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Abstract

CERTAIN GRAPH-THEORETIC INVARIANTS AND
DECOMPOSITIONS: FROM STRUCTURE TO BOUNDS AND
ALGORITHMS

We study several graph invariants related to the colorings of planar graphs
and also several graph invariants and decompositions related to tree de-
compositions of graphs in certain graph classes. Among the former are the
proper coloring of planar graphs, cyclic coloring and its relaxations the
(-facial colorings of plane graphs, and the facial-parity colorings of plane
graphs. Among the latter we study (tw,w)-bounded graph classes, tree-
independence number of graphs, and the application to the solvability of
the Maximum Weight Independent Set problem.

We begin the first part of this thesis with the proper 3-coloring of planar
graphs. The Grotzsch Theorem states that every triangle-free planar graph
admits a proper 3-coloring. Perhaps one of the best known generalizations
of the Grotzsch Theorem is the result of Griinbaum and Aksenov which
states that every planar graph with at most three triangles is 3-colorable.
That result is best possible due to the complete graph on 4 vertices. Thus,
a lot of attention was given to study various ways in which precoloring
a certain set of vertices in a planar graph without triangles with 3 colors
can be extended to a 3-coloring of the whole graph. We continue on this
research path and consider 3-colorings of planar graphs with at most one
triangle. In particular, we show that any precoloring of any two non-
adjacent vertices can be extended to a 3-coloring of the whole graph. In
addition, we show that any precoloring of a face of length at most 4 can
also be extended to a 3-coloring of the whole graph and that for every
vertex of degree at most 3, a precoloring of its neighborhood with a single
color extends to a 3-coloring of the whole graph. Furthermore, we also
give examples that show tightness of our results.

Next, we study cyclic coloring of plane graphs, i.e., a coloring of the vertices
of a plane graph in such a way that no face is incident with two vertices of
the same color. It immediately follows that for such a coloring we require
at least as many colors as is the length A*(G) of the largest face and the
Cyclic Coloring Conjecture states that [3A*(G) | colors should suffice. An
indication of the difficulty of the Cyclic Coloring Conjecture lies in the
fact that it is known to be true only for a small number of cases; namely,
in the cases when A*(G) € {3,4,6}. Thus, an (-facial vertex coloring
of plane graphs was introduced as a generalization of the cyclic coloring.
An /-facial vertex coloring of a plane graph is a vertex coloring in which

xiv
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any pair of vertices at distance at most £ on a boundary walk of any face
receive distinct colors. It is conjectured that at most 3¢ + 1 colors suffice
for such a coloring, however, only the case when ¢ < 1 is known to be true.
An (-facial edge coloring of a plane graph is a coloring of its edges such
that any two edges at distance at most ¢ on a boundary walk of any face
receive distinct colors. This coloring is the edge coloring variant of the /-
facial vertex coloring. Similarly as for the vertex version, it is conjectured
that at most 3¢ 4 1 colors suffice for an ¢-facial edge coloring of any plane
graph. In this case, the conjecture has been confirmed for £ < 2. We prove
that the conjecture holds also for £ = 3.

The last topic of study in the first part of this thesis are facial-parity color-
ings of plane graphs. A facial-parity vertex coloring of a 2-connected plane
graph is a facially-proper vertex coloring in which every face is incident
with zero or an odd number of vertices of each color. Similarly, a facial-
parity edge coloring of a connected bridgeless plane graph is a facially-
proper edge coloring in which every face is incident with zero or an odd
number of edges of each color. Known results state that every 2-connected
plane graph admits a facial-parity vertex coloring with at most 97 col-
ors and that every connected bridgeless plane graph admits a facial-parity
edge coloring with at most 16 colors. In both cases it was conjectured that
10 colors should suffice and examples of outerplane graphs requiring 10
colors are also known. We provide an infinite family of 2-connected plane
graphs that require 12 colors in any facial-parity vertex coloring and an
infinite family of 2-connected plane graphs that require 12 colors in any
facial-parity edge coloring.

In the second part of this thesis we focus our study on graph classes closed
under taking induced subgraphs in which the absence of large cliques
is both a necessary and a sufficient condition for a graph class to have
bounded treewidth. This property is called (tw,w)-boundedness. It is
known that such graph classes have useful algorithmic applications related
to variants of the clique and k-coloring problems. In order to study such
graph classes, we consider six well-known graph containment relations: the
subgraph, topological minor, minor, induced subgraph, induced topolog-
ical minor, and induced minor relations. For each of the relations, we
provide a complete characterization of the graphs H for which the class
of graphs excluding H is (tw,w)-bounded. The family of (tw,w)-bounded
graph classes also provides a unifying framework for various very differ-
ent graph classes. Among them are graph classes of bounded treewidth,
graph classes of bounded independence number, intersection graphs of con-
nected subgraphs of graphs with bounded treewidth, and graphs in which
all minimal separators are of bounded size.

We then study the tree-independence number, which is defined as follows.
The independence number of a tree decomposition 7 of a graph G is the
maximum independence number over all subgraphs of G induced by some
bag of 7. The tree-independence number of a graph G is then defined
as the minimum independence number over all tree decompositions of G.
We prove several properties of the tree-independence number and, in par-
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ticular, show that graph classes with bounded tree-independence number
are (tw,w)-bounded with a polynomial binding function. We then show
that every (tw,w)-bounded graph class characterized by forbidding a single
graph H with respect to one of the six aforementioned graph containment
relations has bounded tree-independence number. In particular, we focus
on the induced minor relation and show that in the three cases when we ex-
clude Wy, K5, or Ky, respectively, as an induced minor, such graphs have
tree-independence number at most 4 in the former two cases and at most
2(¢ — 1) in the latter case. We obtain these results by using a variety of
tools, including /-refined tree decompositions, block-cutpoint trees, SPQR
trees, and potential maximal cliques. In addition, we show how to compute
tree decompositions with bounded independence number efficiently in all
the identified cases with bounded tree-independence number. Moreover,
we pose a conjecture that, in fact, the two properties (tw, w)-boundedness
and bounded tree-independence number are equivalent.

Finally, it is an interesting question what algorithmic implications does
(tw, w)-boundedness have with respect to various problems; in particular,
our goal is to understand the extent to which this property has useful
algorithmic implications for the Maximum Independent Set and related
problems. We provide a partial answer to this question by identifying a suf-
ficient condition for (tw,w)-bounded graph classes to admit a polynomial-
time algorithm for the Maximum Weight Independent Packing problem
and, as a consequence, we get polynomial-time solution for the weighted
variants of the Independent Set and Induced Matching problems. We
show that bounded tree-independence number implies the existence of a
polynomial-time algorithm for the Maximum Weight Independent Pack-
ing problem. In particular, this implies polynomial-time solvability of the
Maximum Weight Independent Set problem in all (tw,w)-bounded graph
classes characterized with a single forbidden graph with respect to one of
the six graph containment relations.

Math. Subj. Class. (2020): 05C15, 05C69, 05C75, 05C05, 05C10,
05C83

Keywords: facial-parity coloring, graph coloring, graph containment rela-
tion, Grotzsch Theorem, f-facial coloring, Maximum Weight Independent
Set problem, tree decomposition, tree-independence number.
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Povzetek

IZBRANE GRAFOVSKO-TEORETICNE INVARIANTE IN
DEKOMPOZICIJE: OD STRUKTURE DO MEJ IN ALGORITMOV

V disertaciji obravnavamo razli¢ne invariante grafov povezane z barvan-
jem ravninskih grafov in razli¢ne invariante in dekomporzicije povezane z
drevesnimi dekompozicijami grafov v izbranih razredih grafov. Med prvimi
so pravilna barvanja ravninskih grafov, cikli¢cno barvanje in njegove pos-
plositve, kot so ¢-li¢na barvanja vlozitev ravninskih grafov, in li¢no-parna
barvanja vloZitev ravninskih grafov. Med drugimi pa obravnavamo (tw, w)-
omejene razrede grafov, drevesno neodvisnostno Stevilo grafov in aplikacijo
le tega na razresljivost problema najtezje neodvisne mnozice.

Prvi del disertacije zacnemo z obravnavo 3-barvanja ravninskih grafov.
Grotzschev izrek pravi, da za vsak ravninski graf brez trikotnikov obstaja
pravilno 3-barvanje. Ena od najbolj znanih posplogitev Grotzschevega
izreka je rezultat Griinbauma in Aksenova, ki pravi, da je vsak ravninski
graf z najve¢ tremi trikotniki 3-obarvljiv. Ta rezultat je najboljsi mozen,
kar dokazuje polni graf na 4 vozlis¢ih. Posledi¢no je bilo veliko pozornosti
usmerjene v obravnavo razli¢nih nacinov, da lahko predbarvanje dolocene
mnozice vozlis¢ ravninskega grafa brez trikotnikov razsirimo na 3-barvanje
celotnega grafa. V tej disertaciji nadaljujemo v smeri teh raziskav, kjer se
osredotoCimo na 3-barvanja ravninskih grafov z najve¢ enim trikotnikom.
Bolj natanc¢no, pokazemo, da lahko vsako predbarvanje dveh nesosednjih
vozlis¢ vedno razsirimo na 3-barvanje celotnega grafa. Dodatno pokazemo,
da lahko vsako predbarvanje lica dolzine najvec¢ 4 prav tako razsirimo na
3-barvanje celotnega grafa. Prav tako pokazemo, da lahko vsako pred-
barvanje sosesc¢ine vozliSc¢a stopnje najve¢ 3 z eno barvo razsSirimo na 3-
barvanje celotnega grafa. Nenazadnje pa podamo tudi primere, ki dokazu-
jejo tesnost nasih rezultatov.

Nato nadaljujemo z obravnavo ciklicnega barvanja vlozitev ravninskih
grafov, to je, barvanje vozlis¢ vlozitve ravninskega grafa, da nobeno lice
ni sosednje z dvema vozlis¢ema enake barve. Iz definicije direktno sledi,
da za tako barvanje potrebujemo vsaj toliko barv, kot je dolzina A*(G)
najdaljSega lica. Domneva ciklicnega barvanja pa pravi, da L%A*(G)J barv
vedno zadostuje. O zahtevnosti domneve ciklicnega barvanja prica dejstvo,
da je znano le to, da domneva velja za majhno Stevilo primerov, in sicer
A*(G) € {3,4,6}. Posledi¢no je bilo definirano ¢-licno barvanje vozlise
vlozitve ravninskega grafa kot posplositev cikli¢nega barvanja. Vozlis¢no
barvanje vlozitve ravninskega grafa je ¢-li¢no, ¢e za vsak par vozlis¢ na raz-
dalji najvec¢ ¢ na sprehodu po robu lica velja, da sta pobarvani z razli¢no

xXviil
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barvo. Domneva pravi, da bi moralo zadostovati 3¢ + 1 barv za taksno
barvanje, vendar je znano le, da je domneva resni¢na za ¢ < 1. Poveza-
vno barvanje vlozitve ravninskega grafa je ¢-licno, Ce za vsak par povezav
na razdalji najve¢ ¢ na sprehodu po robu lica velja, da sta pobarvani z
razlicno barvo. To barvanje je povezavna razli¢ica (-licnega vozlis¢nega
barvanja. Podobno kot za vozlis¢no razli¢ico, obstaja domneva, da bi
moralo zadostovati 3¢ 4+ 1 barv za ¢-licno povezavno barvanje poljubne
vlozitve ravninskega grafa. O tej domnevi je znanega nekoliko vec, saj je
dokazano, da velja za ¢ < 2. Ob tem pokazemo, da domneva velja prav
tako za ¢ = 3.

Zadnja tematika prvega dela te disertacije so licno-parna barvanja vlozitev
ravninskih grafov. Li¢no-parno barvanje vozlis¢ vlozitve 2-povezanega
ravnmskega grafa je po licih pravo barvanje vozlis¢, kjer je vsako lice sosed-
nje z ni¢ ali pa z lihim Stevilom vozlis¢ posamezne barve. Li¢no- parno
barvanje povezav vlozitve povezanega ravnlnskega grafa brez mostov je po
licih pravilno barvanje povezav, kjer je vsako lice sosednje z ni¢ ali pa z
lihim Stevilom povezav posamezne barve. Znani rezultati pravijo, da ima
vsaka vlozZitev 2-povezanega ravninskega grafa licno-parno barvanje vo-
zliS¢ z najve¢ 97 barvami in da ima vsaka vlozitev povezanega ravninskega
grafa brez mostov li¢no-parno barvanje povezav z najve¢ 16 barvami. V
obeh primerih je bila postavljena domneva, da 10 barv zadostuje in podani
so bili primeri vlozitev zunanje ravninskih grafov, ki potrebujejo natanko
10 barv. Pokazemo, da obstaja neskon¢na druzina vlozitev 2-povezanih
ravninskih grafov, ki potrebujejo 12 barv v vsakem li¢no-parnem barvanje
vozlis¢ in da obstaja neskon¢na druzina vlozitev 2-povezanih ravninskih
grafov, ki potrebuje 12 barv v vsakem li¢no-parnem barvanju povezav.

V drugem delu te disertacije se usmerimo na obravnavo razredov grafov,
zaprtih za inducirane podgrafe, v katerih je odsotnost velike klike tako
potreben kot tudi zadosten pogoj za omejeno drevesno Sirino. Ta lastnost
je imenovana (tw,w)-omejenost. Znano je, da imajo taki razredi grafov
uporabne algoritmicne aplikacije, povezane z razlicnimi problemi, kot sta
problem klike in problem k-barvanja. Z namenom obravnave takih razre-
dov grafov se osredoto¢imo na Sest razlicnih znanih relacij vsebovanosti v
grafih, ki so: podgraf topoloski minor, minor, induciran podgraf, induciran
topologki minor in induciran minor. Za vsako od omenjenih relacij v celoti
karakteriziramo grafe H, za katere je razred grafov, ki ne vsebujejo grafa H
glede na izbrano relacijo, (tw,w)-omejen. Druzine (tw,w)-omejenih razre-
dov grafov povezujejo in opiSejo vec razli¢nih razredov grafov. Med njimi
so razredi grafov z omejeno drevesno §irino, razredi grafov z omejenim
neodvisnostnim Stevilom, razredi prese¢nih grafov povezanih podgrafov z
omejeno drevesno Sirino in razgredi grafov, kjer so vsi minimalni prerezi
omejene velikosti.

Nato nadaljujemo z obravnavo drevesnega neodvisnostnega stevila, ki je
definirano na naslednji nac¢in. Neodvisnostno Stevilo drevesne dekompozi-
cije T grafa G je najvecje neodvisnostno Stevilo med vsemi podgrafi grafa
(7, ki so inducirani z neko vreco drevesne dekompozmue T. Drevesno neod-
visnostno stevilo grafa G je nato definirano kot najmanjse neodvisnostno
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Stevilo med vsemi drevesnimi dekomporzicijami grafa G. Med rezultati
pokazemo nekaj lastnosti drevesnega neodvisnostnega Stevila in pokazemo,
da so razredi grafov z omejenim drevesnim neodvisnostnim $tevilo (tw, w)-
omejeni s polinomsko funkcijo. Nato pokazemo, da ima vsak (tw,w)-
omejen razred grafov, karakteriziran z enim prepovedanim grafom H, glede
na eno od prej omenjenih Sestih relacij vsebovanosti, omejeno drevesno

neodvisnostno stevilo. Se posebej se osredoto¢imo na relacijo induciranega
minorja in pokazemo, da v treh primerih, ko izklju¢imo Wy, Ky ali Ko,
kot induciran minor, imajo dobljeni razredi grafov drevesno neodvisnos-
tno stevilo najve¢ 4 v prvih dveh primerih in najve¢ 2(q — 1) v zadnjem
primeru. Te rezultate dobimo s pomocjo razli¢nih orodij, med katerimi so
(-izpopolnjene drevesne dekompozicije, blo¢no-prerezno vozliséno drevesa,
SPQR drevesa in najveCje potencialne klike. Dodatno pokazemo, kako
izracunati drevesne dekompozicije z omejenim neodvisnostnim Stevilom v
polinomskem c¢asu v vseh identificiranih razredih grafov z omejenim dreves-
nim neodvisnostnim Stevilom. Med drugim podamo tudi domnevo, da
sta lastnosti (tw,w)-omejenost in omejenost drevesnega neodvisnostnega
Stevila pravzaprav ekvivalentni.

Na koncu se osredoto¢imo na vprasanje o tem, kakSne algoritmicne im-
plikacije ima (tw,w)-omejenost na razlicne probleme. Bolj natanc¢no se
usmerimo na problem najvecje neodvisne mnozice in z njim povezane prob-
leme. Na to vprasanje delno odgovorimo z identifikacijo zadostnega pogoja
za (tw,w)-omejene razrede grafov, da omogocajo resitev problema najtez-
jega neodvisnega pakiranja v polinomskem c¢asu. Posledi¢no nam to da
resljivost utezenih razli¢ic problema neodvisne mnoZice in problema in-
duciranega prirejanja v polinomskem c¢asu. Kot rezultat pokazemo, da
omejeno neodvisnostno stevilo implicira obstoj polinomskega algoritma za
problem najtezjega neodvisnega pakiranja. To implicira tudi polinomsko
resljivost problema najtezje neodvisne mnozice v vseh (tw,w)-omejenih
razredih grafov, ki smo jih karakterizirali z enim prepovedanim grafom
glede na eno od Sestih relacij vsebovanosti v grafu.

Math. Subj. Class. (2020): 05C15, 05C69, 05C75, 05C05, 05C10,
05C83

Kljuéne besede: licno-parno barvanje, barvanje grafa, relacija vsebo-
vanosti grafa, Grotzschev izrek, ¢-licno barvanje, problem najtezje neod-
visne mnozice, drevesna dekompozicija, drevesno neodvisnostno stevilo.
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Chapter 1

Introduction

A young and rapidly developing branch of discrete mathematics called
graph theory was born all the way back in 1736 when Leonhard Euler for-
mulated and solved the first problem on graphs known as the Konigsberg
Bridge Problem [103]. Essentially, graph theory is the study of relations
between objects in an abstract way where relations are represented by an
abstract object called a graph. It is known that graph theory has many
applications in various areas such as computer science, biology, chemistry,
social studies, etc., and offers many solutions to everyday problems. As in
all areas of mathematics, the main focus is classification of graphs which
revolves around the concept of a graph invariant, that is, a function defined
on graphs taking the same value on isomorphic graphs. Throughout the
years a large number of graph invariants were introduced. Some of them
were introduced in order to deepen our understanding of previously known
graph invariants, some were introduced in order to generalize known prop-
erties, some were introduced in order to help solve certain everyday prob-
lems, and some were introduced to help improve various algorithmic results
in terms of time complexity. Numerous graph invariants exist, which are
difficult to understand when considering all possible graphs. Thus, it is
commonly the case that when studying a certain graph invariant we re-
strict ourselves only to certain graph classes. A graph class is a family of
graphs closed under isomorphism (see, e.g., [45, 111, 186]).

Perhaps one of the most commonly known graph invariants, is called the
chromatic number of a graph G, denoted by x(G). That is, the least
number of colors needed to color the vertices of G in such a way that
no two adjacent vertices receive the same color (such a coloring is called a
proper coloring of a graph). The history of this graph invariant began with
the Four Color Problem. This problem, which asks whether the vertices of
every planar graph can be properly colored with four colors, was introduced
in 1852 by Francis Guthrie. More than a century passed before the problem
was resolved in affirmative in 1976-1977 by Appel and Haken [12, 13] and
Appel, Haken and Koch [14]. In general, the chromatic number of a graph
gives the smallest number of sets in which we can partition the vertices
of a graph in such a way that each of the sets contains only mutually
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non-adjacent vertices. Partitioning of the vertices of a graph can be done
in many different ways by requiring various conditions to be met for each
set. Thus, various notions of graph colorings can be meaningfully defined
together with their corresponding graph coloring invariants. However, it
is often the case that understaning such invariants is difficult in the class
of all graphs. Due to that reason, research is often restricted only to some
specific graph classes, e.g., the class of planar graphs, as was done in the
case of the Four Color Problem.

On another note, instead of partitioning the vertex set, we may instead
consider decompositions, that is, assignments of vertices of a graph to
different sets, also called bags, where we allow each vertex to be assigned
to more than one bag, in such a way that for every pair of adjacent vertices
there is a bag containing both vertices. One such decomposition is a tree
decomposition where, in fact, together with the described condition we also
require a few other conditions to be fulfilled. A graph invariant which is
closely related to tree decompositions is called the treewidth of a graph
G, denoted by tw(G). Roughly speaking, treewidth measures how close
to a “tree” a graph is. The concept of tree decompositions, which was
originally introduced by Halin in 1976, became widely known since its
rediscovery by Robertson and Seymour in 1984 in their Graph Minors III
paper [175], which is one of the many papers in the Graph Minors series.
Many graph invariants are NP-hard to compute (see, e.g., [105]). However,
it is known that tree decompositions play an important role in designing
efficient algorithms, where by the word efficient we mean polynomial-time
complexity. Many problems, that are NP-hard in general are known to
be polynomial-time solvable for graphs in any class of bounded treewidth
graphs. Thus, this graph invariant is a central focus of many studies.

In the remainder of this chapter we shortly present the two main directions
of research we will follow throughout this thesis. One direction is to con-
sider different graph coloring invariants in certain graph classes, that is to
say, different partitions of the vertices of a graph, while the other direction
is to try and better understand tree decompositions and present their fur-
ther applications to problems of computing certain graph invariants that
are generally NP-hard.

e Part I: The Four Color Problem motivated many mathematicians to
work on graph colorings, including Brooks, Vizing, Kempe, Tait, Pe-
tersen, and Heawood. Already in 1880 Tait [188] showed that this
problem is equivalent to proving that every bridgeless planar cubic
graph admits a proper edge-coloring with three colors, that is, a col-
oring of the edges using three colors such that edges incident with a
common vertex receive distinct colors. Decades later, in 1941 Brooks
proved that the chromatic number of any graph is at most its max-
imum degree plus one, with equality only in the case of complete
graphs and odd cycles. Later, in 1964 Vizing [195] showed that the
least number of colors needed for a proper edge-coloring of a simple
graph G (also known as the chromatic indez) of a graph is equal to
either the maximum degree or the maximum degree plus one. Graphs
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that achieve the former are commonly known as class I graphs, while
those that achieve the latter are class II graphs. Determining both
the chromatic number and the chromatic index is known to be NP-
complete. In fact, it is also known that even when restriced to the
class of planar graphs, deciding whether a graph can be properly col-
ored with three colors remains NP-complete [105]. In addition, in
1981 Holyer [133] showed that deciding whether a graph is class I is
NP-complete even in the case of cubic graphs. These two results show
that even when restricted to certain relatively simple graph classes,
computing graph coloring invariants remains difficult. As is the case
with both vertex-coloring of planar graphs and edge-coloring in the
class of all graphs, the tight bounds are already established. How-
ever, when trying to understand the structure of graphs that require
a certain exact number of colors, or by adding additional assumptions
or conditions to define new types of colorings, the problems often be-
come harder. The goal of this part of the thesis is thus to improve the
understanding of when three colors are sufficient to color the vertices
of a planar graph, to find a generalization for both vertex-coloring and
edge-coloring of plane graphs restricted to faces first by adding dis-
tance constraints (the ¢-facial colorings) and second by adding parity
constraints (the facial-parity colorings).

e Part II: In 1949, the term clique, that is, a subset of mutually adja-
cent vertices in a graph, was introduced by Luce and Perry. How-
ever, the study of cliques was known already in 1935 when Erdés and
Szekeres [102] reformulated Ramsey theory in terms of graphs. To-
gether with the notion of clique comes also the graph invariant called
the cliqgue number and denoted by w(G), defined as the maximum
size of a clique in a graph. It follows directly from the definitions
that w(G) < x(G) for every graph G. Following this observation, a
question arises “When does the equality between the two invariants
hold?”. This motivated Berge to define one of the most well-known
graph classes, the class of perfect graphs. Perfect graphs are defined
as the graphs G for which w(H) = x(H) for every induced subgraph
H of G. A graph class that is closed under taking induced subgraphs
is called hereditary. Clearly, the class of perfect graphs is hereditary
by definition. As shown in 1981 by Grotschel, Lovasz, and Schri-
jver in their seminal paper |113|, various graph invariants, such as
the clique number, the independence number, the chromatic number,
and several others, are computable in polynomial time in this class of
graphs. On the other hand, there are also many other problems that
remain NP-hard in the class of perfect graphs, e.g., the maximum
cut or the feedback vertex set problem, see, e.g., Karp’s paper on 21
NP-complete problems [146]. Over the decades, the study of perfect
graphs continued and became even more interesting with the Strong
Perfect Graph Theorem proved in 2006 by Chudnovsky et al. [59].
The good algorithmic properties of perfect graphs, together with the
quest for understanding conditions under which certain inequalities
between graph invariants hold, prompted Gyartas, in 1987, to intro-



duce the notion of y-boundedness [117]. A graph class is said to be
x-bounded if there exists a function f such that for every graph G
in the class, x(G) < f(w(G)) for every induced subgraph H of G.
While there exist graphs which have an arbitrarily large gap between
the chromatic number and the clique number (see, e.g., [100]), which
shows that there exist graph classes that are not xy-bounded, perfect
graphs clearly satisfy this condition with the identity function. Even
though many research papers deal with this concept, the concept of
x-boundedness remains, up to this day, not completely understood.
Just as the chromatic number is an upper bound on the clique num-
ber, for every graph G we also have that x(G) < tw(G)+1. Similarly
as for y-boundedness, one can then define (tw,w)-boundedness. The
class of graphs that achieve the equality, in a hereditary sense, are ex-
actly the chordal graphs. Chordal graphs are, by definition, the graphs
with no induced cycles of length at least four. Thus, in a similar sense
that y-boundedness generalizes perfection, (tw,w)-boundedness gen-
eralizes chordality. The goal of the second part of this thesis is thus
develop a better understanding of the notion of (tw,w)-boundedness
as well as finding new efficient algorithms to solve certain algorithmic
problems.

The rest of the thesis is structured as follows. In Chapter 2, we first present
several general definitions, notations, and terminology used throughout
this thesis.

We begin the first part of this thesis with Chapter 3, in which we present
additional definitions, notations, terminology, and results needed for Part
I. In particular, in Chapter 3, we provide additional definitions and nota-
tion needed to work on plane graphs, as well as give several tools that we
use in the proofs of our results. In Chapter 4, we then study the struc-
ture of planar graphs that can be colored with three colors by extending
the Grotzsch Theorem by showing that any precoloring of any two non-
adjacent vertices can be extended to a 3-coloring of the whole graph. In
addition, we show that any precoloring of a face of length at most 4 can
also be extended to a 3-coloring of the whole graph and that for every
vertex of degree at most 3, a precoloring of its neighborhood with a single
color extends to a 3-coloring of the whole graph. In all the cases, we also
give examples that show tightness of our results. In Chapter 5, we turn our
focus to colorings of the vertices and edges on the faces of plane graphs.
We begin with the study of cyclic colorings, from which we then jump to
their generalization the f-facial vertex coloring and finally, we present a
particular case of the /-facial vertex coloring, namely, the ¢-facial edge col-
oring. For the latter type of coloring we confirm an open conjecture which
states that for any ¢ > 0, we require at most 3¢+ 1 colors, for the smallest
open case when ¢ = 3. In Chapter 6, we then study such colorings of plane
graphs, restricted to the faces of the graph, with added parity condition.
Namely, we require that each color appears either zero or an odd number
of times on a boundary walk of a face. It was conjectured that 10 colors
would be sufficient both in the case of facial-parity vertex coloring as for
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the case of facial-parity edge coloring and examples attaining this bound
are given in both cases. On the other hand, the best known resuts prove
that 97 colors are enough for the facial-parity vertex coloring and 16 colors
are enough for the facial-parity edge coloring. The main results in Chap-
ter 6 are examples which prove that for any ¢ such that 6 <t < 12, there
exist an infinite family of graphs requiring ¢ colors for the vertex version
and an infinite family of graphs requiring ¢ colors for the edge version of
facial-parity colorings. In particular, this shows that there exist graphs
that require 12 colors, which slightly closes the gap. To conclude Part I,
we give some concluding remarks and a short discussion in Chapter 7.

