim_name,sim_num,num_of_nodes,topology,routing,coord_x,coord_y,node_degree
−−−−−−−−−−−−−−−−−−−−−−−−−−−−Simulation output−−−−−−−−−−−−−−−−−−−−−−−−−−−−
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.1,10.1.0.7,411,267,134,67.800000,67.802884,0.002884
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.7,10.1.0.4,411,267,134,67.802884,67.817742,0.014858
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.4,10.1.0.9,411,267,134,67.817742,67.835166,0.017424
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.9,10.1.0.6,411,267,134,67.835166,67.850985,0.015819
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.6,10.1.0.10,411,267,134,67.850985,67.872124,0.021139
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,1,10.1.0.10,10.1.0.1,411,267,134,67.872124,67.873909,0.001785
onion_details,test_OLSR_GRID_10_0,0,10,grid,olsr,1,411,267,134,5,67.800000,67.873909,0.073909
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.1,10.1.0.10,671,527,134,68.373909,68.378262,0.004352
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.10,10.1.0.9,671,527,134,68.378262,68.396232,0.017970
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.9,10.1.0.11,671,527,134,68.396232,68.413327,0.017095
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.11,10.1.0.4,672,528,134,68.413327,68.421543,0.008216
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.4,10.1.0.7,672,528,134,68.421543,68.423928,0.002385
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.7,10.1.0.5,672,528,134,68.423928,68.444033,0.020105
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.5,10.1.0.4,672,528,134,68.444033,68.461734,0.017701
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.4,10.1.0.2,672,528,134,68.461734,68.480690,0.018956
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.2,10.1.0.5,671,527,134,68.480690,68.497158,0.016468
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.5,10.1.0.9,671,527,134,68.497158,68.517373,0.020215
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,2,10.1.0.9,10.1.0.1,671,527,134,68.517373,68.521615,0.004242
onion_details,test_OLSR_GRID_10_0,0,10,grid,olsr,2,671,527,134,10,68.373909,68.521615,0.147706
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.1,10.1.0.9,931,787,134,69.021615,69.022961,0.001346
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.9,10.1.0.11,931,787,134,69.022961,69.025259,0.002298
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.11,10.1.0.6,931,787,134,69.025259,69.037589,0.012330
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.6,10.1.0.9,932,788,134,69.037589,69.043895,0.006306
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.9,10.1.0.2,932,788,134,69.043895,69.047897,0.004002
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.2,10.1.0.8,932,788,134,69.047897,69.064188,0.016291
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.8,10.1.0.7,932,788,134,69.064188,69.070067,0.005879
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.7,10.1.0.3,932,788,134,69.070067,69.073157,0.003089
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.3,10.1.0.2,932,788,134,69.073157,69.075896,0.002739
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.2,10.1.0.8,932,788,134,69.075896,69.080590,0.004695
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.8,10.1.0.11,932,788,134,69.080590,69.085924,0.005333
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.11,10.1.0.4,932,788,134,69.085924,69.091843,0.005919
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.4,10.1.0.3,932,788,134,69.091843,69.094292,0.002449
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.3,10.1.0.2,931,787,134,69.094292,69.096980,0.002688
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.2,10.1.0.4,931,787,134,69.096980,69.100846,0.003866
onion_routing,test_OLSR_GRID_10_0,0,10,grid,olsr,3,10.1.0.4,10.1.0.1,931,787,134,69.100846,69.105257,0.004411
onion_details,test_OLSR_GRID_10_0,0,10,grid,olsr,3,931,787,134,15,69.021615,69.105257,0.083641
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.1,60,60,8
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.2,0,0,3
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.3,60,0,5
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.4,120,0,3
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.5,0,60,5
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.6,60,180,4
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.7,120,60,5
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.8,0,120,5
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.9,60,120,7
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.10,120,120,4
node_details,test_OLSR_GRID_10_0,0,10,grid,olsr,10.1.0.11,0,180,3
−−−−−−−−−−−−−−−−−−−− Simulation end: Mon Nov 22 15:15:00 2021

Box I.

sets up the wireless communication using the WiFi module, in-
stalls the internet stack using the Internet module, sets up routing
using the corresponding module, installs and starts applications
on nodes using Network and Core modules. The WsnConstructor
component creates one instance of classes OutputManager and
OnionValidator passing them to SensorNode and Sink appli-
cations. The OutputManager instance manages the output of
the simulation writing on the stdout and the output file. The
OnionValidator instance allows checking if the onion message
reached the next-hop node within the watchdog timer.

In the first phase of the simulation, instances of the class
SensorNode send its public-key to the Sink node by calling Hand-

shake(). When the Sink node receives a handshake message, it
registers the sensor node in the m_nodeManager <IP,public-key>

structure.

All messages traveling the WSN are constructed with the
Protobuf library [17] using the ProtoPacket class.

In the second phase of the simulation, the instance of the class
Sink creates an onion message by calling SelectRoute() and Prepare-

Onion(). The method SelectRoute() randomly selects sensor nodes
to include in the onion message path from the m_nodeManager

<IP,public-key> structure. The method PrepareOnion() uses an in-
stance of the class OnionManager to create the onion head.
The OnionManager class extends the OnionRouting class with
the implementation of EncryptLayer() and DecryptLayer() using the
Libsodium library. The abstract class OnionRouting allows onion
head creation and layer decryption while omitting the implemen-
tation of encryption/decryption functions. The constructed Pro-
toPacket instance containing the onion head and the onion body
is then sent to a sensor node by calling the function

4
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Fig. 2. UML class diagram of the main software components.

Fig. 3. UML component diagram showing the interaction of PPWSim components with modules of the NS3 environment. Modules of the NS3 environment include
denominations of utilized classes.

Wsn_node::SendSegment() through a ns3::TcpSocket provided by
the Internet module.

Instances of the class SensorNode that receive the onion
message are notifying the OnionValidator instance by calling
OnionReceived. The onion message is processed using functions
ProcessOnionHead() and ProcessOnionBody(). The onion message is
then sent to the next-hop node, and the SensorNode instance
sets the watchdog timer. When the timer elapses, the SensorN-
ode instance will verify that the next node received the onion
message by calling CheckOnionReceived() of the OnionValidator

instance. If the next node does not receive the onion message,
the onion message forwarding will be interrupted by setting
the m_onionSeq=0 of the OnionValidator instance. The Onion-
Validator instance is shared between all nodes; therefore, the
Sink instance recognizes the interrupted onion message and
starts issuing a new onion message with equal properties to the
interrupted one.

The Wsn_node class also provides methods DisableNode() and
ActivateNode() for disabling and re-enabling a WSN node. The
disable function acts at the physical layer, making the node

5
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unreachable for other nodes and unable to participate in the
routing.

4. Impact

The PPWSim is in the base a WSN simulator with an added
usecase, the data and origin privacy-preserving protocol based on
onion routing. Experiments requiring the basic WSN network as
well as experiments requiring the additional privacy-preserving
characteristics can be simulated on the proposed software.

The WsnConstructor component allows effortless manipula-
tion of generic WSN properties through a configuration file; fur-
thermore, the component is structured in layers corresponding
to the ISO/OSI model [18], allowing intuitive extension of func-
tionalities. The Wsn_node component represents a generic WSN
node that provides transport layer services, data interchange
through Protobuf [17] objects, access to node location informa-
tion, node deactivation/reactivation, and centralized management
of the simulator’s output through the OutputManager component.
Therefore, the Wsn_node component can be extended to model
sensor node or sink node behavior of specific WSN applications,
and the Protobuf integration facilitates the development of com-
munication protocols. The OnionRouting class provided by the
PPWSim is encryption agnostic and can be re-used to develop
other simulators using the onion routing technique [8]. Moreover,
PPWSim is based on the NS3 simulation environment, allowing
further extension with components provided by the NS3. The NS3
provides: error models to simulate noisy channels, PCAP traces
useful for studying location privacy protection in WSNs [19], mo-
bility models to simulate specific scenarios requiring the motion
of nodes [20], and many other tools.

The authors were not able to find any existing simulation that
could be adaptable to special requirements, such as the privacy
preservation that was the main goal of the research described
in [7].

An important portion of the scientific research needs to be
supported by empirical evaluation. New scientific ideas can be
simulated in specially developed software, but the implementa-
tion time along with the inevitable software production problems
can deter scientists from pursuing further research. Simulation
environments, such as NS3, help in rapid development of spe-
cialized simulation environments. After a thorough research of
the available opensource tools, the authors were unable to find
a suitable solution for at the time of writing for the data and
origin privacy-preserving WSN network simulating environment.
The proposed solution is based on an industry leading simulation
environment incorporating the proposed properties.

The software has been used on a few projects at the au-
thors’ home institutions University of Primorska and Innorenew
CoE. The most notable projects were ‘‘Intelligent floor’’ presented
in [21] and ‘‘Mrakova domačija historical site’’, presented in [22].
Already published results presented in [23] are based on the
presented software simulator.

5. Conclusions

This paper presents PPWSim, a simulator based on the NS3 [6]
simulation environment. PPWSim was designed specifically to
study the communication protocol presented in [7]. The simulator
allows the user to set simulation parameters affecting the travel-
ing time of messages in the network. Besides future investigations
on the solution described in [7], the presented software could
serve as a framework for developing other simulators in the scope
of WSNs or simulators using the onion routing technique [8].
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A General Purpose Data and Query Privacy
Preserving Protocol for Wireless

Sensor Networks
Niki Hrovatin , Aleksandar Tošić , Michael Mrissa , and Jernej Vičič

Abstract— The large number of devices characterizing Wireless
Sensor Networks (WSNs) provide the benefits of observing,
tracking, and recording everything; nonetheless, the cumulative
computing power of those devices is typically not utilized,
and the few implementations taking advantage of it neglect
privacy or are application-specific. This manuscript describes a
privacy-preserving protocol that enables WSN nodes to jointly
compute an arbitrary function without disclosing their own
private inputs. The computation takes place at data source nodes,
while computation instructions and intermediate results move
across the network secured by cryptography. The protocol relies
on the Onion Routing technique to provide uniformly distributed
network traffic and confine the knowledge a foreign actor can
gain from monitoring messages traveling the network. We show
that the communication protocol is privacy-preserving against
the external and internal attacker models, and we validate our
protocol implementation using the NS3 network simulator.

Index Terms— Wireless sensor network, privacy, onion routing,
distributed computing, data aggregation.

I. INTRODUCTION

IN THE last decade, the cost reduction of sensor production
and microelectronics has contributed to the development

of large scale Wireless Sensor Networks (WSNs). WSNs are
composed of dozens or hundreds of sensing nodes interlinked
via radio signaling and meant to be easily deployed, self-
configurable, and low cost. Moreover, nowadays, WSN nodes
are powerful enough to store a short history of sensed data
and process it. Therefore, the edge computing paradigm,
which consists in moving computations as close as possible
to data sources applies also to WSNs. Information fusion [1],
declarative query processing [2], and inference [3] were all
considered for in-network execution.
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However, in a typical WSN, data is moving through a
wireless multi-hop network without infrastructure, nodes com-
posing a WSN are generally low-cost and resource-constrained
devices; therefore, it is challenging to secure the network
and guarantee adequate privacy [4]. Moreover, in-network
processing tasks require that several WSN nodes contribute
with their sensed data and processing power to the joint
evaluation of a function; therefore, the privacy of nodes
contributing to the processing is also threatened by other
nodes participating. Research to date in the WSN field has
focused on providing confidentiality by transforming the data
using cryptography [5] or other obfuscation techniques [6]
and allowing several nodes to operate over the transformed
data without the possibility of extracting the private data from
other nodes involved in the joint computation. This approach
led to the development of several solutions [7]; nonetheless, in
solutions considered practical for WSNs, the technique used
to conceal data restricts the set of operations applicable to
the transformed data. There is some evidence that anonymous
communication could provide privacy for joint computation
tasks [8]; however, due to the high privacy requirements of
some applications and the data being typically self-descriptive,
this category of approaches has been neglected.

In this manuscript, instead of allowing a set of WSN
nodes to evaluate a function over obfuscated data, we exploit
anonymity to conceal nodes involved in the computation,
establishing a strong separation between context and data.
The WSN is a system of devices sensing features of the
surrounding environment. The data collected by sensor nodes
describe events or changes; the sensor node’s location reveals
where the phenomena occurred. Therefore, the WSN data
loses its descriptive utility without enough contextual infor-
mation. To achieve the separation between data and context,
we design a novel communication protocol inspired from
the Onion Routing [9] protocol that allows only specific
nodes to participate in the joint evaluation of a function
while concealing them among a set of nodes performing the
onion routing operation without accessing the computation.
Nodes participating in the joint computation receive a message
enclosing computation instructions and a partial result. Privacy
is secured as the technique conceals the context of the partial
result from participating sensor nodes. Although the data,
represented by the partial result, can be observed by other
nodes involved in the computation, the context – such as
information on the number, identity, and location of nodes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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contributing to the partial result – remains hidden. Therefore,
without access to key contextual information, the partial result
loses its significance for all nodes obtaining it, except for the
message origin, which defined the message path and, as such,
inherently possesses knowledge of the context.

Throughout the manuscript, we are looking into the specific
case of indoor air quality monitoring since it receives an
increasing interest as it contributes to reducing the environ-
mental impact of buildings, to improving building occupants’
well-being, and to enhancing future building design [10], [11].
WSN deployed for indoor air quality monitoring relies on
sensors collecting data about temperature, C O2, V OC , P M ,
relative humidity, etc.

Indeed, a large WSN relying on high quality transducers can
reach prohibitive costs. Air quality transducers are particularly
expensive, and low cost options are raising interest [12].
A common practice to reduce the overall WSN cost is the
dense deployment of nodes equipped with low-cost transduc-
ers. Reading quality is then improved by aggregating data from
multiple nodes. However, in typical WSN implementations, the
data is aggregated only at network endpoints resulting in high
communication overhead since each node needs to report its
sensed value and missing the opportunity to take advantage of
the nodes’ computing capabilities when conveying the whole
processing load on the end system.

There are several techniques for aggregating sensor read-
ings in-network as data moves towards the sink nodes [13].
These techniques also provide privacy preservation focusing
on data confidentiality and are designed to operate in periodic
reporting settings. Whereas if these techniques are applied in
the on-demand setting to retrieve data from the building’s
individual locations, the resulting network traffic could be
informative. In particular, wireless communications use the
radio frequency spectrum to broadcast signals over the air;
transmitted signals can be intercepted, then analyzed and
backtracked to illicitly acquire information. Several studies
focus on this complication considering location privacy pro-
tection [14] to conceal the location of sink nodes or detected
events in WSNs deployed in unattended environments.

However, the adoption of WSNs for indoor monitoring
is increasing [15], [16], [17], [18], raising the need for
further privacy measures against traffic analysis when aggre-
gating data in-network in on-demand settings. Traffic analysis
attacks [19] are of particular concern in building monitoring.
These attacks allow adversaries to remain unnoticeable, simply
listening to network traffic, and extracting features like mes-
sage size, frequency, processing time, etc. By associating these
features with facts or secrets, machine learning techniques
can infer important details about the monitored environment,
which could potentially lead to the compromise of building
security.

This context motivates the need to combine privacy preser-
vation and distributed data computing on WSN nodes to
employ node’s computing capabilities without revealing sensor
readings or sensitive contextual information.

In this paper, we describe the following contributions:
1) We present a communication protocol that allows WSN

nodes to jointly compute an arbitrary function over their

inputs while ensuring the privacy of inputs and operating
without revealing significant contextual information.

2) The communication protocol is based on a novel use of
the Onion Routing [9] technique.

3) We provide privacy preservation analysis showing that
the communication protocol is secure against the exter-
nal and internal attacker models.

4) We provide results of the privacy-preserving protocol
simulated using the NS3 simulator [20].

The rest of this paper is organized as follows: Section II
gives a brief overview of the privacy preserving protocol.
Section III reviews related work and highlights the originality
of our solution. Section IV details the general-purpose data
and query privacy preserving protocol. Section V gives privacy
preservation analyses. Section VI presents results of the pri-
vacy preserving communication protocol simulated using the
network simulator NS3. Section VIII concludes the manuscript
and gives guidelines for future work.

II. SOLUTION OVERVIEW

This manuscript describes a communication protocol based
on the Onion Routing [9] technique for anonymous com-
munication over a computer network. We similarly employ
messages structured into encryption layers, such that a layer
can be decrypted only by the targeted node revealing an inner
encryption layer addressed to another node in the network.
Therefore, message decryption is carried out gradually by
leading the layered message across WSN nodes following the
precise order given at message construction. Encryption layers
are not enclosing only the inner layer, but also additional secret
information revealed only to the node decrypting that layer.
Path details and encryption keys are in this way conveyed
to in-path nodes. Path details are delivered in encryption
layers to not disclose the whole message path, such that a
node receiving the message can identify only the previous
sender and the next receiver of the message. Encryption key
pairs, however, are delivered only to a subset of nodes in the
message path. Moreover, and differently from the traditional
onion routing [9], encryption keys are not used to establish
an anonymous channel. Instead, encryption keys give access
to the payload accompanying the layered object. Please note
that pairs of symmetric encryption keys include distinct keys;
however, pairs are chained through layers of the layered object,
as can be seen from Fig. 1. Therefore, nodes in the message
path serve as the anonymity set1 for nodes accessing the
payload since each node in the message path could potentially
receive symmetric encryption keys from the decryption of the
layered object. Consequently, the identity of nodes access-
ing the payload remains concealed to nodes receiving the
message.

In this paper, the WSN acts as a service. Authorized users
construct queries and issue them to WSN gateway nodes.
We refer to a query as the message composed of a head

1Based on the definition given by Pfitzmann and Köhntopp [21], the
anonymity set is the set of subjects that might cause an action. In our protocol,
the anonymity set is the set of nodes deciphering a layer of a layered object.
If layer decryption reveals encryption key pairs to a node, then the node
executes the computation; the action.
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Fig. 1. Representation of the query, made of the head and the body. Notice
that symmetric encryption keys are not enclosed in each layer of the query
head. The figure displays the query’s path forming a circuit.

consisting of the previously described layered object made
of public-key encryption layers and a body consisting of the
pair <task, binary string> as shown in Fig. 1. We refer to
a task as computation instructions specifying the operations
to be performed by sensor nodes. The binary string is of
fixed size and stores task execution results. Each query head is
constructed to lead the query over a path closing a circuit and
delivering symmetric encryption key pairs to specific nodes
in the query path allowing only them to access the query
body content, execute the task and store results to the binary
string. Other nodes in the query path not receiving symmetric
encryption keys from query head decryption cannot access the
query body content and only forward the query to the next-
hop node. The query path closes a circuit, conveying back the
results of the joint computation.