The second part of this thesis starts with Chapter 8, in which we provide
various definitions that are especially related to tree decompositions of
graphs. In Chapter 9, we turn our focus to the study of (tw,w)-bounded
graph classes where we consider six well-known graph containment rela-
tions: the subgraph, topological minor, minor, induced subgraph, induced
topological minor, and induced minor relations. For each of the relations,
we provide a complete characterization of the graphs H for which the
class of graphs excluding H is (tw,w)-bounded. We then continue to
study tree decompositions with bounded independence number in Chap-
ter 10. For this invariant, called tree-independence number, we prove
several results and, in particular, show that graph classes with bounded
tree-independence number are (tw, w)-bounded with a polynomial binding
function. We also show that every (tw,w)-bounded graph class character-
ized by forbidding a single graph H with respect to one of the six graph
containment relations studied in Chapter 9 has bounded tree-independence
number. In Chapter 11, we then present some algorithmic results by pro-
viding polynomial-time algorithms for the Maximum Weight Independent
Set Problem for graphs classes presented in the previous two chapters.
In particular, we provide a sufficient condition for (tw,w)-bounded graph
classes to admit a polynomial-time algorithm for the Maximum Weight
Independent Packing problem and, as a consequence, we get an algorithm
that computes an optimal solution in polynomial time for the weighted
variants of the Independent Set and Induced Matching problems. We also
show that bounded tree-independence number implies the existence of a
polynomial-time algorithm for the Maximum Weight Independent Pack-
ing problem and also show polynomial-time solvability of the Maximum
Weight Independent Set problem in all (tw, w)-bounded graph classes char-
acterized with a single forbidden graph with respect to one of the six afore-
mentioned graph containment relations. We then conclude Part II of this
thesis by giving some concluding remarks and a discussion in Chapter 12.

Finally, we round finish with some short concluding remarks in Chapter 13.

The first part of this thesis is based on the following papers:

e [157] H. La, B. Luzar, and K. Storgel. Further extensions of the
Grotzsch Theorem. Discrete Math., 345(6):112849, 2022.

e [138] M. Hornak, B. Luzar, and K. Storgel. 3-facial edge-coloring of



plane graphs. Discrete Math., 346(5):113312, 2023.

e [198] K. Storgel. Improved Bounds for Some Facially Constrained
Colorings. Discuss. Math. Graph Theory, 43(1):151-158, 2023.

The second part of this thesis is based on the following papers:

e |76] C. Dallard, M. Milani¢, and K. Storgel. Treewidth versus Clique
Number. I. Graph Classes with a Forbidden Structure. SIAM J. Dis-
crete Math., 35(4):2618-2646, 2021.

e [77] C. Dallard, M. Milani¢, and K. Storgel.  Treewidth ver-
sus clique number. II. Tree-independence number. arXiw preprint

arXiv:2111.04543, 2021.

e |78] C. Dallard, M. Milani¢, and K. Storgel. Treewidth versus clique
number. III. Tree-independence number of graphs with a forbidden
structure. arXiw preprint arXw:2206.15092, 2022.



Chapter 2

Preliminaries

A (simple) graph G is a pair (V(G), E(G)) (shortly (V; E) if the considered
graph is clear from the context) where V(G) is the set of vertices and E(G)
is the set of edges of G. An edge e € E(G) is an unordered pair uv, where
u,v € V(G) and u # v. For an edge e = wwv, the vertices u and v are
called the endpoints of the edge e. If we allow E(G) to be a multiset, we
say that G is a multigraph. Repeated edges in E(G) are called parallel
edges. In addition, if we allow edges with both endpoints being the same,
the so called loops, then G is a pseudograph. Unless specifically stated, all
graphs considered throughout this thesis are finite and simple. The graph
is null if it has no vertices and edgeless (or empty) if it has no edges. For
two vertices u,v € V(G), we say that they are adjacent in G if uv is an
edge in GG, and non-adjacent otherwise. Similarly, two edges are adjacent
if they share a common vertex, and non-adjacent otherwise. For a vertex
v and edge e, we say that v and e are incident if v is an endpoint of e.

The complement of a graph G is the graph, denoted by G, with vertex set
V(G), in which two distinct vertices are adjacent if and only if they are
non-adjacent in G. Note that the complement of the complement of G is
the graph G itself. The line graph of a graph G, denoted by L(G), is the
graph obtained as follows. For every edge e € E (G) create a vertex v, in
L(G) and then for every pair of distinct edges e, f € E(G) with a common
vertex create an edge between their corresponding vertices in L(G).

For an edge e of GG, the graph obtained by deleting the edge e is the
graph H with V(H) = V(G) and E(H) = E(G) \ {e}. For a vertex v
of G, the graph obtained by deleting the vertex v is the graph H with
V(H):V()\{v}andE( ) = {uw € E(G) | u # vand w # v},
Given a set U C V(G), we denote by G — U the graph obtained from G
by deleting all the vertices in U. Similarly, given a set F© C E(G), we
denote by G — F' the graph obtained from G by deleting all the edges in
F. If U = {v} (respectively F' = {e}), we simplify the notation and write
simply G — v (respectively G — e). Fdge subdivision of an edge e = uv is
the operation that deletes the edge e and adds a new vertex w and two
edges uw and vw. We say that H is a subdivision of a graph G if H can
be obtained from G by a (possibly empty) sequence of edge subdivisions.
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A graph H is said to be an induced subgraph of G, denoted H Cjs G,
if H can be obtained from G by a (possibly empty) sequence of vertex
deletions. For a set U C V(G) we denote by G[U] the subgraph of G
induced by U, i.e, the graph G — (V(G) \ U). Note that the graph G[U]
is an induced subgraph of G. A graph H is a subgraph of G, denoted
H C; G, if H can be obtained from G by a (possibly empty) sequence of
vertex and edge deletions. A graph H is said to be a topological minor
of a graph G, denoted H Ci, G, if G contains a subdivision of H as
a subgraph. Similarly, H is an induced topological minor of G, denoted
H Cim G, if G contains a subdivision of H as an induced subgraph. Edge
contraction is the operation of deleting a pair of adjacent vertices and
replacing them with a new vertex whose neighborhood is the union of the
neighborhoods of the two original vertices. If H can be obtained from G
by a (possibly empty) sequence of vertex deletions, edge deletions, and
edge contractions, then we say that G contains H as a minor and denote
this by H C,, G. Finally, we say that G contains H as an induced minor,
denoted H C,, G, if H can be obtained from G by a (possibly empty)
sequence of vertex deletions and edge contractions.

For the six graph containment relations mentioned above, the following
hold:

e HC G = H C G,

e HCin G = H Cu G,

e HCyG = H C, G,

e HC,G — HC,G = HCC,, G, and
e HC,,G — HC4,, G — H G, G.

Let Hy and Hs be two subgraphs of a graph G. We say that the graphs H,;
and Hs are vertex-disjoint if V(H)NV (Hy) = (). Similarly, H; and Hj are
edge-disjoint if E(H,)NE(Hy) = (). Note that two edge-disjoint subgraphs
may have common vertices. We say that a graph G is isomorphic to a
graph H, denoted G = H, if there exists a bijection f:V(G) — V(H)
such that for every pair of vertices u,v € V(G), we have wv € E(G) if
and only if f(u)f(v) € E(H). If G does not contain an induced subgraph
subgraph, topological minor, induced topological minor, minor, induced
minor, respectively) 1somorph1(: to H, then we say that G is H-is -free,
or shortly H-free, (H-s-free, H-tm free H-itm-free, H-m-free, H-im-free,
respectively). The definitions naturally extend to the case when a single
graph H is replaced by a family of graphs F. For example, a graph G
is said to be F-free if G is H-free for all H € F. A graph class, usually
denoted by G, is a family of graphs closed under isomorphism. A graph
class G is hereditary if for every graph G € G, every induced subgraph H
of G is also in the class. For a graph G and a set of vertices U C V(G),
we say that graphs Hy, Ho, ..., Hy cover U if H; is a subgraph of G for all
ie{l,....k},and U C |, V( ;). Similarly, for a set of edges F' C E(G),
we say that graphs Hy, Hg, ..., Hy cover F if each H; is a subgraph of G
and F C|J, E(H;). A vertex cover of a graph G is a set S C V(G) such
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that for each edge uv € E(G), u e Sorve S,

Henceforth, whenever the graph is clear from the context, we omit the
subscript G from notations. For a vertex v € V(G), the set Ng(v) =
{u e V(G) | wv € E(G)} is the (open) neighborhood of v in G and the
set Ng[v] = Ng(v) U {v} is the closed neighborhood of v in G. Similarly,
for a set of vertices U C V(G) both of the above definitions are naturally
extended as follows. The (open) neighborhood of U is the set Ng(U) =
Uver Na(v) \ U and the closed neighborhood of U is the set Ng[U

U,er Nelv]. The degree of a vertex v, denoted by dg(v), is the cardinality
of the set Ng(v). A vertex v is called a universal vertex if Ng[v] = V(G),
or equivalently dg(v) = |[V(G)| — 1. Conversely, a vertex v is called an
isolated vertex if dg(v) = 0. If] for a vertex v of G, dg(v) = 1, then
v is called a pendant verter or a leaf vertex. The minimum degree of a
graph G, denoted by 6(G), is the smallest degree among all the vertices of
G. Similarly, the mazimum degree of G, denoted by A(G), is the largest
degree among all the vertices of G. A graph is odd if all of its vertices have
odd degrees and even if all of its vertices have even degrees. If, for a graph
G, it holds that §(G) = A(G), we say that G is reqular. As a special case,
when 6(G) = A(G) = 3, we say that G is cubic and for §(G) < A(G) =

we say that G is subcubic.

A clique in a graph G is a set of pairwise adjacent vertices in G (note
that any set consisting of a single vertex is also a clique). A k-clique is a
clique of size (or cardinality) k. A clique K C V(G) is mazimal if there
exists no clique K’ such that K ¢ K'. A mazimum clique is a clique of
the largest cardinality. Similarly, an independent set in a graph G is a
set of pairwise non-adjacent vertices in G. An independent set I C V(G)
is mawzimal if there exists no independent set I’ such that I C I'. A
maximum independent set is an independent set of the largest cardinality.
For a graph G, the size of a maximum clique is denoted by w(G) and the
size of a maximum independent set is denoted by a(G). By definition
of the complement of a graph G, we have that every clique in G is an

independent set in G and every independent set in G is a clique in G. It

follows that w(G) = a(G) and a(G) = w(G).

A complete graph on n vertices, denoted by K, is the graph in which every
pair of vertices is adjacent, i.e., V(K,,) forms a clique and w(K,) = n. The
complete graph Kg is often referred to as a triangle. A path on n vertices,
denoted by P,, is the graph with the vertex set V(P,) = {v; |1 <i < n}
and the edge set E(P,) = {vjvj;1 | 1 < j < n — 1}. The vertices v
and v, of P, are called the endpoints of P, and the other vertices are
called mternal vertices. A cycle on n > 3 vertices, denoted by C,,, is

the graph with the vertex set V(C,) = {v; | 1 < i < n} and the edge
set E(Cn) = {vjuj1 | 1 < j < n}, where v, = vy, If n is even,
we say that the cycle is even, otherwise we say that the cycle is odd
A graph is bipartite if there exists a bipartition (A, B) of its vertex set
into two disjoint independent sets A and B. For non-negative integers n
and m, the complete bipartite graph, denoted by K, ,,, is the graph with
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bipartition (A, B) where |A| = n and |B| = m, and with the edge set
E(Kn m) ={uww |u € Av e B}. A complete blpartlte graph is balanced
if n = m. A complete blpartlte graph K3 is called a claw. A tree is

a connected graph without cycles and a spanning tree of a graph G is a
subgraph T of G with V(T') = V(G) that is a tree.

A graph G is connected if for every pair of vertices u,v € V(G) there
exists a path between them, i.e., there exists a subgraph of GG isomorphic
to a path with v and v being its endpoints. A connected component of a
graph G is a maximal subgraph of G that is connected. A set S C V(G)
is a cutset if the number of connected components in the graph G — S
is strictly greater than the number of connected components of G. A k-
cutset is a cutset of cardinality k. If S contains a single vertex v, we say
that v is a cut-vertex. In addition, if S forms a clique in G, we say that
S is a clique cutset. Similarly, a set F' C E(G) is an edge cutset if the
number of connected components of G — F' is strictly greater than the
number of connected components of G. A k-edge cutset is an edge cutset
of cardinality k. If F' contains a single edge e, we say that e is a cut-edge or
a bridge. A cutset S of either vertices or edges is minimal if there exists no
proper subset S’ of S that is a cutset. For a positive integer k, a graph G is
k-connected if |V (G)| > k+ 1 and for any set S C V(G) with cardinality
|S| < k, G — S is connected. Similarly, for a positive integer k, a graph G
18 k-edge-connected if |E(G)| > k + 1 and for any set ' C F(G), G — F
is connected. A block in a graph G is a maximal connected subgraph of
G without cut-vertices. A graph is bridgeless if it does not contain any
bridges.

2.1 Graph colorings

A wertex coloring of a graph G is a mapping f from the set of vertices
V(@) to the set of colors C' and an edge coloring of G is a mapping g from
the set of edges E(G) to the set of colors C’ (usually the set of colors is
represented by natural numbers). A vertex coloring f is proper, if for any
pair of adjacent vertices u and v, f(u) # f(v). A proper vertex coloring
is usually called just a proper colorzng The smallest number of colors
needed for a proper coloring of a graph G is called the chromatic number
of a graph and denoted by x(G). We say that a graph G is k-colorable
if there exists a proper coloring of G with k colors (that is, x(G) < k).
By definition, in a proper coloring, the vertices of the same color form
an independent set. As a consequence, bipartite graphs are 2-colorable.
Since all the vertices in a maximal clique are pairwise adjacent, it readily
follows that w(G) < x(G) for every graph G. For the upper bound on the
chromatic number, in 1941 [47], Brooks proved the following result.

Theorem 2.1.1 (Brooks [47]). Let G be a connected graph with mazimum
degree A. Then, x(G) < A+ 1, with the equality if and only if G is a
complete graph or an odd cycle.

An edge coloring of a graph G is proper if for any pair of edges e; and
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es with a common vertex, f(e;) # f(ez). The smallest number of colors
needed for a proper edge coloring is called the chromatic index of a graph
and denoted by x'(G). We say that a graph G is k-edge-colorable if there
exists a proper edge coloring of G with at most k colors (that is, x'(G) <
k). By definition, edges of the same color form a so-called matching, i.e.,
a set of pairwise non-adjacent edges. In 1964, Vizing proved the following
result.

Theorem 2.1.2 (Vizing [195]). Let G be a graph with mazimum degree
A. Then,

A<Y(G)<A+1.

Given a graph G together with an assignment of lists of colors to each
vertex, a list coloring is a mapping that assigns to each vertex v a color
from its list L(v) of colors. For a list coloring to be proper, the same
condition must hold as for the proper coloring, i.e., every pair of adjacent
vertices receives distinct colors. We say that a graph is k-choosable, or
k-list-colorable, if for any assignment of lists of colors of size k to each
vertex, there exists a proper list coloring of G. The smallest integer k& such
that G is k-choosable is called the choice number of G. In particular, if a
graph is k-choosable, it is also k-colorable as can be seen by a particular
assignment of lists of colors for each vertex such that each list contains the
exact same k colors. However, not every k-colorable graph is k-choosable.

Example 2.1.3. Consider a complete bipartite graph K 4 with the vertex
set A = {v1,v2} on one side of the bipartition and B = {uq, ug, us, uy}
on the other side of the bipartition. Since Ks4 is bipartite, it is also
2-colorable. To see that K54 is not 2-choosable, assign lists of colors
to the vertices in the following way: L(vi) = {1,2}, L(vy) = {3,4},
L(uy) = {1,3}, L(ug) = {1,4}, L(u3) = {2,3}, and L(uy) = {2,4}. It
is easy to see that no matter the choice of colors for v; and vy, there will
always be a vertex in B that cannot be colored.

2.2 Planar graphs

Let G be a graph. We say that G is planar if there exists an embedding
of G in the plane without crossing edges. Note that deleting a vertex
preserves planarity, thus the class of planar graphs is hereditary. When
we talk about a fixed plane embedding H of a planar graph G, we say
that H is a plane graph. For a plane graph G = (V(G), E(G), F(G)),
F(G) denotes the set of faces of G, i.e., regions of the plane bounded by
the edges of G in the plane embedding. We say that a vertex, or edge, is
incident with a face « if it lies on the boundary of a. For a vertex, or an
edge, incident with a face o we will often say that a contains that vertex,
or edge. If there exists a plane embedding of G such that every vertex
is incident with the outer face, then G is an outerplanar graph. When
we talk about a fixed plane embedding H of an outerplanar graph G, we
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say that H is an outerplane graph. Note that a planar graph may have
different plane embeddings (see Figure 2.1).

P> A

Figure 2.1: Two distinct plane embeddings of the same planar graph.

In 1930, Kuratowski [156] provided the first forbidden graph characteriza-
tion of planar graphs.

Theorem 2.2.1 (Kuratowski [156]). A graph G is planar if and only if G
contains no subdivision of K5 or Ks3.

Later, in 1937, Wagner [200| proved the following.

Theorem 2.2.2 (Wagner [200]). A graph G is planar if and only if G
contains neither K5 nor Ks3 as a minor.

Planar graphs also have several important properties. One of them con-
nects the number of vertices, edges, and faces of a plane graph which is
known under the name Euler’s formula.

Theorem 2.2.3 (Euler’s formula). Let G be a connected plane graph.
Then

V()| — (@) + |F(G)| = 2.
Another important property is known as the Four Color Theorem, proven

by Appel and Haken [12, 13] and Appel, Haken, and Koch [14].

Theorem 2.2.4 (Four Color Theorem [12, 13, 14|). Let G be a planar
graph. Then,
X(G) <4.

Finally, for a non-negative integer k, a k-planar graph is a graph that can
be drawn in the plane such that each edge is crossed at most k times.

2.3 Graph problems and complexity

When studying various algorithmic problems on graphs, the main question
is what is the time and space complexity of the problem at hand in terms
of the size of the input. To this end, the big-O, big-(2, and big-© notation
was introduced.

Let f(n) and g(n) be two functions of n.

e We say that f(n) = O(g(n)) if there exist constants C' and N such
that f(n) < c-g(n) for alln > N.
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e We say that f(n) = Q(g(n)) if there exist constants ¢ and N such
that f(n) > c-g(n) for alln > N.

e We say that f(n) = ©(g(n) if f(n) = O(g(n)) and f(n) = Qg(n)).
We say that a problem is efficiently solvable if there exists an algorithm
solving the problem in time O(n*), where n is the size of the input and
k is some constant, i.e., the problem is solvable in polynomial time. A
decision problem is a problem that can only be answered yes or no. An
example of a decision problem is the COLORING problem which, given a
graph GG and a positive integer k, asks whether we can properly color the
vertices of G using k colors. Another example of a decision problem is
the INDEPENDENT SET problem which, given a graph G and a positive
integer k, asks whether GG contains an independent set of size k.

Based on the time complexity required to solve the problem, we divide
the problems into various complexity classes. The class P consists of all
decision problems solvable in polynomial time. The class NP consists of
all decision problems for which a solution can be verified in polynomial
time. Clearly, it holds that P C NP, and a famous open problem whether
P = NP is still widely open. A problem P is NP-hard if every problem
in NP is reducible in polynomial time to P. A problem is NP-complete if
it is in NP and it is NP-hard. It is known that both the aforementioned
problems, the COLORING and the INDEPENDENT SET are NP-complete.
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Chapter 3

Preliminaries to Part 1

ZIn this section, we define notions and present auxiliary results that we will
use in Part I of this thesis.

3.1 More on planar graphs

We begin by giving further definitions and notations for plane graphs.

Let GG be a plane graph. Each face o of G is bounded by a closed walk, i.e.,
an alternating sequence of vertices and edges incident with « starting and
ending in the same vertex going in one direction only, that is to say, no edge
incident with « is traversed twice, unless it is a bridge edge. Such a walk
is called a boundary walk of the face a. A facial path is any consecutive
subsequence of a boundary walk that starts and ends with a vertex. The
length (or size) of a face a, denoted by ¢(«), is the number of edges on
a boundary walk of « (bridges are counted twice). Note that the length
of a face a in a 2-connected plane graph is equal to the number of edges
(or vertices) incident with «. The largest length of a face in a plane graph
G is denoted by A*(G), or simply A* when the graph is clear from the
context. Two vertices are at facial-distance k if the shortest facial path
between them contains k£ edges. The facial distance between two edges
e and f is defined as the smallest number of vertices in any facial path
between a pair of vertices u, v, where u is an endpoint of e and v is an
endpoint of f. In this sense, two facially adjacent edges, i.e., two distinct
edges appearing consecutively on a boundary walk of a face «a, are at facial-
distance 1. We say that two vertices, or edges, are k-facially adjacent or
within facial-distance k if they are at facial-distance at most k. In the
case when k = 1, we say that the two edges are facially adjacent. The
facial distance between a vertex v and an edge e is defined as the minimum
distance from v to any endpoint of e.

We say that a vertex of degree k (at least k, at most k) is a k-vertex (a
kT -vertex, a k™ -vertex) and a face of size k (at least k, at most k) is a k-
face (a k*-face, a k™ -face). We call a k-vertex (a k™ -vertex, a k*-vertex)
adjacent to a vertex v a k-neighbor (a k™ -neighbor, a k™ -neighbor) of v.

15
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A k-thread is a subgraph in G, isomorphic to the path P, in which all
the vertices have degree 2 in G. When the endpoints of a k-thread are
known, say u and v are the endpoints, we denote it as the k-thread (u,v).
A k-thread is incident with a face « if all its vertices are incident with a.
A k-thread (u,v) is k-facially adjacent to a vertex w if the facial distance
between u and w or between v and w is at most k. Let C' be a cycle in
a plane graph G. We denote by int(C') the graph induced by the vertices
lying strictly in the interior of C'. Similarly, we denote by ext(C') the graph
induced by the vertices lying strictly in the exterior of C'. We say that C'
is a separating cycle if both int(C') and ext(C') contain at least one vertex.

A dual graph of a plane graph G is a plane (pseudo)graph H obtained by
creating a vertex for each face of G, and for each edge e of G creating
an edge whose endpoints correspond to the two faces incident with e in
(. Since a bridge is incident with a single face on both sides, each bridge
corresponds to a loop. In addition, if two faces are incident with a com-
mon 2-vertex, then H will have parallel edges. As was proven in 1997 by
Balakrishnan [16], the simple plane graphs whose duals are again simple
plane graphs are 3-edge-connected. Observe also that A*(G) = A(H) and
A(G) = A*(H).

A medial graph of a connected plane graph G, denoted by M (G), is a plane
(pseudo)graph obtained from G by creating a vertex for each edge of G and
adding an edge between two vertices of M (G) every time their correspoding
edges in G appear consecutively (have a common endpoint) on a boundary
walk of some face. By definition, if G is a connected plane graph that
contains a pendant vertex, then M(G) will contain a loop. A simple
argument shows that a medial graph of any plane graph is always a regular
graph with maximum degree 4 and if a plane graph is cubic, then its line
graph and medial graph coincide.

Let G be a plane graph. A plane triangulation of G is a graph H with
V(H) = V(G), containing G as a subgraph, and a maximal number of
edges while preserving planarity. It is easy to see that in a plane triangu-
lation every face has size 3.

3.2 More on colorings

Let ¢ be a partial coloring (under certain conditions) of the vertices, or
edges, of a graph G with the color set C'. We say that a color ¢ € C' is
o-available (or available if o is clear from the context) for a non-colored
vertex, or edge, provided that coloring that vertex, or edge, with the color
¢ would not violate the conditions of the coloring. The set of o-available
colors for a vertex v, or an edge e, is denoted by A,(v), or A,(e), respec-
tively (A(v), or A(e), for short when o is clear from the context). Given
a set U C V(@) of non-colored vertices, the set

AJ(U) = U AU(U)

uelU
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is called the set of o-available colors for V. Similarly, given a set
F C E(G) of non-colored edges, the set

AO'<F) = U Aa(f)

feF
is called the set of o-available colors for E.

Given a graph G, a conflict graph H of G, with respect to the desired
coloring, is a graph obtained by taking V(H) to be the set of elements
we want to color (vertices, edges, etc.), and adding an edge between two
vertices of H if and only if the corresponding elements must be colored
distinctly. Let H be a conflict graph of G with respect to some coloring
and let V(H) = {v1,...,v,}. A conflict polynomial, denoted by P(H), is
defined as follows:

pH)= ][] xi-X).
1<i<g<n,
UinEE(H)

Note that P(H) may differ with respect to the ordering of the vertices of
H.

We now state three useful theorems. First, we make use of the following
generalization of Theorem 2.1.1 to list coloring.

Theorem 3.2.1 (Borodin [34]; Erdés, Rubin, Taylor
connected graph and let L be a list-assignment where

each v € V(G). If

e |L(v)| > d(v) for some vertex v, or

101];. Let G be a
L(v)| > d(v) for

e GG contains a block which is neither a complete graph nor an induced
odd cycle (i.e., G is not a Gallai tree),

then G admits a list coloring from the given lists of colors.

Another useful tool in proving various coloring results is Hall’s Theorem,
which guarantees distinct colors for a set of vertices.

Theorem 3.2.2 (Hall [120]). A bipartite graph a bipartition (A, B) admits
a matching M such that every vertex of A is an endpoint of some edge in
M if and only if for every set S C A the number of vertices of B with a
neighbor in S is at least |S|.

In other words, given a partial proper vertex coloring o of a graph G with
a color set C, if a set U consisting of n non-colored vertices is such that
for every S C U of size k the set of available colors A,(S) C C for S has
size at least k, then o can be extended to a proper vertex coloring of the
whole graph G.

The third theorem helps with determining whether one can always choose
colors from the lists of available colors such that all conflicts are avoided.
The following theorem is due to Alon [10]| and is referred to as the Com-
binatorial Nullstellensatz.
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Theorem 3.2.3 (Alon [10]). Let F be an arbitrary field, and let
P =P(Xy,...,X,) be a polynomial in F[ Xy, ..., X,]. Suppose that the
coefficient of a monomial []}_, Xiki, where each k; 1s a nonnegative inte-
ger, is non-zero in F and the degree deg(P) of P equals > ;. 1 ki. More-

over, if S1,...,Sy are any subsets of F with |S;| > k;, then there exist
S1 €S, .., 8, €Sy such that P(sy,...,s,) #0

Note that Combinatorial Nullstellensatz does not provide a coloring, but
rather only proves its existence. In order to better understand Theo-
rem 3.2.3 let us consider the following example.

Example 3.2.4. Let G be a triangle with V(G) = vy, v9,v3. Suppose
that we want to properly color the vertices of G and the sets of available
colors for the vertices have the following cardinality: |A,,| =1, |A,,| = 2,

and |A,,| = 3.

First, we can compute the conflict graph H of G with respect to proper
coloring. Note that, in this case, H is isomorphic to G. Next, we compute
the conflict polynomial

P(H) = (X; — Xo)(X1 — X3)(Xo — X3).
Expanding the polynomial we get
PH)=XXo — X X3+ X1 X7 — X1 X5+ X2X3 — Xo X2

Note that the monomial X5X? satisfies the properties of Theorem 3.2.3
and thus, it follows that we can properly color the vertices of G avoiding
all of the conflicts.