III. RELATED WORK

Many systems were developed to preserve users’ privacy
while communicating on large public networks like the Inter-
net. Several solutions originate from the work of Chaum [22]
on mixnet. Mixnet-based schemes rely on a set of mix
servers that receive encrypted messages, and after a sufficiently
large amount of time, messages are re-ordered and released
in batches to hide the correspondence between sender and
receiver. Onion Routing [9] is a solution to preserve users’
anonymity while avoiding latency introduced by mix servers.
The solution relies on source routing using multiple encryption
layers to route a message through a set of at least three routing
servers (onion routers) to create an anonymous connection.
Source routing [23] is a technique to route a message through
a set of nodes by encoding path information in the message.
In onion routing, path information is encrypted in each encryp-
tion layer of the message, and when the message is routed
through onion routers, at each hop, a layer of encryption is
removed from the message revealing the next hop. Therefore,
no one of the actors involved in the communication will
know the whole message path apart from the source of the
message. In TOR [24] the second-generation onion routing, the
message path is similarly protected by encryption layers, but
the anonymous connection is established incrementally using
key exchange schemes. Although the mentioned solutions

effectively provide anonymous communication between two
parties, they rely on the background traffic of large networks.
Furthermore, the mentioned solutions protect the logical loca-
tion of communicating parties (IP-address), while in WSNs,
the privacy of communicating nodes can also be disclosed
by observing the physical wireless communication. Despite
the computational requirements and potential eavesdropping
threats, the application of onion routing in WSNs has been
proposed several times in the literature [25], [26], [27]. The
paper [27] proposes an onion routing based mechanism for
MQTT protocol communications, leveraging dynamic broker
bridging to enable smart devices to subscribe and publish
messages anonymously. In [26], a trust-based secure directed
diffusion routing protocol for WSNs is proposed. The protocol
leverages the onion routing for secure and anonymous end-to-
end data transmission.

The literature review conducted by Li et al. [7] divides
the privacy problem in WSNs into data privacy and context
privacy. Data privacy is achieved if a communication protocol
does not leak the collected data to external and internal
adversaries. External adversaries eavesdrop on wireless com-
munications, while internal adversaries have knowledge of
some encryption keys used in the sensor network. In contrast,
context privacy relates to communication traffic characteristics,
as this can reveal insights over activities in the monitored
environment. The paper [28] highlights the importance of
concealing the sensor technology equipped on smart home
devices, and the authors describe a technique for the periodic
change of device identity that protects the network against
external adversaries. Location privacy protection was exten-
sively studied in event-driven WSNs using various routing
strategies [14] aiming to conceal the location of data source
nodes and sink nodes. The location of data source nodes can
reveal insights over events detected by the WSN. Whereas
keeping secret the location of sink nodes precludes the attacker
from physically destroying sink nodes, which are of central
importance for the correct functioning of the WSN. However,
applying location privacy protection schemes in our scenario
is not adequate since we aim to aggregate data from multiple
nodes that may be closely located, and routing strategies
designed to anonymize source and destination might disclose
the region of interest.

The straightforward privacy-preserving approach to retrieve
data from a region of interest in a WSN was highlighted by
Carbunar et al. [29], and consists in gathering data from all
sensor nodes in the network and then keep readings only from
the sensor nodes of interest. Although effective, this approach
is highly inefficient due to the multi-hop routing in WSNs
requiring data to be relayed several times to reach the sink
node. The efficiency of this approach was improved in [30]
using compressive sensing [31] and public-key homomorphic
encryption [32]. Compressive sensing is applied to transform
sensor readings in a vector of coefficients which is aggregated
with other node vectors along the routing paths to the sink
node; therefore, requiring a low communication overhead of
O(M N ), M the size of the vector of coefficients. Homomor-
phic encryption ensures privacy when aggregating vectors of
coefficients.
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The solution efficiently gathers data from multiple sensor
nodes. However, in WSNs, neighboring nodes often share
the same monitored area, and data sensed from neighbor
nodes is often correlated. Therefore, data gathering schemes
collecting raw data gather many duplicated data, do not utilize
sensor node computing capabilities to process data, and pose
a substantial communication load on the network even if the
data need involves a small subset of network nodes.

In-network data aggregation [33] could effectively reduce
the network’s communication overhead and employ sensor
node processing capabilities by aggregating multiple sensor
node readings along routing paths toward the sink node.
Therefore, the whole network works as a distributed pro-
cessing mechanism delivering the final aggregated value to
the sink node. Privacy preserving data aggregation solutions
ensure data privacy against external and internal attackers [34],
[35], [36]. However, proposed techniques do not consider the
triggering of a data aggregation process that affects only a
subset of nodes in the network without disclosing participating
nodes. In building monitoring, the retrieval of aggregated
data from the whole network of sensors can approximate the
air quality. However, obtaining data from individual building
locations is imperative to give a granular assessment.

The field of secure multi-party computation is concerned
with enabling a set of parties to jointly compute an arbitrary
function without disclosing their inputs [37]. A considerable
amount of literature has been published on this topic, and some
schemes have been implemented [38]. However, the secure
multi-party computation fundamental protocols are resource
demanding, and current implementations supporting arbitrary
computation are not yet adequate for WSNs.

According to Carbunar et al. [29] a privacy-preserving
query mechanism in WSNs must hide from attackers the
location and identity of queried sensor nodes but also the
relationship between individual queries while maintaining an
adequate trade-off between privacy and efficiency. Carbunar
et al. addressed query privacy needs with a WSN that acts as
a service accessible through dedicated servers. The proposed
solution hides query details from servers that provide access
to the WSN. The WSN is mapped into regions and queries
target aggregator nodes of individual regions. Query privacy is
assured using source routing and by hiding a query constructed
by the client with additional bogus queries targeting different
regions of the WSN.

De Cristofaro et al. [25] proposed a privacy-preserving
solution to retrieve WSN data without disclosing the identity
of data source nodes to the network owner or attackers. The
solution relies on source routing [23] using the onion routing
to hide the query path and symmetric encryption to provide
data privacy and data integrity. However, the proposed solution
allows only retrieving individual sensor node readings without
the possibility of in-network processing.

We state that our solution intrinsically follows the work on
query privacy started by Carbunar et al. and De Cristofaro
et al.. The originality of our proposed solution lies in the
unique use of the onion routing technique to conceal nodes
participating in the joint computation that takes place in-situ.
Therefore, without aggregator nodes. Since aggregator nodes

are gathering data from multiple sensor nodes, they are an
appealing target for attackers and a point of failure for the
network.

To the best of our knowledge, this is the first solution that
allows the in-network joint computation of arbitrary functions
in WSNs without aggregator nodes and keeps the participating
nodes and their inputs private.

IV. DEFINITION OF THE PRIVACY-PRESERVING PROTOCOL

A. The WSN Model

Throughout the manuscript, we consider a WSN as a
wireless multi-hop network consisting of two types of nodes.
The majority are nodes equipped with sensing technology; we
refer to these nodes as sensor nodes. The other type of node
is named sink node, which purpose is to act as a gateway to
external systems. The WSN relies on a routing protocol for
multi-hop wireless networks, and sensor nodes in the WSN
are configured at deployment with a static IP address and a
public-private key pair. Sink nodes maintain a registry holding
the following information of sensor nodes: IP address, public
key, sensed physical quantities, and location of the building in
which the sensor node is positioned (e.g., room237). The sink
node registry can be accessed by authorized users willing to
query the WSN. For simplicity, we refer to an authorized user
as the user.

B. The Privacy-Preserving Communication Protocol

The network operates following an on-demand model: the
user first access the sink node registry to obtain information
about the WSN nodes, then constructs one or multiple queries
as explained in Section IV-B.2; each query consists of a head
and a body.

• Head: an onion-like structure made of encryption layers,
the head is of fixed size L H bytes. Layer decryption
reveals the next-hop address (IP) or the next-hop address
and a pair of symmetric encryption keys.

• Body: consists of t the task and w a fixed-size binary
string used to transport the task execution results back
to the user that issued the query. The query body is
encrypted using symmetric encryption and is of fixed
size L B bytes.

Queries issued to the network follow the query path encoded
in the query head, query processing at sensor nodes is
explained in Section IV-B.3, and it branches based on the case
that query head decryption reveals symmetric encryption keys.
We refer to decoy nodes as the sensor nodes in the query
path that do not receive symmetric encryption keys and do
not participate in the joint computation and to target nodes
as sensor nodes in the query path that receive symmetric
encryption keys; thus, they can decipher the query body and
participate in the joint computation. All queries travel a path
forming a circuit that ends at the sink node that was the entry
point of the query.

1) Query Preparation: The client application syncs to a
sink node, downloading the registry of WSN nodes, then
the user describes a data need expressing the request Req
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consisting of the operation and its target. The operation is
described by giving the task t , and the operation target by
specifying τ , a set of one or multiple locations of the WSN.

Although the proposed solution allows conveying arbitrary
computation instructions to sensor network nodes, the set
of supported operations is bounded by the design of our
protocol. Each query traverse several sensor nodes, and at each
target node, the operation t is processed, acquiring input from
sensors equipped on the sensor node and from w the binary
string that carries results of t processed on the previous target
node. Therefore, the solution is supporting operations that
produce a partial result while feeding on the input of sensor
values and the previous partial result. Between the common
supporting data aggregation operations, we could list average,
sum, max but also variance and standard deviation since in [39]
was shown how to compute them as additive aggregation.2

Moreover, our solution allows to pose conditions on the data
to be retrieved, like the exceeding of a threshold value or
past sensed events. Conditions can be posed not only on the
physical quantity to retrieve but also on the state of other
sensor technology equipped onto sensor nodes.

Algorithm 1 Query Path Selection
Require: U , Q
Ensure: S, K , eF , eL

procedure RANDOM
return a float from an uniform distribution bounded by (0,1)

procedure PICKDECOY
Chose randomly s ∈ U \ (Q ∪ B), add s to B

return s
procedure PICKTARGET

Chose randomly s ∈ Q, remove s from Q, add s to B
return s

procedure GENERATESYMKEY
return a valid symmetric encryption key

Compute: i = 1
B, S, K = ∅ while i ≤ n
eF =GENERATESYMKEY( ) if S[i] != null
k = null, eL = eF k = (eL ,GENERATESYMKEY( ))
i, t = 1 eL = k[2]
l = min(∥Q∥ , φ) else
while i ≤ l S[i] = PICKDECOY( )

t = ⌈RANDOM( ) ∗ (n − 1)⌉ k = null
if S[t] == null end if

S[t] = PICKTARGET( ) K [i] = k
i + + i + +

end if end while
end while

A request Req specified by the user is processed as follows:
t and τ are used to generate Q ⊂ U , the set of sensor nodes
that are targets of the request. U is the set of all sensor nodes in
the network. The set Q is generated by selecting sensor nodes
from the set U that meet the location detailed in τ and sensed
physical quantities required in t . The set P is then generated
with the algorithm 1 repeated until Q = ∅. Algorithm 1 will
eventually empty the set Q, since every call of the function
pickTarget() removes a target from Q and inserts it in the
query path. Each run of the algorithm will generate a query
definition detailed by the tuple (S, K , eF , eL , id).

• S = ⟨s1, . . . , sn⟩ a list consisting of sensor nodes belong-
ing to the set U . The list S defines the query path.

2In additive aggregation, a sensor node sums its sensed value with a
received partial result, and forwards the sum to the next sensor node.

• K = ⟨k1, . . . , kn⟩ a list of elements ki , where ki =

(ea, eb) if si is a target node, otherwise si is a decoy
node and ki = null. (ki and si the i-th elements of their
respective list K and S, and (ea, eb) a pair of not equal
symmetric encryption keys.) Moreover, encryption keys
in the set K are arranged as follows: if si is a target node
and s j is the next target node in the query path, then
ki = (ea, eb) and k j = (eb, ec).

• eF the first symmetric key. If si is the first target node in
the query path S, then ki = (eF , ex ).

• eL the last symmetric key. If si is the last target node in
the query path S, then ki = (ey, eL).

• id a string of bits serving as the query identifier.

By our solution design, the query path length is a fixed
network parameter; therefore, each query definition generated
using algorithm 1 will include n nodes in its path. Algorithm 1
iteratively generates a query definition using two while
loops. The first loop will inserts φ target nodes at random
positions in the query path. Uncertainty is introduced to
prevent queries from having a predictable disposition of target
and decoy nodes. Since the last node in the query path can
identify its function of being the node that will forward the
query back to the sink node, by algorithm 1 this node is always
a decoy node. The second loop will fill the query path with
randomly chosen decoy nodes.

Algorithm 1 also outputs eF and eL . eF is the first sym-
metric encryption key assigned to the first target node in the
query path, this key is used to apply the first encryption layer
on the query body. eL is the second symmetric encryption key
assigned to the last target node in the query path, this key is
used by the client to decrypt the query body, and retrieve the
query result.

The key eL is coupled to the query identifier id and the pair
is mapped into π the set of recovery rules. Since a request
will inquire data from a large set of nodes, and each query
can include at most φ target nodes in its path, the typical
request will be accomplished by issuing multiple queries. The
set of recovery rules π holds identifiers of queries issued to
accomplish one request, and is used to recover the final request
result.

To summarize, the request Req is translated into P – a non
empty set of tuples of cardinality ∥P∥ =

⌈
∥Q∥

φ

⌉
, a task t , and

π a set of recovery rules. For each tuple (S, K , eF , eL , id) ∈

P a query is constructed as explained in Section IV-B.2.
2) Query Construction: In this section, we describe how the

client application converts a query definition detailed by the
tuple (S, K , eF , eL , id), and a task t into a query consisting
of the head and the body. The ε(·) denotes the encryption
operation using public-key cryptography, and the E(·) denotes
the encryption operation using symmetric cryptography.

a) Head construction: The query head construction starts
from O Rn+1, the innermost encryption layer, which securely
delivers the query identifier back to the query issuer node.
We refer to the query issuer as the sink node that dispatches the
query to the network. The innermost onion layer is formed via
encryption of the query identifier id and the padding p using
the issuer’s public key Ysink . The padding p is introduced to
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maintain the head of fixed size if the query includes fewer than
⌊n/2⌋ target nodes. The following equation describes how to
compute the innermost onion layer.

O Rn+1 = εYsink (id, p)

Next, the client will compute the layer O Rn . This layer is
closing the circuit, forwarding the query back to the query
issuer. The layer is committed to sn the last sensor node of
the list S. The layer O Rn is computed like the layer O Ri ,
with the sole exception of including the sink node ip address
i psink as the next-hop address. Therefore, we omit explaining
layer O Rn construction, and we give layer O Ri construction
in the following lines.

The layer O Ri addressed to the sensor node si ∈ S (i as
index of the i-th element in lists S, K and index of the i-th
encryption layer of the query head) is computed in two distinct
ways. A: following equation 1 if ki = null, therefore node si
is a decoy node. Layer O Ri is computed via encryption of the
next hop ip address i psi+1 , and previous onion layer O Ri+1
using the public key Ysi belonging to the sensor node si . B:
equation 2 is applied if ki = (ea, eb), therefore node si is a
target node. Layer O Ri is computed via encryption of the next
hop ip address i psi+1 , the two symmetric encryption keys ea
and eb, and the previous onion layer O Ri+1 using the public
key Ysi belonging to the sensor node si .

O Ri = εYsi
(i psi+1 , O Ri+1) (1)

O Ri = εYsi
(i psi+1 , ea, eb, O Ri+1) (2)

The layer construction repeats until the formation of O R1,
the head’s first encryption layer, which is always of size L H
bytes.

b) Body construction: The query body B includes the
task t and a fixed size binary string. Since the query body
must be of fixed size L B bytes, and the size of task t can vary,
additional padding p of L t − si ze(t) bytes must be included
into the query body. (L t the maximum allowed task size in
bytes, and si ze() the function that returns the number of bytes
of the given argument) Then the query body is constructed by
encrypting the binary string w, the task t , and padding p using
the symmetric encryption key eF . Query body construction can
be summarized using the following equation:

B = EeF (w, t, p)

Now the query is complete: O R1 the query head and B
the query body. The query coupled with the address of the
first node in the query path s1 ∈ S and the query identifier
is forwarded to the sink node. The sink node memorizes the
query identifier and issues the query to s1.

3) Query Processing: A sensor node si ∈ S (i-th node in
the list S) receiving the query performs the following steps:
query decryption, task execution, and query forwarding.

a) Query decryption: The sensor node si decrypts the
query head O Ri using its private key Xsi . Query head decryp-
tion reveals the next hop IP address i psi+1 , the next onion layer
O Ri+1, and if si is a target node, head decryption also reveals
the pair of symmetric encryption keys (ea, eb).

b) Task execution: If the sensor node si received sym-
metric encryption keys from query head decryption, then si is
a target node and will perform the following steps. Otherwise,
if si is a decoy node, it will skip the following steps to perform
the step query forwarding.

The sensor node si decrypts B (the query body) using the
first symmetric key ea revealing: the data-carrying string w,
the task t , and the padding p. The task t gets executed sourcing
input from w and sensors. A task is executed at most for
1t milliseconds otherwise, task execution is interrupted. Task
execution returns w′, a binary string holding task execution
results. Then si constructs B ′ the query body consisting of
the data carrying string w′, the task t , and the padding p
all encrypted using the second symmetric encryption key eb.
Therefore, B ′ is constructed as follows: B ′

= Eeb (w
′, t, p).

Since the content of B ′ differs from B only in the binary string,
but the binary string w′ is of the same size of Lw bytes as w,
then query body size is maintained uniform.

c) Query forwarding: Query head is reassembled by
applying the technique for onion size uniformity introduced
in [9]. The query head size is maintained fixed at L H bytes
by adding λ a padding of si ze(O Ri ) − si ze(O Ri+1) random
bytes at the end of the onion layer O Ri+1. Therefore, the query
head is now consisting of O Ri+1 + λ. After 1q milliseconds
(1t < 1q ) from receiving the query, the sensor node will
randomly choose f a float, and will wait for other f · 1q
milliseconds before forwarding the query to the next hop.
Adequate bounding values should be selected for the randomly
chosen r , e.g. 0 ≤ f ≤ 4. After waiting the required time, the
query made of the head O Ri+1 + λ and the body B ′ (or B if
node si is a decoy node) is forwarded to the next hop si+1 at
the IP address i psi+1 .

4) Result Retrieval: Each query sent to a sink node to
accomplish the request Req will follow a path forming a circuit
that ends at the sink node that issued the query. The sink node
decrypts the query head consisting of the onion layer O Rn+1
revealing id the query identifier. The query identifier and the
query body B are then forwarded to the client that sent the
query to the sink node. The client uses the query identifier to
find the corresponding symmetric encryption key eL from the
recovery rules π , and the data-carrying string w is obtained
from the query body decryption.

When the client gathers the feedback of all queries issued
to accomplish Req , it starts the recovery process of the request
result. Query results are merged following recovery rules π to
obtain the end result of the request Req .

C. Arbitrary Computation

In this section, we discuss the capability of our proposed
approach to perform multiple computations to accomplish an
arbitrary computational job. Section IV-B described how the
client application is used to construct multiple queries for
retrieving an aggregated value from the WSN. In this process,
all the queries issued for obtaining the desired aggregate
enclose all the same task. However, the approach can be
extended to enable the client application to construct several
queries enclosing different tasks and using the binary string
to maintain a context for the task. By properly arranging
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Fig. 2. Representation of a computational job divided into individual
sub-tasks. Each sub-task independently executes a specific query within the
WSN. The barrier synchronization manages task dependencies.

and merging the results from these queries, the client can
accomplish the computational job.

To perform this, the client should first split a computational
job into sub-tasks and identify those that can be executed
independently and those dependent on the result of other
tasks. Moreover, while splitting the computational job into
sub-tasks, the client must consider the technique peculiarity
of the sequential movement of the query from one node to
another, which means that only the content of the query binary
string and the local data of the node currently processing the
query is available at each query processing step.

To manage the execution of these sub-tasks and their
dependencies, the client can implement barrier synchroniza-
tion. Barrier synchronization allows the client to wait for the
completion of a set of queries before proceeding with the next
set of queries. This ensures that any dependencies among the
sub-tasks are properly managed and that the required results
from previous queries are available before the subsequent
queries are issued. The barrier synchronization of queries is
shown in Fig. 2.

By using barrier synchronization at the client level, our
approach can support the execution of complex computational
jobs that involve multiple, interdependent sub-tasks. This
extends the versatility of our technique, enabling the execution
of more sophisticated computations across the WSN while still
benefiting from privacy preservation.

D. Query Size Optimization and Query Authenticity

The technique described in this manuscript is based on
queries consisting of several public-key encryption layers, and
layers include encryption key material and path details. These
queries are routed through a wireless multi-hop network and
relayed several times. Therefore, it is important to minimize
the query size to save network resources and improve the
system’s response time. Moreover, since queries are forwarded
among sensor nodes, it is important to grant query authenticity
allowing only authorized users to pose queries to sensor nodes
and inhibit the injection of malicious queries. We define that
a query is authentic if it was signed with an authorized
private key. In the following, we describe how to optimize the
query size and provide query authenticity using Elliptic Curve
Cryptography (ECC) [40]. Several research [41], [42] suggest

the adequacy of ECC cryptosystems for resource constrained
devices, mainly due to the smaller key size compared to RSA.

To generate a digital signature we use the Edwards-curve
Digital Signature Algorithm (EdDSA) [43]. The EdDSA sig-
nature of the message m consists of two values: R and s. The
signature is computed using the signer’s secret and public key,
respectively an integer a and the point on curve A = a · G.
G is the base point on an elliptic curve defined over the
finite field Fp of p elements with p prime. In EdDSA, R is
obtained as R = r · G, r a deterministic pseudorandom
value, obtained from the hash of the last 32 bytes of a and
the message to be signed. The value s is obtained from
s = r + H ASH(R||A||message) · a. (We use || to denote
concatenation.) The signature verifier generates two values
v1 = s · G, and v2 = R + A · H ASH(R||A||message).
If v1 == v2, the signature checks.

To ensure authenticity, the user constructing the query
should include a signature for each target node in the query
path. For a target node with address I Ps , the message to
be signed consists of m = t ||I Ps . To prevent reply attacks
and ensure that the query binary representation changes with
each new query, the pseudorandom generation of the value r
should be derived by hashing a, m, and a session ID. The
Session ID should be appropriately generated to avoid the
widely known security failure that lead to the compromise
of the Sony PlayStation3.

The first trick to optimize the query size is that R can
be reused for multiple ECC operations, which was shown
to be secure in [44], and was also applied by De Cristo-
faro et al. in [25]. We emphasize that we use R for one
signature and multiple ECC Diffie Hellman [45] operations.
Specifically, we adopt the Diffie Hellman key encapsula-
tion mechanism of the Elliptic Curve Integrated Encryption
Scheme (ECIES) [46]. The ECIES allows deriving a secret ς

from a random integer r and a public key. The same secret can
be derived by the corresponding private key and the random
integer. Therefore, by sharing the random integer, two parties
derive the same secret. The random integer can be securely
shared via its multiplication with the base point R = r · G.
Therefore, the value R used in the EdDSA signature can be
reused in the ECIES to derive a shared secret. The derived
shared secret ς is used in the ECIES as a key for applying a
symmetric cipher over data. Moreover, since it is enough to
verify the message authenticity at target nodes, the value R
can be reused for the ECIES operation at decoy nodes.

The second optimization trick relates to the delivery of
symmetric encryption keys to target nodes. One symmet-
ric encryption key can be derived by hashing the shared
secret ς obtained from ECIES decryption. A similar approach
was applied in the original onion routing technique [47].
The second symmetric encryption key should be delivered
in query head layers since keys are chained, as shown in
Fig. 1. The delivered key should correspond to the value
obtained by hashing the shared secret ς obtained by the next
target node.

Therefore, the query head size can be summarised with
equation 3, n the query path length, and L− the size of the
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subscript argument.

L R + (
n
2

· (L I P , L R, Ls, Lsym)) + (
n
2

· (L I P )) (3)

V. PRIVACY-PRESERVATION ANALYSIS

This section examines the communication protocol to
identify vulnerabilities concerning privacy preservation. The
literature on WSNs generally categorizes privacy concerns
into two main classifications: external and internal privacy [7],
[19], [25], [35], [36]. This paper aligns with this approach and
utilizes the same terminology. External privacy is threatened
by actors outside of the network listening to the wireless
communication, while internal privacy is threatened by trusted
participating sensor nodes of the WSN.

Throughout the analysis, we assume that the network imple-
ments layer 2 security, the guarantee of in-order data delivery
using TCP, sink nodes cannot be compromised, and users do
not collaborate with the attacker. For simplicity, we assume
that messages are not fragmented.

A. External Privacy

To examine external privacy, we visualize a foreign actor
that is monitoring the network traffic by eavesdropping on
wireless communications. We dub this actor the external
adversary. Eavesdropping is the intercepting and reading of
messages by unintended receivers. Since the majority of
wireless communications use the radio frequency spectrum to
broadcast signals over the air, transmitted signals can be easily
intercepted using adequate receiving equipment [48]. Event
though the network implements layer 2 security, we assume
that the external adversary is able to differentiate a trans-
mission transferring query information from ordinary network
management traffic by observing the transmission length.

Since layer 2 security protects transmissions using encryp-
tion and query size is maintained uniform throughout the
query path, the only disclosed detail of an intercepted query
is the effective transferring of the query from one node
to another. The node receiver of the transmission is then
processing the query (as explained in Section IV-B.3) or
re-transmitting it to another node (routing in multi-hop net-
works). However, processing the query introduces a delay,
missing if it is just re-transmitted. Therefore nodes processing
the query can be identified; nonetheless, the external adversary
cannot differentiate decoy nodes from target nodes since the
query sojourn time at both kinds of nodes depends upon a
randomly chosen float.

We now consider an external adversary whose monitoring
range covers the whole WSN; therefore, it can intercept the
whole wireless traffic generated by the WSN. Hence, the
adversary can track a query sourcing from the sink node and
moving through the network by monitoring its transmissions.
However, normally, the WSN traffic is not populated by only
one query, and the randomized nature of the query path
will make various queries mix at nodes on their route. Even
though the adversary violates security measures of the physical
layer, security at the data link layer is changing data by
encryption before each transmission. Furthermore, query size

is maintained uniform; therefore, it is hard for an external
adversary to track how the query transit through the network
since the adversary cannot distinguish between queries.

B. Internal Privacy

An attacker that owns a subset of WSN nodes is commonly
referred to as an internal adversary. Nodes owned by an
internal adversary are participating trusted nodes of the WSN
owning cryptographic keys to decrypt messages addressed
to them. Section IV-D shows how to render void query
injection attacks using digital signatures. Therefore, traffic
analysis is the only attack that could compromise privacy
concerning assumptions in Section V and the assumption of
secure cryptographic primitives.

The internal adversary can take advantage of owned nodes
to analyze traffic they receive and disclose information from
un-compromised nodes of the WSN. Although we assumed
that the network implements layer 2 security, only individual
links are secured by such a solution, and nodes intermediate
to routing paths can overhear messages passing through them.
In the following, we will analyze under which circumstances
an internal adversary is able to gain insights over other nodes
in the network and when the data privacy of a sensor node is
disclosed.

To simplify the analysis, we introduce the following nota-
tion expressing the operation of sensor nodes in relation to a
query: D are decoy nodes, T are target node, A are nodes
owned by the adversary intermediate to the routing path of
the query, AD are decoy nodes owned by the adversary, and
AT are target nodes owned by the adversary. In the following,
we explain the implications of a transiting query over sensor
nodes.

T and D are nodes that will process the query (as explained
in Section IV-B.3). On these nodes, the adversary is trying to
gain information. Nodes T are target nodes for the query, and
after processing at T nodes, the redirected query is entirely
changed by encryption. On the other hand, after query process-
ing at D nodes, the redirected query has query head changed
by encryption, but the query body remains unchanged.

A are nodes owned by the adversary that receive the query
due to routing needs in wireless multi-hop networks. There-
fore, A nodes receiving the query can observe the encrypted
query head and query body. Moreover, the IP header reveals
the address of the previous and next node processing the query.

AD nodes are owned by the adversary and are processing
the query. However, AD nodes cannot access the query body.
Therefore, AD nodes disclose only the IP address of the
previous and the next node processing the query.

AT nodes are owned by the adversary and are processing
the query as target nodes. Therefore, nodes AT can decipher
the query head layer addressed to them, revealing the next-hop
IP address and a pair of symmetric encryption keys. Thus, they
can decipher the query body and learn the task and the binary
string that carries the partial result. The internal adversary can
examine the task and disclose the function to be computed;
hence the adversary can identify the value carried in the binary
string. We say identify since the adversary can recognize that
the value is a sum, an extreme, etc. Although the internal
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Fig. 3. (a) Route of the query that leads through one T |D node confined
between two nodes owned by the adversary. (b) Route of the query that leads
through two or more T |D nodes confined between two nodes owned by the
adversary.

adversary can identify the value carried in the binary string,
by owning a single node in the query path, the internal
adversary cannot draw conclusions on the value or extract
sensor node readings of other target nodes in the query path
since it does not know which are target nodes and how many
target nodes contributed to the partial result.

We now consider a query that transits through multiple
nodes owned by the internal adversary. Hence the adversary
can track sender and receiver IP enclosed in the IP header to
partially reconstruct the query path and observe how the query
body changes to gain information over other nodes in the query
path. Note, we refer to the query path as the sequence of nodes
on which the query is processed; on the other hand, we refer
to the query route as the sequence of nodes that the query
transits, including nodes in the query path and nodes that are
forwarding the query due to routing needs in wireless multi-
hop networks. To conduct this investigation we examine two
cases where the query route leads through two nodes owned by
the adversary: 1) two or more T |D nodes confined between
two nodes owned by the adversary; ( _|_ used as exclusive
OR) 2) one T |D node confined between two nodes owned by
the adversary.

Fig. 3 shows an example of the two cases. We consider
these two cases since if the query route leads through more
than two nodes owned by the adversary, the instance can be
generalized to multiple of the aforementioned cases. Moreover,
in Section V-B.3, we consider concerns of query exit and entry
point.

1) Route of the Query That Leads Through Two or More
T |Dodes Confined Between Two Nodes Owned by the Adver-
sary: We first look at the instance that nodes owned by the
adversary are not both AT . Since the query is processing at

two or more consecutive un-compromised nodes, IP informa-
tion accompanying the query cannot be used to determine if
both nodes owned by the adversary received the same query.
Therefore, the adversary must rely solely on the query body
to disclose meaningful information. Indeed, if nodes in the
query path arranged between the two nodes owned by the
adversary are all D, the inner encryption layer of the query
body will remain unchanged. Therefore, the adversary can
identify that both owned nodes received the same query and
that all nodes processing the query between the owned nodes
are D nodes. However, the internal adversary is not able to
recognize the number of nodes in the query path between the
two owned nodes since query sojourn time depends upon a
randomly chosen float. On the other hand, if any node
arranged between the two nodes owned by the adversary is
a T node, then the query body is also changed by encryption,
and the internal adversary cannot determine if both owned
nodes are executing the same query.

We now consider that both nodes owned by the adversary
are AT nodes. Then the adversary can decipher the query body
at both owned nodes, and it should be possible to compare
tasks and binary strings to recognize if both nodes received the
same query. However, even though the adversary can recognize
the value change of the binary string, he cannot identify which
nodes processing the query are T nodes nor how many T
nodes contributed to the value change.

2) Route of the Query That Leads Through One T |Dode
Confined Between Two Nodes Owned by the Adversary: This
disposition of nodes can be identified by the internal adversary
as a transitive dependency of sender and receiver IP addresses
from the IP packet header (e.g. I Powned1 → I Pi , I Pi →

I Powned2). Therefore, we assume that given the transitive
relation of IP addresses, the adversary deduces that the two
owned nodes are processing the same query, even if the query
was changed by encryption and the randomly chosen query
sojourn time does not ensure that it is the same query. Another
query might be routed through I Pi → I Powned2 tricking
the internal adversary of detecting the relation I Powned1 →

I Pi , I Pi → I Powned2.
Regardless of the aforementioned possibility of mixing

queries, if the adversary identifies this particular disposition
of nodes, he can examine the query received at the two
owned nodes to gain insights over the node between them.
We distinguish the following three cases where the adversary
discloses different insights over the un-compromised node
between the two owned nodes:

1) Both nodes owned by the adversary are A|AD. The
adversary can compare the encrypted query body at both
owned nodes to disclose if the un-compromised node is
a T or D node for the received query.

2) One node owned by the adversary is AT . The adver-
sary can recognize if the un-compromised node is a
T or D node for the received query. Furthermore,
if the un-compromised node is a T node, the adversary
can observe the task to disclose the sensor technology
equipped on the node.

3) Both nodes owned by the adversary are AT . In this
case, the adversary can gain insights summarized in
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the previous points. Additionally, if the un-compromised
node is a T node, the adversary can compare the binary
string state at the two owned nodes to extract data added
by the un-compromised node.

3) Query Entry & Exit Point: We refer to the query entry
point as the first sensor node in the query path and the query
exit point as the last node in the query path since they both
communicate with the sink node making them recognizable as
such.

By our solution design, the first node in the query path can
be a T node. Thus if the first and the second node in the query
path are respectively T and AT , the adversary can disclose
data privacy of the first node in the query path, however only if
the adversary can identify that he owns the second node in the
query path. Since the position of nodes in the query path can
be identified only by tracking the query route from the source,
this vulnerability can be exploited only if the adversary owns
an A node in the query route from the sink node to the first
node in the query path. Moreover, it is possible to avoid this
vulnerability by setting an initial value to the data carrying
string.

The query exit point or the last node in the query path is
always a D node. We included this design choice since the
last node in the query path can identify its position in the
query from the next-hop IP address, which is the address of
the sink node. If AT is the last node in the query path able to
decipher the query body, the adversary could potentially infer
over the number of T nodes that contributed to the partial
result, since a query generally includes φ T nodes in the query
path. However, the adversary can identify that he owns the last
sensor node deciphering the query body only by tracking the
query path to the sink node.

C. Data Leak Probability

The examination in Section V-B shows that under certain
conditions, there is some probability that private sensor data
leaks to the internal adversary. We use the term leak since the
disclosure of private data depends on the randomized selection
of nodes in the query path. The data leak occurs when the
query path leads through three consecutive target nodes and the
two outer nodes are owned by the adversary, then the adversary
can compare the binary string state at the two owned nodes
to disclose the data added by the inner node.

To determine the probability of a data leak during normal
operation, we make the following assumptions: the selection of
nodes forming the query path occurs using a uniform random
generator, nodes in the query path do not repeat, and target
nodes are randomly selected. Therefore in a WSN of s sensor
nodes, the data leak probability depends on the query path
length n, the number of target nodes in the query path φ, and
on the number of sensor nodes owned by the adversary a.
We count all the instances where selecting three target nodes,
two of them are owned by the adversary; there are n − 2 such

Fig. 4. The data leak probability for different query path lengths. φ is set
to the default φ = n/2.

Fig. 5. The data leak probability at n = 20 and varying φ the number of
target nodes in the query.

occurrences where the adversary does not own the inner node.
The data leak probability is given in equation 5, as in (4),
shown at the bottom of the page.

We emphasize that equation 5 has also been validated via
simulation. We simulated the random query selection applying
the same assumptions as for equation 5, and we counted the
number of data leak occurrences. The simulation was repeated
several times, and obtained values matched our analytical
formula.

We plot the data leak probability distribution for different
query path lengths in Fig. 4, and a zoomed version in Fig. 5
shows the decrease of the data leak probability when reducing
the number of target nodes in the query path.