3.3 Discharging method

One of the ways of using a structure of a graph in order to prove some
results is by discharding method. The most famous use of this method is
in the proof of the Four Color Theorem. For the following definitions and
a guide to discharging method we refer the reader to [64].

A configuration in a graph G is a subgraph, possibly with some additional
properties on its neighborhood. A configuration is reducible with respect
to a certain studied property P if it cannot be present in a minimal graph
without property P.

Discharging method proceeds in three steps. In the first step, we assign to
certain objects of a graph (e.g., vertices, edges, faces) some charge, called
the nitial charge, denoted by chy, in such a way that we can estimate
a total count of all charges. For example, in the case of planar graphs,
we may assign charges to each vertex and each face in order to use Eu-
ler’s formula to compute the total charge to be negative. In the second
step, we prove that certain configurations in a minimal counterexample
are reducible. Using this knowledge, we then design the rules, in which
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the charge is relocated from one object to another by preserving the to-
tal charge. This step is called discharging and the rules for discharging
are called discharging rules. In the final step, we prove, using reducible
configurations, that the final charge, denoted by chy, is different than the
computed value from the first step (e.g., in the case of planar graphs,
that often means that it no longer satisfies the Euler’s formula by showing
that the final charge of each vertex and face is non-negative). This shows
that a minimal counterexample does not exist, thus proving the result in
question.

Example 3.3.1. Let us prove that every connected planar graph G with
0(G) > 2 and with no cut-vertices in which every face is of size at least 8
has an edge uv such that d(u) 4+ d(v) < 5.

Suppose for a contradiction that this is not the case, i.e., d(u) + d(v) > 6
for every edge uv € E(G). Assign the initial charge as follows. For every
vertex v € V(G), we set

cho(v) = 2d(v) — 6,
and for every face a € F(G), we set
cho(a) = () — 6.
By Euler’s formula we have the following:
> cho(v)+ Y chola) = Y (2d(v) —6)+ Y ({(er) —6)
veV(Q) a€F(G) veV(Q) aeF(G)
= 4|E(G)| = 6[V(G)| + 2|E(G)] — 6| F(G)]
= —6(V(G)] = |E(G)] + [F(G)])
=—12.
Observe that, since d(u) + d(v) > 6, every neighbor of a 2-vertex is a
4*-vertex. Additionally, since 6(G) > 2 and G has no cut-vertices, every

vertex is incident with at least two faces. Let ma(a) be the number of
2-vertices incident with «. Due to the previous observation, it follows that

ngl(oz) < L@J for every face o € F(G). Let us now state the discharging
rules.

Ry Every 4"-vertex sends % to every adjacent 2-vertex.

Ry Every 8"-face sends % to every incident 2-vertex.

First, we prove that the final charge of every vertex is non-negative.

o If v is a 2-vertex, then v has the initial charge of —2, and it receives
2 x% charge from its two adjacent 4" -vertices by rule R; and 2 % from

its two incident 8"-faces by rule Ry. Thus, chf(v) = —2+4 x 1 = 0.

e If v is a 3-vertex, then v has the initial charge of 0, and does not send
or receive any charge.
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o If visadT-vertex, then v sends at most dlv) charge to adjacent vertices

2
by rule R;. Thus, ch¢(v) > 2d(v) — 6 — @ = 3d(v) — 6> 0.

Finally, we prove that the final charge of every face is also non-negative.
e Pick any face a of G. Since every face of G is an 8"-face, by rule
Ry, v sends at most ny(a) X 3 to every incident 2-vertex. Now, since
na(a) < L&;)J, it follows that che(a) > () — 6 — no(a) x 1 >
fa) =6 — |12 x 1 >0.
Since all the charges are non-negative, we arrive at a contradiction with

the initial total charge computed by Euler’s formula, thus there must exist
an edge wv in G with d(u) + d(v) < 5.
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Grotzsch Theorem and 1ts Extensions

Coloring of planar graphs has long been an interesting problem. By the
Four Color Theorem [13, 14|, we know that all planar graphs can be colored
with at most 4 colors. In addition, planar graphs which need at most 1 or at
most 2 colors are fully characterized. The former are graphs with no edges
and the latter are bipartite planar graphs. On the other hand, deciding
whether a planar graph is 3-colorable is an NP-complete problem |74, 106].
As a result, the search for properties that guarantee 3-colorability of a
planar graph became a widely popular research direction (see, e.g., [38]
for a survey). To this end, two important results have been proven by
Heawood and Grotzsch establishing the relevance of triangles. Recall that
a graph is even if all of its vertices have even degree.

Theorem 4.0.1 (Heawood [128]). A triangulation of a plane graph is
3-colorable if and only if it is even.

For generalizations of Theorem 4.0.1 see [82, 98, 149]. While Heawood’s
result deals with planar graphs containing a “large” number of triangles,
Grotzsch proved that completely forbidding triangles in a planar graph
also yields a 3-colorable graph.

Theorem 4.0.2 (Grotzsch [114]). Every triangle-free planar graph is 3-
colorable.

These results led the investigation to focus on different ways, in which tri-
angles can appear in 3-colorable planar graphs. Obviously, having triangles
close together is problematic and an easy example is already a Kj.

A conjecture by Griinbaum [115] stated that it is enough to forbid intersect-
ing triangles in planar graphs to obtain a 3-colorable graph. However, as
was shown by Havel [124], this is not the case. In the same paper Havel also
proposed a weaker conjecture, in particular, he conjectured that a planar
graph may contain an arbitrary number of triangles and be 3-colorable, as
long as the distance between any two triangles is sufficiently large. Later,
Havel [125] showed that if such a constant, call it d, exists, then d > 3. This
bound was slightly improved by Aksenov and Mel'nikov [8], who showed
that if such a constant exists, then d > 4. Recently, Dvordk, Kral, and
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Thomas [94]| answered Havel’s conjecture in affirmative.

Theorem 4.0.3 (Dvorék et al. [94]). There exists a constant d such that
if G is a planar graph and every two distinct triangles in G are at distance
at least d, then G s 3-colorable.

This result answers the existence of such a constant, however, it is still
open what is its actual value. As mentioned in the same paper by the
authors, their proof gives an explicit upper bound of approximately 10%0
which is rather large compared to the lower bounds mentioned above.

A result of a similar flavor due to Dvoréak [91] states the following.

Theorem 4.0.4 (Dvoiak [91]). If G is a planar graph such that the dis-
tance between any two cycles of length at most 4 is at least 26 then G s
3-choosable.

On the other hand, there are 3-colorable planar graphs that may have close
triangles (even incident) and have no short cycles forbidden. As was proved
in [87], every planar graph obtained as a subgraph of the medial graph of
a bipartite plane graph is 3-colorable (in fact, even 3-choosable). When
allowing triangles to appear in an arbitrary way in planar graphs, a lot of
research has been done by considering other structures, particularly cycles
of lengths 4-9. Steinberg [187] conjectured that every planar graph with
no cycles of length 4 and 5 is 3-colorable. This conjecture was answered in
the negative by Cohen-Addad et al. [62]. On the other hand, the following
problem, formulated by Lu et al. [161] (see also [145]) is far from settled.

Problem 4.0.5. What is the set I of integers ¢ > 5, such that for any
1 € I, every planar graph with no cycles of length 4 and 7 is 3-colorable?

Results regarding 3-colorability of planar graphs when forbidding cycles of
four distinct lengths between 4 and 9 were obtained in several papers and
summarized in [161] with the following theorem.

Theorem 4.0.6. If G is a planar graph with no cycles of length 4,1, 7, k,
where 5 <1< ) < k <9, then G is 3-colorable.

Although Theorem 4.0.6 settles all the cases when cycles of four distinct
lengths are forbidden (up to length 9), even the following problem stated
in [161] and reformulated in [145] is still not completely resolved.

Forbidden cycles

(longth) 31456 7[8]09
Grotzsch [114] v
Xu [207] |V v
Borodin et al. [40] v v IV
Wang and Chen [202] v v v
Kang et al. [145] v v v
Lu et al. [161] v v v

Table 4.1: Summary of results stating when a planar graph is 3-colorable. Checkmarks
annotate for which k cycles of length k are forbidden as subgraphs.
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Problem 4.0.7. What is the set J of pairs of integers (7, ) with 5 <
1t < 7 <9, such that planar graphs without cycles of length 4,4, are
3-colorable?

We summarize known results of this type in Tables 4.1 and 4.2. In the case
of 3-choosability even more is left open. However, Voigt showed that there
exist non 3-choosable triangle-free planar graphs [196] and also non 3-
choosable planar graphs without cycles of length 4 and 5 [197|. In the case
of 3-choosability, a theorem similar to Theorem 4.0.6 was stated in [204].

Theorem 4.0.8. If G is a planar graph with no cycles of length 4,1, 7,9,
where 5 <1 < 7 <8, then G is 3-choosable.

For a summary of known results of this type on 3-choosability see Table 4.2.

Forbidden cycles

(length) 314516 7]8]9
Thomassen [191] s
Lam et al. [158] v v |V
Dvoiak et al. [96] v v |V
Dvotak et al. [95] v v |V
Zhang et al. [212]; Zhu et al. [215] | v/ v |V
Zhang and Wu [214] VI VIV v
Zhang and Wu [213] v |V v v
Wang et al. [205] v IV s
Wang et al. [204] v v |V v
Shen and Wang [183] v v v |V
Wang et al. [206] v VvV

Table 4.2: Summary of results stating when a planar graph is 3-choosable. Checkmarks
annotate for which k cycles of length &k are forbidden as subgraphs.

4.1 Planar graphs with a small number of triangles

Only four years after the appearance of the Grotzsch theorem, Griin-
baum [115] observed that even if a planar graph contains up to three
triangles then it is 3-colorable. His original proof had a mistake and was
later corrected by Aksenov [4].

Theorem 4.1.1 (Aksenov [4]). Every planar graph with at most three
triangles 1s 3-colorable.

Borodin [33] and Borodin et al. [41] later gave new shorter proofs of The-
orem 4.1.1. In the latter case, the authors relied on the following result
obtained by Kostochka and Yancey [150] which gives the minimum num-
ber of edges in a k-critical graph for any k£ > 4. A graph G is k-critical if
X(G) = k and for any induced subgraph H of G, x(H) < k.

Theorem 4.1.2 (Kostochka and Yancey [150]). If & > 4 and G is a
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k-critical graph then

(k+ D)k = 2)|V(G)| = k(k — 3)
BG) 2 [ 20k — 1) W

When £k = 4, we immediately get the following corollary to Theorem 4.1.2.
Corollary 4.1.3. If G is a 4-critical graph on n vertices then

-2
BG) > 2

Using the result of Kostochka and Yancey, together with the shorter proof
of Theorem 4.1.1, Borodin et al. [41] presented several extensions of the
Grotzsch theorem (Theorem 4.0.2) which we discuss below.

In [141], the authors proved that by adding a vertex of degree 3 to a
triangle-free planar graph G, the graph retains 3-colorability. Extending
this result, Borodin et al. [41] proved the following.

Theorem 4.1.4 (Borodin et al. [41]; Jensen and Thomassen [141]). Let G
be a triangle-free planar graph and let H be a graph such that G = H — v
for some vertex v of degree 4 of H. Then H is 3-colorable.

In addition, they also provided a short proof of a result due to Aksenov,
Borodin, and Glebov [6], which extends the result of Aksenov [5] and
Jensen and Thomassen [141] stating that adding one edge to a triangle-
free planar graph preserves 3-colorability.

Theorem 4.1.5 (Aksenov et al. |6]; Borodin et al. [41]). Let G be a
triangle-free planar graph. Then each coloring of any two non-adjacent
vertices can be extended to a 3-coloring of G.

Another result from [41] is the following.

Theorem 4.1.6 (Borodin et al. [41]). Let G be a triangle-free planar graph
and let f be a face of G of length at most 5. Then each 3-coloring of f

can be extended to a 3-coloring of G.

Conversely, one can consider precolorings of a face f of length at least k,
where k > 6, however, as it turns out, not every precoloring of the vertices
of f can be extended to a 3-coloring of G. Complete characterizations
of the cases when k € {6,7,8,9} were given in [109], 7], [90], and [53],
respectively.

In the rest of this section, we present our results from [157].

4.2 Our results

Building upon the work by Borodin et al. [41] presented above, we study
planar graphs with at most one triangle. We postpone the proofs of The-
orems 4.2.1, 4.2.3, and 4.2.6 and present them in Sections 4.2.1, 4.2.2,
and 4.2.3, respectively.
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First, let us extend Theorem 4.1.5.

Theorem 4.2.1 (Theorem 1.6 in [157]). Let G be a planar graph with at
most one triangle. Then each coloring of any two non-adjacent vertices
can be extended to a 3-coloring of G.

Additionally, we show that the result is tight both in terms of the number
of precolored vertices as well as in terms of the number of triangles. Both
cases are shown in Figure 4.1, given together with the precoloring of three
or two vertices which cannot be extended to a 3-coloring of the whole
graph.

(a) (b)

Figure 4.1: A precoloring of three vertices in a planar graph with no triangles (example
(a)) and a precoloring of two vertices in a planar graph with two triangles (example
(b)) neither of which can be extended to a 3-coloring of the whole graph.

Using Theorem 4.2.1, we obtain a result similar to Theorem 4.1.4.

Theorem 4.2.2 (Theorem 1.7 in [157]). Let G be a planar graph with at
most one triangle and let H be a graph such that G = H — v for some
vertex v of degree at most 3 in H, which is adjacent with at most two
vertices of the triangle in G if it exists. Then H is 3-colorable.

Proof. Let G be a planar graph with at most one triangle and let H be any
graph such that G = H — v for some vertex v satisfying the assumptions of
the theorem. Let Ny (v) = {v1,v9,v3}. As v is adjacent with at most two
vertices of the triangle in G' (if it exists), we may assume, without loss of
generality, that v and vy are not adjacent. By Theorem 4.2.1, we can color
v1 and vy with the same color and extend it to a 3-coloring of G in which
the three vertices in Ny (v) are colored with at most two distinct colors.
It follows that there is an available color with which we can color v. [

Even in this case, we have tightness both in terms of the number of precol-
ored vertices and in terms of the number of triangles (see Figure 4.2). Note
that the condition that v is not adjacent to all the vertices of a triangle is
necessary as that would imply the existence of K, in H.

In the case of precoloring extensions for small faces, we prove an analogue
of Theorem 4.1.6 for faces of length at most 4 (recall that in the case of
triangle-free planar graphs, faces of length 5 can also be considered).
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(a) (b)

Figure 4.2: Not every graph obtained from a planar graph with at most one triangle by
adding a 4-vertex is 3-colorable (example (a)), nor is a graph obtained from a planar
graph with two triangles by adding a 3-vertex (example (b)). In both cases the added
vertex is depicted as a white vertex.

Theorem 4.2.3 (Theorem 1.8 in [157]). Let G be a planar graph with at
most one triangle and let f be a face of G of length at most 4. Then each
3-coloring of f can be extended to a 3-coloring of G.

In terms of the length of the face, this result is tight. As shown in Fig-
ure 4.3, a precoloring of a 5-face in a planar graph with one triangle cannot
always be extended to a 3-coloring of the whole graph.

1

Figure 4.3: A precoloring of the outer 5-face which cannot be extended to a 3-coloring
of the graph.

In the case of extending a precoloring of faces, Dvorak and Lidicky [90]
characterized all the situations when a precoloring of an 8-cycle can be
extended to a 3-coloring of the whole graph. As was remarked in 53], the
result of Dvotrak and Lidicky implies the following.

Theorem 4.2.4 (Dvorék and Lidicky [90]). Let G be a triangle-free planar
graph and let v be a vertex of degree at most 4 in GG. Then there exists a
3-coloring of G where all neighbors of v are colored with the same color.

As a corollary of Theorem 4.1.4 one can obtain a result similar to Theo-
rem 4.2.4, but for any three neighbors of a vertex of an arbitrary degree.
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Corollary 4.2.5 (Corollary 1.10 in [157]). Let G be a triangle-free planar
graph and let vy, vo, and vy be distinct vertices with a common neighbor v.
Then there exists a 3-coloring of G where vy, ve, and v are colored with
the same color.

Proof. Let H be a graph obtained from G by adding a 4-vertex u adjacent
to v, vy, v9, and v3. Since G is a triangle-free planar graph, applying
Theorem 4.1.4 we get that H is 3-colorable. Moreover, the vertices vy, vs,
and v3 must be colored with the same color in any 3- colorlng of H as each
forms a triangle together with u and wv. ]

Let us denote by K the graph obtained from Kj by choosing any vertex
of K4, denote it by v, and subdividing once each edge incident with v (see
Figure 4.4). By abuse of notation, let us call a graph G to be Kj-free if it
does not contain K} as a subgraph in such a way that the degree of v in
G is the same as the degree of v in Kj. It is easy to see that the vertices
in the neighborhood of v cannot be colored with the same color.

Figure 4.4: A planar graph K} with exactly one triangle and a vertex v in the center
with no 3-coloring such that all the vertices in N (v) receive the same color.

In the case of planar graphs with one triangle, we will prove the following
slightly weaker result than the one from Theorem 4.2.4.

Theorem 4.2.6 (Theorem 1.11 in [157]). Let G be a K}-free planar graph
with at most one triangle. Then, for every vertex of degree at most 3 with
an independent neighborhood, a precoloring of its neighbors with the same
color can be extended to a 3-coloring of G.

Note that Theorem 4.2.6 is tight both in terms of the degree of a vertex
and in terms of the number of triangles (see Figure 4.5).

Before continuing on to the proofs, we need the following definitions and
results.

Definition 4.2.7. Let G and H be two graphs. A DHGO-composition
DHGO(G, H) (sometimes also called Ore composition) of G and H is the
graph obtained through the following three steps in order:

1. delete an edge e = uv from G,

2. split a vertex w of H into two non-isolated vertices wy and ws (i.e.,
replace w with two non-adjacent vertices w; and wsy and add edges
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v
v 1 1
1
(b)

(a)

Figure 4.5: Precoloring of the neighborhood of a 4-vertex v in a K)j-free planar graph
G with one triangle cannot always be extended to a 3-coloring of G (example (a)).
Similarly, precoloring of the neighborhood of a 2-vertex v in a planar graph G with
two triangles cannot always be extended to a 3-coloring of G' (example (b)).

incident to either wy or ws in such a way that the following conditions
are satisfied; N(wy) NN (ws) = 0, N(w;) UN(wz) = N(w), and both
wy and wy have degree at least 1), and

3. identify v with wy and v with ws.

-

DHGO(G, H)

Figure 4.6: A DHGO-composition of two complete graphs Kj.

See Figure 4.6 for an example of a DHGO-composition. Note that the
DHGO-compositions are not unique and they were used already in 1964
by Dirac |86], although the roots of such compositions began a decade
earlier (see [84]).

Definition 4.2.8. A graph is k-Ore if it is obtained from a sequence of
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DHGO-compositions of complete graphs K.

Using the notion of 4-Ore graphs, Kostochka and Yancey [151] proved a
stronger version of Theorem 4.1.2.

Theorem 4.2.9 (Kostochka and Yancey [151]). If G is a 4-critical graph,
then
5|V(G)| — 2
3 .
Moreover, the equality is achieved if and only if G is a 4-Ore graph.

[E(G)] =

Let us denote by a Ply 4¢-graph a planar graph with exactly four triangles
and no 4-faces. In [39], the authors proved the following theorem which
describes a relation between 4-Ore graphs and Ply 4-graphs.

Theorem 4.2.10 (Borodin et al. [39]). Fvery 4-Ore graph has at least
four triangles. Moreover, a 4-Ore graph has exactly four triangles if and
only if it is a Ply 4¢-graph.

We call an edge of a graph a diamond edge it it belongs to exactly two trian-
gles. We can now define a special case of a DHGO-composition (see [39]).

Definition 4.2.11. Let e = xy be a diamond edge of G and let H =
Ky. A diamond expansion of G and H is then a DHGO-composition
DHGO(G, H) over the edge e.

QR g

Figure 4.7: The first few graphs from 7W.

In 2004, Thomas and Walls [190] constructed an infinite family 7W (see
Figure 4.7) of Pl 4s-graphs defined as follows. The family 7)W consists
of all graphs obtained from K, as a sequence of diamond expansions. By
definition of k-Ore graphs, as diamond expansion is a special case of a
DHGO-composition, it follows directly that every graph in 7W is a 4-
Ore graph. Furthermore, by construction, every graph in 7 WV has exactly
four triangles. Thus, by Theorem 4.2.10, every graph in 7W is also a
Ply 4 p-graph.

Let 7 W1 be a family of graphs obtained from 7 W by replacing a single
diamond edge with a Havel’s quasi-edge, i.e., a graph such that in each
3-coloring of it, the two vertices u and v must receive distinct colors (see
Figure 4.8) and let TW)5 be a family of graphs obtained from 7W, in the
same way. Note that T )WWs can also be obtained from 7 W by replacing
two vertex-disjoint diamond edges.
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Figure 4.8: Havel’s quasi-edge uv.

In [39], the authors additionally gave a complete characterization of 4-
critical plane graphs having exactly four triangles as the union of families

TW, TW1, and TWQ

Theorem 4.2.12 (Borodin et al. [39]). The class of Ply as-graphs is equal
to the union TW U TW1 UTWs.

This gives an infinite family of examples of graphs which confirm that
Theorem 4.1.1 is tight in terms of the number of triangles.

The following lemma, together with Corollary 4.1.3, is a crucial tool both
in the proofs from [41] and the proofs of Theorems 4.2.1, 4.2.3, and 4.2.6,
where we use minimality of counterexamples; see, e.g., [41] for its proof.

Lemma 4.2.13 (Borodin et al. [41], Lemma 10). Let G' be a plane graph
and F' = vivavzvg be a 4-face in G such that vivs, vovy ¢ E(G). Let G; be
obtained from G by identifying v; and v;yo where i € {1,2}. If the number
of triangles increases in both G1 and Gs, then there exists a triangle v;v; ;12
for some z € V(G) and i € {1,2,3,4}. Moreover, G contains vertices x
and y not in F such that v;1z2v,43 and v;zyvi o are paths in G (indices
are modulo 4).

Figure 4.9: The configuration in Lemma 4.2.13 in the case when the number of triangles
increases both in GG; and in Gbs.

In the case of planar graphs with one triangle, we use the following sim-

plified statement of Lemma 4.2.13.

Corollary 4.2.14 (Corollary 2.2 in [157]). Let G be a plane graph with at
most one triangle and let o be any 4-face of G. Then, at least one of the
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following holds:
(a) « is adjacent to a triangle, or

(b) for at least one pair of opposite vertices of a, we can identify them
without creating any new triangles.

We are now ready to prove Theorems 4.2.1, 4.2.3, and 4.2.6.

4.2.1 Proof of Theorem 4.2.1

We prove Theorem 4.2.1 in two steps. First, we consider the case when
the two precolored vertices receive distinct colors, which is equivalent to
the statement of Theorem 4.2.15.

Theorem 4.2.15 (Theorem 3.1 in [157]). Let G' be a planar graph with
at most one triangle and let H be a graph such that G = H — e for some
edge e of H. Then H is 3-colorable.

Proof. We prove the theorem by contradiction. Suppose that H is a coun-
terexample minimizing the number of vertices plus the number of edges
and let GG be a plane graph with at most one triangle such that G = H —e
for some edge e of H. Note that since G is planar and contains at most
one triangle, it is 3-colorable by Theorem 4.1.1. By Theorem 4.1.5, we
may assume that G contains exactly one triangle 7. Moreover, by the
minimality, H is 4-critical.

We consider five cases regarding 4-faces in G.

Case 1: G has at most two 4-faces.  Let fy denote the number of
4-faces in G. By the Handshaking Lemma, we have

2ma = Z la)>34+4- fuc+5 - (fo— 1+ fug)) =5fc —2— fic
aeF(G)

(in the calculation, we assume that T is a face, otherwise the lower bound
on the number of edges would be even higher). Then, 5fs < 2mg + 4
and by applying the Euler’'s Formula and observing that ny = ng and
mpg = mqg + 1, we infer that

1O:5ng—5mg—|—5fg§5ng—3mg+4:5nH—3(mH—1)+4.

Thus,

< 57’&[{ -3 7
- 3

a contradiction to Theorem 4.1.2.

mpy

Case 2: G has a 4-face o = vivov3vy such that at most one vertex of « is
incident with T and at most one vertex of e is incident with .  Let Gj
be the graph obtained from G by identifying v; and v;,9, where ¢ € {1,2}.
By the assumption and Corollary 4.2.14, we may assume, without loss of
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generality, that (G; contains T" as the unique triangle. Note that the graph
H, obtained from H by identifying v; and v3 contains e and is thus 3-
colorable by the minimality. Thus, we can extend the coloring of H;p to
the coloring of H in which vy and v3 receive the same color, a contradiction.

Case 3: G has a 4-face o = v1v9v3v4 such that at most one vertex of «
s incident with T' and both vertices of e are incident with . We may
assume, without loss of generality, that e = vyvs3. Let Gy be the graph
obtained from G by identifying vy and v4. Note that if the number of
triangles does not increase in Gy, then we can continue as in Case 2.

Therefore, by Lemma 4.2.13, there exist vertices x,z € V(G) such that
xvy, T2, 2v9 € E(G). Consequently, no 4-face of G, other than «, can
contain both vertices v; and v3 due to planarity.

Due to Cases 1 and 2, and the fact that o contains both vertices of e, there
exists a 4-face o = vjvhvv) such that o’ contains two vertices of 7', say "U,i
and v4 (note that the two vertices incident with 7" are not opposite in o,
otherwise there would be another triangle in G), with 2’ being the third
vertex of T'. Let G} be the graph obtained from G by identifying v} and
Vi o, where i € {1,2}. Again, if the number of triangles does not increase

in G} or GY, then we can color H with 3-colors.

It follows that there exist vertices 2’,y’ € V(G) such that 2’2/, x'v),
y'2', and y’vé € E(G). Suppose that at least one of Cy = 2'viviy’ or
Cy = v’ is a 4-face, say C;. By our observation above, C does not
contain both vertices of e. Let G’ be the graph obtained from G by identi-
fying v} and y'. Note that the number of triangles in G" does not increase.
Let H' be the graph obtained from G’ by adding the edge e. By the mini-
mality, we can color H' with 3 colors and extend the coloring to a coloring

of H, in which ¢ and v} receive the same color, a contradiction.

Thus, we may assume that both C and Cy are separating 4-cycles. Note
that if the vertices of o (and thus also the endvertices of e) belong to the
vertex set V3 = V(ext(C})) U V(C}), then H[V]] contains both T" and e.
Therefore, we can color H[Vi] by the minimality and extend the coloring
of C to a coloring of H[V (int(C1)) U V(C1)] by Theorem 4.1.6. We use
an analogous argument for Cy in the case when the vertices of o belong
to the graph induced by the vertex set V (int(C4)) UV (CY), which implies
that the vertices of a belong to the vertex set V' (ext(Cy)) UV (Cy). Thus,
H is 3-colorable, a contradiction.

Case 4: G has a 4-face a = viv9v3vy such that exactly two of its vertices,
say v1 and vo, are incident with T', and at most one vertex of the edge e is
incident with a.  Let z be the third vertex of T'. Using similar arguments
as in the previous cases, we infer that there exist vertices x,y € V(G) such
that zz, xvy, yz, and yvs € E(G).

Suppose that C7 = zvovgy is a 4-face. If e £ voy, then consider the graph
G’ obtained from G by identifying vy and y. Note that the number of
triangles in G’ does not increase. Let H' be the graph obtained from G’
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by adding the edge e. By the minimality, we can color H' with 3-colors and
extend the coloring to a coloring of H, in which y and v receive the same
color, a contradiction. Therefore, e = voy. But then, either Cy = zvjvx
is a 4-face, in which case we can apply the same procedure on v; and x
as we did on vy and y, or (s is a separating 4-cycle. However, since both
V(T) and V (e) belong to the vertex set Vi = V(ext(Cy)) UV (Cy), we can
complete the coloring in a similar manner as in the last paragraph of Case
3, a contradiction.