D. Active Attacks

The previous sections primarily focused on analyzing
privacy-related attacks. However, WSNs also face a variety
of additional threats that target data integrity and network
availability. These types of attacks are known as active
attacks, wherein adversaries actively interfere with the normal
functioning of the WSN by manipulating data or disrupting

Pleak =
a · (n − φ) · (s − a) · (n − φ − 1) · (a − 1) · (n − φ − 2)(s − 3)!

s! · n · (n − 1)
(4)
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network traffic. In this section, we will specifically discuss
active attacks that could exploit our proposed technique
to compromise the WSN while excluding attacks targeting
other network layers, as they are well documented in the
literature [4].

While the proposed technique offers certain security bene-
fits, it does not fully protect against data integrity threats aris-
ing from physical environment manipulation or compromised
nodes controlled by the internal adversary. Attackers may
compromise data validity by interfering with sensor nodes’
surroundings, such as artificially raising the temperature with
a lighter. They can also undermine data integrity by altering
query data using owned nodes. Specifically, target nodes pro-
cessing the query have access to the query body. Although they
cannot modify the task, as it is secured with query authenticity,
as explained in Section IV-D, they can alter the binary string
containing the aggregated data. Both scenarios can result in
inaccurate data aggregation and potentially incorrect decision-
making for the end user. However, such attacks on data
integrity cannot specifically target individual nodes, as the
proposed technique conceals the nodes processing the query.
Consequently, these attacks would be inconsistent and more
easily detectable.

In Section IV-D, we showed how to ensure query authen-
ticity to prevent malicious query injection and replay attacks
targeting data confidentiality. However, the technique we
described only verifies query authenticity at the target nodes.
Consequently, an internal adversary who knows the public
keys associated with node addresses could forge a query that
is only onion routed without providing access to the query
body. The adversary’s primary goal in doing so is to generate
unnecessary traffic, leading to network congestion and disrupt-
ing the WSN’s availability. An internal adversary could also
execute an attack by dropping queries that are onion routed at
compromised nodes. This attack is particularly effective in our
proposed solution, as queries follow a fixed path and cannot
bypass nodes that will onion-route them. As a result, the query
would fail to reach its final destination, disrupting the data
retrieval process and undermining the network’s functionality.

While the described attacks can potentially impact the
network’s functioning, they share similarities with threats
targeting other network layers. As such, these attacks can be
mitigated by implementing intrusion detection systems [49].

E. Discussion of Privacy-Preservation Analyses

In Section V-A, we provide evidence that the solution
withstands eavesdropping attacks since queries follow all the
same circuit-like patterns while paths are randomized, trans-
mitted queries are indistinguishable by encryption and uniform
query size, and queries are mixing while transiting the WSN.
Furthermore, external actors observing the wireless commu-
nication cannot disclose the nodes’ target of the query since
query forwarding time is decoupled from query execution.

In Section V-B we showed that the proposed protocol
preserves query privacy by constraining information of the
query path. Nodes receiving the query that can decipher
the query body can learn about the task. However, without

knowledge of the identities of other nodes involved in the joint
computation, the adversary cannot infer information other than
those revealed by the task.

Further analysis has shown that an attacker owning a portion
of network nodes could possibly disclose insights about non-
compromised sensor nodes and even threaten data privacy in
the WSN. However, assuming secure cryptographic primitives,
the adversary can increase the odds of privacy disclosures only
by increasing the number of owned nodes in the network.
Taking control over a sensor node is generally hard since it
requires physical access to the node [50]. Moreover, due to
the randomized selection of nodes forming the query path,
the adversary cannot increase the data leak probability for a
specific node in the network. In Section V-C, we expressed the
data leak probability, and it was shown that it depends on the
query path length, the number of target nodes in the query, and
the number of nodes owned by the adversary. Therefore, the
data leak probability can be adjusted based on the application’s
security requirements. Additionally, by applying the technique
for query size optimization described in Section IV-D, adding
a decoy node to the query path increases the query size only by
the size of storing the node address; therefore, higher privacy
requirements will result in a small decrease in efficiency.

In Section IV-D we explained how to use digital signatures
to grant query authenticity. Here we want to emphasize that the
described technique does not invalidate the security analyses
in Section V. The signatures in the query head are all diverse
since each signature is generated by coupling the task and
a target node address. Therefore, digital signatures do not
uniquely identify the query. Moreover, users could share
signing keys if digital signatures are used only to verify query
authenticity.

The privacy preservation analyses in Section V concern
an attacker attacking the network. However, as discussed by
Carbunar et al. [29] and De Cristofaro et al. [25] there are
some circumstances where the WSN user wants to protect
its privacy against the network owner. The solution of De
Cristofaro et al. achieves a very high level of privacy; nonethe-
less, the technique allows only retrieving individual sensor
node readings without the possibility of in-network processing.
In the case of our technique, we incur the same issues as
discussed by Carbunar et al., requiring the user to generate
multiple bogus queries to obfuscate the one of interest. The
problem is extensively studied by Carbunar et al. in [29],
taking into account spatial and temporal privacy.

We emphasize that protecting the user’s privacy against
the network owner is out of scope for this manuscript since
here we focused on describing a technique for the joint
computation of arbitrary functions on WSN nodes; moreover,
in our solution, this problem could be addressed using code
obfuscation techniques [51] to obfuscate the task and the
carried data.

VI. SIMULATION RESULTS

This section presents results of the privacy preserving
communication protocol simulated using the NS3 [20], [52].
We examine the protocol scalability in a simulated WSN by
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TABLE I
SUMMARY OF SIMULATION PARAMETERS AND CORRESPONDING VALUES

observing how querying is affected by the following indepen-
dent variables: query path length (number of nodes on which
the query will be processed), network size (number of nodes
in the WSN), network topology, and query body size.

In order to quantify the response of independent variable
adjustments, we meter the Round-Trip-Time (RTT) of queries.
We define the RTT of a query, as the elapsed time between the
issuing of the query from the sink node and the return of the
issued query to the issuer node. Therefore, the RTT includes
the sojourn time of the query at sensor nodes in the query
path. However, Section IV-B.3 describes that the query sojourn
time depends upon the application-specific parameter 1q and
a randomly chosen float f . Therefore, we decided not
measure the query randomized sojourn time since it introduces
delays that are not dependent on the network. Moreover, by the
law of large numbers [53], if choosing the value of f from
a uniform random distribution bounded by the interval [0, F],
the average of the results obtained from a large number of
trials will converge to the expected value of f . Therefore,
the average cumulative sojourn time for a specific query path
length n at an adequate 1q and F can be estimated using the
following equation:

sojourn_time = n · 1q ·
F
2

(5)

A. Experimental Setup

The simulated WSN consists of one sink node and s sensor
nodes. We consider two network topologies: the grid topology
(GT) and the random disc topology (RDT). In the former,
sensor nodes are deployed according to a grid structure; each
sensor node is equidistant from the closest sensor nodes in
cardinal directions. We set the distance between sensor nodes
to a = 60 meters so that a sensor node is in the communication
range of at most eight sensor nodes. In the latter, sensor nodes
are randomly deployed on a disc-shaped plane of radius rp.
The radius rp is obtained from rp =

√
A/π , A being the

sum of circular area’s covered by s sensor nodes at radius
rs = 35 meters. Therefore, the average sensor node density
of the network is maintained fixed at diverse s. Since in RDT
sensor nodes are casually deployed on the target area, some
sensor nodes could form independent network segments not
connected to the network segment of which the sink node is a
member. Therefore some sensor nodes might never be queried.
In both network topologies, the sink node is deployed in the
center of the WSN. We chose values of parameters a = 60m
and rs = 35m, since networks of different topologies will
have a near equal average node density: GT: 1

602 = 0, 277 ∗

10−3nodes/m2, and RDT: 1
352π

= 0, 26∗10−3nodes/m2. Key
simulation parameters are given in Table I.

The simulation implements the IEEE 802.11n standard for
local wireless networks, operating in the 2.4 GHz band at
the data rate of 12Mbps. The maximum segment size is set
to the NS3 default 536 bytes. Each node in the WSN has
installed the IP stack, and messages are transmitted over the
TCP protocol.

However, the TCP was designed to function over low-error
wired networks where the packet loss is usually the outcome
of a network congestion [54]. Several studies are suggesting
that the use of TCP in wireless multi-hop networks results
in low throughput since packet loss due to transmission error
and route discovery is handled using congestion avoidance and
control [54], [55], [56]. Route discovery is performed by the
routing protocol when searching for a route from sender to
receiver. It is possible that discovering a route may take more
time than the TCP retransmission timeout (RTO) [55]. The
RTO is an internal timer of the TCP used to determine when a
segment needs to be retransmitted. If the RTO elapses before
receiving the acknowledgment of segment delivery, the seg-
ment is retransmitted, the RTO is increased using exponential
backoff, and the TCP is adjusted for congestion. The minimum
RTO value in the simulation is set to the default, 1 second.
To avoid complications due to route discovery, we decided to
use the Optimized Link State Routing Protocol (OLSR) [57],
a proactive routing protocol so that routes are immediately
available when needed. In proactive routing protocols, routes
between each pair of nodes are determined at the network
start-up and maintained with periodic updates.

Queries are constructed from the sink node by randomly
selecting n nodes to include in the query path, n being the
query path length. Query construction occurs using the tech-
nique for query size optimization ensuring query authenticity
as explained in Section IV-D by using the elliptic curve
Curve25519 [58] with key length 256-bit and the symmetric
cipher Advanced Encryption Standard (AES) [59] at key
length 128-bit. Therefore, recalling Section IV-D, R, s, and
sym sizes are respectively 32 bytes, 32 bytes, and 16 bytes.
To further reduce the query size, we use network addresses
of 16-bits. The query body should be a multiple of the AES
block size, and its size is adapted based on the experiment
requirements.

Queries are issued from the sink node sequentially; after a
query returns back to the sink node, the following query is
issued. Nodes in the query path performing query processing
maintain the uniform query size by adding padding. If the
query does not reach the next-hop node in 100-seconds, the
query is aborted, and a new query of equal parameters is issued
from the sink node.

B. Experiment 1 – Remote Procedure Call
In this experiment, we consider the minimal size of the

query body since this will give a better overview of how the
network properties affect the RTT and since the query body
size mainly depends on the computation instructions conveyed
using the protocol.

The minimal query body size applies to the Remote Pro-
cedure Call (RPC) settings, where nodes of the WSN have
encoded a set of functions, and the task t carried in the query
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Fig. 6. The chart shows the average query RTT for the GT WSN at varying
of the query path length and network size. Data from the experiment 1 in
Section VI-B.

Fig. 7. The chart shows the average query RTT for the RDT WSN at varying
of the query path length and network size. Data from the experiment 1 in
Section VI-B.

body specifies which function to compute over sensor readings
and w the data carrying string. We set the task t and the binary
string w to 16 bytes.

A set of simulations was run for both GT and RDT at
s = {50, 100, 200, 300, 400}. Each run executing 30 queries
for each value of n = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, the
query path length. The obtained data is presented in Fig. 6,
and Fig. 7. In the RDT simulations, the network segment,
including the sink node, was connected to approximately 90%
of all nodes. We observed some aborted queries in the RDT at
the network size of 300 and 400 nodes. However, the events
were all observed right after the simulation started; therefore,
probably due to the OLSR routing requiring more time to
converge. In the GT no aborted queries were detected.

C. Experiment 2 – Arbitrary Computation

In this experiment, we examine how the RTT is affected
by the size of the query body. The large size of the query
body is distinctive to an implementation of the communication
protocol that delivers the function to be computed on sensor
nodes within the query.

A set of simulations was run for the GT WSN at s = {50,

100, 200, 300, 400}. Each run executing 30 queries for the

Fig. 8. The chart shows the average query RTT for the GT WSN with query
path length set to n = 20, varying the query body size and network size. Data
from the experiment 2 in Section VI-C.

query body size bs = {128, 256, 512, 1024, 2048, 4096, 8192}

bytes, at the query path length n = 20. The obtained data is
presented in Fig. 8.

D. Discussion of Simulation Results

From Fig. 6, it is apparent that the query RTT is highly
affected by the network size and the query path length.
Furthermore, at larger network sizes the query path length
has a higher effect on the query RTT. The high query RTT at
large network sizes is due to the randomized selection of the
query path that cause queries to cross nodes that may be very
distant. Therefore, in a large network it should be practical to
constrain the random selection of nodes to a network region
that includes the nodes of interest but it is small enough to
not incur in high query RTT.

The difference in query RTT between the GT and RDT can
be observed in Fig. 6 and Fig. 7. In particular, it is possible
to notice that the average query RTT at RDT is higher than at
GT. Furthermore, the RDT data has a higher variance. Besides
high variance of collected data, we also report a non-normal
distribution of RTT measurements. A possible explanation
for the non-normal distribution of RTT observation could be
intrinsic to the TCP protocol and the RTO timer.

Experiment 2 considers the query RTT of queries with large
query body sizes. Interestingly, in Fig. 8 can be seen that
at selected parameters, the query body size does affect the
average RTT of queries; however the increase is noticeable
only for larger query body sizes (larger than 1024 bytes).

VII. LIMITATIONS

Although our proposed privacy-preserving protocol presents
several advantages for WSNs, it also exhibits certain limita-
tions that we discuss in this section.

A limitation related to our proposed technique that warrants
further discussion is the use of layered messages constructed
using public key encryption. Public key cryptography is
well known for being more computationally intensive than
symmetric key cryptography. However, public key encryption
provides benefits that symmetric key encryption cannot, such
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as non-repudiation and no need for pre-shared keys. As a
result, many studies apply public key encryption also in
WSN settings [25], [60], [61]. The survey [62] provides an
overview of public key cryptographic primitives adequate for
WSNs, testing them on WSN devices. The suitability of 32-bit
ARM-based microcontrollers for applications with significant
cryptographic requirements is emphasized in [63] and [64],
while [65] demonstrates the implementation of end-to-end
integrity protection using Elliptic Curve Digital Signature
Algorithm (ECDSA), further validating the efficacy of the
32-bit ARM architecture.

With regards to our protocol, it should be noted that even
though messages consist of several public key encryption
layers, the message creation process is performed outside the
WSN on client applications. Consequently, the high overhead
of applying multiple public key encryption layers does not load
the WSN nodes. Upon receiving a query, WSN nodes perform
either one or, at most, two public key operations. A single
operation occurs if the query is only onion-routed through
the node, while two operations take place when the node
accesses the query body content and checks its authenticity.
Therefore, our approach does not require many more public
key operations than other techniques proposed for WSNs.
Moreover, the computational load of decrypting query layers
is uniformly distributed throughout the WSN.

Another limitation associated with the use of onion routing
is the inability to change query routes after their creation.
The underlying routing protocol can adapt to node failures
by dynamically adjusting the routing path. For example, if a
query is created to be processed at nodes A and C and must
travel from A to C through a third node B, the route can
be dynamically adjusted if node B fails, routing the query
through an alternative path linking A and C. However, this
cannot resolve issues arising from the fixed nature of onion
routing. In cases where node C fails, the query will never reach
its destination because path information can only be obtained
by sequentially removing the encryption layers. Node C is the
only node capable of removing the encryption layer addressed
to it. If node C fails, no other node can remove that layer.
In such situations, the network should adapt by flagging the
failed sensor node or removing it from the registry held by
sink nodes, making it ineligible for queries.

As observed in Section VI, our approach introduces a
significant latency when processing a query, which impacts
the real-time performance of the network. Furthermore, longer
query path lengths result in longer query RTT. A potential
solution to mitigate this issue is to send multiple smaller
queries that can collectively obtain the same result, achieving
reduced overall latency through parallel execution rather than
sending a single query through a longer path. This approach
allows for improved query response times while maintaining
the desired privacy-preserving features.

It is important to note that the discussed limitations do not
undermine the overall effectiveness of our privacy-preserving
protocol in the context of WSNs. However, they provide
insight into the trade-offs and challenges that need to be
considered when implementing and deploying our proposed
solution.

VIII. CONCLUSION AND FURTHER WORK

This paper proposes a technique that enables WSN nodes
to jointly compute a function in a privacy-preserving manner.
We compare our proposal to the related work in the field,
showing that, to the best of our knowledge, this is the first
scheme that allows in-network joint computation of arbitrary
functions in WSNs without aggregator nodes and without
disclosing the nodes participating in the computation and their
private inputs. We show that the scheme mitigates traffic anal-
ysis attacks; thereby making it adequate for indoor monitoring.
As future work; we plan to implement and test our proposal
in several buildings to collect and in-situ analyze air quality
data. Additional future work includes investigating further
adaptation of the proposed technique to IoT environments, the
technique will be considered for training and evaluation of
machine learning models and the federated learning paradigm
could offer a valuable avenue for exploration. Moreover,
the application of code obfuscation techniques or homo-
morphic encryption to the tasks conveyed to sensor nodes,
would considerably enhance privacy preservation, warranting
further exploration into the potential trade-offs of such an
approach.
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Abstract: Currently, the computational power present in the sensors forming a wireless sensor
network (WSN) allows for implementing most of the data processing and analysis directly on the
sensors in a decentralized way. This shift in paradigm introduces a shift in the privacy and security
problems that need to be addressed. While a decentralized implementation avoids the single point of
failure problem that typically applies to centralized approaches, it is subject to other threats, such
as external monitoring, and new challenges, such as the complexity of providing decentralized
implementations for data mining algorithms. In this paper, we present a solution for privacy-aware
distributed data mining on wireless sensor networks. Our solution uses a permissioned blockchain
to avoid a single point of failure in the system. Contracts are used to construct an onion-like structure
encompassing the Hoeffding trees and a route. The onion-routed query conceals the network identity
of the sensors from external adversaries, and obfuscates the actual computation to hide it from
internally compromised nodes. We validate our solution on a use case related to an air quality-
monitoring sensor network. We compare the quality of our model against traditional models to
support the feasibility and viability of the solution.

Keywords: WSN; air quality; privacy; blockchain; data mining

1. Introduction

Currently, wireless sensor networks (WSNs) are widely used in various application do-
mains (e.g., healthcare, supply chains, or agriculture). They support collecting and storing
data about the state of monitored objects (e.g., patients, products, or crops), enabling further
analysis that benefits stakeholders (e.g., better health, traceability, increased productivity).
As typical WSNs rely on cloud infrastructures to handle the large amount of collected data,
they are subject to diverse issues related to maintenance, scalability, and vulnerability to
security threats. Most cloud-related issues originate from its centralized design, naturally
opening the way to decentralized systems as an alternative to handle data. In addition,
the recent development of embedded technology available in sensors is a strong incentive
for the design of decentralized solutions. Present-day smart sensors have such strong
computational capacities that they can handle demanding tasks, including hosting an
entire operating system and the full web protocol stack, including a web server, or they are
directly connected to one. Therefore, they become part of the web, supporting the vision of
a worldwide sensor web [1]. Such a context makes the decentralized operation of the data
collection and management processes very appealing.

Indeed, decentralized systems have seen quite a strong development since the release
of Bitcoin, a practical blockchain implementation that provides decentralized trust, leading
to the development of various other implementations. While, for centralized WSNs, security
attacks target specific weak points of the system, in decentralized WSNs, attacks consist in
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observing the flow of messages that go through the network, and in identifying the role of
each node to better target further attacks. Additionally, the data mining tasks performed
in centralized databases, usually in the cloud, need some adjustments to be realized in a
decentralized WSN.

Therefore, there is a major need to (1) rethink data mining tasks so that they better fit
the decentralized underlying system where they should be executed, and (2) protect the
privacy of these tasks with moderate additional computing requirements. Several trends of
work exist in this direction; however, most are very computationally intensive, or show
high communication costs.

In this paper, we present a solution for privacy-preserving DM (PPDM) that relies on
the blockchain to provide trust, and on onion routing (OR) to preserve the privacy of the
DM tasks that are executed in WSNs.

In particular, our contribution features smart contracts to provide for role-based access
control and secure DM execution , so that nodes can trust each other. Our solution, instead
of sharing data between nodes, is to share the partially constructed models so that each
sensor node only has access to the partial model that is the result of the computation of the
previous sensor nodes.

The remainder of this paper is structured as follows: In Section 2, we overview the
most relevant work on PPDM, OR, and blockchain, and highlight the research gap which
our work covers. In Section 3, we present our architecture and detail how its different
components are articulated. In Section 4, we detail the methodology followed to enable
its operation over a use case related to indoor air quality monitoring. In Section 5, we
present the results obtained and compare them to the closest work in the literature. Finally,
we summarize our main contributions and present some guidelines for future work in
Section 6.

2. Related Work

In this section, the related work relevant to our research is presented, and knowledge
gaps are identified. Section 2.1 gives an overview of the state of the art in privacy-preserving
data mining in WSNs, Section 2.2 presents the recent research on the use of onion routing
in WSNs, and Section 2.3 lists the relevant applications of the blockchain on WSNs.

2.1. Privacy-Preserving Data Mining in WSNs

Conventionally, DM on WSN data is realized in a centralized processing point external
to the WSN. While it is simple to implement, such an approach raises privacy concerns
due to the required relocation of sensor node data to the external system through the WSN,
a multi-hop wireless network operated by resource-constrained devices. There are many
studies addressing privacy concerns in WSNs [2–4], several of them indicating that, in
addition to data privacy, contextual privacy must also be considered.

A considerable amount of literature has been published on privacy-preserving data
aggregation since it is particularly suited to WSNs’ characteristics [5,6]. The concept is based
on aggregating data as it travels through the multi-hop network towards the sink node,
and on applying privacy-preservation techniques during aggregation points to prevent the
disclosure of the data of individual sensor nodes. Although the data aggregate does not
disclose individual sensor privacy, aggregating the data may also reduce the knowledge
obtainable using DM.

Local differential privacy (LDP) is well established in DM applications that require
the privacy of individual data sources [7]. Data is encoded or perturbed at the origin or
intermediate point, and then sent to the consumer. Therefore, LDP techniques also leverage
the trade-off between privacy and data utility. The authors in [8] discuss the application of
LDP in decentralized IoT networks. An LDP IoT framework is presented in [9]; however,
LDP is applied only at edge servers.

Homomorphic encryption was proposed for preserving privacy, both in DM [10] and
WSN applications [6]. Privacy is assured since computations are performed on crypto-
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graphically secured data without decryption. However, the technique is computationally
intensive [11,12], and reasonable solutions for WSNs are designed only to compute addition
and multiplication on encrypted data.

Secure multi-party computation (SMC) [13] allows multiple parties to jointly compute
a function over their inputs while keeping those inputs private. Many studies [10,14] use
the SMC technique to preserve the privacy of individual data sources during DM operations.
However, traditional solutions relying on SMC require high computation and communica-
tion costs; thus, they are not convenient for application in WSNs. Therefore, SMC in WSNs
is limited to low-complexity tasks, such as data aggregation [15].

Data mining algorithms that are performed over a WSN are inherently distributed,
which has shifted the focus from traditional data mining (DM) approaches to the paradigm
of distributed data mining (DDM) in recent years. The authors of [16] provide a relatively
recent survey of state-of-the-art DDM techniques, focusing also on privacy-preserving
distributed data mining (PPDDM). On the other hand, [17] introduces the notion of de-
centralized spatial data mining (DSDM), where individual sensor-enabled computing
nodes possess only local knowledge about their immediate neighborhood, but derive
global knowledge through local collaboration and information exchange. This is especially
relevant for our research, where we aim at monitoring indoor air quality over a WSN.

2.2. Onion Routing in WSNs

Onion routing has a long tradition in enabling anonymous communication in public
networks, first using layered objects to establish anonymous connections [18], and now
being implemented in the TOR network to construct anonymous connections one hop at a
time using a key-agreement protocol [19].

Although combined applications in the context of PPDM are rare [20], onion routing
remains a privileged technique to protect from external monitoring attacks, as is proven by
existing work on the topic [21].

De Cristofaro et al. [22] used a layered object to retrieve data from a WSN without
disclosing the identity of the queried sensor node. Although the technique preserves
privacy effectively, it only allows for data retrieval from individual nodes. One important
work related to query privacy over WSNs is the work of Carbunar et al. [23], which
proposes a similar solution, although with different underlying architectural choices (i.e.,
no region-based servers and a different trust model). The solution works by using source
routing to privately route a declarative query to the aggregator nodes of a WSN. However,
aggregator nodes are a point of failure for the network since they collect data from the
sensor nodes in their proximity.

In general, we noted that most related work adopts a strong separation between data
collection/querying and data mining. This highlights the originality of our work, where
the data remains on the sensors, with a direct decentralized implementation of the data
mining process that involves using onion routing for the purpose of protecting the tasks
together with the processed data.

2.3. Blockchain Applications in WSNs

The unique properties that blockchain networks have, and how they can benefit IoT
and WSNs, has been studied extensively. Early research focused on using a blockchain
network as an external component of systems that are mainly used as databases for key
storage and WSN management [24,25]. Blockchain networks have been used in combination
with WSNs for data security, sensor node authentication [26], removing single points of
failure in WSNs [27], and secure data accumulation [28].

Recent advances in blockchain protocols have enabled the design of light clients,
which are nodes participating in the network without needing to maintain the entire
chain. This enables clients to run on sensor nodes with low computing power and storage
requirements. Coupled with smart contract platforms, new applications, such as malicious
node detection [29] and anomaly detection [30], have surfaced.
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Although we use blockchain for access control, which is a typical way to ensure trust
between actors in a decentralized setup, the originality of our work lies in the use of smart
blockchain contracts to ensure the authenticity of the onion messages, which is a novel
approach to blockchain when combined with onion routing, as in this context.

2.4. Main Contributions

1. We develop a fully decentralized PPDDM framework for building incremental models
where data never leaves the sensor, further improving data privacy and security;

2. By using onion routing, we are able to obfuscate computations between participating
sensors and external adversaries;

3. We remove any SPOF by implementing RBAC and key storage using blockchain;
4. We show that the PPDDM approach achieves comparable accuracy to traditional DM

approaches for the air quality monitoring use case.

3. Architecture

Our architecture is built over a set of sensor nodes that have the computing power of
a Raspberry Pi, and is connected to an IAQ sensor that collects temperature (in Celsius),
relative humidity, dew point, absolute humidity, CO2, VOC index, and luminance.

Each sensor node gathers local data from its attached sensor, and at the same time,
is a blockchain node. The proposed architecture requires a blockchain supporting smart
contract functionality. The term “smart contract” was first defined in [31] as a computerized
transaction protocol that executes the term of a contract. Today, the term “smart contract”
is adopted for software that is recorded on the blockchain and that is executed by nodes
maintaining the blockchain as part of transaction processing. Ethereum [32] was the
first blockchain to implement Turing-complete smart contracts. This was achieved by
introducing the Ethereum Virtual Machine (EVM), the gas concept, and the account-based
transaction model. In addition to allowing the encoding of arbitrary state transition
functions, the smart contract functionality implemented in the Ethereum network allows
the smart contract to maintain a state; therefore, more complex applications can be built.

The OpenEthereum private network could serve our system as a secure, decentralized,
and immutable smart contract platform. The permissioned Ethereum network operates the
proof of authority (PoA) [33] consensus; therefore, the network is maintained by a selected
set of validator nodes. Other nodes do not contribute to the state transition processing;
therefore, these nodes can run an Ethereum light client [34].

An illustration of the system architecture is given in Figure 1. The use of onion routing
for PPDDM is described in Section 3.1. The operation of the proposed architecture and a
smart contract description is given in Section 3.2.
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Figure 1. The figure displays the architecture of the proposed system and the interaction between the
user, the WSN, and the blockchain.

3.1. Onion Routing for Privacy-Preserving Decentralized Data Mining

This section describes how to use the onion routing technique for privacy-preserving
decentralized data mining. The onion routing technique builds upon messages consisting
of encryption layers ciphered using public-key cryptography. Each layer of a message
contains the necessary encryption key material and the address of the node that possesses
the secret key, which will decipher the next layer. Therefore, the layered object is deciphered
following the path given at message construction and delivers encryption key material to
in-path systems. The encryption key material is used to establish a connection between the
layered object origin and the last receiver. The connection is anonymous since none of the
systems involved in the communication will know the whole connection route, apart from
the layered object origin.

To achieve privacy-preservation for DDM, we rely on a new use of onion routing that
was first described in [35]. Similar to onion routing, this technique uses messages consisting
of several encryption layers, and each layer includes path details. However, the encryption
key material is not included in each layer of the layered object, and it is not used to establish
an anonymous connection. Instead, the encryption key material gives access to the payload
accompanying the layered object. Therefore, only specific nodes in the message path are
able to access the message payload, and their identity is concealed among the set of nodes
routing the layered object.

Our system uses this technique to convey a DM model to WSN nodes. Figure 2 illus-
trates a message in our system. The DM model is enclosed in the payload accompanying
the layered object. Nodes receiving encryption key material from the layered object perform
model processing on their local data. Therefore, model processing is realized on WSN
nodes without a central processing point. The technique ensures data privacy since the
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private sensed data of nodes does not leave the origin node. The generated communica-
tion traffic is uniform; nodes performing model processing are concealed among the set
of nodes routing the message, the message path and sojourn time are randomized, the
message size is uniform, and the messages are indistinguishable by encryption and are
mixed when routed in the network. Therefore, external actors eavesdropping on a wireless
communication cannot learn information from the network traffic.

s
a

s
b

next hop ip

data mining model

pair of symmetric encryption keys

public key encryption symmetric encryption

Layered object:

Message

Payload:
s
b

s
cIP:237

IP:42

IP:877 IP:11

IP:22

Figure 2. A message of the privacy-preserving protocol described in [35], adapted for DM model
processing. The layers of the layered object, containing pairs of symmetric encryption keys, include
distinct keys. The first key is used for payload decryption, and the second key for payload encryption
after DM model processing. Please note that encryption key pairs are chained through layers of the
layered object.

3.2. Role-Based Access Control and Secure Data Mining with Smart Contract

The smart contract enabling our architecture supports the following functionalities:

• Authentication: allows sensor node authentication and stores the sensor node public
key in the KeyStore;

• Role-Based Access Control (RBAC): verifies user permissions. The smart contract con-
tains the roles assigned to the public keys of authorized users. Roles enforce the set of
DM algorithms that a user can execute on nodes of the WSN;

• Query Submission: authenticates the user with RBAC and writes the message authenti-
cation material in the MessageStore;

• Message Authentication: a view function called by sensor nodes to verify the message
origin and permissions using the message authentication material;

• Result Submission: allows authenticated sensor nodes to submit the message result and
remove the corresponding message authentication material from the MessageStore.

The outlined architecture allows for the management of user roles with RBAC func-
tionalities. A user entrusted with a specific role is allowed to construct a message made of
the layered object and the payload, as is described in Section 3.1. The payload content is
constrained by the user role, as defined by the RBAC.

The user interrogates the KeyStore to learn sensor node addresses for message construc-
tion. After message construction, the user calls the query submission functionality providing
the message authentication material. The message authentication material consists of a
Merkle proof [36] constructed from the layered object layers, and the signature of the
Merkle proof produced using the user’s private key. The user then feeds the constructed
message to the WSN.

Each sensor node receiving a message performs the following tasks. The layer of the
layered object that is dedicated to this specific node is deciphered, and the message is
authenticated by calling the Message Authentication function. The message authentication is
performed by verifying the hash of the layered object’s content against the Merkle proof in
the MessageStore. The user’s role and permission for DM model execution are also verified;
this is conducted using the signature attached to the Merkle proof.

The penultimate layer of the layered object holds a flag signaling its position. The sen-
sor node detecting this flag calls the Result Submission function and stores the message result.
For simplicity, we assume that the message result is stored on the blockchain; however,
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the result could be stored in a separate data store, submitting on-chain only the message
authentication material, the hash of the result, and the resource locator.

The user that issued the request tracks the chain for results associated with the message
authentication material of the query submission. The obtained message result consists of
the last layer of the layered object and the accompanying payload enclosing the DM model.
Next, the user decrypts the layered object with its private key, revealing the symmetric
encryption key that gives access to the payload content.

Please note that problems related to Byzantine faults are out of the scope of our work,
so we assume in this paper that the nodes collect the data properly, and execute exactly the
tasks assigned to them.

4. Methodology

This section presents the methodology behind the experimental evaluation of our
proposed PPDDM method in detail. Section 4.1 gives an outline of the dataset that was
used in the experiments—the GAMS IAQ dataset [37]. In Section 4.2, the “traditional”
data mining algorithms that were used for comparison against our PPDDM are presented.
Finally, Section 4.3 provides all the details about our PPDDM method and describes how
the experimental evaluation was performed.

4.1. Indoor Air Quality Dataset

In order to validate the proposed distributed data mining approach, we look at the
GAMS indoor air quality (IAQ) dataset, which is publicly available in [37]. This dataset
was used for experimenting and benchmarking in several research works [38–40]. In this
work, we use the GAMS dataset to compare the distributed data mining approach with
traditional centralized data mining.

As reported in Table 1, the GAMS dataset includes observations from six IAQ indica-
tors. Observations were collected from 21 November 2016 to 28 March 2017 on a minute
basis. From further dataset inspection, we identified that, for benchmarking, it could be
interesting to estimate the CO2 level from T, RH, and VOC.

Table 1. The IAQ indicators of the GAMS dataset.

Feature Sample Value Unit

Carbon dioxide (CO2) 708.0 ppm
Relative humidity (RH) 40.09 %

Particulate matter 2.5 micron (PM2.5) 10.2 µg/m3

Particulate matter 10 micron (PM10) 9.0 µg/m3

Temperature (T) 20.83 Celsius
Volatile organic compounds (VOC) 0.093 ppm

The data were pre-processed by averaging observations on a six-minute interval.
Table 2 summarizes the statistics of the pre-processed GAMS dataset.

Table 2. Summary of the statistics of the pre-processed GAMS dataset.

CO2 T RH VOC

mean 712.1 23.00 28.40 0.1168
std 405.61 2.08 5.46 0.086
min 370.2 18.04 22.05 0.062
25% 431.70 21.43 34.70 0.0635
50% 494.0 22.89 38.30 0.0740
75% 900.1 24.73 42.05 0.1405
max 2603.0 27.95 72.09 0.8702

All measured features include 29,420 observations.
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4.2. Traditional Data Mining

Here, by “traditional” data mining, we mean machine learning (ML) algorithms run
in a centralized fashion on data that is available in memory. The data used to learn and
evaluate the “traditional” ML algorithms were the same pre-processed GAMS IAQ data
with summary statistics that are presented in Table 2.

For the ML algorithms selected in this phase of the experimental evaluation, we used
the WEKA ML framework [41]—an open-source data mining (DM) framework developed
in the University of Waikato in New Zealand, containing over 200 implementations of
various ML and DM algorithms.

Since all the attributes that describe our GAMS dataset are of numeric type, it was
natural to select regression algorithms for the comparisons. Three well-known regression
algorithms were selected, namely, linear regression, model trees (the M5’ algorithm [42,43]),
and random forest [44]. The linear regression algorithm was selected as a baseline, be-
cause it is the most well-known and studied algorithm; the M5’ model trees algorithm was
selected because it can produce more sophisticated, yet still well-explainable models, and
the Random Forest was selected with the hope of producing a highly accurate result.

All three ML algorithms were run with their default parameters on the first 90% of
the GAMS IAQ dataset to learn a model, which was then evaluated on the remaining 10%
of the data. This rather unintuitive evaluation protocol was used (instead of the standard
k-fold cross validation) because of the time-series nature of the GAMS dataset.

4.3. Distributed Data Mining

The distributed data mining setting described in Section 3 characterizes a network of
nodes that store the last historical data about locally sensed IAQ features. A DM algorithm
is then privately conveyed from node to node and executed in situ. Therefore, the DM
model cannot access the global data—only the data provided by the node on which the DM
model is executing is accessible to the model. Moreover, conveying large DM models from
node to node in a WSN is resource-demanding and significantly affects the response times
of the proposed architecture. Therefore, it is necessary to send the least amount of data.