Thus, by symmetry, both C and Cy are separating 4-cycles. Moreover,
each of C and C5 contains exactly one vertex of e in its interior. Fur-
thermore, T is a 3-face, otherwise we can color H[V (ext(T)) U V(T)] by
the minimality, and then extend the coloring to the interior of T by Theo-
rem 4.1.6. Additionally, due to Case 1, there exists a 4-face o/ = vjvhviv)
in G, distinct from «. If identifying either v} and o4, or v and v} re-
sults in a graph with one triangle, namely 7', then by the minimality, it
is 3-colorable and the coloring can be extended to H. Therefore, by the
fact that G has only one triangle and Lemma 4.2.13, two vertices of o/ are
incident with 7', say vj = v; and vj = 2z (meaning that at least one of v}
and v} is in V(int(C)), see Figure 4.10) and there are vertices o’ and ¢/
in G such that z'v}, 2’'vy, y'vi, and y've € E(G). This is not possible due
to the planarity of GG, a contradiction.

Figure 4.10: The 4-faces o and o’ in the last part of Case 4.

Case 5: G has at least three 4-faces and each of them is incident with two
vertices of T' and both vertices of e.  Let a = v1v9v3v4 be such a face and
let T" = vyv92z. Without loss of generality, we may assume that e = vyvs.
Let Gy be the graph obtained from G by identifying v and wvy. If the
number of triangles does not increase in G5, then we are done. Thus, by
Lemma 4.2.13, there exists a vertex € V(G) such that zz, zvy € E(G).
Note that by the assumptions, C' = zvjvsx is not a 4-face, since it is
incident to exactly one vertex of e. Therefore, C is a separating 4-cycle.
But then, the vertices of both T" and e are contained in the vertex set
Vi =Vi(ext(C))UV(C). Let Vo = V(int(C)) UV (C). By the minimality,
we can color G[V;] and extend the coloring of C' to the coloring of G[V5]
by Theorem 4.1.6, a contradiction.
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Since no 4-face can be incident with all three vertices of T, the proof is
completed. O

In the second step of proving Theorem 4.2.1, we show that any two non-
adjacent vertices in a planar graph with one triangle can be colored with
the same color.

Theorem 4.2.16 (Theorem 3.2 in [157]). Let G' be a planar graph with
at most one triangle. Then each coloring of any two non-adjacent vertices
with the same color can be extended to a 3-coloring of G.

Proof. We prove the theorem by contradiction. Suppose that a counterex-
ample G is a plane graph with the minimum number of vertices. By
Theorem 4.1.5, we may also assume that G contains exactly one triangle
T. Let v and v be two non-adjacent vertices of G.

Let H be the graph obtained from G by identifying the vertices u and v.
Clearly, ng = ng + 1 and mg = my. By the minimality, H is 4-critical.
To reach a contradiction, we only need to prove that H is 3-colorable,
which implies that there exists a 3-coloring of G in which u and v receive
the same color.

We consider three cases regarding 4-faces in G.

Case 1: G has no 4-faces. By the Handshaking Lemma, we have
2mg = Y (a)>3+5-(fo—1)=5fc—2.
a€F(Q)
Then, 5fq < 2m¢g + 2 and by applying the Euler’s Formula, we infer that
10 = 5ng — bmg + 5fq < 5ng —3mg +2 =5nyg +5 — 3mpy + 2.
Thus,

5TLH -3
mp < — 3
a contradiction to Theorem 4.1.2.
Case 2: G has exactly one 4-face. Similarly as in Case 1, we can
compute that 5fs < 2mg + 3 and by applying Euler’s Formula, we infer
that
5nH —2
myg S —o—
In the case when mpy < %, we obtain a contradiction to Theorem 4.1.2,
and therefore, H has exactly M?)_Q edges.

Let v = viv9v3v4 be the 4-face in G and let GG; be the graph obtained from
G by identifying v; and v;, o, where i € {1,2}.

Suppose first that the number of triangles does not increase in GG7 or Go,
say G1. In the case {u,v} # {v1,v3}, we identify v; and v3 in H to obtain
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the graph H;. By the minimality, we can color H; with 3 colors and extend
the coloring to a coloring of H, and therefore also to GG, a contradiction.
Hence, we may assume that {u,v} = {v1,v3}. In this case, H is a planar
graph with exactly one triangle. Thus, by Theorem 4.1.1, there exists a
3-coloring of H, and therefore also of G, a contradiction.

We may thus assume that the number of triangles increases in both Gy
and Go. By Lemma 4.2.13, without loss of generality, we may assume that
there exist vertices z,y,z € V(G) such that zvy, zve, xz, zvy, yz, and
yvs € E(G), where zvjvg is T. Since G contains exactly one 4-face, it
follows that both C7 = zvjv4x and Cy = zv9v3y are separating 4-cycles.

Note that if both v and v belong to the subgraph of GG induced by the
vertex set V) = V(ext(C})) U V(C1), then we can color G[V;] by the
minimality and use Theorem 4.1.6 to extend the coloring of C} to the
coloring of the interior of C';. By symmetry, we may thus assume, without

loss of generality, that w € V(int(C1)) and v € V (int(Cy)).

Since my = %, by Theorems 4.2.9 and 4.2.10, we infer that H must
have at least 5 triangles. Therefore, since G' has exactly one triangle, it
follows that by identifying v and v, we create at least four new triangles.
We will prove that this cannot happen.

First, observe that no new triangle can contain vertices x or y, since that
would imply the existence of another triangle, distinct from 7', in GG. Next,
observe that u is adjacent with at most one of the vertices v; and vy, and
v is adjacent with at most one of the vertices vy and v3. Thus, at most
one new triangle can be formed using the edges vivy or v3vy, and so there
must exist at least three triangles in H which contain the vertex z and
either u or v, say u, is adjacent to z. Therefore, there exist at least three
vertices wy, we, w3 € V(G) such that wy, we, w3 € V(int(Cy)). Moreover,
each of them is adjacent to z and v (see Figure 4.11). Consider now the

z

Figure 4.11: The vertices in G comprising triangles in H in the last part of Case 2.

4-cycle C' = zwyvws. Since G contains exactly one 4-face, it follows that
C'is a separating 4-cycle. Furthermore, the exterior of C together with the
vertices of C' contains both u and v, as well as T". Thus, by the minimality,
we can color G[V (ext(C))UV (C)] and extend the 3-coloring of the vertices
of C' to a 3-coloring of H by Theorem 4.1.6.
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Case 3: G has at least two 4-faces.  Let a = vivouzvy be a 4-face and
let GG; be the graph obtained from G by identifying v; and v;, o, where
i € {1,2}. Since G contains exactly one triangle, by Corollary 4.2.14,
either, without loss of generality, vivs is an edge of T' or we can identify
v; and vs or v9 and vy without creating any new triangles. Suppose first
that vivy is not an edge of T'; say that G; has at most one triangle. Then,
in the case {u,v} # {vy,vs3}, we identify v; and v3 in H to obtain the
graph H;. By the minimality, we can color H; with 3 colors and extend
the coloring to a coloring of H, and therefore also to GG, a contradiction.
Hence, we may assume that {u,v} = {v1,v3}. In this case, H is a planar
graph with exactly one triangle. Thus, by Theorem 4.1.1, there exists a
3-coloring of H, and therefore also of G, a contradiction.

Thus, we may assume that T' = v vz, with z being distinct from v3 and
vyg, and that in both G7 and G5 the number of triangles is at least 2.
Therefore, by Lemma 4.2.13, there exist vertices x,y € V(G) such that
rz, Ty, Yz, and yvs € E(G).

Suppose that C7 = zvjvgx is a 4-face. Then, due to planarity of G, in
the graph G’ obtained by identifying v; and z, no new triangle is created.
Thus, by the minimality, we can color G’ and infer 3-colorability of G in
a similar manner as above, a contradiction.

Therefore, by symmetry, we may assume that both C and Cy = zv9v3y
are separating 4-cycles. Note that if both u and v belong to the vertex
set V1 = V(ext(Cy)) UV (CY) (resp., Vo = V(ext(Cy)) U V(Cy)), then, by
the minimality, we can color the graph H; (resp., Hs) obtained from G[V;]
(resp., G[V5]) by identifying u and v and extend the coloring to a coloring
of H by Theorem 4.1.6, hence also obtaining a 3-colorability of G.

Thus, we may assume, without loss of generality, that v € int(C) and
v € int(Cy). Now, consider a 4-face o/ = vijvjviv). If o satisfies the
property (b) of Corollary 4.2.14, then we proceed as above to obtain a
contradiction. Therefore, o’ is incident with 7" and, by planarity of G, the
vertices of o/ are all contained in V (int(7")) UV(T'). But then, both u and
v belong to the exterior of T" and we can color, by the minimality, the graph
obtained from G[V (ext(T)) U V(T')] by identifying u and v. Finally, we
extend the obtained coloring to a coloring of H by Theorem 4.1.6. Hence,
from the coloring of H, we again obtain 3-colorability of GG, a contradiction.

This completes the proof. H
Theorems 4.2.15 and 4.2.16 combined settle Theorem 4.2.1.

4.2.2 Proof of Theorem 4.2.3

Next, we prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Let GG be a planar graph with at most one triangle
and let f be a precolored face of length at most 4.
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Suppose first that f is of length 3. Since there is only one coloring of f
(up to a permutation of colors), the result follows from Theorem 4.1.1.

Thus, we may assume that f = vjvovgvy is a 4-face. Suppose that the
precoloring of f uses all three colors. Then, two non-adjacent vertices of f,
say v1 and vs, receive distinct colors and the other two vertices are colored
with the third. Note that the same coloring of f (up to a permutation
of colors) can be obtained by adding an edge between v; and vs. The
obtained graph is 3-colorable by Theorem 4.2.15.

Therefore, we may assume that the vertices of f are precolored with two
colors. We proceed by contradiction. Let G be a plane graph with at
most one triangle such that a precoloring of some 4-face f with two colors
cannot be extended to a 3-coloring of G. Moreover, let GG be the smallest
such graph in terms of the vertices. Clearly, G' has exactly one triangle 7',
otherwise the precoloring can be extended by Theorem 4.1.6.

Let G; be the graph obtained from G by identifying v; and v;,9, where
i € {1,2}. If the number of triangles does not increase in G or Go, say
(G1, then there is a 3-coloring of GG1, guaranteed by Theorem 4.2.1, which
induces a 3-coloring of G such that the vertices of f are colored with two
colors.

Thus, by Lemma, 4.2.13, without loss of generality, we may assume that
there exist vertices x,y,2z € V(G) such that zvy, zve, xz, xvy, yz, and
yvs € E(G), where T = zvyve. Observe that coloring of f forces also the
colors on z, y, and z (see Figure 4.12).

3

Figure 4.12: The coloring of f forces the colors of z, y, and z.

Let C7 = zvyugx and Cy = zwvovsy. Suppose that at least one of C or
(5, say (1, is a separating 4-cycle. Then, by the minimality, the col-
oring of f extends to a 3-coloring of G[V (ext(C})) U V(CY)]. Since the
obtained coloring of Cy extends to a 3-coloring of G[V (int(C})) U V(Cy)]
by Theorem 4.1.6, we obtain a 3-coloring of G, a contradiction.

Thus, we may assume that both C7 and Cy are 4-faces in G. In a sim-
ilar manner as above, we infer that 7" must be a 3-face. But then, the
precoloring of the 5-cycle C5 = vsvyrzy given in Figure 4.12 extends to
a 3-coloring of G[V (ext(C3) UV (Cs))] (which might as well be an empty
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graph) by Theorem 4.1.6 and we color the two vertices in the interior of
(5 as in Figure 4.12, hence obtaining a 3-coloring of GG, a contradiction.
This completes the proof. ]

4.2.3 Proof of Theorem 4.2.6

We conclude this section with a proof of Theorem 4.2.6.

Proof of Theorem 4.2.6. We prove the theorem by contradiction. Let G be
a minimal counterexample to the theorem, i.e., G is a Kj-free planar graph
with at most one triangle and the minimum number of vertices such that
there is a vertex u of degree at most 3 with an independent neighborhood,
such that precoloring the vertices in N (u) with a same color does not
extend to a 3-coloring of G.

First, observe that by Theorem 4.1.4, G has exactly one triangle T', and
by Theorem 4.2.1, u is a 3-vertex. Let N[u] = {u, uy, us, u3} and let H
be the graph obtained by identifying Nu| into a vertex w. Let aq, as,
and a3 be the three faces incident to u in G that contain respectively
{ug,uo}, {ug, us}, and {uy,us}. Furthermore, let of, o, and af be the
faces incident to w in H corresponding to aq, as, and as.

Clearly, every 3-coloring of H induces a 3-coloring of G with uq, us, and
ug colored with a same color, while u can be colored with either of the
remaining two colors. Additionally, since GG is a planar graph, H is also
a planar graph and by the minimality of G, H is 4-critical. Observe also
that ng = ng + 3, mg = myg + 3, and fg = fu.

Now, we prove two structural properties of H.
Claim 4.2.17. H has no separating triangles.

Proof of Claim 4.2.17. Suppose the contrary and let C' be a separating
triangle in H. First, suppose that C is the triangle of G. Without loss of
generality, we may assume that w € V(int(C)). By the minimality, there
is a 3-coloring of H[V (int(C)) U V(C)], and by Theorem 4.1.1, we can
extend it to a 3-coloring of H, since H[V(ext(C’)) UV(C)] has exactly one
triangle, a contradiction.

Therefore, we may assume that C' # T. In that case, C' has been
created from a 5-cycle Cg after we identified N|u| into w and thus
w € V(C). Since C # T, we may assume, without loss of generality,
that H[V (int(C)) U V(C)] contains o) but not af or of (see Figure 4.13).

By the minimality, there is a 3-coloring ¢ of H[V (ext(C)) U V(C)].
Now, we show that we can extend ¢ to the interior of C. Let

= H[V(int(C)) U V(C)]. We proceed by induction on the number of
separating triangles in H;. First, recall that all separating triangles in H;
are incident to w; more precisely, they were obtained from 5-cycles in G
containing {uy, z, us}.
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Figure 4.13: A separating 5-cycle in G containing ;.

Suppose that H; = H[V (int(C))UV (C)] has no separating triangle. Then
it has at most three triangles: C as its outer face, possibly o/, and possibly

T. Therefore, H; is a planar graph with at most three triangles and thus
3-colorable by Theorem 4.1.1.

So, we may assume that H; has at least one separating triangle; we select a
separating triangle C” such that all separating triangles in H; are contained
in Hy = H;[V(int(C")) UV (C")]. Then, by induction, there is a 3-coloring
¢ of H{. Finally, using the colorlngs ¢ and ¢', we can complete the

coloring of H by coloring H[V (H) \ V(mt(C’))] using Theorem 4.1.1 and
an eventual permutation of colors in ¢, a contradiction. |

Claim 4.2.18. If H has a separating 4-cycle, then both its interior and
exterior must contain w or a triangle.

Proof of Claim 4.2.18. Suppose the contrary and let C' be a separating 4-
cycle of H such that H[V (int(C)) U V(C)] is a triangle-free planar graph
that does not contain w. By the minimality, there is a 3-coloring ¢ of

H[V(ext(C)) U V(C)]. By Theorem 4.1.6, we can extend ¢ to the whole
graph H, a contradiction. |

Now, we are ready to finish the proof by considering three cases regarding
4-taces of G.

Case 1: G has no 4-faces. By the Handshaking Lemma, we have
2meag > 5fc — 2 and so 2mpy + 6 > 5fy — 2. Then, 5fyg < 2mpy + 8 and
by applying the Euler’s Formula on GG, we infer that

5nH —2
mp S e
Since H is 4-critical, by Theorem 4.2.9, we have that my 5”’;) 2 and that
H is a 4-Ore graph. Moreover, since H does not have separating triangles
by Claim 4.2.17, there are at most four triangles in H (7 and the faces of,
a4, and a4). Thus, by Theorem 4.1.1, H has exactly four triangles and by
Theorem 4.2.10, H is a Ply4s-graph. Recall that three of the triangles are
incident to the same vertex w. The only Ply 4¢-graph for which this is true
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is K4 [39, Theorem 4|. However, to obtain Ky, all three neighbors of u in
G must be of degree 2, meaning that G must be K, a contradiction.

Case 2: GG has a 4-face that is incident to u.  As a result, after identi-
fying u and its neighbors, H has at most three triangles by Claim 4.2.17.
Therefore, H is 3-colorable by Theorem 4.1.1.

Case 3: G has a 4-face o = v1vov3v4 and « 1s not incident to u.  The
edges v1v3 and v9vy are not present in GG, otherwise G would have at least
two triangles. Moreover, if u is adjacent to two (opposite) vertices of a,
say v1 = u; and vy = wug, then, by Case 2, neither C| = uviv9v3 nor
Cy = uvjvgvg is a 4-face. Moreover, without loss of generality, we may
assume that us € V(ext(Cp)). However, by the minimality, there is a
3-coloring of G[V (ext(C1)) UV (C})], and it can easily be extended to the
whole G' by Theorem 4.2.3. Therefore, at most one of the vertices of « is
adjacent to wu.

Let G; be the graph obtained from G by identifying v; and v;,9, where
i € {1,2}. Suppose that the only triangle in Gy is T. Then, by the
minimality, the graph H; obtained by identifying the vertices v; and vz in
H is 3-colorable. Clearly, its coloring can be extended to H and thus also
to GG, a contradiction.

Therefore, by symmetry, we may assume that in GG; and G4 the number of
triangles increases. It follows by Lemma 4.2.13 that there are vertices x,
y, and z such that viz,vez, x2, vV, Y2, yv3 € E(G), where T' = vjvyz. If
one of C = zvyvgx and Cy = zwvyvsy is a 4-face, it has the same properties
as « and two of its vertices are incident with 7. But that is not possible
due to planarity.

Thus, C7 and Cy are separating 4-cycles of GG. Since, at most one of them
can contain u # z (by definition, u is not incident with a triangle), the
other one remains a separating 4-cycle of H, which does not contain 7" nor
w, a contradiction to Claim 4.2.18. This completes the proof. ]



Chapter 5

Cyclic Coloring of Plane Graphs and
its Generalization

In the previous chapter we considered the “usual” proper colorings of the
vertices of planar graphs. In this and the next chapter we will consider
various colorings of planar graphs defined by some other restrictions. In
particular, we will consider colorings of plane graphs in which various
constraints are given with respect to the faces. Note that we require the
word plane instead of planar as a single planar graph may have different
embeddings in the plane. We say that a vertex (edge) coloring of a plane
graph G is facially-proper it for every face o of G there are no two distinct
vertices (edges) appearing consecutively on a boundary walk of « that are
colored with the same color. Note that every proper vertex coloring of
a plane graph is also facially-proper and vice versa. On the other hand,
every proper edge coloring is also facially-proper, but the converse does
not always hold. It is easy to see that in the case of subcubic plane graphs
every facially-proper edge coloring is also a proper edge coloring. This is
not necessarily true in the case of plane graphs with maximum degree at
least 4.

Facially-proper edge coloring was first considered for the family of bridge-
less cubic plane graphs. In 1880, Tait [188] noticed that the vertices of
every plane graph are 4-colorable if and only if the edges of every bridge-
less cubic planar graph are 3-colorable. In general every connected plane
graph admits a facially-proper edge coloring with at most four colors [140]
and the graph which achieves this bound is a wheel with five spokes W5.

Throughout the years, a number of facially constrained colorings were
defined with various additional constraints. Many such colorings are pre-
sented in recent survey papers by Czap and Jendrol [71] from 2017, and
Crap, Horfiak, and Jendrol [68] from 2021. In the rest of this chapter we
will consider the cyclic coloring, the ¢-facial coloring (both vertex and edge
versions), the odd edge coloring, and the facial-parity coloring (also both
vertex and edge versions).

41
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5.1 Cyclic coloring

A cyclic coloring (also known as a rainbow vertex coloring, see [71]) is a
proper vertex coloring of a plane graph such that no two vertices incident
with the same face are colored with the same color. The minimum number
of colors needed for a cyclic coloring of a plane graph is called the cyclic
chromatic number and denoted by x.(G). This notion was first introduced
in 1969 by Ore and Plummer [169]. They considered cyclic coloring of
plane pseudographs and later noticed that it is enough to consider only
connected plane graphs. As a matter of fact, they showed that it is enough
to consider only 2-connected plane graphs. By the definition, it easily
follows that x.(G) > A*(G) (recall that A*(G) denotes the length of the
longest face of G). On the other hand, Ore and Plummer [169] proved
the following upper bound for the cyclic chromatic number of any plane
graph.

Theorem 5.1.1 (Ore and Plummer [169]). Let dy and dy be the two largest
face sizes in a plane graph G. Then,

Later, in 1984, Borodin [35] implicitly conjectured the following.

Conjecture 5.1.2 (Borodin [35]). Let G be a plane graph with
A*(G) > 3. Then,

W@ < o)

Conjecture 5.1.2, which is known under the name Cyclic Coloring Con-
jecture, has become a focus for many research studies. In 1987, Plummer
and Toft [172] presented the first family of plane graphs attaining the
upper bound given by the Cyclic Coloring Conjecture which are exactly
graphs G that are the line graphs of the Theta graph ©; ;; for which
A*(G) = 2(k+1) and x.(G) = 3(k + 1). Five years later, Borodin |36]
slightly improved the general upper bound.

Theorem 5.1.3 (Borodin [36]). Let G be a plane graph with A*(G) > 3.

Then,
(2A*(G) =3 for A*(G) > 8,
12 A* <
(G < 4 for A*(G) <7,
11 for A*(G) <6,
|9 for A*(G) < 5.

It was several years later when Borodin, Sanders, and Zhao [42] man-
aged to improve the upper bound by showing that LgA*(G)j colors suffice

for a cyclic coloring of any plane graph and two years later Sanders and
Zhao [179] improved the upper bound even further.
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Theorem 5.1.4 (Sanders and Zhao [179]). Let G be a plane graph
A*(G) > 3. Then,

@) < 2ave)

Currently, Theorem 5.1.4 gives the best known upper bound depending
only on A* and the Cyclic Coloring Conjecture (Conjecture 5.1.2) is known
to be true only for the values A*(G) € {3,4,6}. The case A*(G) = 3
follows directly from the Four Color Theorem, while the case A*(G) = 4
follows from the fact that we can properly color the vertices of every 1-
planar graph with at most 6 colors (see [35, 37]). The last case A*(G) = 6
was solved by Hebdige and Kral [129] in 2016. As a remark, for the
case A*(G) = 7 both Theorems 5.1.3 and 5.1.4 state that 12 colors are
enough. This result was further improved to 11 colors as a consequence
of another result (see Corollary 5.2.4 in the next section). Although the
Cyclic Coloring Conjecture is still widely open, Amini, Esperet, and van
den Heuvel [11] showed that it is asymptotically true.

Theorem 5.1.5 (Amini et al. [11]). For every € > 0, there exists A¢ such
that every plane graph of mazimum face degree A* > A, admits a cyclic
coloring with at most (3 + €)A*(G) colors.

As the Cyclic Coloring Conjecture proved to be a difficult problem, many
researchers focused on the cyclic coloring of 3-connected plane graphs,
which appeared to be simpler. In 1987, Plummer and Toft [172] obtained
the first results in this direction and proved that A*(G) 4+ 9 colors always
suffice. Furthermore, they also obtained several slightly better results in
some special cases with respect to A*(G) summarized in the following
theorem.

Theorem 5.1.6 (Plummer and Toft [172]). Let G be a 3-connected plane
graph. Then,

p

AY(G)+9  for all A*(G),
A (G)+8  for A*(G) < 10,
A(G)+T7  for A*(G) <9,
A (G)+6  for A*(G) <8,
X(G) LS AN G)+8  for A*(G) > 14,
AYG)+T7  for A¥(G) > 15,
A (G)+6  for A*(G) > 18,
A (G)+5  for A*(G) > 24,
AYG)+4  for A*(G) > 42.

\

In addition to the results shown in Theorem 5.1.6, they constructed an
infinite family of 3-connected plane graphs for which x.(G) = A*(G) + 2
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Figure 5.1: A 3-connected plane graph G with x.(G) = A*(G) + 2.

(see Figure 5.1), as well as provided examples of 2-connected plane graphs
with minimum degree 3 showing that for any given positive integer k there
exist plane graphs with x.(G) > A*(G) + k (see Figure 5.2). Finally, they
also posed the following conjecture.

Figure 5.2: Example of a 2-connected plane graph G with §(G) = 3 and x.(G) >
A*(GQ) + k.

Conjecture 5.1.7 (Plummer and Toft [172]). Let G be a 3-connected
plane graph. Then,
Xe(G) < AYG) + 2.

The first positive answer to Conjecture 5.1.7 was provided by Hornak and
Jendrol [136, 137] who proved that for all A*(G) > 24, Conjecture 5.1.7
holds. Later, in 2010, Hornak and Zlamalovéa [139] proved that Conjec-
ture 5.1.7 holds for all A*(G) > 18.

Theorem 5.1.8 (Hornék and Zlamalova [139]). Let G' be a 3-connected
plane graph with A*(G) > 18. Then,

Xe(G) < AYG) + 2.

Finally, in 2016, Dvordk et al. [92] proved Conjecture 5.1.7 also for the
cases when A*(G) € {16, 17}.
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Theorem 5.1.9 (Dvorék et al. [92]). Let G be a 3-connected plane graph
with A*(G) € {16,17}. Then

Xe(G) < AYG) +2.

Observe that in the case when A*(G) € {3,4}, Conjecture 5.1.7 coin-
cides with the Cyclic Coloring Conjecture which is known to be true.
It follows that the rest of the cases left open are the cases when
A*(G) € {5,6,...,15}. For these, the best result known thus far was
obtained by Enomoto and Hornak [99] in 2009, who proved that the cyclic
chromatic number of any 3-connected plane graph is at most A*(G) + 5.

Theorem 5.1.10 (Enomoto and Hornak [99]). Let G be a 3-connected
plane graph. Then
Xe(G) < A*(G)+5.

Another partial result towards solving the Conjecture 5.1.7 was obtained
by

Kriesell [155], who proved that A*(G) + 2 colors suffice for the case
of locally connected 3-connected plane graphs. A graph is locally con-
nected if, for every vertex v of G, the graph G[N(v)] induced on N(v) is
connected.

Theorem 5.1.11 (Kriesell [155]). Let G be a locally connected 3-connected
plane graph. Then,
Xe(G) < AY(G) +2.

In the same paper Kriesell posed the following conjecture in line with
Conjecture 5.1.7.

Conjecture 5.1.12 (Kriesell [155]). Let G be a locally connected 3-
connected plane graph. Then,

X(G) < AYG) + 1.

5.2 [(-facial (vertex) coloring

An (-facial coloring is a vertex coloring of a plane graph such that any
two vertices incident with the same face at distance at most ¢ on that
face receive distinct colors. The minimum number of colors needed for an
(-facial coloring of a plane graph G is called the ¢-facial chromatic number
and is denoted by x/(G).

The (-facial coloring was first introduced in 2005 by Kral, Madaras, and

Skrekovski [154, where they posed the following conjecture (of a similar
flavor as the Cyclic Coloring Conjecture).

Conjecture 5.2.1 (Krél et al. [154]). Let G be a plane graph and ¢ > 1.
Then
xe(G) <30+1.
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Note also that if true, then the bound is tight as can be seen by the
plane embeddings of K4, in which three edges with a common vertex are
subdivided ¢ — 1 times, see Figure 5.3.

Figure 5.3: A plane graph G which is a plane embedding of a K, with three edges
sharing a common vertex subdivided exactly ¢ — 1 times and with y,(G) = 3¢ + 1.

Conjecture 5.2.1 is known under two names, the (3¢+1)-Conjecture and the
Facial Coloring Conjecture. By the definition, given a plane graph G with
A*(G) < 20+ 1, then every cyclic coloring of G is also an ¢-facial coloring
of G and vice versa. Thus, when A*(G) = 2¢ + 1, the Facial Coloring
Conjecture implies the Cyclic Coloring Conjecture (Conjecture 5.1.7). In
addition, unlike for the cyclic coloring we no longer have dependency on
the length of the longest face, but rather only on the choice of ¢. This
implies that the f-facial coloring can be seen as a generalization of the
cyclic coloring to the class of all plane graphs.

First, observe that the /-facial coloring is well defined even in the case when
¢ = 0 which would also satisty the conjectured bound of 3¢+ 1 (when ¢ = 0
we can color all the vertices with a single color). Furthermore, the (-facial
coloring generalizes the proper coloring. As such, for £ = 1, the correctness
of the Facial Coloring Conjecture is implied by the Four Color Theorem.
Thus, one only needs to consider the cases when ¢ > 2. The first results
in this direction were obtained by the same authors who introduced the
(-facial coloring over two papers (see Kral et al. [153, 154]).
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Theorem 5.2.2 (Kral et al. [153, 154]). Let G be a plane graph. Then,

(%SK—FQ for £ > 5,
15 for € =4,

G) <«
X&) < 12 for £ =3,
8 for € = 2.

Later, in 2008, Havet, Sereni, and Skrekovski [127] reduced the upper
bound in the case when ¢ = 3 to 11 (to this day this result is the best
known for ¢ = 3).

Theorem 5.2.3 (Havet et al. [127]). Let G be any plane graph and let
¢ =3. Then,

xe(G) < 11.

Note that for £ = 3, taking A*(G) to be at most 7, Theorem 5.2.3 has the
following corollary for the cyclic coloring.

Corollary 5.2.4 (Havet et al. [127]). Let G be a plane graph with
A*(G) < 7. Then,

Xc(G) < 11.

Havet et al. [126] further improved results from Theorem 5.2.2 for the cases
¢ =450 =47, and ¢ > 49 by proving the following result.

Theorem 5.2.5 (Havet et al. [126]). Let G be a plane graph and let £ > 1.
Then,

70

xe(G) < {EJ +6.

To this day the Facial Coloring Conjecture remains widely open. In

the case of triangle-free planar graphs, however, Dvorédk, Skrekovski, and
Tancer [97] posed the following conjecture.

Conjecture 5.2.6 (Dvorédk et al. [97]). Let G be a triangle-free plane
graph and let ¢ > 1. Then,

Xg(G) < 30,

Note that Conjecture 5.2.6 is in line with the Grotzsch Theorem, which
implies the case when ¢ = 1 just as the Four Color Theorem implies the
case ¢ = 1 for the Facial Coloring Conjecture. In addition, if true, the
bound in Conjecture 5.2.6 is tight as can be seen by Figure 5.4.
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Figure 5.4: A triangle-free plane graph G with x,(G) = 3/.

5.3 (-facial edge coloring

An (-facial edge coloring of a plane graph G is a not necessarily proper
edge-coloring of GG such that any two edges incident with the same face
at distance at most ¢ on that face receive distinct colors. The minimum
number of colors needed for an /-facial edge coloring of G is called the
(-facial chromatic index and is denoted by x,(G).

The (-facial edge coloring was first introduced in 2015 by LuZar, Mock-
ovéiakové, Sotdk, Skrekovski, and Sugerek [162] as the edge coloring coun-

terpart to the ¢-facial vertex coloring. The authors proposed the following
conjecture named the Facial Edge-Coloring Conjecture.

Conjecture 5.3.1 (Luzar et al. [162]). Every plane graph admits an
(-facial edge-coloring with at most 3¢ 4 1 colors for every ¢ > 1.

Observe that the conjectured upper bound for the ¢-facial chromatic index
is the same as for the /¢-facial chromatic number. Moreover, if true, then
the bound is tight as can be seen by the plane embedding of the Theta
graph ©y¢_1¢-1 (see Figure 5.5).

Note also that an /-facial edge-coloring of a plane graph G corresponds
to an (-facial coloring of the medial graph M(G) of G. Since M(G) is a
plane pseudograph the case ¢ = 1 is implied by the Four Color Theorem
(note that loops and parallel edges do not affect the vertex coloring).

In the same introductory paper [162|, the authors confirmed the Facial-
Edge Coloring Conjecture (Conjecture 5.3.1) for the case ¢ = 2.

Theorem 5.3.2 (Luzar et al. [162]). Every plane graph admits a 2-facial
edge-coloring with at most 7 colors.
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Figure 5.5: A Theta graph G = O,y_1 1 with x}(G) = 3¢ + 1.

In the next section, we prove that the Facial-Edge Coloring Conjecture
holds also for the case ¢ = 3.

Theorem 5.3.3 (Theorem 1 in [138]). Every plane graph admits a 3-facial
edge-coloring with at most 10 colors.

5.4 Proof of Theorem 5.3.3

To prove Theorem 5.3.3, we in fact prove a slightly stronger result,
namely, we prove the theorem for plane pseudographs. Towards this end,
we first prove several structural properties of a minimal counterexample
with respect to the number of vertices that does not admit a 3-facial edge
coloring with at most 10 colors. In the end we use the discharging method
to show that such a graph does not exist. For the sake of completeness, in
what follows, we give the necessary properties needed for the discharging
proof and their proofs as they appear in [138].

Structure of a minimal counterezample

In what follows, instead of always saying a 3-facial edge coloring, we will in-
stead shorten this phrase to 3-FEC. We first show that G' does not contain
cut-vertices.

Lemma 5.4.1. GG is 2-connected.

Proof. Suppose the contrary and let v be a cut vertex of G. There exists a
component H of G — v such that the vertex v is in the subgraph Gy of G
induced by the vertex set V(H) U {v} incident with the unbounded face.
Let G be the subgraph of G induced by the vertex set V(G)\ V(H). By
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the minimality of G, there exist a 3-FEC o1 of G; and a 3-FEC o9 of Go
with the same set C of at most 10 colors.

Consider the set E] of edges of the unbounded face of G that are incident

with v (note that 1 < |E}| < 2) and the set EJ of edges of Gy that are
in G at facial-distance j — 1 from the closest edge of Ef, for j = 2,3.

Furthermore, consider the set Eg of edges of Gy that are in G at facial-
distance j from the closest edge of E}, for j = 1,2,3. For the set CY of

colors of edges in E we have |C7| < 2, and we may assume without loss
of generality that |C]| < |C4] for C! = C} U C? U C3, for i = 1,2. 1If
|| 4+ |Ch| < 10, then (again without loss of generahtyﬁ CiN C" — () and
so the common extensmn of o1 and o9 1s a 3-FEC of G with the set of
colors C', a contradiction.

So, 5 < |C1] <6, |Ch =6, |Ca| = |C3| = |C3| = 2 and E5 = {ey, ez}
Let C(e)/Clc] for e € E(Gg) c € C be the color class of oy containing the
edges of G5 colored with oy(e)/c. Since 1 < p = |{o2(e1) }U{o2(e2)} | < 2,
and the color set C* = C'\ (CI UC? U C} U CY U C2) is of size at least
10 — 4 -2 > p, there is a p-element set {¢; : j € [1,p]} € C*. Now
recolor Gy using the permutation 7 of C' that induces the permutation of
color classes of oy, under which the color classes C(o2(ej)) and C|c;] are
interchanged for each j € [1,p], and all remaining color classes are fixed.
It is easy to see that the common extension of o1 and 7o g9 is a 3-FEC of
G with the color set C, a contradiction. ]

From Lemma 5.4.1 we can infer that G contains no pendant vertices.
Corollary 5.4.2. The minimum degree of G is at least 2.
In addition, using Lemma 5.4.1, we can show that G contains no loops.

Lemma 5.4.3. G is loopless.

Proof. Suppose, to the contrary, that there is a loop e in G. If e bounds
a 1-face, then it is 3-facially adjacent to at most 6 edges in G and thus
we obtain a 3-FEC with at most 10 colors of G by removing e, coloring
the obtained graph, and finally coloring e with one of at least 4 available
colors. On the other hand, if e does not bound a 1-face, then its unique
endvertex is a cut vertex in (G, a contradiction to Lemma 5.4.1. ]

It follows that in G every k-face is incident with k£ distinct vertices and
with £ distinct edges. In the rest, we mainly state properties regarding
2-vertices and small faces in G.

Lemma 5.4.4. A 4-vertex in G has at most three 2-neighbors.

Proof. Suppose the contrary and let v be a 4-vertex adjacent to four 2-
vertices vy, Vo, v3 and vy in a clockwise order. Let v;,4 be the other neighbor
of v;, for 1 <i < 4. Let G’ be the graph obtained from G by deleting the
vertices v, vq, g, v3 and vy. By the minimality of GG, there exists a 3-FEC
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coloring o of G’ with at most 10 colors. Notice that each of the edges vv;
and v;v;14 has at least 4 available colors. Let X;, 1 < j < 8 be a variable
associated with the edge vv; if 7 < 4 and the edge v;_4v; otherwise. Let
us now define the following polynomial, simulating the conflicts between
the non-colored edges:

F(Xq,...,Xg) =(X1 — X0) (X1 — Xy) (X7 — X5)(X7 — X) (X7 — Xs)
(X — X3) (X — X5)(Xo — X)(Xo — X7) (X3 — Xy)
(X3 — Xo) (X3 — X7) (X5 — X5)(Xy — X5)(Xa — X7)
(X4 — Xg)(X5 — Xo) (X5 — Xg)(Xg — X7)(X7 — X3)

The coefficient of the monomial X3 X3 X3 X?X2X2X2X2in F(X,..., Xg)
is equal to 6!, and thus by Theorem 3.2.3 we can extend the coloring o to
the coloring of G using at most 10 colors. O

Let us now prove a lemma that we will require in the proofs later on.

Lemma 5.4.5. There is no separating cycle of length at most 7 in G.

Proof. Suppose the contrary and let C' be a separating cycle of length
at most 7. Let G; be the subgraph of G induced by the vertex set
V(int(C)) UV (C) and let Gy be the subgraph of G induced by the vertex
set V(ext(C)) U V(C). By the minimality of G, there exists a 3-FEC o
and a 3-FEC o9 of GG; and G, respectively, using the same set of at most
10 colors. Notice that, since the length of C' is at most 7, every edge of
C' is 3-facially adjacent to all the other edges of C' in both G; and Gs.
Thus, all the edges of C' receive distinct colors in both o1 and o5. Hence,
permuting the colors in o such that the colors of the edges of C' coincide
in oy and in o9, results in a 3-FEC of G with at most 10 colors. H

The next properties we are interested in are the absence of small faces and
faces of length 8. In fact, using the same approach as in the paper, it is
easy to show that, for every ¢ > 1, in G every face is of length at least
¢ + 2 and contains no face of length 2¢ + 2.

Lemma 5.4.6. FEvery face in G is of length at least 5.

Proof. Suppose the contrary and let o be a face of G of length at most
4. Let G' = G/« and let, by the minimality of G, o be a 3-FEC of ¢’
using at most 10 colors. Next, observe that each edge of « is 3-facially
adjacent to at most six edges of G’ in G. Thus, each edge of « has at least
4 available colors. By Theorem 3.2.1, we can therefore extend the coloring
o to obtain a 3-FEC of GG using at most 10 colors. ]

The way we prove the following Lemma 5.4.7 and several other lemmas is
by identifying two edges of the same face o which are not in conflict in G
such that the resulting graph remains planar.

'We verified the values of the coefficients with a computer program (also in the other proofs).
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Lemma 5.4.7. There are no 8-faces in G.

Proof. Suppose the contrary and let a be an 8-face in G and e and f be
two edges at facial-distance 4 on a.. Let G’ be the graph obtained from G
by identifying the edges e and f and let o be a 3-FEC of G’ using at most
10 colors. Observe that the edges e and f are not 3-facially adjacent in
G, otherwise GG would contain either a separating cycle of length at most
5 (contradicting Lemma 5.4.5) or a 3-face (contradicting Lemma 5.4.6).
Therefore, after we uncolor every edge of « distinct from e and f, o induces
a partial 3-FEC of G in which the edges e and f receive the same color.

To extend the coloring ¢ to a coloring of GG, notice that all six non-colored
edges of o have at least 3 available colors. Furthermore, among those
edges there are exactly three distinct pairs of edges at facial-distance 4. If
we can color any such pair with the same color, then the remaining four
edges will each have at least 2 available colors. Furthermore, each of them
is at facial-distance at most 3 from exactly two other non-colored edges.
Applying Theorem 3.2.1, we obtain a 3-FEC using at most 10 colors.
Therefore, we may assume that the union of available colors of any such
pair is of size at least 6, with each edge having at least 3 available colors.
Thus, we can extend the coloring o to a 3-FEC of G by Theorem 3.2.2. [

With the following two lemmas, we present properties of 2-vertices in G.

Lemma 5.4.8. Every 2-vertex in G has at least one 3" -neighbor.

Proof. Suppose to the contrary that v is a 2-vertex with neighbors u; and
ug, both being 2-vertices. Let G’ = G /ujv and let, by the minimality of
G, o be a 3-FEC of G’ using at most 10 colors. Notice that facial-distances
between the edges in G are at least the distances between them in G’, and
thus the coloring ¢ induces a partial 3-FEC of G in which only the edge
u1v is non-colored. However, there are only nine edges in the 3-facial-
neighborhood of wjv, and therefore at least one color is available for uv
(to extend o to a 3-FEC of (), a contradiction. [

Before continuing, let us recall that A(e) denotes the set of available colors
for the edge e.

Lemma 5.4.9. Let (u,v) be a 2-thread in G incident with an 8% -face .
Then, within facial-distance 3 on the face o, except from u, v is adjacent
only to 3% -vertices.

Proof. Suppose the contrary and let a 2-thread (u, v) be 3-facially adjacent
to a 2-vertex w € {vq, vz} of a. We use the labeling of vertices as depicted
in Figure 5.6.

Let G' = G/ {uuy, uv, vy, v1v9, 0203} and let o be a 3-FEC of G'. In the
coloring of G induced by o, regardless which is w, we have |A(vqvs)| >
2, |A(nve)| > 2, |A(ve)| > 4, |A(uv)| > 4, and |A(uuy)| > 3. If
A(uuy) N A(vaug) # 0, then we color uu; and vevs with the same color
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Figure 5.6: A reducible configuration with a 2-thread and a 2-vertex w € {vg, v3}.

(recall that they are not 3-facially adjacent since « is an 8"-face), and
color the remaining three edges by Theorem 3.2.2.

On the other hand, if A(uui) N A(vevg) = 0, then in the union of available
colors of the five non-colored edges we have at least 5 colors, and it is easy
to see that again Theorem 3.2.2 can be applied to color all the edges of G,
a contradiction. ]

We now define nb(a) to be the number of 2-vertices incident with a face
« which belong to 2-threads. Let a k-path of a face o, k € {2,3%}, be a
maximal facial path in « composed of k-vertices. If we have ny(a) > 0,
then we can partition the set V' («) of the vertices incident with « into sets

{Vi ce=1,..., 2p}, for some positive integer p, such that each set V2~1
induces a 2-path P?~1 of o, and the set V% induces a 3"-path P? of a that
follows P?~! in the clockwise orientation of a for each i = 1,...,p (and
P! follows P2p) A section of ais a pair (VZ71 V) i =1,..., p; the pair
(V#L, V) s a j-section of o if [V*7| = j € {1,2} (see Lemma 5.4.8).
Let .S, ( ) denote the set of j-sections of a, j = 1,2.

Corollary 5.4.10. For a k-face o of G, where k > 8 and ny(a) > 0, we

have W(@)SEJ o |52(0‘)‘§V: 2-5|Sl(oz)\J.

Moreover, if k =11 and |Sy(a)| > 0, then ny(a) < 4.

Proof. Let {Vi ci=1,..., 2p} be the partition of V'(«) as defined in the
above paragraph. If (V*~1, V*) € Si(a), then |[V*| > 1. On the other
hand, if (V#~1,V?) € Sy(a), then, by Lemma 5.4.9, |[V?| > 3. Therefore,

p

Z |V2i_1|+|V2i\)

1=

> 2[51 ()| + 552 ()|
2(|S1( )| + 2[5 (a )|)—|—’5'2(04)|.
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From above we infer that

1 k
na(@) = [S1(a)] + 29 ()] < 5 (k= |5(e)]) < 3,
implying
mia) < |5
20¢0) > 9 )
as well as .
S2(a)| < g( —2|S1(a)]),
implying
kE—2-15(«x
Now suppose that k& = 11 and |Sy(a)| > 0, which implies

o
|S2()| = q € {1,2}, since otherwise na(a) > 2¢ > 6 contradicting that
ml0) < 1) = 5.

If ¢ = 1, then the number of 3"-vertices of «, that are in o within facial-
distance 3 from a vertex of the 2-thread of «, is 6 (by Lemma 5.4.9).
At most two of the three remaining vertices of a are 2-vertices (by
Lemma 5.4.8), hence |S1(a)| < 2 and no(a) <2+2-1 =4,

If ¢ = 2, consider an arbitrary vertex x of « that is not a part of a 2-thread
of a. The vertex x is in a within facial-distance 2 from a vertex of at least
one of the two 2-threads of «, and so, by Lemma 5.4.9, = is a 3"-vertex.
This reasoning leads to no(a) =2 -2 = 4, [

The next lemma was used in the proofs of several later lemmas. Lemma
shows that the presence of 3-vertices may, in some cases, enable us to
recolor certain edges.

Lemma 5.4.11. Let uv be an edge with d(u) = 3, and let uuy, uus be the
other two edges incident with w. Consider a partial 3-facial edge coloring
of G, in which the edge uv s, and the edges uuy, uus are not colored. If
|A(uur) N A(uuz)| =k for some k > 3, then there are at least k —2 colors
in A(uur) N A(uug) such that each can be used to recolor the edge uv in
such a way that the result is again a partial 3-facial edge coloring of G.

Proof. In the 3-facial-neighborhood of ww, there are at most two edges
which are not 3-facially adjacent to uwuy or uus, which means that there
are at least k — 2 available colors for wv from the intersection A(uuq) N

A(uus).

We now continue by stating several properties regarding small vertices
incident with small faces.

Lemma 5.4.12. Every 5-face in G is incident only with 4" -vertices.
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Proof. Suppose the contrary and let o be a 5-face of G incident with a
3-vertex vy, where the vertices are labeled as in Figure 5.7. (Note that G
is not the 5-cycle Cs.)

Figure 5.7: A reducible 5-face incident with a 3-vertex.

Let 0 be a 3-FEC of G' = G//a. It induces a partial 3-FEC of G with the
five edges of a being non-colored. Each of the non-colored edges has at
least 4 available colors. By Theorem 3.2.2, if the union of the five sets of
available colors contains at least 5 distinct colors, then o can be extended
to G. Therefore, we may assume that A(e) is the same for every e € E(«),
say A(e) = [1,4]. In such a case, the face « is incident with 3" -vertices
only: if d(v;) = 2 for some ¢ € [2,5], then both edges incident with v;
have at least 5 available colors. Now, we recolor the edge uv; with a color
Jj € A(vnvy) N A(vivs) = [1,4]. (By Lemma 5.4.11, there are at least
2 possibilities for the choice of j.) Recall that the 2-connected graph G
contains neither 3-faces nor separating cycles of length at most 5. Thus,
the edges vov3, v3v4, and v4vs are not within facial-distance 3 from the
edge uvy, and they retain [1, 4] as the set of available colors. Furthermore,
o(uvy) € [1,4] replaces j in the set of available colors for the edges v1vo
and v1vs. So, the coloring of G’ can be extended to G using Theorem 3.2.2,
a contradiction. O

Lemma 5.4.13. Both neighbors of a 2-vertex incident with a 6-face in G
are 41 -vertices.

Proof. We divide the proof in two parts. First, we show that a 2-vertex
does not have a 2-neighbor, i.e., there is no 2-thread on a 6-face. Suppose
the contrary and let a be a 6-face with an incident 2-thread (u,v) and let
G' = G/a. Then, G’ admits a 3-FEC o with at most 10 colors, which
induces a 3-FEC of G with only the edges of a being non-colored. The
three edges incident with the vertices © and v have at least 6 available
colors, and the other edges of o have at least 4 available colors. It is easy
to see that we can extend o to all edges of G by applying Theorem 3.2.2,
a contradiction.
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Second, suppose that a 2-vertex v of a 6-face « is adjacent to a 3-vertex u.
Let w1 be the neighbor of u, distinct from v, which is incident with «, and
us the third neighbor of u. Again, consider G’ = G/« and a 3-FEC o of G
using at most 10 colors. In the coloring of G induced by o, only the edges
of v are non-colored. Every non-colored edge has at least 4 available colors,
while the two edges incident with v have at least 5 available colors. Hence,
if the set A(«r) contains at least 6 colors, then we can apply Theorem 3.2.2
and we are done.

Thus, we may assume that A(a) contains precisely 5 colors, say [1,5].
Notice that the sets of available colors on the edges of o not incident
with v are not necessarily the same. However, since |A(uv)| = 5, the
intersection of A(e) N A(uv), for any e € E(«a), contains at least 4 colors.
Therefore, from among at least 2 colors that can be used to recolor the
edge uus by Lemma 5.4.11, at least one, say j, appears in A(e) for some
e € F(a) \ {uuy,uv}. Then, after recoloring the edge uus with the color
j, the new set of available colors for F(a) is of size 6, and we can apply
Theorem 3.2.2 to find a 3-FEC of GG with at most 10 colors, a contradiction.

]

In addition, from Lemmas 5.4.6, 5.4.12, and 5.4.13 we may show the fol-
lowing two properties.

Corollary 5.4.14. No 2-thread in G is incident with a 6~ -face.

Lemma 5.4.15. A 2-vertex in G is incident with at least one 7" -face.

Proof. We again proceed by contradiction. Since 2-vertices are not incident
with 5™ -faces by Lemmas 5.4.6 and 5.4.12, suppose that there is a 2-vertex
v in G incident with two 6-faces. Let G’ = G —v. By the minimality, there
is a 3-FEC o of G’ using at most 10 colors. Consider now the coloring
of G induced by o, in which only the two edges incident with v remain
non-colored. Each of the two edges has at least 2 available colors, so we
can color them, and thus extend o to all edges of GG, a contradiction. [

It turned out that 7-faces are the most important obstruction to deal
with in order to obtain the final proof. We now state several structural
properties from perspective of 7*-faces and their incidence with 2-vertices.

Lemma 5.4.16. Every 2-thread incident with a 7-face in G has at least
one 47 -neighbor.

Proof. Suppose the contrary and let a be a 7-face incident with a 2-thread
(v9,v3), where the other neighbors of vy and v3 (v and vy, respectively)
are both 3-vertices. We label the vertices as depicted in Figure 5.8.

Let G = G/a and let o be a 3-FEC of G'. In the partial coloring of
G induced by o, only the edges of a are non-colored, and the number of
available colors is at least 4 for arbitrary non-colored edge, while it is at
least 6 for the three edges incident with vy and/or vs. It is easy to verify
that if the set A(a) of available colors contains at least 7 colors, then
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Figure 5.8: A reducible 7-face incident with a 2-thread with two 3-neighbors.

we can complete the coloring by Theorem 3.2.2. Thus we may assume
that |A(«)| = 6, say A(a) = [1,6]. Additionally, we may assume that
o(uwv) =17

So, |A(v1v9) N A(vivr)| > 4, and we can recolor uyv; with a color from
I = A(vivy) N A(viv7) N A(uqvy), since |I| > 2 by Lemma 5.4.11. If
there is an edge e of a which is not 3-facially adjacent to wjv; and A(e)
contains a color from I, say 1, then we can recolor u;v; with 1. The
new set of available colors for F(«) is then [1,7], and hence we can apply
Theorem 3.2.2 to find a contradictory 3-FEC of G.

Note that if |I| > 3, then we can always find a suitable edge e. There-
fore, we may assume |I| = 2, say I = {1,2}, hence d(v;) > 3, and, by
symmetry, d(vs) > 3. Therefore, by Lemmas 5.4.6 and 5.4.8, there is no
edge in the set {vqvs, V506, vev7} that is 3-facially adjacent to wyvq; thus,
we have, say, A(viv7) = [1,4] and A(vqvs) = A(vsvg) = A(vgvr) = [3,6].
Analogously as above, at least two colors from A(wvsvy) N A(vqvs) can be
used to recolor ugvy by Lemma 5.4.11. Since the color of A(«a) involved in
the recoloring is still available for vgv7, the new set of available colors for
E(a), namely [1,6] U {o(uqvy)}, is of size 7, a contradiction. [

Lemma 5.4.17. A 2-thread in G is incident with at most one 7-face.

Proof. Suppose the contrary and let (vy,vy) be a 2-thread incident with
two 7-faces a and o/. Let G' = G \ {v1,v2}. By Lemma 5.4.7, there
is a 3-FEC o of G using at most 10 colors such that two edges of the
face in G’ corresponding to the faces o and o in G have the same color
assigned. This means that in the coloring of G induced by o, each of
the three non-colored edges (the edges incident with the 2-thread) have at
least 3 available colors, and therefore we can extend o to all edges of G, a
contradiction. O

Lemma 5.4.18. Let « be a T-face in G with a 2-thread (ve,vs) and at
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least one 2-vertex v distinct from vy and vs. Then, every 2-vertex incident
with o has a 2-neighbor and a 4T -neighbor or two 4™ -neighbors.

Proof. Suppose the contrary and let a be a 7-face with the vertices labeled
as in Figure 5.9, with a 2-vertex incident with a 3-vertex. We present three
possibilities (up to symmetry) for a neighboring 2-vertex and a 3-vertex;
namely, in the case (a), there is a 3-neighbor of a 2-thread, and in the
cases (b) and (c) a 3-neighbor of a 2-vertex v, which is not a part of the
2-thread (ve,v3). By Lemma 5.4.8, we may assume that v € {vs, vg, v7}.

Figure 5.9: The three possible configurations of a 7-face incident with a 2-thread, a
2-vertex, and a 3-vertex.

We prove the lemma for all three cases at once. Suppose to the contrary
that a (one of the three possible ones) exists in G. Let G' = G/« and let
o be a 3-FEC of G’ with at most 10 colors. In the coloring of G induced
by o, only the edges of a are non-colored. Notice that the three edges
incident with the 2-thread (ve, v3) have at least 6 available colors, the two
edges incident with v have at least 5, and the remaining two edges have
at least 4. From this it follows that if |A(«)| > 7, then Theorem 3.2.2
applies, and we can color all the edges of o with a different color, hence
extending o to G, a contradiction.
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So, we may assume that |A(«a)| = 6. Denote by v’ the 3-vertex adjacent
to uy (hence, v € {v,v6,v7}), and let v}, v5 be the two neighbors of
v on a. We claim that there exists an edge €' in «, which is not 3-
facially adjacent to uiv’, such that |A(v'v]) N A(v'vs) N A(e)| > 3. Note
first that by the above argument on the number of available colors, the
intersection of available colors of any two edges of a, where at least one
of them is incident with a 2-vertex, is at least of size 3. If v’ is not vy,
then ¢/ = wvjvy is not 3-facially adjacent to uiv’ by Lemma 5.4.5, and
since |A(vivg)| = 6, the claim follows Otherwise, if v = v;, we may
assuine V] = o, and we choose ¢/ € {v4v5,v6v7} in such a way that
¢’ is incident with a 2-vertex. Similarly as above, since |A(vivg)| = 6
and [A(v'vy) N A(e')] > 3, the claim follows. Now by Lemma 5.4.11,
recoloring uyv’ with a color ¢ € A(v'v]) N A N A(e’) introduces the
color o(u1v’) ¢ A(a) to the set of available colors for F(a). Since the
color ¢ is still available for ¢/, the new 3-FEC of G’ can be extended to G
by Theorem 3.2.2, a contradiction. ]

Let us remark that Lemma 5.4.18 does not forbid the existance of two
2-threads incident with a common 7-face.