To validate the distributed data mining approach, we first partition the GAMS IAQ
dataset to simulate the described context according to Section 4.3.1. Section 4.3.3 gives the
selected DDM algorithm for comparison with traditional centralized DM and outlines the
DDM algorithm processing on the partitioned data. Section 4.3.4 details the experiment
design for assessing the message propagation time at different DM model sizes.

4.3.1. Data Partitioning

The GAMS pre-processed dataset was partitioned into ten subsets to resemble a WSN
of 10 closely located nodes. As shown in Figure 3, we applied round-robin partitioning.
Therefore, each subset holds data from the entire monitored period, and data is chronologi-
cally ordered. As can be read from Figure 3, each observation summarizes a 1-hour interval
of a sensor node.
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sensor node
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time
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Figure 3. Data partitioning according to the round-robin method.

4.3.2. Design of the Experiment

Each sensor node collects its own data (in our simulation, there is actually a round-
robin data assignment scheme that simulates sensor node data collection, as is depicted
in Figure 3). The sensor node data is then used to “augment” the Hoeffding tree received
from the previous sensor node, producing an updated Hoeffding tree that is then passed to
the next sensor node. The whole procedure is depicted in Figure 4 and has already been
proved effective in [45].

Figure 4. Incremental learning with Hoeffding trees.

As can be observed from Figure 4, the initial Hoeffding tree (HT1) is first learned in the
batch from the data provided by the first sensor node—Sensor1 (Data1). This tree is then
propagated through the WSN, and in each subsequent WSN node (Sensork), an updated
Hoeffding tree is generated (HTk) from the previous Hoeffding tree (HTk−1) and the data
from the current sensor node—Sensork (Datak). The final Hoeffding tree is then represented
by the last tree in this chain—HTn.

Such a partial Hoeffding tree’s (HTk’s) propagation through the WSN (instead of the
actual sensor data being propagated) is most suitable for preserving privacy, and also
diminishes the load on the WSN.

4.3.3. Distributed Data Mining Algorithm

Due to the context of distributed data, where only limited local data is available for
processing, we cannot run the same algorithms as in Section 4.2. Instead, we look at the
Hoeffding tree [46], a very fast decision tree algorithm proposed for stream data. The
algorithm builds a decision tree as data arrives, without the need to reuse instances from
already-processed data. This is achieved by maintaining the statistics needed for splitting
attributes in each leaf node and determining when a split should occur as data arrives,
using the Hoeffding’s bound [47]. The Hoeffding probability bound enables us to compute
ε, which can be used as a confidence interval for the estimation of the split.

ε =

√
R2 ln(1/δ))

2N
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R is the range of the random variable r. By performing N-independent observations
of the variable r, and computing their mean r, the Hoeffding bound enables us to state with
confidence 1− δ that r is within ε distance from the true mean of the variable r.

In [46], it was shown that the Hoeffding tree output is asymptotically nearly identical
to that of a traditional batch learner in infinitely many examples.

We use the Python implementation provided in the scikit-multiflow [48] library, specif-
ically, the regression variant named HoeffdingTreeRegressor. Development of the scikit-
multiflow library stopped in the year 2020, when the developers of scikit-multiflow and
Creme [49], another Python library for data stream mining, decided to merge their efforts
and release a new library named River [50]. Even though the state of the art of data stream
mining is currently implemented in the River library, we decided to employ the Hoeffd-
ingTreeRegressor implemented in the scikit-multiflow since this implementation allowed
us to control the tree size in bytes. The HoeffdingTreeRegressor algorithm at the base of the
implementation in River is identical to the one in scikit-multiflow. The algorithm is based
on the Fast and Incremental Model Trees (FIMT-DD) method described in [51], without
concept drift adaptation.

The pseudo-code is given in Algorithm 1. From the code, it is possible to notice that
the algorithm starts with an empty tree that keeps statistics at the leaves from arriving
data. Each time k values arrive at a leaf, the algorithm finds the best split for each attribute
and ranks the attributes according to the standard deviation reduction (SDR) measure [51].
Therefore, attributes are ranked such that the standard deviation is maximally reduced,
if splitting by the highest ranked attribute, by considering the ratio of the SDR values
between any of the attributes and the highest-ranked attribute as the random variable r
with range R ∈ [0, 1]. If the inequality r + ε < 1 holds, then the highest-ranked attribute is
the best split over the whole distribution for that portion of data.

Algorithm 1: Pseudo-code of the HoeffdingTreeRegressor.

1 Begin with an empty leaf (root)
2 repeat
3 Read the next example;
4 Traverse the example to a leaf ;
5 Update statistics in the leaf ;
6 if k examples were read then
7 Find best split per attribute;
8 Rank attributes using the SDR measure;
9 if splitting criterion is satisfied then

10 Make a split on the best attribute;
11 make two new branches leading to (empty) leaves;
12 end
13 end
14 until End of the stream;

We ran the ML algorithm with the sample average leaf predictor for the following
maximal model sizes: M = {5k, 10k, 25k, 50k, 100k, 250k, 500k, 1M, 2.5M, 5M} (bytes). In
the provided code snippet (Listing 1), the MAX_TREE_SIZE parameter on line 8 corresponds
to one of the values of M. The algorithm was run on the partitioned pre-processed GAMS
IAQ dataset. To closely simulate the architecture described in Section 3, we design the
experiment as if model processing occurs once a day, processing 24 h of data from each
node following the round-robin approach. Therefore, the HoeffdingTreeRegressor processes
24 h of data from subset #0, then moves to data from subset #1, and so on. After processing
at subset #9, the model moves to the next-day data from subset #0 and repeats until it
reaches the end of data.
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Listing 1. Hoeffding Tree training and evaluation.
1 from skmultiflow.trees import HoeffdingTreeRegressor
2 data = pd.read_csv("gams_aq/gams_preprocessed.csv")
3 X = data[['temperature', 'humidity', 'voc']]
4 Y = data['co2']
5 y_actual = []
6 y_predicted = []
7

8 model = HoeffdingTreeRegressor(max_byte_size=MAX_TREE_SIZE, leaf_prediction="mean")
9

10 for i in range(len(Y)):
11 prediction = model.predict(X[i])
12 y_predicted.append(prediction)
13 y_actual.append(Y[i])
14 model.partial_fit(X[i], Y[i])

We say that the HoeffdingTreeRegressor is processing data because when a data instance
is provided to the algorithm, it first estimates the response variable value and then uses
the observed value for model learning. These operations are shown in the provided code
snippet (Listing 1) on lines 11 and 14, respectively. To hold consistency with Section 4.2,
in Section 5, we report the model evaluation results on the last 10% of the data.

4.3.4. Message Propagation Time

The system we are presenting makes use of the onion routing technique described
in Section 3.1 to convey a DM model through the nodes of a WSN. Therefore, messages
are routed through several nodes of a wireless multi-hop network and relayed multiple
times, introducing substantial latency before receiving the result. To assess the response
time of the proposed architecture operating over a large WSN, we look at the publicly
released NS3-based simulator described in [52]. NS3 [53] is a discrete-event network
simulator for internet systems, and it is the most-used network simulator by the IoT
research community [54]. The simulator described in [52] is designed to simulate the
technique described in Section 3.1 over a WSN that varies in node number, topology,
routing, etc. Furthermore, it allows for the manipulation of message structures by defining
nodes in the message path (corresponding to layers of the layered object), detailing the
payload content, and other settings such as maintaining message uniformity.

We set up a simulation that constructs a WSN of 200 nodes. Nodes are deployed
at random locations on a disc-shaped plane with a radius of 300 m. We selected the
deployment scheme affected by randomness to model the usually non-uniform node
density of WSNs. Nodes have a wireless communication range of approximately 30 m,
operating based on the IEEE 802.11n standard at 2.4 GHz and with a data rate of 13 Mbps.
The maximum transmission unit and maximum segment size are set to the ns3 default
value, namely, 2296 bytes and 536 bytes, respectively.

Messages are transmitted over the TCP protocol, multi-hop routing is conducted using
the Optimized Link State Routing Protocol (OLSR) [55], and cryptography is completed
with the Libsodium library [56].

The simulator is set up to issue 20 messages for each value of M, with M being the
size in bytes of the model carried in the message payload. The layered object included
in the message is constructed to lead the message through 20 randomly selected nodes.
Our previous work [35] stated that for privacy requirements, half the nodes in the message
path are only performing routing operations, without access to the payload content (decoy
nodes). Therefore, this setup allows for estimations of the propagation time of messages
constructed to perform model processing at 10 nodes. Message size is maintained as
uniform after the onion routing operation, with padding when necessary. Figure 5 shows
the simulated WSN and an onion message routed through 20 sensor nodes.
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sink node

sensor node

onion message

onion routing 
of the message 
at other 16 nodes

Figure 5. Example of the disc-shaped WSN with random node placement generated in the simula-
tor [52]. The sink node is deployed in the center of the network, issuing onion messages sequentially.
Each onion message is onion-routed at 20 nodes and ends its path at the sink node. In the figure, we
indicate an onion routing operation with the change in color of the packet.

5. Results
5.1. Distributed Data Mining Approach

To validate our approach, we analyze the accuracy of Hoeffding trees in predicting
CO2, depending on the set tree size. Figure 6 shows the accuracy of predicted CO2 com-
pared to observed values from sensors, depending on the tree size. The last 10% of the
chronologically ordered data was used in the evaluation phase. We observe that the over-
all accuracy of Hoeffding trees improves with the increase in tree size. As discussed in
Section 4.3.3, Hoeffding trees store attribute statistics in leaves; therefore, as new leaves are
formed due to split decisions, the model size increases, and also the prediction accuracy
should increase.
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Legend: observed predicted, tree size 1000k predicted, tree size 100k predicted, tree size 10k

Figure 6. Comparison between predicted CO2 using Hoeffding trees and observed for different
tree sizes.
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While training Hoeffding trees, we make continuous predictions in order to monitor
the progressive improvements in accuracy through time. Figure 7 illustrates four different
tree sizes and their respective prediction accuracies. The box plots show the aggregated
weekly data points for clarity. We observe that, in all cases, the variance and mean decrease
with time. Moreover, we observe that a small tree size (5 Kb) is worse overall when
compared to the other sizes, while increasing the size of the tree beyond 100 Kb has no
marginal effect on the accuracy.
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Figure 7. Overall prediction accuracy of different-sized Hoeffding trees while learning.

Figure 8 shows the comparison between the Hoeffding tree and the traditional DM
algorithms. We compared the absolute error between the predicted and observed values
on a daily basis. All models were trained using the first 90% of the data, and evaluated
using the last 10%. We observe that the prediction error of the Hoeffding tree is comparable
with traditional algorithms throughout all the reported days in Figure 8. Additionally,
we provide standard model quality metrics in Table 3, obtained from a model evaluation
on the last 10% of the data. From Figure 8, it is possible to notice that the Hoeffding tree
model outperforms the random forest and M5’ models. This can be also read in Table 3.
From Table 3, it appears that the linear regression model is the best predictor, achieving
the highest values for the RMSE, RRSE, and COR metrics. Although the Hoeffding tree
model did not achieve the best results, the quality metrics reported in Table 3 and Figure 8
confirm that the DDM approach using the Hoeffding tree achieves comparable accuracy
to traditional DM approaches. Furthermore, our DDM approach can be compared to the
research in [40], where researchers developed an inference model that was also tested on
the same GAMS IAQ dataset [37]. They report a coefficient of determination of 0.6742
when predicting the CO2 value from other predictors, whereas deriving the coefficient of
determination from Table 3 for the Hoeffding tree results in a value of 0.7109.
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Table 3. Statistical comparison of the prediction accuracy of different models. MAE—mean absolute
error, RMSE—root mean squared error, RRSE—root relative squared error, and COR—correlation co-
efficient.

Algorithm MAE RMSE RRSE COR

Random forest 154.8616 249.2222 61.5162 0.803
M5’ 148.5085 232.2563 57.3284 0.8323

Linear regression 157.7538 212.1302 52.3606 0.8717
Hoeffding tree 135.3154 230.9903 57.0625 0.8432
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Figure 8. Absolute error comparison between the Hoeffding tree and traditional algorithms. The box
plots aggregate the daily absolute error per DM model.

5.2. Validation of the Privacy-Preserving Architecture

The described privacy-preserving architecture builds upon the Ethereum blockchain
running the PoA consensus and the privacy-preserving communication protocol described
in [35]. Since the use of the blockchain in our architecture does not diverge from the typical
use, we focus on evaluating the privacy-preserving communication protocol for distributed
data mining. Moreover, the adoption of blockchain technology for resource-constrained
devices was discussed in several other research works; specifically, we point out [57], which
provides performance analyses of the Ethereum blockchain running the PoA consensus in
IoT networks.

The privacy-preserving communication protocol uses the onion routing technique,
which builds on messages having several layers of public-key cryptography; public-key
cryptography is known for being computationally intensive. However, in the proposed
architecture, multiple public-key cryptography operations are required only at the point of
message creation; therefore, this is conducted by the user on the client, which is supposed to
be running on a typical consumer machine. Nodes of the WSN at the onion message receipt
perform only one public-key cryptography operation. To assess the time required for a
node of our system to decipher a message, we coded a test script that measures the required
time for ciphering several bytes of data using the same cipher as the simulator [52]. The
cipher is based on the elliptic curve Curve2551 [58], and is implemented in the Libsodium
library [56] under the name Sealed Box. By our measurments, encrypting 1 kB and 16 kB of
data using the Sealed Box implementation on a Raspberry Pi4 takes, respectively, 603 and
735 microseconds. Therefore, the processing time required for cryptographic operations
is low compared to the DM model processing and the message propagation time. On the
other hand, DM model processing depends on the amount of data to be processed at each
node and on the computational complexity of the applied DM model. In the proposed
architecture, we describe the use of the DM model known as Hoeffding tree, which is
known to be memory and computationally efficient [59].
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To show the feasibility of the onion-routed approach, we study the impact of message
propagation through the WSN based on different tree sizes. The experiment was designed
to simulate the worst-case scenario with random node deployment, inducing a high packet
drop rate. Figure 9 shows the average propagation time of an onion message relative to
the size of the Hoeffding tree. We observe a low impact of larger trees on encryption,
decryption, and training on total propagation times.
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Figure 9. The average propagation time of onion messages through 20 WSN nodes, conveying a DM
model of size M. To provide a better overview of the collected data, we report the log transformation
of the y axis.

6. Conclusions

In this paper, we describe an innovative combined use of blockchain and onion routing
to realize privacy-preserving decentralized data mining over wireless sensor networks.
The advantage of such an approach is to avoid problems such as single points of failure
and dependencies on remote infrastructures, while providing qualitatively similar results
to those of traditional data mining techniques.

In effect, our solution relies on smart contracts and onion routing to address further
problems that arise from the decentralized nature of the solution. Onion routing protects
the decentralized data mining process from external monitoring, and smart contracts
introduce a way to trust the computation being realized over the different sensors that
form the network. We rely on a public key infrastructure to provide for data integrity
and confidentiality.

Future work includes exploring advanced methodologies for data processing and
data storage to guarantee properties such as fault tolerance or resilience against network
partition. Pushing the boundaries of data mining on the edge of the network opens doors
for smart, autonomous, embedded systems to support human activities, while reducing
the required environmental impact.

Author Contributions: Conceptualization, N.H. and A.T.; Data curation, N.H., A.T. and B.K.; Formal
analysis, M.M.; Funding acquisition, M.M.; Investigation, N.H., A.T., M.M. and B.K.; Methodology,
N.H., A.T. and B.K.; Project administration, A.T. and M.M.; Resources, M.M. and B.K.; Software,
N.H.; Supervision, A.T. and M.M.; Validation, N.H., A.T. and B.K.; Visualization, N.H. and A.T.;
Writing—original draft, N.H., A.T., M.M. and B.K.; Writing—review & editing, N.H., A.T., M.M. and
B.K. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the European Commission for funding the InnoRenew
project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming program and the
Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Regional

84 2.5. PAPER 5



Appl. Sci. 2022, 12, 5646 16 of 18

Development Fund). They also acknowledge the Slovenian Research Agency ARRS for funding the
project J2-2504.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Gibbons, P.; Karp, B.; Ke, Y.; Nath, S.; Seshan, S. IrisNet: An architecture for a worldwide sensor Web. IEEE Pervasive Comput.

2003, 2, 22–33. [CrossRef]
2. Li, N.; Zhang, N.; Das, S.K.; Thuraisingham, B. Privacy preservation in wireless sensor networks: A state-of-the-art survey.

Ad Hoc Netw. 2009, 7, 1501–1514. [CrossRef]
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Chapter 3

Conclusions

Sensor networks, a product of advances in wireless communication, em-

bedded electronics, and sensing technology, are ubiquitous in modern

life. They are at the core of numerous applications from environmen-

tal monitoring to industrial automation, enhancing our interaction with

the environment. However, the traditional centralized sensor network

architecture presents several limitations, notably around communication

overhead, performance, SPOFs, security, privacy, and data management,

amongst others. This has catalyzed the shift towards decentralized ar-

chitectures and the rise of edge computing in sensor networks. However,

many challenges still lie ahead, particularly concerning implementing

versatile, efficient, and secure distributed computing frameworks, as well

as ensuring data privacy.

In this dissertation, we delve into privacy-preserving, in-network data

processing in sensor networks, emphasizing in-situ data processing and

leveraging the advantages of edge computing and decentralized architec-

tures to mitigate limitations of the traditional centralized architecture.

3.1 In-Network Convolution in Grid Shaped Sensor

Networks

CNNs are powerful machine learning algorithms, achieving high infer-

ence quality; however, their resource-intensive nature makes them un-

suitable for running on single nodes in a sensor network, resulting in

such networks often adopting a centralized architecture. In response to

this challenge, our research into distributing the computational load of

88
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CNN’s convolutional layers among sensor nodes in grid-shaped networks

uncovers a promising solution. By leveraging the inherent structure of

CNN kernels and coordinating nodes locally, we show how to perform in-

network CNN-layer processing. In [11] we describe a multi-layer architec-

ture where several convolutional layers can be sequentially processed on

sensor network nodes. Notably, this approach does not present SPOFs,

and data processing occurs close to the monitored activity, eliminating

the need for raw data to traverse the network.