Lemma 5.4.19. If a 7-face a in G s incident with at least two 2-vertices

but no 2-thread, then every 2-verter incident with o has at least one
4" -neighbor.

Proof. Suppose the contrary and let a be a 7-face in G incident with at
least two 2-vertices, where one of them, call it vy, has two 3-neighbors.
Note that by symmetry we may also assume that either vs or vy is a

U2

Figure 5.10: A 7-face with at least two incident 2-vertices, where one of them has two
3-neighbors.

2-vertex, hence there are two possibilities as depicted in Figure 5.10. More-
over, by Lemmas 5.4.5 and 5.4.12, vyv5 is 3-facially adjacent neither to usvs
nor to uyvy, and so recoloring usve and/or uzv; does not change the set of
available colors for vsvs.

Consider a 3-FEC o of G/« using at most 10 colors. In G, ¢ induces a
coloring with only the edges of o being non-colored. Every non-colored
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edge incident with a 2-vertex has at least 5 available colors and every
other edge has at least 4 available colors. Moreover, for every two edges
e; and ey of o which are both incident with the same 2-vertex, we have
that |A(e;) N A(ez)| > 4. By assumption, there are at least two 2-vertices
in a and thus at least four edges have at least 5 available colors. This
implies that the union of available colors of every subset of k edges is of
size at least k, for £ < 5. We divide the proof into three cases regarding
the number of colors in the union A(«).

Case (1):  Suppose first that |A(«a)| = 5, say A(a) = [1,5]. Then
A(vnv9) = A(vivr) = A(a). We may also assume that o(ugve) = 6 and
o(urvz) = 7. We intend to recolor the edges usvy and wuzvy with two
colors ¢ and ¢y from A(«r) such that after recoloring, ¢; and ¢y will still

be available colors for some edges of «, and so the colors of [1,7] will be
available for F(«).

By Lemma 5.4.11, wovy can be recolored with at least two colors
from A(viv9) N A(veus). Since |A(viva) N A(veus) N A(vgvs)] > 4 in
both cases depicted in Figure 5.10, we can recolor usve with a color
c1 € A(v1v9) N A(vaus) N A(vgvs), and thus make the color 6 available
for E(a). Next, we recolor uzvy with (possibly the only) color from
A(vv7) N A(vgur), and thus make the color 7 available for E(«). Note
that then ¢ is still available for vyvs, ¢o is still available for vsvy, hence all
colors of [1, 7] are available for E(«).

It remains to show that the union of available colors of any six edges of «
contains at least 6 colors. Suppose this is not true, and there is €’ € E(«)
such that the set A of available colors for F(a)\ {€’} is of size 5. Then, the
set of available colors for ¢’ contains exactly two colors ¢}, ¢ € [1,7]\ A,
and it is easy to see that {c], c,} = {c1, co}. However, usvy is colored with
c1 € A(vqvs), and wuzvz is colored with ¢y € A(U3U4) therefore €’ can be
neither vyvs nor vyvy, a contradiction. Thus, by Theorem 3.2.2, we can
color each non-colored edge with a distinct color from the set [1, 7], which
provides a 3-FEC of G with at most 10 colors.

Case (2): Now, suppose that |A(«a)| = 6, say A(a) = [1,6]. First,
note that at most one of the edges uovy and wu7v7 is colored with a color
from A(«), otherwise |A(a)| > |A(vive)| + 2 > 7. Observe that we can
proceed in this way, since the cases (3), when |A(a)| > 7, and (2), when
|A(a)] = 6, are analyzed independently from each other. So, we may
assume that o(ugve) = 7 or o(uzvy) = 7. We suppose the former, ie.,
o (ugv9) = 7, and note that the proof for the second case proceeds similarly,
although not completely symmetrically, due to the assumption that one of
the vertices v3 and vy is a 2-vertex. We consider two cases regarding the
color of u7vs.

Case (2.1):  Suppose first that uyv7 is colored with a color from A(«),
say o(uzv7) = 6. Then, A(vivy) = A(vivr) = A(a) \ {6} = [1,5]. We
split this case further into two subcases, regarding which of the vertices v
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and vy is a 2-vertex (recall that, by symmetry, we know precisely one of
v3, v4 is of degree 2).

Case (2.1.1):  If vg is a 2-vertex, then |A(vivy) N A(vqus)| > 4 and
| A(v1v9) N A(vavs) N A(vguz)| > 3. Thus, by Lemma 5.4.11, we can recolor
usv9 with a color ¢; from A(vyv9) N A(vovs) N A(vgvr). By Lemmas 5.4.5
and 5.4.12, the set of available colors for vgv; does not change. Therefore,
the set of available colors for E(«) changes to [1,7], and it only remains
to show that any set £ C F(«) with |E| = 6 has its set of available colors
of size at least 6. So, suppose the contrary, and let e € E(«) be such that
the set of available colors for E(«) \ {e} is of size 5. This means that
there are two colors in [1,7] that are available only for e. Note that all
colors of [1, 5]\ {c;1} are available for vyvy and v1v7, and color 7 is available
for vive, vovs, v3v4, and vivs. So, the above two colors must be ¢; and
6. However, since ¢; is available for vgvz, while 6 is not (recall that uzvz
is colored with 6), no edge e € E(«) can have the required property, a
contradiction. Hence, we can apply Theorem 3.2.2 to extend the present
coloring of G//a to G.

Case (2.1.2): If vy is a 2-vertex, then w3 is a 3"-vertex. If there
is a color ¢ from A(vive) N A(veus) with which we can recolor usve
and c¢; is also in the set of available colors of some edge that is not
3-facially adjacent to ugvs, then we proceed as in the case (2.1.1). So
we may assume that usve can only be recolored with a unique color, say,
1, meaning that |A(viv9) N A(veug)| = 3, and, without loss of generality,
A(vgus) = {1,2,3,6}, A(vsvy) = A(vgvs) = [2,6], A(vsvg) C [2,6], and
A(vgv7) = [2,5]. Now, by Lemma 5.4.11, there are at least two colors
from A(viv7) N A(vgvr) € A(vsvy) to recolor uzvz, and we do it with color
co. By Lemma 5.4.1, the edge usvs is incident with two distinct faces; let
ap be that incident with vjve, and let ap be the other one. Next, con-

sider e/, the j-th edge following usvs in the direction from vy to ug in
a;, for i = 1,2 and j = 1,2,3. Note that from |A(vov3)| = 4 it follows
that d(us) > 3, hence, by Lemma 5.4.1, {e1,ef,et} N {e3, e3,e3} = 0.
As a consequence of o(ugve) = 7, o(urvy) = 6, and A(vive) = [1,5],
we have {o(ef),o(ef)} C [8,10]. Moreover, 6 € A(vyvs), and so
6 ¢ {o(e3),o(e3)}. Finally, usvs can be recolored neither with 2 nor

with 3; therefore, {o(e}),0(e3)} = {2,3}. The above reasoning shows
that after recoloring u;v7 with co, we can recolor usvy with 6, which trans-
forms the set of available colors for E(«) to [1,7]. As in the previous case,
it remains to verify that any set £ C F(«) with |E| = 6 has its set of
available colors of size at least 6. This is true, since ¢ and 6 are available
for vgvy and vavs, 7 is available for vive, vov3, and viv7, and each color of
[1,5] \ {co} is available for vyv9 and viv7. Thus, again by Theorem 3.2.2,
we can find a required 3-FEC of G.

Case (2.2):  Now, suppose that u;v; is colored with a color not in A(«),
say o(uyv7) = 8. We proceed as in the previous cases. If there is a color ¢;
from A(vqv9)NA(vov3) with which we can recolor ugve and ¢q appears as an
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available color of a non-colored edge that is not 3-facially adjacent to uqvs,
then we are done. Otherwise, we may assume that all 4 colors of A(vgvr)
are available for the edges v3vy, v4v5, and vsvg. Then recoloring u7v; with
a color from A(viv7) N A(vgvr) (at least one color for such a recoloring
is guaranteed by Lemma 5.4.11) increases the size of the set of available
colors for E(a) to 7. Again, every color, that is available for F(«a), is
available for at least two edges of «; thus, we can use Theorem 3.2.2 to
obtain a contradiction as above.

Case (3): Finally, suppose that |A(«a)| > 7. To apply Theorem 3.2.2,
we only need to show that any subset of E(a) of size 6 has the set of

available colors of size at least 6. If this is not the case, there is a set
E C E(a) of size 6 such that |A(F)| = 5, hence E(«) \ E = {e} implies
|A(e) \ A(F)| > 2. Clearly, we have |A(viv9) N A(vovs) N A(€')] > 3 for
every ¢ € E. Pick an edge ¢’ € F that is not 3-facially adjacent to usvs.
By Lemma 5.4.11, at least one color from A(vyv9) N A(vovz) N A(€”) can be
used to recolor usvy. In this way, the size of the set of colors available for
F increases to 6. Besides that, at least one color of A(e) \ A(E) remains
available for e, and so the set of available colors is of size at least 6 for any
subset of E(«) of size 6 that contains e. Thus we can apply Theorem 3.2.2

again. L]

As, by Lemma, 5.4.7, there are no 8-faces in GG, we can now consider 9- and
10-faces, respectively.

Lemma 5.4.20. No 9-face in G is incident with a 2-vertez.

Figure 5.11: A reducible 9-face with an incident 2-vertex.

Proof. Suppose the contrary and let a be a 9-face incident with a 2-vertex.
We label the vertices as depicted in Figure 5.11. Let G’ be the graph
obtained by identifying the edges v1v] and vgv)j, and let ¢’ be a 3-FEC of
G’ using at most 10 colors. From the coloring of G induced by ¢’ we create
the coloring o by uncoloring all edges of E(«)\ {v1v], v4v)}. Observe that
the edges v1v] and v are not 3-facially adjacent in G, otherwise G would
contain a separating cycle of length at most 7, or a 5-face with an incident
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2-vertex, contradicting Lemma 5.4.5 or Lemma 5.4.12. Therefore, o is a
partial 3-FEC of G, in which the edges v1v] and wv4v) receive the same
color. Note that each of the edges vivy, vous, V3V, v4vs, v7V] has at least
3 available colors, while the two edges vsvg and vgv7, incident with the
2-vertex vg, have at least 4 available colors. Next, we associate with each
edge of «a distinct from vjv] and vy a variable X;, i € {1,...,7}, in
clockwise order starting from vjve. To apply Theorem 3.2.3, we define the
following polynomial:

F(X1, ., X7) =(X1 — Xa)(X1 — X3)(X1 — Xe)(X1 — X7)(Xa — X3)
(X — Xy) (X — X7) (X5 — Xy) (X3 — X5)(Xy — X5)
(X — Xo)(Xy — X7) (X5 — X)) (X5 — X7)(Xe — X7).

The coefficient of the monomial X2 X2X2X?X2X3X2 in F(Xy,...X7) is
equal to —3, thus by Theorem 3.2.3, we can extend the coloring o to the
3-FEC of G using at most 10 colors. ]

Lemma 5.4.21. Every 10-face in G is incident with at most two
2-vertices.

Proof. Suppose the contrary and let a be a 10-face in G incident with
at least three 2-vertices. Let the vertices of a be labeled as depicted in
Figure 5.12. We prove the lemma by considering three cases regarding the
distances between 2-vertices. Namely, it suffices to show that the facial-
distance in the face o between two 2-vertices does not belong to the set
{1,3,4}. We do it by using Theorem 3.2.3, in which the variable X; is
associated with the edge v;v;,1 for every i € [1,9], and the variable X is
associated with the edge vivg.

Figure 5.12: Labeling of the 10-face a.

Case (1):  Suppose first that there are two adjacent 2-vertices in «,
say v; and vo. Consider the graph G’ obtained from G by identifying
the edges vqvs and vgvg. It admits a 3-FEC o] using at most 10 colors.
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The coloring of GG induced by o} is not necessarily a 3-FEC. However, by
Lemmas 5.4.5 and 5.4.8, vyvs and wgvg are not 3-facially adjacent in G,
hence uncoloring the edges of F(a)\ {v4vs, vsv9} yields a partial 3-FEC oy
of G with o1(v4v5) = 01(vsvg). Note that in this setting, the edges vivy,
vov3, and v1v19 have at least 5 available colors, and the other five edges of
a have at least 3 available colors. Now, we define the polynomial:

Fl(Xl, e ,Xlo) = X1 — X2

Expanding we see that the coefficient of the monomial
XfX;ngXgXGX?X in F1(Xy,...,X50) is 1, and thus, by Theo-
rem 3.2.3, we can extend o1 to G, a contradiction.

Case (2):  Suppose now that there are 2-vertices at distance 3 in «,
say v; and vy. Consider the graph G obtamed from G by identifying the
edges vsvg and vgvig. It admits a 3- FEC ob using at most 10 colors. By
Lemmas 5.4.5 and 5.4.8, vsvg and vgvyy are not 3-facially adjacent, and so
by uncoloring the edges of E(a) \ {vsvs, vov1p}, we obtain a partial 3-FEC
o9 of G with oy(vsv5) = 02(v9v1p). Note that in this setting the edges
V19, VU719, V3V, and vavs have at least 4 available colors, and the other
four edges of o have at least 3 available colors. We define the polynomial:

FQ(XI,...,XlO) (X1 X2)<X1 Xg)(Xl —X4)(X1 —Xg)(Xl —Xl())
(X — X3) (X2 — Xu)(Xe — Xip)
(X3 — Xu) (X3 — X6) (X3 — Xi0) (X4 — X¢) (X4 — X7)
(Xe — X7) (X — X3) (X7 — X3) (X7 — Xi0)(Xzg — X10) -

Realizing that the coefficient of the monomial X3 X3 X3 X? X3 X2 X1 X3 in
Fy(Xy,...,Xq0) is —1, we infer that oy can be extended to G' by Theo-
rem 3.2.3, a contradiction.

Case (3): Suppose now that there are 2-vertices at distance 4 in «, say
v1 and vz. Note that the argument of the case (2) is also valid here, since
the only difference is that the edge vsvy may now have only 3 available
colors. This is sufficient for applying Theorem 3.2.3 to extend oy to G,
since the exponent of X3 in the above monomial of Fy(X7, ..., Xqg) is
2. ]

Finally, we need to consider close 6- and 7-faces before we are ready to
give the discharging proof.

Lemma 5.4.22. If a 6-face a1 and a 7-face oy of G share a 2-vertex v,
and uw # v is a verter of ag, then d(u) > 3.
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Proof. Suppose the contrary and let u # v be a 2-vertex of as. Observe
that by Lemma 5.4.13, v is the only 2-vertex incident with both a; and awo,
thus u is either at facial-distance 2 or at facial-distance 3 from v. Consider
now the graph G’ = G — v. Note that the remaining edges incident with
either ar; or ap form a 9-face in G'. Label the edges of G according to
Figure 5.11 with vg = u, and let ¢’ be a 3-FEC with at most 10 colors of
the graph obtained from G’ by identifying the edges e = v1v] and €' = v4v]
(as in the proof of Lemma 5.4.20). One can easily observe that in any case,
one of the edges e and ¢’ is incident with «y, while the other is incident
with as. Thus the edges e and €' are not incident with a common face in
G. It follows that the only conflict of the coloring o of G — v induced by o’
vanishes when the vertex v with its incident edges is added back to G — v.
Finally, since at most 8 colors appear on the edges incident with a; and
a9, the two non-colored edges incident with v both have at least 2 available
colors. Hence, we can extend o to all edges of G, a contradiction. ]

Lemma 5.4.23. Let oy and ag be distinct T-faces of G with a common
2-vertex v that has a 3-neighbor w and a 4" -neighbor w. Furthermore, let
uy and wy be the vertices of ay adjacent to u and w, respectively. Finally,
let either d(uy) > 3 and e; € E(aq) \ {uug,uv,vw} or d(uy;) = 2 and
ep = wwy, and let es € E(as) \ {uv,vw}. Then, the edge ey is not
3-facially adjacent to the edge es.

Proof. Suppose to the contrary that e; is within facial-distance 3 from es.

First realize that the faces a; and as share the vertices u, v, and w only
(use Lemmas 5.4.6 and 5.4.12).

Let a be a face incident with both aq and as. Consider a facial path P
of length ¢ < 4 in « having the first edge e; and the last edge e;. Note
that e; € E(aq) \ E(az2) and es € E(a2) \ E(ay), hence « is unique and
¢ > 2. From ey # ey we infer that |e; Mes| < 1. Moreover, |e; Nes| =1
yields e; Ney = {w}, which in turn means that the edges e; and ey are not

facially adjacent to each other (since w is a 4*-vertex). So, e; Ney = ()
and ¢ € {3,4}.

If £ = 3, then the second edge of P is 129, where x7 is a vertex of aq, x9 is
a vertex of asp, and the requirements on ey imply u ¢ {x1,z2}. Moreover,
from d(w) > 4 it follows that x1x9 is incident neither with aq nor with as.
The faces oy and g create in G—wv a 10-face o o incident with ten distinct
vertices and ten distinct edges. From the two facial paths joining x1 to xo
in oy 2, one does, and the other does not contain the vertex wu; let P* be
the former and P~ the latter one. Denote by £* and £~ the length of P*
and P, respectively, and so £ + ¢~ = 10. Use P*, P, and the edge
xox1 to construct cycles CJr = P"zy and C~ = P x1. The sum of lengths
of CTand C~is ({T 4+ 1)+ ({~+1) = 12. We have min(¢*,¢7) = ¢* < 5,
where x € {+,—}. If C* is a separating cycle, its existence contradicts
Lemma 5.4.5. On the other hand, if C* is not separating, it either bounds
a face in G contradicting one of Lemmas 5.4.6, 5.4.12, 5.4.13, or it has at
least one chord, which ultimately yields a contradiction to Lemma 5.4.6.
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If £ = 4, then P = yix1229y2, where e; = w121, e = x9ys, and
u ¢ {x1,x0}. Let PT, P~ 4%, {~, and {* be defined as in the case ¢ = 3,
and let CT = Ptzxy, O~ = P~ zx;. Now, the sum of lengths of C" and
C~is (0 +2)+ (0~ +2) = 14. Again by Lemma 5.4.5, the cycle C* is not
separating. If £* < 4, a contradiction is reached as above. Finally, assume
that ¢* =5 = 1" =1[". Since C'" is not a separating cycle (we can choose
* = ), and does not have a chord (this would contradict Lemma 5.4.6), it
bounds a face in G, which is impossible by Lemmas 5.4.8 and 5.4.17. [

Lemma 5.4.24. Let o and oy be two T-faces in G that have a common
2-vertex v. If oy and ao have at least two incident 2-vertices each, then v
has two 41 -neighbors.

Proof. Suppose the contrary and let u and w be distinct neighbors of v.
By Lemmas 5.4.17 and 5.4.19, we may assume, without loss of generality,
that d(u) = 3 and d(w) > 4. For both ¢ € {1,2} there is in the face o
a neighbor u; # v and w; # v of w and w, respectively. Again without
loss of generality, we may assume that d(u;) > d(us). Furthermore, let
a1 be the 10-face in G — v created from oy and «as (cf. the proof of
Lemma 5.4.23).

Case (1): If d(ua) > 3, there exist vertices x # v and y # v incident
with oy and aw, respectively, such that d(z) = d(y) = 2. Let G’ be the
graph obtained from G — v by identifying the two edges incident with x
and the two edges incident with uy. By the minimality of G, there exists
a 3-FEC ¢’ of G’ using at most 10 colors. From the coloring of G — v
induced by ¢’ we obtain a coloring o by uncoloring all edges of «; o that
are incident neither with x nor with us. By Lemma 5.4.23, ¢ is a partial
3-FEC of G. Let E; be the set of (all) three non-colored edges incident
in G with the face oy, for © = 1,2. We can color the edges of Fy and F,
separately, i.e., when coloring the edges of E;, we suppose that the edges
of Fs5_; are still non-colored, for + = 1,2. For that purpose, note that
the edge uuy € F4 has at least 3 available colors, and there is an edge
ey € F» incident with y such that es has at least 3 available colors as well.
Furthermore, at least 2 colors are available for any other edge in £y U Es.
Therefore, by Theorem 3.2.2, the mentioned separate coloring of edges in
E1 U Es is possible, and, by Lemma 5.4.23, results in a 3-FEC of G — v, in
which edges incident with a4 2 use at most 8 colors. Two of the remaining
colors then suffice to color the edges uv and vw.

Case (2): Ifd(u1) > 3 and d(ug) = 2, there exists a 2-vertex x incident
with aq. Let G’ be the graph constructed from G — v by identifying the
two edges incident with x and the two edges incident with wy. By the
minimality of G, there exists a 3-FEC ¢’ of G’ using at most 10 colors.
From the coloring of G — v induced by ¢’ we obtain a coloring ¢ by un-
coloring all edges of oy o that are incident neither with x nor with wy. By
Lemma 5.4.23, o is a partial 3-FEC of G. Let the edge sets Fy and Es be
defined as in the case (1). Color first the edges of £y by Theorem 3.2.2
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noting that the number of available colors is at least 4 for the edge uuy
and at least 2 for the remaining two edges. Next, color the three edges of
E5, again by Theorem 3.2.2, having in mind that the number of available
colors is now at least 3 for the two edges incident with us and at least 2
for the last edge. The edges uv and vw are then colored as before.

Case (3): If d(w) = d(uz) = 2, let G' be created from G — v by
identifying the edges ww; and wwy. By the minimality of G, there exists
a 3-FEC o’ of G’ using at most 10 colors. From the coloring of G — v
induced by ¢’ we obtain a coloring ¢ by uncoloring all edges of aj 2 not
incident with w. By Lemma 5.4.23, o is a partial 3-FEC of G, and, without
loss of generality, we may assume that o(ww;) = o(wwy) = 1. Denote
by E;/E. the set of non-colored edges incident in G with the face «;
that are/are not incident with u;, for ¢ = 1,2. Notice that the number of
available colors is at least 6 for any edge of E;" U Ey and at least 3 for any
edge of By U L .

Suppose now that we are able to use the same color for an edge of E;
and an edge of £ . Then, by Theorem 3.2.1, o is extendable to G — v.
A similar extension is possible if the same color can be used either for an
edge of F{ and an edge of E, or for the edge of E| incident with w;
and the edge of F, incident with wy. The final extension of the coloring
of G — v to G works as in the case (1).

Thus, we may assume, without loss of generality, that the set of available
colors is [2, 4] for each edge in E, [5,10] for each edge in Fy, [5,7] for
each edge in F, and [2,4] U [8,10] for each edge in E;". This, however,
leads to a contradiction: since in the facial path uguuizi2zo (where 2y is
necessarily not incident with o) the edge 2125 has a color from [5, 7], the
set of available colors for uus € Fy is not [5, 10]. O

Lemma 5.4.25. Let oy and oo be two 7-faces in G that have a common
2-vertex v. If aq has at least three incident 2-vertices, then v is the only
2-vertex incident with oo.

Proof. Suppose the contrary and let v be a 2-vertex incident with 7-faces
ap and ao, where no(ap) > 3 and ng(ay) > 2. By Lemma 5.4.24, both
neighbors of v, v; and vy, are 4" -vertices. This implies that every pair
of edges e; € E(a) and es € E(ay), which are not incident with v,
are not 3-facially adjacent by Lemmas 5.4.5 and 5.4.8. Furthermore, by
Lemma 5.4.8, we also have that there exist vertices u; and us of a; and
iy, respectively, such that uy, us ¢ {v,v1,v2} and d(uy), d(us) > 3.

Denote by aj 5 the face of the graph G — v created from the faces o and
ap. Let G’ be the graph obtained from G — v by identifying the two edges
incident with u; and the two edges incident with us. By the minimality
of G, there exists a 3-FEC ¢’ of G’ using at most 10 colors. From the
coloring of G — v induced by ¢’ we obtain a coloring o by uncoloring all
edges of 1 2 that are incident neither with w; nor with us. By mimicking
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the proof of Lemma 5.4.23, we show that if e; is any edge of ; » incident
in G with the face «;, for i = 1,2, then ey is not 3-facially adjacent (in
G) to eq: since d(vy) > 4 and d(vg) > 4, the cycle C* of length at most 7
from the mentioned proof either is separating or has a chord, in both cases
we obtain a contradiction. So, o is a partial 3-FEC of G — v.

Let us extend o to a 3-FEC of G —wv. For that purpose consider in the face
a1 a 2-vertex wy # v and a 2-vertex wy # v that is in G incident with
the face oy and ap, respectively. If the sets of edges E; and E5 are defined
as in the proof of Lemma 5.4.24, case (1), the edges of £ and those of Ey
can be colored separately (using Theorem 3.2.2). Indeed, |E;| = 3, while
the number of available colors is at least 3 for any (at least one) edge of

E; incident with w; and at least 2 for any of the remaining edges of E;, for
i=1,2.

The number of available colors is now at least 2 for both non-colored edges
vy, vvg of G — v, hence there is a 3-FEC of GG using at most 10 colors, a
contradiction. ]

Discharging proof

We are now able to give a complete proof using the discharging procedure
to show that there are no plane graphs satisfying all of the above stated
properties. We begin by assigning an initial charge (denoted by chy) to all
the vertices and faces of G as follows. For every vertex v € V(G), we set

cho(v) = 2d(v) — 6,
and for every face a € F(G), we set
chy(a) = l(a) — 6.
By Euler’s Formula the sum of all initial charges, is
> cho(w)+ Y chole) = Y (2d(v) —6)+ Y (¢(a)—6)

veV(G) a€F(G) VeV (G) a€F(G)
=—12.

Next, we apply the following discharging rules to redistribute the charges
between the vertices and faces of G.

R1 Every 4"-vertex sends % to every incident 5-face.

Ry For each pair v and u, where v is a 4'-vertex and u is a 2-vertex
adjacent to v and incident with faces ay and ay (note that ag # as
by 2-connectivity of GG), a charge is sent according to the following
(without loss of generality, we may assume that ¢(ca;) < ¢(a2) and if
l(on) = l(az), then no(ay) > na(as)):

(a) If £(ay) = 6, then v sends 2 to ay.



CHAPTER 5. CYCLIC COLORING OF PLANE GRAPHS AND ITS GENERALIZATION 69

(b) If £(cy) = £(a) = 7 and no(a;) = na(aw) = 2, then v sends 3 to
oy and % to ao.

() If l(a1) = l(a) = 7, ma(a1) > 2, and na(as) = 1, then v sends

% to aj.
(d) If £(ay) = 7 and £(ap) > 8, then v sends 2 to a;.

R3 Every face sends 1 to every incident 2-vertex that is not a part of a

2-thread.

R, Every 7-face sends % to every incident 2-vertex that is a part of a
2-thread.

Rs Every 8*-face sends I ¢ to every incident 2-vertex that is a part of a
2-thread.

We are now ready to complete our proof of Theorem 5.3.3.

Proof of Theorem 5.3.3. Clearly, the redistribution of charges does not
change the total charge of G. So,

Z Chf -l- Z Chf (5'1)

veV(Q) acF (G

where chg(v)/che(a) stands for the final charge (the “local” result of the
charge redistribution) of a vertex v/a face a of G. We are going to show
that final charges of vertices and faces of G are all nonnegative. This will
mean that the total final charge of G is nonnegative too in contradiction

o (5.1).