Employing the ns-3 simulator, we assess the viability of the researched

approach. Our findings suggest that while communication overhead is

a concern, it becomes particularly challenging with large convolution

kernels and low bit-rate links. For example, with a 7 x 7 kernel size, a

5% packet loss was observed at a data-rate of 250kbps, and a striking

87% packet loss at 125kbps. Simulations were conducted considering two

network topologies: the grid topology and the diagonal grid topology,

with the latter incorporating additional diagonal links. Notably, the

diagonal grid topology achieved a 44% lower message propagation time

compared to its counterpart. We have made the raw simulation data

publicly available at the Zenodo repository 1.

Within this study, we collected a large set of simulated fall events using

a grid shaped sensor network embedded in a flooring surface. Our pub-

lished results [18] accurately details the methodology employed for data

collection, and we have made this valuable dataset publicly available.

This data stands as a significant contribution, offering a foundation for

future research focused on distributing the processing load of CNNs over

grid-shaped sensor networks. Moreover, the fall simulation data provides

insights into fall patterns and the dynamics of individual reactions dur-

ing fall event. Additionally, it lays the groundwork for the development

of an intelligent flooring system adept at detecting fall events with high

accuracy.

Looking forward, we suggest steering future research towards integrating

the convolutional layer processing approach with existing or emerging so-

lutions for distributing the inference load of a fully connected deep neural

network among sensor network nodes. Such integration promises to en-

able complete CNN inference directly within the sensor network, thus

eliminating the need for external processing systems. This development

1Zenodo repository: https://doi.org/10.5281/zenodo.5141721

https://doi.org/10.5281/zenodo.5141721
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could significantly enhance privacy and efficiency of the sensor network

while reducing the inference response time.

3.2 A General Purpose Privacy Preserving Proto-

col for Sensor Networks

Despite the maturity of sensor networks, a significant gap persists in

the development of a decentralized computing and information retrieval

framework that assures privacy and enables generalized computation.

This research seeks to address this gap, proposing a novel layered cryp-

tographic approach inspired by Onion Routing [7]. This approach sig-

nifies a paradigm shift in privacy-preserving computation by prioritiz-

ing the movement of computation over sensitive data. By enabling in-

situ processing on nodes without the need to transfer sensitive data,

this approach lays the foundation for robust, decentralized, and privacy-

preserving in-network data analysis frameworks.

In this thesis, we have articulated and formalized the layered crypto-

graphic approach, transforming it into a privacy-preserving communica-

tion protocol for sensor networks. Drawing from this advancement, the

principal contributions made within this thesis regarding our privacy-

preserving communication protocol are as follows:

• In [10], we have formally defined the privacy-preserving communi-

cation protocol that enables sensor network nodes to jointly com-

pute a function in a privacy-preserving manner. We compare our

proposal to the related work in the field, showing that, this is the

first scheme that allows in-network joint computation of arbitrary

functions in sensor networks without aggregator nodes and with-

out disclosing the nodes participating in the computation and their

private inputs.

• In [10], we have analytically demonstrated that our communication

protocol is secure against traffic analysis attacks. This makes it

particularly suitable for scenarios such as indoor monitoring, where

data privacy is paramount. Notably, our solution exhibits resilience

against both eavesdropping and attacks based on node tampering.

For example, when an attacker controls 10% of the network nodes,

the probability of a query revealing a private data point of a sensor



CHAPTER 3. CONCLUSIONS 91

node to the attacker is 1/60. By adjusting protocol parameters, the

probability of data leakage can be further mitigated.

• Utilizing the ns-3 simulator, we crafted a simulation for the privacy-

preserving communication protocol, allowing it to operate within

simulated sensor networks of varying sizes, topologies, and opera-

tional parameters. Through empirical experimentation, we found

that the solution scales effectively. However, for larger sensor net-

works (400+ nodes), it is advisable to limit the random node se-

lection for queries to a specific network region. This region should

encompass the nodes of interest but remain compact enough to not

incur in high message propagation times. Furthermore, we noted

that the network topology has only a marginal impact on message

propagation time. Both the description and architecture of the

simulation are presented in [12], and we have made the developed

simulation publicly available 2.

• In [9], we have shown how to apply the privacy-preserving commu-

nication protocol to realize privacy-preserving decentralized data

mining over sensor networks. We have simulated the training of a

machine learning model using our proposed communication proto-

col and compared its inference results with those of various mod-

els trained using the traditional centralized approach. We conduct

empirical experimentation through a regression task using indoor

air quality data, evaluating the models based on several metrics:

mean absolute error, root mean squared error, root relative squared

error, and correlation coefficient. Our findings indicate that our

distributed machine learning model training approach yields re-

sults comparable to those obtained with the traditional centralized

method.

• In [9], we have shown the viability of a decentralized, privacy-

preserving, SPOF-free, and secure in-network data analysis frame-

work. Harnessing the combined strengths of blockchain technology

and onion routing, our approach offers enhanced privacy and secu-

rity, transcending the limitations of centralized systems. The effi-

cacy of the decentralized framework was further validated for data

mining tasks through simulations using the ns-3 simulator. Our

findings indicate that the framework can operate effectively, even

2Github repository: https://github.com/ElsevierSoftwareX/SOFTX-D-21-00231

https://github.com/ElsevierSoftwareX/SOFTX-D-21-00231


92 3.2. A GENERAL PURPOSE PRIVACY PRESERVING PROTOCOL

with large machine learning model sizes, with successful testing con-

ducted for models up to 5MB in size.

In the near future, our primary focus will be to take our proposal from

theoretical constructs to real-world applications. Specifically, we have

charted out plans to implement and test our innovative protocol in var-

ious buildings, aiming to collect and analyze air quality data directly

on-site. In the course of this development, particular emphasis will be

placed on leveraging our technique for the training and evaluation of

machine learning models. Within this context, the federated learning

paradigm appears to be a promising direction, potentially offering syner-

gies with our decentralized and privacy-centric approach. Furthermore,

in our quest for enhanced privacy, we are intrigued by the prospects of

integrating advanced cryptographic methods. Specifically, the integra-

tion of code obfuscation techniques and homomorphic encryption into

tasks performed by sensor nodes can be a game-changer in terms of

privacy preservation. This, of course, will necessitate a thorough inves-

tigation into the feasibility and potential trade-offs of these sophisticated

methods, ensuring that the balance between privacy and performance is

maintained.

Alongside, there is growing interest in extending the reach and applica-

bility of our technique within the expansive landscape of the Internet of

Things (IoT). We envision the creation of a decentralized resource mar-

ketplace, where each individual IoT device, equipped with varying levels

of computational power, data storage, sensory and actuators, has the

potential to actively participate in this new ecosystem. Whether it is of-

fering stored information, contributing processing capabilities, or sharing

sensory data, these devices can be active contributors rather than mere

passive entities. By introducing an incentive mechanism, which aligns

with the trend of rewarding resource contributions, users can gain for

the roles their devices play, thus fostering a vibrant, user-centric ecosys-

tem. In this envisioned model, data and processing power are not just

utilities; they are commodities, and the power to harness and trade them

rests in the hands of the user. The general-purpose privacy-preserving

protocol developed in this thesis could serve as the foundational layer

for utilizing IoT devices, while blockchain technology can instill trust

among nodes and introduce the necessary incentive mechanism.

Harnessing a decentralized resource marketplace not only optimizes the
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utilization of users’ IoT infrastructure, thereby fostering significant cost

savings and rewarding the user, but also unveils a spectrum of appli-

cations. It can substitute sensing infrastructures in smart cities and

environmental monitoring scenarios, provide a readily available founda-

tion for diverse research initiatives, and much more, marking a pivotal

step towards a more interconnected and efficient future.

In conclusion, this thesis has been a rigorous exploration into the realms

of sensor networks, addressing both their potential and current limita-

tions. By leveraging novel paradigms such as edge computing, decen-

tralization, and emphasizing the imperative of privacy, we have laid a

foundation that future research can build upon. The methodologies and

solutions we have developed, particularly our layered cryptographic ap-

proach and in-network processing strategies, are not just theoretical con-

structs; they present tangible avenues for the next wave of advancements

in real-world applications. We have demonstrated that with careful de-

sign and innovation, sensor networks can be more efficient, decentralized,

and privacy-centric. As we look forward, the immediate next steps are

clear: transitioning from simulations to real-world applications, refining

our approaches based on practical findings, and ensuring our solutions

remain relevant and adaptable in the ever-evolving technological land-

scape.



Bibliography

[1] S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farah-

bakhsh, K. Sandrasegaran, and M. Abbasian Dehkordi. A survey

on data aggregation techniques in iot sensor networks. Wireless

Networks, 26(2):1243–1263, Feb 2020.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A

survey on sensor networks. IEEE Communications Magazine,

40(8):102–114, 2002.

[3] M. Alloghani, M. M. Alani, D. Al-Jumeily, T. Baker, J. Mustafina,

A. Hussain, and A. J. Aljaaf. A systematic review on the status

and progress of homomorphic encryption technologies. Journal of

Information Security and Applications, 48:102362, 2019.

[4] E. De Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens,

P. Demeester, and B. Dhoedt. Distributed neural networks

for internet of things: The big-little approach. In B. Man-

dler, J. Marquez-Barja, M. E. Mitre Campista, D. Cagáňová,
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Povzetek v slovenskem jeziku

Senzorska omrežja predstavljajo neločljiv del sedanje tehnološke scene.

Ključni napredki v brezžični komunikaciji, vgrajeni elektroniki in

tehnologiji senzorjev so omogočili razvoj cenovno dostopnih, energijsko

učinkovitih in miniaturnih naprav, ki so sposobne zaznavanja, obdelave

in prenosa podatkov. V literaturi so takšne majhne, energijsko varčne

naprave znane kot senzorska vozlǐsča.

Senzorska vozlǐsča razporejena v velikem številu in ki si delijo skupni

(ponavadi brezžični, včasih pa tudi žični) komunikacijski medij, tvorijo

senzorsko omrežje [2]. V tradicionalni arhitekturi senzorskih omrežij vo-

zlǐsča opravljajo meritve ali zaznavajo dogodke. Nato zbrane podatke

pošljejo do zbiralnega vozlǐsča (ang. sink node), ki služi kot centralna

točka za zbiranje podatkov in običajno podatke posreduje zunanjim sis-

temom za trajno shranjevanje, obdelavo in analizo.

Danes se senzorska omrežja uporabljajo v širokem naboru aplikacij, od

spremljanja okolja in zdravstvenega varstva do industrijske avtomati-

zacije, senzorska omrežja ne samo zbirajo in analizirajo podatke, temveč

tudi revolucionirajo naše dojemanje in interakcijo z okoljem.

Kljub mnogim prednostim, ki jih senzorska omrežja prinašajo obstajajo

tudi določene omejitve, ki jih je treba upoštevati [2]. Med glavnimi ome-

jitvami so omejena moč in zmogljivosti obdelave senzorskih vozlǐsč, ki

lahko omeji količino in kompleksnost zbranih, obdelanih in prenesenih

podatkov. Poleg tega so senzorska omrežja občutljiva na različne vrste

napak, kot so okvare vozlǐsč, delitve omrežja in prekinitve komunikacije,

kar lahko privede do izgube podatkov, zamud in zmanǰsane zanesljivosti.

Druga pomembna omejitev je možnost kršitve varnosti in zasebnosti, saj

senzorska omrežja pogosto zbirajo občutljive informacije in so izpostavl-

jena različnim vrstam napadov [17].

Zgoraj omenjene omejitve so še posebej izrazite v tradicionalni central-

97
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izirani arhitekturi senzorskih omrežij, kjer vozlǐsča zbirajo in prenašajo

surove podatke v oddaljen sistem izven senzorskega omrežja za obdelavo

in analizo. Tako trenutne implementacije senzorskih omrežij prehajajo

k decentralizirani arhitekturi, kjer senzorsko omrežje zaznava, obdeluje

in shranjuje podatke ter odgovarja z informacijami namesto s podatki

ob povpraševanju [13, 6].

Ta nov decentraliziran pristop spodbujajo napredki v računalnǐski moči

in učinkovitosti mikroelektronike ter pojav robnega računanja [16].

Robno računanje predstavlja distribuiran računalnǐski model, ki

vključuje izvajanje računalnǐskih nalog čim bližje viru podatkov, na

primer na ”robu” omrežja. V kontekstu senzorskih omrežij obdelava na

robu pomeni lokalna obdelavo podatkov na samih senzorskih vozlǐsčih

ali na bližnjih napravah. Z izkorǐsčanjem geografske bližine podatkov

obdelava na robu prinaša številne prednosti senzorskim omrežjem.

Prvič, z izvajanjem obdelave podatkov in analize bližje izvoru podatkov

se znatno zmanǰsa količina podatkov, ki jih je treba prenesti čez omrežje.

To je še posebej pomembno v primeru omejenih virov, saj poveča

učinkovitost omrežja in zmanǰsa zastoje, kar vodi v bolj učinkovit in

zanesljiv sistem. Poleg tega manǰse prenašanje podatkov rezultira v

nižjo latenco, kar izbolǰsa celotno delovanje in odzivnost sistema.

Drugič, z distribucijo računskih nalog čez več vozlǐsč, obdelava na robu

lahko prepreči problem centralne točke okvare (ang Single Point Of Fail-

ure – SPOF) v omrežju. Če ena naprava ali vozlǐsče odpove, se lahko

obdelovalne naloge preusmerijo na drugo napravo ali vozlǐsče, kar zago-

tavlja, da omrežje še naprej deluje, s čimer se izbolǰsa splošna odpornost

na okvare in zanesljivost sistema.

Tretjič, z lokalno obdelavo podatkov se lahko zagotovi, da občutljive in-

formacije ostanejo lokalizirane in se ne prenašajo čez omrežje, kar poveča

varnost in zasebnost uporabnikov.

S uporabo računanja na robu se v senzorskih omrežjih soočamo

z različnimi izzivi. Med najbolj izrazite spadajo: odločanje med

lokalno in oddaljeno obdelavo podatkov, uravnoteženje obremenitve

omrežja, optimizacija komunikacije in obdelave podatkov ter zagotavl-

janje zanesljivosti in varnosti v distribuiranem okolju [16].

Kljub prednostim robnega računanja za senzorska omrežja so trenutne

implementacije ogrodij porazdeljenega računanja omejene. Ni uni-
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verzalnega ogrodja za porazdeljeno računanje, ki bi podpiral poljubno

računanje in bil varen, učinkovit ter primeren za senzorska omrežja. Ob-

stajajo sicer ogrodja, optimizirana za določene primere uporabe, kot so

agregacija podatkov [1], procesor poizvedb [13] ali strojno učenje [5],

vendar so ta ogrodja prilagojena specifičnim nalogam in niso primerna

za druge tipe izračunov. Poleg tega mnoga ogrodja nimajo vgrajenih

potrebnih varnostnih mehanizmov za zaščito občutljivih podatkov v sen-

zorskih omrežjih, medtem ko so ostale rešitve preveč zahtevne za delo-

vanje v senzorskih omrežjih. Posledično obstaja potreba po raziskavah

novih rešitev porazdeljenega računanja, ki bi odpravile te omejitve.

Pri razvoju naprednega ogrodja za porazdeljeno obdelavo podatkov v

senzorskih omrežjih je ključno postaviti pozornost na varovanje zaseb-

nosti. Zasebnost v senzorskih omrežjih predstavlja velik izziv, saj za-

znane okoljske značilnosti odražajo aktivnosti ljudi v nadzorovanem

okolju. To pomeni, da so zbrani podatki občutljive narave in zahte-

vajo ustrezne varnostne ukrepe [15]. Čeprav lahko koncept robnega

računanja in selitev računskih nalog čim bližje izvoru podatkov pripo-

more k zmanǰsanju potencialnih varnostnih pomanjkljivosti, je zasebnost

še vedno odprt problem, saj morajo nekatere informacije vedno potovati

do končnih točk omrežja [17]. Poleg tega lahko izvajanje računskih na-

log čim bližje izvoru podatkov na vozlǐsčih senzorskega omrežja ogrozi

zasebnost podatkov. Natančneje, v aplikacijah, ki temeljijo na računskih

nalogah, ki potrebujejo podatke iz več vozlǐsč za izračun rezultatov, vo-

zlǐsča obdelujejo podatke iz drugih vozlǐsč in zahtevajo dešifriranje pred

obdelavo podatkov; zato vozlǐsča, ki izvajajo izračun, imajo dostop do

podatkov iz drugih vozlǐsč. Pomen te težave je še posebej poudarjen

v senzorskih omrežij, kjer so vozlǐsča običajno po namestitvi nenad-

zorovana, zaradi česar so izpostavljena možnim manipulacijam s strani

zlonamernih akterjev. V skladu s tem bi lahko napadalec manipuliral

z majhnim številom senzorskih vozlǐsč, da bi pridobil podatke iz veliko

večjega nabora vozlǐsč.

V kontekstu senzorskih omrežij je bil ta problem obravnavan z različnimi

pristopi. Veliko študij se osredotoča na računsko nalogo agregacije po-

datkov znotraj omrežja [20]. Čeprav so predlagane rešitve učinkovite in

zagotavljajo zasebnost, so računske naloge večinoma omejene na osnovne

agregacijske funkcije, kar pomeni, da so te rešitve težko prilagodljive

za druge računske naloge. Druge študije se naslanjajo na raziskave

Bizantinskih odpornih sistemov ter predstavljajo tehnike, ki temeljijo
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na homomorfni enkripciji [3] ali varni večstranski obdelavi [21]. Vendar

so temeljni protokoli zahtevni z vidika virov in trenutne implementacije,

ki podpirajo poljubno računanje, niso primerne za uporabo v senzorskih

omrežjih.

Kljub številnim napredkom v kriptografiji ostaja zasebnost ključna skrb

v senzorskih omrežjih, zlasti v zvezi z aplikacijami, ki uporabljajo kon-

cept robnega računanja. Obstoječe rešitve ne zagotavljajo učinkovitega,

praktičnega in vsestranskega pristopa, ki bi omogočal obdelavo podatkov

znotraj omrežja ob ohranjanju zasebnosti. Zato obstaja pomembna

raziskovalna vrzel, ki zahteva nadaljnje preučevanje.