We first show that each vertex v € V(G) has a nonnegative final charge.
In particular, since by Lemma 5.4.2 there are no 1-vertices in G, and
3-vertices have initial charge 0 while not sending any charge, we only con-
sider 2-vertices and 4"-vertices.

e Suppose first that v is a 2-vertex in G, incident with faces a; and as.
Without loss of generality, we assume E(oq) < l(ag). If v is not a part
of a 2-thread, then it receives 1 from each of oy and as by R3. Hence,
che(v) = 2d(v) —6+2-1=0. If vis a part of a 2-thread, then f(ay) > 7
by Corollary 5. 4 14. Moreover, by Lemma 5.4.17, {(as) > 8, and thus by

Rs5, v receives = from ay. On the other hand, v receives at least 2 g from oy
by Ry or Rs. Hence che(v) > 2d(v) =6+ 2 + £ = 0.

e Now, suppose that v is a 47-vertex. Note that, by Lemma 5.4.12,
i5(v) +n2(v) < d(v), where i5(v) is the number of 5-faces incident with v.
Moreover, if d(v) = 4, then ny(v) < 3 by Lemma 5.4.4, and if additionally
ns(v) = 3, then v is not incident with a 5-face by Lemma 5.4.12. Thus, if
d(v) = 4, then v sends at most 3 - 2 of charge by Ry and/or Ry, and so

che(v) > 2d(v) — 6 —3-2 = 0. If d(v) > 5, then v sends at most 3 of
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charge for each of at most d(v) adjacent 2-vertices by R; and/or Ry, and
so che(v) > 2d(v) — 6 — d(v) - 3 > 0. So, after redistribution of charges,
all vertices in G have nonnegative final charges.

Next, we show that each face & € F(G) has a nonnegative final charge.
Again, we consider several cases, regarding the length of . Recall that by
Lemma 5.4.6, « is of length at least 5.

e Suppose that a is a H-face in G. By Lemma 5.4.12, it is incident only
with 4*-vertices, and so it receives 5 - % by Ri. Moreover, it does not send

any charge, thus ch¢(a) = () —6+5- 1 =0.

e Suppose that « is a 6-face in G. By Lemma 5.4.13, every 2-vertex
incident with o is adjacent to two 4"-vertices. Thus, for every adjacent
2-vertex, o receives 2 % by Rs(a), and sends 1 by R3. Altogether, its final

charge is che(a) > €(@) — 6 + 2ny(c) - 5 — na(ar) = gna(ar) > 0.

e Suppose that a is a 7-face in GG. It sends charge to incident 2-vertices
by Rz and Ry, and it receives charge from incident 47 -vertices by Ry. We
consider the cases regarding incident 2-vertices. If ny(a) < 1, then, by Rj,
chi(a) > l(a) — 6 — na(a) = 1 — ng(ar) > 0.

Now, suppose that « is incident with two 2-vertices v; and vo, and let
a1 and ag be the faces incident with vy and vo, respectively, that are
distinct from « (possibly, a; = as). Then, by Lemma 5.4.22; none of
these 2-vertices is incident with a 6-face. If v; and vy form a 2-thread,
then, by Lemma 5.4.17, they are also incident with an 8"-face. By
Lemma 5.4.16, at least one of v; and vy has a 4"-neighbor which sends

% to a by Ry(d). On the other hand, « sends % to each of v; and vy by
Ry. Hence, chi(a) > {(a) — 6+ 2 — 2+ 2 = 0. Thus, we may assume that
v1 and v are not adjacent, and by Lemma 5.4.19, each of them has at
least one 4"-neighbor. If i € {1,2} and ¢(«;) = 7, then, by Lemma 5.4.25,
ne(ay) < 2; if, moreover, na(a;) = 2, then, by Lemma 5.4.24, v; has two
4*-neighbors. Therefore, o receives af least 2- 2 by Ry(b), Ra(c), or Ry(d),

and sends 2 - 1 by Rs. Hence, che(o) > (o) —64+2-2—2-1=1.

Next, if « is incident with three 2-vertices, we distinguish two subcases.

Suppose first that « is incident with a 2-thread. Then, by Lemma 5.4.18,
each of the incident 2-vertices has at least one 4™-neighbor, and by Ra(c)

and Ry(d), « receives at least 3 - % of charge (note that by Lemma 5.4.25,
if {(c;) = 7, then « receives charge by Rs(c)). It sends 1 by R and
22 by Ry. Hence, chi(a) > l(a) —6+3-2—1—2-2 = 3. Similarly,
if « is not incident with a 2-thread, then, by Lemma 5.4.19, each of the
incident 2-vertices has at least one 4-neighbor, and by Rs(c) and Ry(d),
a receives at least 3 - % of charge. Since a sends 3-1 by Rjg, its final charge

is chy(a) > l(a) —6+3-2—3-1=0.

Finally, suppose that « is incident with four 2-vertices. In this case, «
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is incident with at least one 2-thread. Then, by Lemma 5.4.18, each
2-vertex incident with o has a 4-neighbor, and any 4*-vertex incident
with o sends 2 to a by Ry(c) or Ry(d) for each of its 2-neighbors.

Since « sends at most 2 - % and 2 -1 by R4 and Rj3, its final charge is
chi(a) > () —6+4-2-2-2-2-1=0.

e By Lemma 5.4.7, we can skip the assumption that « is an 8-face in G.

e Suppose that « is a 9-face in G. Then, by Lemma 5.4.20, « is incident
with no 2-vertex, and hence ch¢(a) > ¢(a) — 6 = 3.

e Suppose that a is a 10-face in G. By Lemma 5.4.21, « is incident with
at most two 2-vertices, and so it sends at most 2 - % charge by R3 or Rj.

So, che(a) > () —6—2-L =2

e Suppose that « is an 11-face in G. Then, by Corollary 5.4.10, « is
incident with at most five 2-vertices. If n(a) = 0, then it sends charge
only by Rs. Thus, chi(a) > ¢(a) — 6 — 5 = 0. If nb(a) > 1, then, by
Corollary 5.4.10, ns(a) < 4. The charge from « is sent by R3 and/or Rj,

thus che(a) > l(a) =6 —4- I = 1.

e Suppose that « is a k-face in G, k > 12. If n(a) = 0, then «a sends
charge only by Rs, and so, by Corollary 5.4.10, chf(a) > k — 6 — [k/2] >
E12 > 0. If nf(a) > 0, then « sends charge by Rz and/or Rj, in total at
most, again by Corollary 5.4.10,

1S1(a)] + 2|Ss(a)] - g < 181(0)] + g Vﬂ - 2\sl<a>|J

5)

< 181(a)] + 72 (Th — 1481(0))
= (TE+ [Si(o)])

1 k
= ﬁ(”” ED

k
< —.
- 2

Thus, for any value of nb(a), che(a) > k — 6 — £ = =12 >,

As all the vertices and faces of G end up with a nonnegative final charge
we obtain that the total charge in G is nonnegative, a contradition. ]



Chapter 6

Facial-Parity Colorings of Plane
Graphs

ZIn this chapter, we will consider facial-parity colorings of the vertices and
edges of plane graphs, defined in their respective sections later on. One
of the main motivation are parity colorings which were first introduced by
Bunde, Milans, West, and Wu [48, 49] and are defined as follows. For an
edge coloring of a simple graph, a parity walk is such a walk along which
every color is appears an even number of times. A parity edge coloring
is an edge coloring with no parity path. In other words, for every path
P there exists a color ¢ such that ¢ appears an odd number of times on
the edges of P. Similarly, a strong parity edge coloring is an edge coloring
with no open parity walk. Note that even though it is not explicitly stated,
every parity edge coloring is a proper edge coloring, since two edges of the
same color sharing a vertex would already form a parity path of length 2.
It is also clear, by definition, that every strong parity edge coloring is also
a parity edge coloring.

Another motivation to study facial-parity colorings comes from the study
of subgraph covering problems. We say that the graphs Hy, ..., H; cover
a graph G if for all 1 <14 <k, H; is a subgraph of G and | J,.,., E(H;) =
E(G). Recall that a graph G is even (odd) if every vertex of G has even
degree (odd degree).

In 1978, Matthews [167| showed that the following holds.

Theorem 6.0.1 (Matthews [167]). Every bridgeless graph G can be cov-
ered by at most 3 even subgraphs.

As a counterpart to the result on even subgraph cover, Pyber [173], in
1991, showed the following result in case of covering a graph with odd
subgraphs

Theorem 6.0.2 (Pyber [173]). Fvery simple graph G can be covered by
at most 4 edge-disjoint odd subgraphs. Moreover, if |V (G)| is even, then
3 odd subgraphs are sufficient.

In addition, Pyber noted that the graph achieving the upper bound is the

72
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graph Wy, a wheel with four spokes. Later, Matrai [166] showed that every
simple graph can be covered by at most 3 (not necessarily edge-disjoint)
odd subgraphs.

Theorem 6.0.3 (Matrai [166]). Every simple graph G can be covered by
at most 3 odd subgraphs.

Moreover, Matrai provided an infinite family of simple connected graphs
for which there exists no cover with 3 edge-disjoint odd subgraphs. This
answered a question by Pyber whether there exists an infinite family of
simple graphs for which the upper bound of Theorem 6.0.2 is achieved.
The construction is as follows: take an even number of copies of the wheel
graph W, and one additional vertex v. From each copy of Wy, remove a
single edge from that copy and connect its two end-vertices with the vertex
v (see Figure 6.1).

Figure 6.1: A construction of Matrai with two copies of W, having no cover with 3
edge-disjoint odd subgraphs.

Finally, in 2015, LuZar, PetruSevski, and Skrekovski [163] proved that 6
edge-disjoint odd subgraphs are enough to cover any loopless connected
multigraph, where the upper bound is achieved by Shannon triangles of
even type. A Shannon triangle is a loopless multigraph GG on three pairwise
adjacent vertices. A Shannon triangle is of type (p,q,r), with p > ¢ > r,
if for the three pairs of vertices, they are connected by p, ¢, and r parallel
edges, respectively (see Figure 6.2). A Shannon triangle is of even type if
p, ¢, and r are all even. Figure 6.2 depicts four types of Shannon triangles,
namely, the types (1,1,1), (2,1,1), (2,2,1), or (2,2,2). Note that any
other type of Shannon triangle can be reduced to one of the above four
with respect to odd covers.

(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 6.2: The four irreducible types of Shannon triangles.
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Theorem 6.0.4 (Luzar et al. [163]). Every loopless connected multigraph
G has an edge-disjoint cover with at most 6 odd subgraphs.

Note that it is enough to consider only loopless multigraphs as loops count
twice for the degree of the vertex which does not change the parity of its
degree.

In the case of planar graphs, Theorem 6.0.2 implies that the edges of every
3-connected plane graph G can be colored with at most 4 colors in such a
way that for every face o and for every color ¢, either no edge or an odd
number of edges incident with « are colored with color ¢. This follows from
the fact that a dual graph G* of a 3-connected plane graph is a simple plane
graph. However, note that such a coloring may not be facially-proper.

6.1 Facial-parity edge coloring

Motivated by the parity colorings and the odd covers of graphs presented
above, Czap, Jendrol, and Kardos [72| defined a facial-parity edge coloring
(also known as odd edge coloring, see |68|) of a connected bridgeless plane
graph G, i.e., a facially-proper coloring of the edges of G such that for
every face a and every color ¢, there is either a zero or an odd number of
occurrences of color ¢ on the boundary walk of a. The minimum number
of colors needed for such a coloring is called the facial-parity chromatic
index and denoted by xg,(G). Note that we require G to be bridgeless, as

every bridge appears twice on the boundary walk of the face incident with
it (e.g., paths do not admit a facial-parity edge coloring). However, one
can easily extend the definition to all plane graphs by requiring that each
face is incident with zero or an odd number of edges of each color, which
is equivalent to the previous definition in the case of connected bridgeless
plane graphs.

Note also that every facial-parity edge coloring is also a 1-facial edge col-
oring, but the converse does not hold as can be seen already by the graphs
Cy and (5, whose facial-parity chromatic index is 4 and 5, respectively.
Crap et al. [72] proved that a constant upper bound exists by showing that
every connected bridgeless plane graph admitsa facial-parity edge coloring
with at most 92 colors. Later, Czap, Jendrol, Kardos, and Soték [69]
improved the bound to 20 colors. The final improvement on the general
upper bound for connected bridgeless plane graphs was done by LuZar and

Skrekovski [164] in 2013.

Theorem 6.1.1 (Luzar and Skrekovski [164]). Let G be a connected
bridgeless plane graph. Then,

X (G) < 16.

To this day the bound from Theorem 6.1.1 is the best known. In the case
of outerplane graphs even better results are known. In 2012, Czap [67]
proved the following.
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Theorem 6.1.2 (Czap [67]). Let G be a connected bridgeless outerplane
graph. Then, /

The result of Czap was further improved in 2015 by Balint and Czap [17]
who proved that with the exception of the graph G from Figure 6.3, every
connected bridgeless outerplane graph requires at most 9 colors.

Figure 6.3: Two outerplane graphs requiring 10 and 9 colors, respectively, in any facial-
parity edge coloring.

Theorem 6.1.3 (Balint and Czap [17]). Let G be a connected bridgeless
outerplane graph distinct from Gy depicted in Figure 6.5. Then,

Xep(G) < 9.

It is known that there are outerplane graphs requiring 9 and even 10 colors
(see Figure 6.3) which implies that the correct upper bound in general is
somewhere between 10 and 16 colors.

Building upon the work on facial-parity edge coloring, we show that the
correct upper bound is between 12 and 16 colors by providing an infinite
family of connected bridgeless plane graphs G (even 2-connected) for which

Xip(G) = 12.

Figure 6.4: The graph ©444 with 12 edges and xj, (G) = 12.

Theorem 6.1.4 (Theorem 2 in [198]). For any integer k > 3, there exists
a 2-connected plane graph G with 4k vertices and x3 (G) = 12.
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Proof. Let G be a Theta graph. Fix some plane embedding of G (e.g.,
see Fig 6.4). Clearly, G is 2-connected and it can be edge decomposed
into three internally vertex-disjoint paths P, P, and P3, where FP; and P;,
1 <i < j <3, are both incident to the unique face o;. Let f : E(G) — N
be any facial-parity edge-coloring of G. First suppose that some color ¢
appears an even number of times on the edges of some path P,. Without
loss of generality, we can assume that ¢ = 1. Since P; is incident to both
a9 and ags, it follows that the color ¢ must appear an odd number of
times on the edges of both P, and Ps, but then it appears an even number
of times on the edges incident with as3, a contradiction. It follows directly
that no color can appear on two distinct paths F; and P; at the same time.
Therefore, the number of colors needed to color the edges of G is the sum
of the number of colors needed to color the edges of each P; individually.
Let us consider again a single path P € {P;, P», P3} and let the length of
P be £. In the case when ¢ = 1, it is easy to see that we need exactly
1 color to color the single edge of P. Therefore, we need to consider the
following remaining four cases:

Case 1: 1f £ = 2m for some m € N, where m is odd, then we can properly
color the edges of P with exactly two colors c1 and co, each appearing m
times on P.

Case 2: It £ = 2m + 1 for some m € N, where m is even, then we can
color the edges of P with exactly three colors ¢, co and c3, where each of
the colors c¢; and ¢y appears m — 1 times on P and the color c3 appears 3
times on P.

Case 3: It £ = 2m +1 for some m € N, where m is odd, then we can color
the edges of P with exactly three colors ¢, co and c3, where each of the
colors c; and ¢y appears m times on P and the color c3 appears only once
on P.

Case 4: If £ = 4m for some m € N, then we can color the edges of P
with exactly four colors ¢1, ¢, ¢3 and ¢4, where each of the colors ¢; and
co appears 2m — 1 times on P and each of the colors c3 and ¢4 appears
only once on P.

It follows that if each of the paths P, has length divisible by 4, then
X, (G) = 12, thus proving the theorem. The smallest such case is de-

picted in Fig. 6.4, where all three paths are of length 4 and G has 12
edges. ]

In fact, from the proof it directly follows that for any integer 6 <t < 12,
there exist an infinite family of connected bridgeless plane graphs G with
Xf, = t. The smallest example with x (G) = 12 is depicted in Figure 6.4.

A question remains whether 12 colors are always sufficient and the best
affirmative result in this direction is by Czap et al. [69] from 2012, which
states that this holds in the case of 3-edge-connected plane graphs.

Theorem 6.1.5 (Czap et al. |69]). Let G be a 3-edge-connected plane
graph. Then,

X, (G) < 12.
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6.2 Facial-parity vertex coloring

In 2009, Czap and Jendrol [70] introduced the notion of a strong parity
vertez coloring (also known as a strong odd coloring), i.e., a coloring of
the vertices of a 2-connected plane graph in which for every face o and
every color ¢, there is either a zero or an odd number of occurrences of
color ¢ on the boundary walk of a. The minimum number of colors needed
for a strong parity vertex coloring is called the strong parity chromatic
number and is denoted by xsp. Note that the strong parity vertex coloring
need not be proper. In addition, 2-connectedness is required as there
exist connected, but not 2- connected graphs for which there exists no
strong parity vertex coloring, i.e., two triangles identified at a single vertex.
However, similarly as in the case of the edge version, one can easily extend
the definition to all plane graphs by requiring that each face is incident
with zero or an odd number of vertices of each color which is equivalent
to the previous definition in the case of 2-connected plane graphs.

If we add the condition that the coloring must be facially-proper (which
is the same as proper), then we get a facial-parity vertex coloring of a
2-connected plane graph G, i.e., a proper coloring of the vertices of G
such that for every face a and every color ¢, a is incident with either an
odd or zero vertices of color ¢. The minimum number of colors needed for
such a coloring is called the facial-parity chromatic number and denoted

by Xfp(G).

In 2011, Czap, Jendrol, and Voigt [73] showed the existence of a constant
upper bound for the facial-parity chromatic number by proving that every
2-connected plane graph admits a facial-parity vertex coloring with at most
118. Three years later, Kaiser et al. [143] improved the upper bound.

Theorem 6.2.1 (Kaiser et al. [143]). Let G be a 2-connected plane graph.
Then,

Xfp(G) S 97.

Currently, the upper bound from Theorem 6.2.1 is the best known result.

In the case of outerplane graphs, however, much more is known. In 2011,
Crap [66] considered the facial-parity chromatic number of outerplane
graphs and showed that, in general, there always exists a facial-parity
vertex coloring of an outerplane graph with at most 12 colors and pro-
vided an example of an outerplane graph with xg,(G) = 10 (see G from

Figure 6.5).

Theorem 6.2.2 (Czap [66]). Let G be a 2-connected outerplane graph.
Then,

Xip(G) < 12.

A year later, Wang, Finbow, and Wang [203] managed to improve the
results of Czap by showing that 10 colors are always enough. In fact,
they showed that one can always find a facial-parity vertex coloring of
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Figure 6.5: Two outerplane graphs requiring 10 colors in any facial-parity vertex col-
oring.

a 2-connected outerplane graph with 9 colors with the exception of two
outerplane graphs which require 10 colors (see Figure 6.5).

Theorem 6.2.3 (Wang et al. [203]). Let G be a 2-connected outerplane.
Then,
Xfp(G) < 107 .

Moreover,
Xip(G) <9

if and only if G is distinct from Gy and Go depicted in Figure 6.5.

Going back to the case of 2-connected plane graphs, we show that there ex-
ists an infinite family of 2-connected plane graphs G for which xg, (G) = 12.

Figure 6.6: The line graph of the graph ©, 44 which has 12 vertices and g (G) = 12.

Theorem 6.2.4 (Theorem 4 in [198]). For any integer k > 3, there exists
a 2-connected plane graph G with 4k vertices and x5 (G) = 12.

Theorem 6.2.4 follows directly from Theorem 6.1.4 by taking line graphs
of ©, . graphs. Similarly, it follows from the proof of Theorem 6.1.4 that
for any integer 6 <t < 12, there exist an infinite family of 2-connected
plane graphs G with x5, = t. The smallest example with y(G) = 12 is
depicted in Figure 6.6.

It remains an open problem to find the correct upper bound for the facial-
parity chromatic number of 2-connected plane graphs. Current results
show that the correct value is between 12 and 97, although, results point
towards the lower end of this interval.



Chapter 7

Final Remarks to Part I

Let us now give some remarks to the first part of this thesis.

7.1 Remarks on proper colorings of planar graphs

In Chapter 4, we considered proper 3-coloring of (mostly) planar graphs.
We will now turn our attention to the adynamic coloring and for that
we will also define the dynamic coloring. A dynamic coloring is a proper
coloring of the vertices of a graph G such that for every vertex v of degree
at least 2, there exist two distinct vertices u, w € N(v) with distinct colors.
On the other hand, an adynamic coloringis a proper coloring of the vertices
of a graph G such that there exists a vertex v of degree at least 2 for which
all the vertices in N (v) are colored with the same color. Clearly, a dynamic
coloring always exists, while in order for a graph to admit an adynamic
coloring there must exist a vertex of degree at least 2 with an independent
neighborhood, i.e., is not incident to a triangle. Such a vertex is called a
mono-vertex. The smallest number of colors needed for a dynamic coloring
is called the dynamic chromatic number, denoted by xq(G), and similarly,
the smallest number of colors needed for an adynamic coloring is called
the adynamic chromatic number, denoted by xu(G).

Let us denote by M the class of graphs containing a mono-vertex. It is easy
to see that for every graph G in the complement of M, x(G) = xa(G).
On the other hand, for every graph G in M, x(G) € {xa(G), xu(G)},
see [199]. In the same paper, the authors also gave the following strength-
ening of the Four-Color-Theorem.

Theorem 7.1.1 (Surimova et al. [199]). Let G € M be a planar graph
with x(G) = 4. Then xn(G) = 4.

Although every planar graph is adynamically 4-colorable, there is no one-
to-one correspondence with the 4-colorable planar graphs as there exist
3-colorable planar graphs which are adynamically 4-colorable (see Fig-
ure 7.1). Thus, it is interesting to study when does a 3-colorable planar
graph in M admit an adynamic 3-coloring. In [199], the authors proved
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the following.

2 3

Figure 7.1: A wheel graph W5 without a spoke which is not adynamically 3-colorable
with u being the only mono-vertex.

Theorem 7.1.2 (Surimova et al. [199]). Every triangle-free planar graph
in M admits an adynamic 3-coloring.

Note also that this result is a corollary of Theorem 4.1.4 and the fact that
every triangle-free planar graph has a vertex of degree at most 3. However,
in the case of planar graphs with at least two triangles, there exist examples
that need 4 colors in any adynamic coloring (see, e.g., Figure 4.5(b)). As

a result, Surimové et al. [199] posed a conjecture that every planar graph
G in M with at most one triangle has x,(G) < 3, which we answer in
affirmative.

Theorem 7.1.3 (Theorem 4.1 in [157]). Every planar graph in M with
at most one triangle is adynamically 3-colorable.

Proof. We proceed by contradiction. Let G be a minimal counterexam-
ple in terms of the number of vertices with some fixed embedding. By
Theorem 4.1.4, G' has exactly one triangle T'. Suppose first that there is
a 2-vertex v in G and let N(v) = {vy,v2}. The graph G’ obtained by
splitting v into two adjacent vertices both connected to vy and vy is planar
with at most three triangles and thus 3-colorable by Theorem 4.1.1. Any
coloring of G’ induces a coloring of G in which v; and vy receive the same
color, a contradiction.

Therefore, §(G) > 3. Moreover, by the Handshaking Lemma and the
Euler’s Formula, there are at least nine 3-vertices in GG, and so at least six
3-vertices are not incident with T'. Hence, by Theorem 4.2.6, G contains
a subgraph D isomorphic to K. Since 0(G) > 3, there is a 5-face o of D
that is not a face in G.

The graph induced by the interior of a in G and V(a) is a triangle-free
plane graph, which we can 3-color adynamically. This coloring gives us
a coloring of the vertices of a and fixes also the color of the vertex of T
that is not incident with «. It remains to color (eventual) interiors of the
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other two 5-faces of D in GG and the interior of 1. All can be colored by
Theorem 4.1.6. This completes the proof. O

7.2 Remarks on /-facial edge coloring

In Chapter 5, we proved that Conjecture 5.3.1 holds for £ = 3 and men-
tioned that for £ > 4 it remains open. The main difficulty in proving Con-
jecture 5.3.1 in general lies in 2-vertices. In particular, in long threads.
Note that several structural results regarding a minimal counterexample
to Conjecture 5.3.1 for the case when ¢ = 3 presented in Chapter 5 can be
adapted also for the general case. As an example, let us prove the following
observation which is a generalization of Lemma 5.4.6.

Observation 7.2.1. Let ¢ be a positive integer and let GG be plane graph
such that G is a minimal counterexample to Conjecture 5.3.1. Then G
contains no face of length at most (¢ + 1).

Proof. Suppose to the contrary and let o be any face of G of length at most
(+1). Let G’ be the graph obtained from G by contracting all the edges
of . By the minimality of GG, there exists an /-facial edge coloring o of G
with at most 3¢ 4 1 colors. Next, observe that each edge of « is ¢-facially
adjacent to at most 2¢ distinct edges of G'. Thus, each edge e of « has
the set of available colors A(e) of size at least £ + 1. By Theorem 3.2.1,
we can therefore extend the coloring o to obtain an f-facial edge coloring
of G using at most 3¢ 4 1 colors. O
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Chapter 8

Preliminaries to Part 11

ZIn this chapter, we define notions and present auxiliary results that we
will use in Part II of this thesis. For the sake of compactness, we also
present several new results in some sections of this chapter.

Let G be a graph and let S be a cutset in G. Then G has a partition
(A, B,S) for some non-empty sets A, B C V(G) such that there are no
edges in G — S with one endpoint in A and one endpoint in B. Such
a partition is called a cut-partition. Let w and v be two non-adjacent
vertices in G. A cutset S C V(@) is called a (u,v)-separator if u and v
belong to different components of G — S. A (u,v)-separator S is minimal
if no proper subset S’ of S is a (u,v)-separator. A minimal separator in
G is a set S C V(@) that is a minimal (u,v)-separator for some pair of
non-adjacent vertices u and v. A well-known characterization of minimal
separators (see, e.g., [112]) is that a set S C V(@) is a minimal separator
if and only if the graph G — S contains at least two S-full components,
i.e., two components such that every vertex in S has a neighbor in each of
them.

A hole in a graph is an induced cycle C} with & > 4. A graph G is
chordal if it does not contain any hole, i.e., G is {Cy, Cs, .. .}-free. From
the definitions of chordal graphs, induced minors, and induced topological
minors, we can immediately observe the following.

Observation 8.0.1. Let GG be a graph. Then, the following conditions
are equivalent:

1. G is a chordal graph.
2. G 18 Cy-induced-minor-free.
3. G is Cy-induced-topological-minor-free.

A graph H with V(H) = V(G) is a triangulation of a graph G if H is
chordal and G is a subgraph of H. A triangulation H of G is minimal it
there exists no triangulation H' of G such that H' is a proper subgraph
of H. Note that, by definition, every minimal triangulation of a chordal
graph G is the graph G itself.
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84 8.1. RAMSEY’S THEOREM

Let G be a graph and let H be a minor of G. A minor model of H in
G is a collection {X, | v € V(H)} of pairwise disjoint subsets of V(G)
called branch sets, which we will refer to also as bags, such that each bag
X, induces a connected subgraph of G' and for every two adjacent vertices
u,v € V(H), there is an edge in G with one endpoint in X, and one
endpoint in X,,. Similarly, for an induced minor H of G, an induced minor
model of H in G is a minor model of H in G with an additional property
that if there exists an edge in G between a vertex of X,, and a vertex of
X, then wv € E(H).

8.1 Ramsey’s theorem

In 1929, Ramsey, proved that in every sufficiently large graph there exists
a clique of size k or an independent set of size ¢. This result is known as
Ramsey’s theorem.

Theorem 8.1.1 (Ramsey [174]). For every pair of positive integers k and
(, there exists the least positive integer R(k,{) such that every graph with
at least R(k, 0) vertices contains either a clique of size k or an independent
set of size L.

The numbers R(k, ¢) are called the Ramsey numbers. The following known
upper bound on R(k, /) is easy to show.