Glavni cilj te doktorske naloge je raziskovanje decentraliziranih pristopov

za ohranjanje zasebnosti pri obdelavi podatkov znotraj senzorskih

omrežij. Raziskava je usmerjena k ogrodju, ki podpira strojno učenje

in omogoča, da se modeli strojnega učenja učijo in izvajajo na vo-

zlǐsčih omrežja, medtem ko ohranja zasebnost občutljivih podatkov pred

prisluškovanjem in napadi, ki temeljijo na manipulaciji vozlǐsč.

Poleg tega, tradicionalna centralizirana senzorska omrežja pogosto

temeljijo na agregacijskih vozlǐsčih, ta model uvaja ranljivosti. Uporaba

agregacijskih vozlǐsč ustvari SPOF tako z tehničnega kot z vidika zaseb-

nosti. Čeprav je takšna arhitektura skalabilna in učinkovita, je lahko

ranljiva za varnostne kršitve ali napake v omrežju, kar lahko privede do

pomembnih izgub podatkov in nedelovanja sistema. V tem zaključnem

delu se osredotočamo na decentraliziran pristop brez agregacijskih vo-

zlǐsč, kjer vsa senzorska vozlǐsča imajo enako vlogo in se obnašajo enako,

s čimer se odpravlja vsak SPOF.

V tem zaključnem delu predstavljamo dva inovativna pristopa za po-

razdeljeno računanje v senzorskih omrežjih, s katerima želimo izkoristiti

prednosti robnega računanja in skupne računalnǐske moči omrežja. Oba

pristopa temeljita na decentralizirani arhitekturi, ki omogoča, da sen-

zorska omrežja obvladujejo računsko zahtevne aplikacije, kot je strojno

učenje, brez zanašanja na zunanje sisteme. To omogoča obdelavo po-

datkov bliže njihovemu izvoru, kar zmanǰsuje izpostavljenost podatkov.

Da bi ocenili prednosti in slabosti obeh metod ter njihovo sposobnost

zagotavljanja učinkovite in varne obdelave podatkov, smo izvedli anal-

itične študije in simulacije z uporabo simulatorja ns-3 [8].
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Porazdeljeno računanje konvolucije v senzorskem

omrežju

Računska obremenitev konvolucijske nevronske mreže (KNM) je lahko

zelo visoka, kar onemogoča obdelavo sklepanja na enem vozlǐsču sen-

zorskega omrežja. Poleg tega uporaba modela KNM potrebuje podatke

iz večih senzorskih vozlǐsč za sklepanje. To privede do koncentracije

občutljivih podatkov na centralni točki obdelave, kar lahko ogrozi za-

sebnost sodelujočih vozlǐsč. Zato se soočamo s ključnim izzivom: kako

razporediti računsko obremenitev KNM med vozlǐsči za obdelavo v real-

nem času.

Čeprav obstaja že nekaj rešitev [4, 14] za porazdeljeno obdelavo običajnih

umetnih nevronskih mrež na vozlǐsčih senzorskih omrežij, so raziskave na

porazdeljeni obdelavi konvolucijskih plasti zelo omejene. KNM so priz-

nane po svoji učinkovitosti pri aplikacijah, ki delujejo s podatki struk-

turiranimi v obliki mreže, kot sta analiza slik in videa. Kljub temu

pa potencial uporabe KNM v kontekstu mrežno postavljenih senzorskih

omrežij še ni bil v celoti izkorǐsčen

V okviru te disertacije smo zasnovali rešitev brez SPOF za porazdel-

jeno obdelavo konvolucijske plasti KNM čez vozlǐsča mrežno postavl-

jenega senzorskega omrežja. Naš pristop izkorǐsča strukturo jeder KNM

in lokalno koordinacijo vozlǐsč za izvajanje sklepanja čim bližje izvoru po-

datkov. To zmanǰsuje potrebo prenosa občutljivih podatkov čez omrežje.

Uporabnost te rešitve je široka, saj ima potencial izbolǰsati tako zaseb-

nost kot tudi učinkovitost v katerikoli aplikaciji mrežno postavljenega

senzorskega omrežja, ki lahko koristi KNM, kot so sledenje aktivnosti,

analiza hoje, zaznavanje padcev ali različne vrste avtomatizacijskih sis-

temov.

Splošni protokol za varovanje zasebnosti v senzorskih

omrežjih

Zasebnost v senzorskih omrežjih je ključnega pomena, saj so zbrani

podatki občutljive narave. Tradicionalne tehnike šifriranja lahko po-

datke varujejo med prenosom, vendar pa aplikacije, ki obdelujejo po-

datke iz več vozlǐsč, še vedno dostopajo do dešifriranih podatkov. Doslej

so bile raziskave predvsem usmerjene v zagotavljanje zasebnosti med
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obdelavo podatkov znotraj omrežja s uporabo tehnike transformacije

podatkov preko kriptografije ali drugimi tehnikami zamaskiranja. Ta

pristop omogoča več vozlǐsčem delovanje na transformiranih podatkih

brez možnosti pridobivanja zasebnih podatkov iz drugih sodelujočih vo-

zlǐsč. Kljub temu da je ta pristop privedel do razvoja številnih rešitev,

v rešitvah, ki so praktične v senzorskih omrežjih, tehnika zakrivanja po-

datkov omejuje nabor operacij, ki so možne na transformiranih podatkih.

Da bi izbolǰsali zaščito zasebnosti v senzorskih omrežjih, predlagamo

rešitev, ki prenaša računanje namesto občutljivih podatkov z uporabo

slojne kriptografije. Naš pristop prenaša navodila za izračun in delne

rezultate za obdelavo neposredno na vozlǐsčih senzorskega omrežja, s

čimer odpravlja potrebo po prenosu občutljivih podatkov in povečuje

zaščito zasebnosti pred prisluškovanjem in manipulacijo vozlǐsč. Do-

datno naš pristop omogoča izvajanje poljubnih izračunov na vozlǐsčih

senzorskega omrežja, in tako omogoči strojno učenja. Naša raziskovalna

smer vodi k ustvarjanju decentraliziranega ogrodja za analizo podatkov

v senzorskih omrežjih, ki je brez SPOF, in ki zagotavlja zasebnost.

Raziskovalni cilji in hipoteze

Splošni raziskovalni cilj te zaključne naloge je preučiti in razviti nove

decentralizirane rešitve, ki omogočajo porazdelitev računalnǐskih nalog

med vozlǐsči senzorskih omrežij. S tem želimo izkoristiti prednosti rob-

nega računalnǐstva in skupne procesorske moči omrežja ter omogočiti

obdelavo zahtevnih aplikacij, kot je strojno učenje, pri čemer zmanǰsamo

izpostavljenost občutljivih podatkov in povečamo zasebnost.
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RC-1 in H-1

RC-1: Je mogoče izkoristiti mrežno postavitev senzorskega omrežja

za porazdelitev računske obremenitve konvolucijskih plasti KNM

med vozlǐsči senzorskega omrežja?

H-1: S uporabo strukture jeder KNM in lokalne koordinacije vozlǐsč

je mogoče konvolucijske plasti KNM obdelovati na porazdelen način

čez vozlǐsča mrežno postavljenega senzorskega omrežja.

Obravnavano v naslednjih prispevkih:

• Data about fall events and ordinary daily activities from a

sensorized smart floor
• In-Network Convolution in Grid Shaped Sensor Networks

RC-2 in H-2

RC-2: Ali je mogoče v senzorskih omrežjih izbolǰsati varovanje

zasebnosti z anonimno premestitvijo računskih nalog, namesto

prenosa občutljivih podatkov?

H-2: Z izkorǐsčanjem slojne kriptografije se lahko omogoči anon-

imno obdelavo podatkov neposredno na vozlǐsčih senzorskega

omrežja, kar odpravi potrebo po prenosu občutljivih podatkov in

s tem povečuje zaščito zasebnosti pred prisluškovanjem in manipu-

lacijo vozlǐsč.

Obravnavano v naslednjih prispevkih:

• A General Purpose Data and Query Privacy Preserving Pro-

tocol for Wireless Sensor Networks
• PPWSim: Privacy preserving wireless sensor network simula-

tor
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RC-3 in H-3

RC-3: Ali je mogoče s strojnim učenjem neposredno na senzorskih

vozlǐsčih in z premikom modela čez omrežje ob hkratnem ohran-

janju zasebnosti doseči primerljive rezultate s tradicionalnimi cen-

traliziranimi pristopi strojnega učenja?

H-3: Z uporabo strojnega učenja neposredno na senzorskih vo-

zlǐsčih in z premikom modela čez senzorsko omrežje je mogoče

ohraniti zasebnost in hkrati doseči rezultate, ki so primerljivi s tis-

timi, pridobljenimi s tradicionalnimi centraliziranimi pristopi stro-

jnega učenja.

Obravnavano v prispevku: Privacy-Preserving Data Mining on

Blockchain-Based WSNs

RC-4 in H-4

RC-4: Ali je mogoče izdelati decentralizirano ogrodje za analizo

podatkov znotraj senzorskih omrežij, ki je brez SPOF, varno in

varuje zasebnost?

H-4: Z uporabo slojne kriptografije za anonimno prenašanje

računskih nalog in izkorǐsčanje tehnologije blockchain je mogoče

izdelati decentralizirano ogrodje za analizo podatkov znotraj sen-

zorskih omrežij, ki je brez SPOF, varno in varuje zasebnost.

Obravnavano v prispevku: Privacy-Preserving Data Mining on

Blockchain-Based WSNs

Metode

Porazdeljeno računanje konvolucije v senzorskem omrežju

V študiji predlagamo rešitev brez SPOF za porazdeljeno obdelavo kon-

volucijske plasti KNM čez vozlǐsča mrežno postavljenega senzorskega

omrežja. Naš pristop izkorǐsča strukturo jeder KNM in lokalno koordi-

nacijo vozlǐsč za izvajanje sklepanja čim bližje izvoru podatkov. S tem

pristopom zmanǰsujemo potrebo po prenosu občutljivih podatkov čez

omrežje. Dodatno naša rešitev omogoča obdelavo več zaporednih kon-
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volucijskih plast in je kompatibilna tako z 2D kot tudi 3D konvolucijo.

V okviru naše študije smo uporabili senzorsko omrežje v obliki mreže,

vgrajeno v tla (pametna tla), da bi zbrali nabor simuliranih padcev.

Metodologijo zbiranja podatkov in opis sistema smo podrobno pred-

stavili v objavljenem članku 1, medtem ko smo zbrane podatke javno

objavili. Za testiranje naše predlagane rešitve smo uporabili simula-

tor ns-3. Izvedli smo nabor testov z uporabo dveh različnih topologij

omrežja, pri čemer smo spreminjali omrežne parametre in velikosti kon-

volucijskih jeder. Testiranje je bilo osredotočeno predvsem na validacijo

uporabe naše rešitve v kontekstu pametnih tal. Predlagana rešitev in

rezultati simulacije so objavljeni v članku 2.

Splošni protokol za varovanje zasebnosti v senzorskih omrežjih

V raziskavi predlagamo novo paradigmo porazdeljene obdelave podatkov

v senzorskih omrežjih, ki daje prednost varovanju zasebnosti. V naspro-

tju z obstoječimi pristopi, kjer se občutljivi podatki pogosto prenašajo iz

vozlǐsča v vozlǐsče, naš pristop temelji na prenosu navodil za izračun in

delnih rezultatov ter izvedbo teh na vozlǐsči senzorskega omrežja. Da bi

zagotovili zasebnost, so ta navodila in rezultati zakriti s tehniko slojne

kriptografije, ki je podobna mehanizmu Onion Routinga, metodologiji,

ki omogoča anonimno komunikacijo v omrežju [7].”

Našo metodo smo implementirali v simulacijsko okolje ns-3. Pri izdelavi

simulacijskega ogrodja smo poseben poudarek dali enostavnemu sprem-

injanju ključnih omrežnih parametrov in razširjivosti. To ogrodje smo

zaradi njegove uporabnosti in prilagodljivosti javno objavili. Podrob-

neǰsi opis ogrodja in naših izkušenj z njim smo predstavili v članku 3 te

disertacije.

V članku 4 smo formalizirali rešitev kot komunikacijski protokol ki

ohranja zasebnost za senzorska omrežja. Preko podrobnega pregleda

področja smo izpostavili obstoječe pomanjkljivosti in poudarili pomem-

bnost naše rešitve. V prispevku smo analitično dokazali, da rešitev

ohranja zasebnost pred prisluškovanjem in napadi, ki slonijo na manipu-

laciji vozlǐsč. Ter s uporabo simulacijskega ogrodja izdelanega v članku

3 smo empirično testirali rešitev z več simulacij ter ocenili skalabilnost

rešitve.

V članku 5 smo se posvetili ključni prednosti naše rešitve katera je iz-

vajanje poljubnih izračunov na vozlǐsčih senzorskega omrežja. V tem
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članku smo predstavili različico protokola, ki omogoči decentralizirano

strojno učenje. Predstavili smo različico protokola, ki podpira decen-

tralizirano strojno učenje. Validacija effektivnosti tega protokola je bila

izvedena s simulacijo decentraliziranega učenja na zbirki podatkov o

kakovosti zraka. Naučene modele smo nato primerjali s tistimi, pri-

dobljenimi s tradicionalnim centraliziranim pristopom. Dodatno smo v

članku 5 prikazali, da je možno razviti decentralizirano ogrodje za anal-

izo podatkov v senzorskih omrežjih, ki je brez SPOF, varno in zagotavlja

zasebnost. Za validacijo predlagane rešitve smo uporabili simulacijsko

ogrodje, ki smo ga izdelali v članku 3, in ga preizkusili pri procesu po-

datkovnega rudarjenja.

Zaključek

Senzorska omrežja so postala vsepovsod prisotna zaradi napredka v

brezžični komunikaciji, vgrajeni elektroniki in senzorski tehnologiji.

Kljub temu tradicionalna centralizirana arhitektura senzorskih omrežij

prinaša številne izzive, zlasti na področjih energije, procesorskih

zmogljivosti, zasebnosti in varnosti. To je privedlo do prehoda k decen-

traliziranim arhitekturam in uporabe računalnǐstva na robu v senzorskih

omrežjih. V disertaciji smo se poglobili v zasebnost in obdelavi podatkov

znotraj senzorskih omrežij, s poudarkom na obdelavi podatkov na mestu

in izkorǐsčanju prednosti računalnǐstva na robu.

Naša raziskava o porazdelitviji računske obremenitve konvolucijskih

plasti KNM med vozlǐsči v senzorskih omrežjih je prinesla obetavno

rešitev. Z uporabo simulacij na osnovi ns-3 simulatorja smo ugotovili,

da komunikacijski zahtevnost rešitve predstavljaja izziv le v ekstremu

kombinacije velikih konvolucijskih jeder in povezav z nizko prenosno ka-

paciteto. V tej študiji smo zbrali tudi velik nabor simuliranih padcev z

uporabo mrežno oblikovanega senzorskega omrežja. Naši rezultati pred-

stavljajo dragocen prispevek, ki služi kot temelj za nadaljnje raziskave.

V doktorski disertaciji smo razvili nov pristop na osnovi večplastne krip-

tografije za distribuirano obdelavo podatkov z ohranjanjem zasebnosti

v senzorskih omrežjih. Omogočili smo obdelavo na vozlǐsčih, ne da bi

prenašali občutljive podatke, s čimer smo odprli pot robustnim, decen-

traliziranim in zasebnim ogrodjem za analizo podatkov. Na podlagi tega

napredka so glavni prispevki te disertacije v zvezi z našim komunikaci-
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jskim protokolom, ki ohranja zasebnost, naslednji:

• Formalno smo definirali komunikacijski protokol, ki ohranja zaseb-

nost, in omogoča vozlǐsčem v senzorskih omrežjih skupno računanje

brez razkrivanja sodelujočih vozlǐsč in njihovih zasebnih vnosov.

Naš predlog smo primerjali z obstoječimi deli in pokazali, da gre

za prvo shemo, ki omogoča tovrstno skupno izvajanje funkcij brez

agregacijskih vozlǐsč v senzorskih omrežjih.

• Analitično smo dokazali, da je naš komunikacijski protokol varen

pred napadi analize prometa. Naša rešitev je odporna tako na

prisluškovanje kot na napade, ki temeljijo na manipulaciji vozlǐsč.

• Z uporabo simulatorja ns-3 smo izdelali simulacijsko ogrodje za

protokol, ki omogoča izvajati protokol v simuliranih senzorskih

omrežjih različnih velikosti in topologij. S pomočjo simulacij

smo analizirali skalabilnost protokola in ugotovili smo, da rešitev

učinkovito deluje tudi v velikih omrežjih.

• Pokazali smo, kako uporabiti protokol za ohranjanje zasebnosti pri

realizaciji decentraliziranega podatkovnega rudarjenja v senzorskih

omrežjih. Simulirali smo učenje modela podatkovnega rudarjenja

preko našega protokola in primerjali rezultate z modeli, učeni s

tradicionalnim centraliziranim pristopom. Ugotovitve kažejo, da

naš pristop doseže primerljive rezultate s tradicionalnim pristopom.

• Pokazali smo, da je možno ustvariti decentralizirano ogrodje za

analizo podatkov v senzorskem omrežju, brez SPOF, ki je varno

in ohranja zasebnost. Predstavljeno ogrodje sloni na integraciji

blockchain tehnologije z našim komunikacijskim protokolom, ki

ohranja zasebnost. Validirali smo našo rešitev pri procesu po-

datkovnega rudarjenja z uporabo simulatorja ns-3. Simulacije so

pokazale, da naša predlagana arhitektura lahko učinkovito deluje

tudi pri velikih modelih strojnega učenja.

V prihodnosti nameravamo naše teoretične koncepte prenesti v praktične

aplikacije. Naš glavni cilj je implementacija in testiranje našega pro-

tokola v različnih zgradbah za zbiranje in analizo podatkov o kakovosti

zraka. Prav tako nas zanima razširitev naše tehnike v okviru interneta

stvari z možnostjo integracije naprednih kriptografskih metod, kot so

tehnike zameglitve kode in homomorfno šifriranje, kar bi pripomoglo k

še bolj efektivnem varovanju zasebnosti.
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