Lemma 8.1.2. For any integers k, 0 > 1,

k+0—2
R(k,ﬁ)g( L )

Proof. If ¢ = 1, then ("77?) = ({Z1) = 1 and if & = 1, then

(k;“ff) = (561) = 1. In both cases, R(k,¢) = 1 and the inequality holds.

Let G be an n-vertex graph with n > R(k — 1,¢) + R(k,¢ — 1), where
k,¢ > 2. Let v be any vertex of G. Suppose first that |[N(v)| > R(k—1,¢).
Let G’ be the subgraph of G induced on the vertices of N(v). By induction,
G’ contains an independent set of size ¢, in which case G contains an
independent set of size ¢, or G’ contains a clique K of size k — 1, in which
case K, together with v, forms a clique of size k£ in G.

We may thus assume that |[N(v)| < R(k — 1,£), but then v has at least
R(k,¢—1) non-neighbors. In this case, let G’ be the subgraph of G induced
on the non-neighbors of v. By induction, G’ contains a clique of size k, in
which case G contains a clique of size k, or G’ contains an independent set
I of size £ — 1, in which case I, together with v, forms an independent set
of size £ in G.

Finally, an induction on k£ and ¢, together with Pascal’s formula for bino-
mials, shows that

R(k,6) < R(k —1,0) + R(k,{ — 1)
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8.2 Tree decompositions and treewidth

A tree decomposition of a graph G is a pair T = (T, {X; }ev(r)) where

T is a tree and every node t of T is assigned a vertex subset X; C V(G)
called a bag such that the following conditions hold:

(1) every vertex belongs to some bag;

(2) for every edge e € E(G) there exists a node t € V(T') such that the
bag X; contains both endpoints of e; and

(3) for every vertex v € V(G) the subgraph T;, of T induced by the nodes
from the set {t € V/(T') | v € X;} is a tree.

A tree decomposition is called trivial if it contains a single bag,
i.e., the unique bag contains all the vertices of G. The width of
a tree decomposition 7, denoted by width(7), is defined as follows:
width(7) = max{|X;| — 1 [¢ € V(T)}. The treewidth of a graph G, de-
noted by tw(G), is defined as the minimum width of a tree decomposmon
of GG, taken over all tree decompositions. A graph class G has bounded
treewidth if there exists a constant ¢ such that tw(G) < ¢ for all graphs
G € G and unbounded treewidth otherwise. The size of a tree decomposi-
tion 7 = (T, { X }+ev(r)), denoted by [T, is defined as

TI=V(D)+ Y 1Xi].

teV(T)

Among various equivalent characterizations of treewidth, in 1986 Robert-
son and Seymour [176] gave the following characterization in terms of graph
triangulations.

Theorem 8.2.1 (Robertson and Seymour [176]). For every graph G, we
have
tw(G) = min{w(H) — 1 : H is a triangulation of G} .

An important property of tree decompositions states that every clique must
be contained in some bag.

Lemma 8.2.2 (Scheffler [180], Bodlaender and Mohring [30]). Let G be a
graph, let T = (T, { X }1ev(r)) be a tree decomposition of G, and let C' be
a clique in G. Then there exists a bag X; such that C' C X;.

Since the only minimal triangulation of a chordal graph G is the graph G
itself, Theorem 8.2.1 and Lemma 8.2.2 imply the following.
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Theorem 8.2.3 (see, e.g., |28]). For every graph G we have that
tw(G) > w(G) — 1, with equality for all induced subgraphs if and only if
G s chordal.

In addition, the following result of a similar flavor as Lemma 8.2.2 holds.

Lemma 8.2.4 (Lemma 2.3 in |77]). Let T = (T,{X;}iev(r)) be a tree

decomposition of a graph G. Then for every set S C V(G) such that
every pair of vertices in S is contained in a bag of T, there exists a bag

X such that S C X;.

Proof. Suppose that every pair of vertices of S is contained in a bag of T.
For each v € S, the set of nodes of T" labeled by bags containing v induces
a subtree T, of T'. Since every two vertices in S are contained in a bag of
T, every two of the subtrees in {7}, : v € S} have a node in common. It is
known (and easy to see) that for any family of node sets of subtrees of a
tree there exists a node t € V(T') common to all the trees T,,, v € S. We
infer that v € X, for all v € S, that is, S C Xj. ]

The following result implies the fact that for every graph G, tw(G) > §(G)
(see, e.g., [29]).

Lemma 8.2.5 (Lemma 2.6 in [77|). Let G be a graph and let
T = (I'{Xi }tev(r)) be a tree decomposition of G. Then there erists a

verter v € V(G) cmd a node t € V(T) such that N[v] C X;.

In order to prove Lemma 8.2.5, we require a few more definitions which
help give further characterizations of chordal graphs. A vertex v in a graph
G is called simplicial if N(v) is a clique. A clique tree of a graph G is a
tree decomposition of G such that the bags are exactly the maximal cliques
of G (see, e.g., [26]). Given a collection {T1,...,T,} of subtrees in a tree
T, the intersection graph of {Ty,...,T,} is the graph with the vertex set
{1,...,n}, in which two distinct vertices i and j are adjacent if and only if
T; and T have a vertex in common. In the following theorem we combine

results from several sources [26, 50, 85, 108, 201].

Theorem 8.2.6. Let G be a graph. Then, the following conditions are
equivalent:

1. G is a chordal graph.

2. G has a clique tree.

3. G 1is the intersection graph of subtrees in a tree.

4. Every non-null induced subgraph of G has a simplicial vertez.
We are now ready to prove Lemma 8.2.5.
Proof of Lemma 8.2.5. Let G’ be the graph with the vertex set V(G) such
that two distinct vertices w and v are adjacent in G’ if and only if there

exists a bag X; of T with u,v € X;. Note that for every vertex v € V(G)
it holds that Ng[v] € Ng/[v]. Recall that for each vertex v € V(G'),



CHAPTER 8. PRELIMINARIES TO PART I 87

the set of nodes t € V(T') such that v € X; induces a subtree T, of T
Thus, two distinct vertices u and v of G’ are adjacent if and only if the
corresponding trees T, and T}, have a node in common. This means that G’
is the intersection graph of subtrees in a tree and hence, by Theorem 8.2.6,
G’ is a chordal graph. Observe that 7 is also a tree decomposition of G'.
By Theorem 8.2.6, G’ has a simplicial vertex v, and hence by Lemma 8.2.2,
there must exist a node t € V(T') such that Ng[v] C X;. Therefore,
Ng[v] € Xy, which concludes the proof. O

8.3 Potential maximal cliques

A potential maximal cliqgue in a graph G is a set X C V(G) such that
X is a maximal clique in some minimal triangulation of G. Buchitté and
Todinca gave the following characterization of potential maximal cliques.

Theorem 8.3.1 (Buchitté and Todinca [43]). Let G be a graph and let
X CV(G). Then X is a potential maximal clique in G if and only if the
following two conditions hold:

1. For every component C' of G— X, some vertex of X has no neighbors

m C.

2. For every two non-adjacent vertices u,v € X there exists a compo-
nent C' of G — X in which both u and v have a neighbor.

Furthermore, if X is a potential mazximal clique, then the family of the
neighborhoods, in G, of the components of G — X are exactly the family
of minimal separators S in G such that S C X.

Let X be a potential maximal clique in a graph G, let C' be a component
of G — X, and let S = Ng(V(C)). We say that S is an active separator
for X if there exist two non-adjacent vertices u,v € S such that C is the
only component of G — X such that C' contains both a neighbor of w,
as well as a neighbor of v. Note that this definition is slightly different
in |44, Definition 13|. Due to Theorem 8.3.1, however, both definitions are
equivalent. In addition, note that it is possible for a potential maximal
clique to not have an active separator. However, if they do, then, as a
corollary of [44, Theorem 15|, the following result holds.

Theorem 8.3.2 (Theorem 3.5 in [78]). Let X be a potential mazimal
cliqgue in a graph G and let S be an active minimal separator for X. Then
there exists a minimal separator T of G such that X C SUT.

Additionally, the following result, which is a part of the statement of [44,
Proposition 19], is also true.

Proposition 8.3.3. Let a € V(G) and let X be a potential mazimal
cliqgue of G such that a ¢ X. Let C, be the connected component of

G — X containing a and let S = Ng(V (C,)). Then either X is a potential
mazximal clique of G —a or S is an active separator for X.
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In order to prove the next theorem, we require the following property of
minimal separators.

Lemma 8.3.4 (Lemma 3.7 in [78]). Let G be a graph, let G' be an induced
subgraph of G, and let S" be a minimal separator in G'. Then there exists
a minimal separator S in G such that S C S.

Proof. Let C" and D' be two S’-full components of the graph G’ — 5’.
Fix two vertices u € V(C') and v € V(D'). Consider the set

S =5U(V(G)\V(G)). This set is a u,v-separator in G, and therefore
contains a minimal u,v-separator S in G. Since the set S is disjoint from

V(C)UV (D) and S C S, the set S is also disjoint from V(C") UV (D').
Furthermore, since every vertex in S’ has a neighbor in both C’ and D', we
must have S’ C S as otherwise S would not be a u,v-separator in G. [

From Theorem 8.3.2, we get that every potential maximal clique containing
an active minimal separator can be covered by two minimal separators in
(. This result can be further refined as follows.

Theorem 8.3.5 (Theorem 3.8 in [78]). Let G be a graph and let X be a
potential maximal clique in G. Then X is either a clique in G or there
exist two minimal separators S and T in G such that X C SUT.

Proof. We use induction on the number of vertices of G. If GG is chordal,
then the only minimal triangulation of G is G itself, and hence the potential
maximal cliques of GG coincide with its maximal cliques. So we may assume
that G is not chordal.

Consider a potential maximal clique X of G and suppose that X is not
a clique. If X contains an active minimal separator S, then by Theo-
rem 8.3.2, there exists a minimal separator 1" of G such that X C SUT.

Assume now that X does not contain any active minimal separator. First,
we show that X # V(G). Suppose that X = V(G). Then there exists a
minimal triangulation H of G in which X = V(H) is a maximal clique.
This implies that H is a complete graph. Since G is not chordal, it is not
complete, and thus has two distinct non-adjacent vertices v and v. But
now, deleting the edge uv from H produces a minimal triangulation of G
properly contained in H, a contradiction. Thus, X # V(G).

Since X # V(G), there exists a vertex a € V(G) \ X. Let G' =G — q,
let C; be the connected component of G — X containing a, and let
S = Ng(V(C,)). Since S is not an active separator for X, Proposition 8.3.3
implies that X is a potential maximal clique of G'. By the induction hy-
pothesis, there exist two minimal separators S’ and 7" in G’ such that
X C S"UT'. By Lemma 8.3.4, there exist two minimal separators S and

T in G such that " C Sand 7" CT. Thus, X C SUT. H
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8.4 Block-cutpoint trees

Recall that a block of a graph G is a maximal connected subgraph of
G without a cut-vertex. Every connected graph G has a unique block-
cutpoint tree, that is, a tree T" with V(T) = B(G) U C(G), where B(G)
is the set of blocks of G and C(G) is the set of cut-vertices of G, such
that every edge of T" has an endpoint in B(G) and the other in C(G), with
B € B(G) adjacent to v € C(G) if and only if v € V(B). Every leaf of
the block-cutpoint tree is a block of G, called a leaf block of G. As shown
by Hopcroft and Tarjan [134], a block-cutpoint tree of a connected graph
G can be computed in linear time. It is easy to see that a block-cutpoint
tree is also a valid tree decomposition of a graph. Block-cutpoint trees can
be used in algorithms to provide an efficient reduction of the problem of
computing a certain invariant of a given graph to the same (or a similar)
problem on the blocks of the graph (see, e.g., |61]).

8.5 SPQR trees

The SPQR trees are one of the classical tools for decomposing 2-connected
graphs into triconnected components, see [193, 194]. Triconnected com-
ponents form a system of smaller graphs that describe the 2-vertex cuts
in the graph. The SPQR trees were formally introduced in 1990 by Di
Battista and Tamassia [79] (see also [80, 116, 135]).

We use the definition of SPQR trees as used by Dujmovic¢ et al. [89],
which is slightly different than the original definition (see also [77] for the
following definition). An SPQR tree of a 2-connected graph G is a tree S
in which every node (vertex of S) is of one of the three types: a P-node,
an R-node, or an S-node. Each node a is assigned with a set X, C V(G).
If a is a P-node, then X, is a 2-cutset in G. If a is an R-node or an
S-node, then X, is the vertex set of a graph G, also assigned to node a.
For every S-node a, the graph G, is a cycle, while for every R-node a, the
graph G, is 3-connected. Every edge in S has exactly one endpoint that
is a P-node. For every two adjacent nodes a and b of S such that b is a
P-node, the two vertices in X are adjacent in G,. An edge uv in GG, such
that wv ¢ E(G) is called a virtual edge; otherwise, it is called a real edge.
For every virtual edge uv in G, there exists a P-node b adjacent to a such
that X, = {u,v}. No two P-nodes are associated with the same 2-cutset
of G. We denote the sets of all P-nodes, R-nodes, and S-nodes of S by
Np(S), Nr(S), and Ng(5), or simply by Np, Ng, and Ng, respectively, if
the SPQR-tree S is clear from the context. The graphs G, for each R-node
or S-node a are called the triconnected components of G. Thus, the SPQR
tree S represents GG as a collection of triconnected components that are
joined at 2-cutsets (P-nodes).

Note that an SPQR tree S of a graph G naturally defines a tree decom-
position 7 of G simply by assigning to each node a € V' (S) the set X, as
the corresponding bag.
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Let us now show the following lemma.

Lemma 8.5.1 (Lemma 4.4 in [78]). Let G be a 2-connected graph and S
an SPQR tree of G. For each node a of S that is either an R-node or an
S-node, the graph G, is an induced topological minor of G.

Proof. Fix any node a of S that is either an R-node or an S-node. Note
that the graph G/ obtained from G, by deleting the virtual edges is an
induced subgraph of G. Thus, we only need to show that for every virtual
edge uv of GG, there exists a path P in G with endpoints u and v such
that u and v are the only two vertices contained in GG,. In addition, we
require that no two such paths intersect, except possibly in one of their
endpoints.

Let us fix any virtual edge uv. Since uv is a virtual edge, there exists a node
b such that b is a P-node containing both v and v, where u and v are non-
adjacent. It follows, that v and v form a 2-cut in G. Let ¢ be the node of S,
distinct from a, containing both u and v. Since G is 2-connected, it follows
that the connected component H of G \ {u,v} containing V(G. \ {u,v})
is connected and thus, there exists a minimal path P between u and v in
G containing only the vertices from H. Therefore, P contains no vertices
of G, except for its endpoints. Since no two virtual edges of G, are the
same, no two P-nodes corresponding to the virtual edges of G, are the
same, thus proving that none of the obtained paths intersect in more than
a single endpoint. O]

Let G be a graph. The Hadwiger number of G, denoted by n(G), is the
maximum integer p such that G contains K, as a minor (see [152]). Since
the Hadwiger number is monotone under taking minors, we readily obtain
the following inequality (which we will use in the following sections).

Corollary 8.5.2 (Corollary 4.5 in [78]). Let G be a graph, S an SPQR
tree of G, and a an R-node or an S-node of S. Then n(G,) < n(G).

As shown by Gutwenger and Mutzel [116], an SPQR tree of a graph G can
be computed in linear time. Although the algorithm of Gutwenger and
Mutzel computes a slightly different tree, the same holds in the case of our
definition as well. Additionally, as was shown by Di Battista and Tamas-
sia [80], any SPQR tree of a graph G has O(]V(G)|) nodes. Furthermore,
for any SPQR trees, the following bounds on the number of vertices in
each set corresponding to R-nodes and S-nodes can be shown, see [78] for
the proof.

Lemma 8.5.3 (Lemma 4.6 in [78]). Let G be a 2-connected n-vertex graph
and S an SPQR tree of G. Then

> X <3n—6 and > Xl <2n—4.

a€ENrUNg a€Np

Additionally, we use the following bound on the total number of edges in
the graphs G,.
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Lemma 8.5.4 (Hopcroft and Tarjan [135]). Let G be a 2-connected graph
and S an SPQR tree of G. Then

> |B(Gy) <3IE(G)| —6.

a€NRUNg



Chapter 9

Bounding Treewidth by a Function of
the Clique Number

Let us recall from the previous chapter that tw(G) > w(G) — 1 for all
graphs G (see Theorem 8.2.3), with equality if and only if G is a chordal
graph. It is thus natural to ask whether for which graph classes can we
give an upper bound to treewidth in terms of a clique number. A graph
class G is said to be (tw,w)-bounded if it admits a (tw,w)-binding func-
tion, that is, a function f such that for every graph G in the class and
any induced subgraph G’ of G, the treewidth of G’ is at most f(w(G")).
Furthermore, G is said to be polynomially (tw,w)-bounded if it admits a
polynomial (tw, w)-binding function. One of the simplest such classes is the
class of chordal graphs where for every graph G in the class it holds that
tw(G) = w(G) — 1. An interesting question is thus to understand what
other classes of graphs are (tw,w)-bounded. To this end, we study when
forbidding a single graph with respect to one of the six well known graph
containment relations, namely, subgraph, topological minor and minor re-
lation, as well as their induced counterparts, results in a (tw,w)-bounded
graph class.

Besides the class of chordal graphs, other simple examples of (tw,w)-
bounded graph classes are classes of graphs of bounded independence num-
ber, as a consequence of Ramsey’s Theorem.

Lemma 9.0.1 (Lemma 2.6 in [76]). Let H be an edgeless graph. Then
the class of H-free graphs is (tw,w)-bounded, with a binding function
f(k) =R(k+1,|V(H)|) - 2.

Proof. Let H be an edgeless graph. Let £ € N and let G be an H-free
graph such that w(G) = k. Since H is edgeless, G contains no independent
set of size |V (H)|. By Ramsey’s theorem (Theorem 8.1.1) we get that the
number of vertices in G is thus strictly smaller than the Ramsey number
R(k + 1,|V(H)|). In fact, since tw(G) < |V(G)| — 1 (due to the fact
that a single bag containing all the vertices of a graph is a valid tree
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decomposition), we have that

tw(G) < [V(G)| =1 < Rk +1,|V(H)) —2. O

Before continuing our analysis of graphs H for which the class of graphs
excluding H, with respect to one of the six considered relations, is (tw, w)-
bounded, we need to understand some simple graph classes that are
(tw,w)-unbounded. A graph class is (tw, w)-unbounded if it is not (tw,w)-
bounded. The following definition of an elementary wall is from [60] (up to
symmetry). To obtain an elementary wall (or simply wall) of height h and
width r, we start with a grid of height A and width 2r. Let C4,...,Cs,
denote the columns of the grid ordered from left to right. For each column

Cj, we let e{, e ,e‘z_l be the edges in j-th column from top to bottom.
Then, if j is odd, we delete all edges e] where 7 is odd and if j is even,

we delete all edges e] where i is even. Finally, we remove all vertices of
degree 1. Let ¢ be a non-negative integer. A g-subdivided wall is a graph
obtained from an elementary wall by subdividing each edge ¢ times. See
Figure 9.1 for an example of an elementary wall and a 1-subdivided wall.

i

Figure 9.1: An example of an elementary wall graph (of height 5 and width 10) on the
left and a 1-subdivided wall graph on the right.

First, let us state two properties of treewidth that we will need later on.
The first is the fact that treewidth does not increase under taking minors
(i.e., treewidth is monotone under taking minors).

Lemma 9.0.2 (See, e.g., [28]). Let G be a graph and let H be a minor of
G. Then tw(H) < tw(G).

The second property is due to Harvey and Wood [123] and gives a connec-
tion between treewidth of a graph G and that of its line graph.

Theorem 9.0.3 (Harvey and Wood [123]). Let G be any graph and let
L(G) be its line graph. Then tw(L(G)) > L(tw(G) +1) — 1.

We are now ready to prove the following result.

Lemma 9.0.4 (Lemma 2.7 in [76]). The class of balanced complete bipar-
tite graphs and, for all ¢ > 0, the class of q-subdivided walls and the class
of their line graphs, are (tw,w)-unbounded.



94

Proof. By Lemma 8.2.5 we have that tw(K,,) > n and, since K,, is
bipartite, we have w(K,,) = 2. Thus, we get that the class of balanced
complete bipartite graphs is (tw, w)-unbounded.

Next, it is known that the class of elementary walls has unbounded
treewidth (see, e.g., [60]). Thus, since elementary walls do not contain any
cliques of size 3, we obtain that the class of elementary walls is also (tw, w)-
unbounded. Furthermore, using Lemma 9.0.2, the class of g-subdivided
walls for any ¢ > 0 is also (tw,w)-unbounded.

Finally, by Theorem 9.0.3 and the fact that elementary walls are subcubic,
we get that the class of line graphs of ¢-subdivided walls has unbounded
treewidth and the clique number of each graph in these classes is bounded
by 3. Hence all these classes are also (tw,w)-unbounded. O]

From Lemma 9.0.4 we get the following immediate corollary.

Corollary 9.0.5 (Corollary 2.8 in |76]). Let C be any graph containment
relation and let H be a graph such that the class of graphs excluding H
with respect to relation C is (tw,w)-bounded. Then H is in relation C
with some balanced complete bipartite graph, with some q-subdivided wall,
for each ¢ > 0, and with the line graph of some ¢ -subdivided wall, for
each ¢ > 0.

In the coming sections we present a complete characterization of the graphs
H for which the class of graphs excluding H with respect to one of the six
containment relations (subgraph, topological minor, minor, induced sub-
graph, induced topological minor, and induced minor) is (tw,w)-bounded
as presented in [76]. The results are summarized in Table 9.1. With S we
denote the class of graphs in which every connected component is either a
path or a subdivided claw. With W,,, n > 3, we denote the wheel graph
with n spokes (i.e, a graph obtained from the cycle C,, by adding a single
universal vertex), with K, , p > 2, we denote the complete graph K, with

a single edge deleted, and with K;tq, q > 1, we denote the complete bipar-
tite graph Ky, by adding an edge between the two vertices in the part of
size 2 (see Figure 9.2 for graphs Wy, K, and K ).

Wy Ky K3

Figure 9.2: The graphs Wy, K7, and K3;.



CHAPTER 9. BOUNDING TREEWIDTH BY A FUNCTION OF THE CLIQUE NUMBER 95

General Induced
Subgraph HeS H Cis P3 or H is edgeless
. ' H is subcubic H Cis G5, H Cis Cy,
Topological minor )
and planar H = K, , or H is edgeless
H Cis W7 H gis K77
Minor H is planar - ! >
H Cis Ky 4, or H ;s K3, for some g € N

Table 9.1: Summary of (tw,w)-bounded graph classes excluding a fixed graph H for
six graph containment relations [76].

9.1 Forbidding a subgraph, topological minor, or mi-
nor

We start by considering the three non-induced variants subgraph, topo-
logical minor and minor relations. To this end, we rely on several known
results on treewidth and graph minors theory. First, let us prove the fol-
lowing result.

Lemma 9.1.1 (Lemma 5.1 in [76]). Let H be a graph and let G be a
graph class contained in the class of H-subgraph-free graphs. Then G is
(tw, w)-bounded if and only if G has bounded treecwidth.

Proof. Note that if in a graph class treewidth is bounded, then the graph
class is also (tw,w)-bounded. Thus, we only need to show the converse
direction. Assume that the graph class G is (tw,w)-bounded, with a bind-
ing function f. Note that no graph G € G can have a clique of size
|V (H)|, since otherwise G would not be H-subgraph-free. Hence, for ev-
ery graph G € G we have w(G) < k, where k = |V(H)| — 1. It follows
that tw(G) < max{f(1),..., f(k)}. [

Let us now state an important result due to Robertson and Seymour [177]
from their series on graph minors.

Theorem 9.1.2 (Robertson and Seymour [177]). For every planar graph
H, the class of H-minor-free graphs has bounded treewidth.

We also need the following result on the graph from the class S.

Lemma 9.1.3 (Golovach et al. [110]). For every graph H € S, a graph G
15 H-subgraph-free if and only if it s H-minor-free.

We are now ready to characterize the graphs H for which the class of
H-subgraph-free graphs is (tw, w)-bounded.

Theorem 9.1.4 (Theorem 5.4 in [76]). For every graph H, the following
conditions are equivalent.

1. The class of H-subgraph-free graphs is (tw,w)-bounded.
2. The class of H-subgraph-free graphs has bounded treewidth.
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3. HeS.

Proof. Equivalence between Statements 1 and 2 follows from Lemma 9.1.1.

Suppose now that the class of H-subgraph-free graphs has bounded
treewidth. By Corollary 9.0.5, H must be a subgraph of some elemen-
tary wall. It follows that H is subcubic. Suppose next that H contains
a connected component with two vertices u and v of degree 3 and let ¢
be the distance between uw and v. Then the class of ¢-subdivided walls
is a subclass of the class of H-subgraph-free graphs, a contradiction with
Corollary 9.0.5. Thus, every connected component of H has at most one
vertex of degree 3. By a similar reasoning, we infer that H is also acyclic,
and thus H € S.

Finally, suppose that H € S. Then following Lemma 9.1.3 every
H-subgraph-free graph is also H-minor-free. Hence, by Theorem 9.1.2,
the class of H-subgraph-free graphs has bounded treewidth. ]

Let us now consider the topological minor relation. We first state the
following known result.

Lemma 9.1.5 (see, e.g., Diestel [81]). A subcubic graph H is a minor of
a graph G if and only if H is a topological minor of G.

We are now ready to use a similar approach as in the case of subgraph
relation.

Theorem 9.1.6 (Theorem 5.6 in [76]). For every graph H, the following
conditions are equivalent.

1. The class of H-topological-minor-free graphs is (tw,w)-bounded.
2. The class of H-topological-minor-free graphs has bounded treewidth.

3. H is subcubic and planar.

Proof. Since every H-topological-minor-free graph is also H-subgraph-free,
the equivalence between Statements 1 and 2 is implied by Lemma 9.1.1.

Next, suppose that the class of H-topological-minor-free graphs has
bounded treewidth. Due to Corollary 9.0.5, H is a topological minor of
some elementary wall. Thus, since every elementary wall is both subcubic
and planar, H must also be subcubic and planar.

Finally, suppose that H is subcubic and planar. Since H is subcubic, by
Lemma 9.1.5 we obtain that every H-topological-minor-free graph is also
H-minor-free. Furthermore, since H is planar, by Theorem 9.1.2, the class
of H-topological-minor-free graphs has bounded treewidth. ]

To conclude this section we now state a similar theorem in terms of the
minor relation.

Theorem 9.1.7 (Theorem 5.7 in [76]). For every graph H, the following
conditions are equivalent.
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1. The class of H-minor-free graphs is (tw,w)-bounded.
2. The class of H-minor-free graphs has bounded treewidth.
3. H 1s planar.

Proof. Since every H-minor-free graph is also H-subgraph-free, we can
again use
Lemma 9.1.1 to infer that Statements 1 and 2 are equivalent.

Next, suppose that the class of H-minor-free graphs has bounded
treewidth. By Corollary 9.0.5, H is a minor of some elementary wall.
Thus, H is planar.

Finally, suppose that H is planar. Then Theorem 9.1.2 implies that the
class of H-minor-free graphs has bounded treewidth. ]

9.2 Forbidding an induced subgraph or an induced
topological minor

We next consider graph classes excluding a graph H as in induced sub-
graph or as an induced topological minor. Due to Lemma 9.0.1 and
Corollary 9.0.5 we can immediately get the following characterization of
(tw, w)-bounded graph classes when excluding a single forbidden induced
subgraph.

Theorem 9.2.1 (Theorem 3.1 in [76]). Let H a graph. Then, the class
of H-free graphs is (tw,w)-bounded 1f and only if one of the following
conditions holds.

1. H Cis P3, with a binding function f(k) =k — 1.
2. H is edgeless, with a binding function f(k) = R(k+ 1,|V(H)|) — 2.

Proof. If H is edgeless, then we can apply Lemma 9.0.1. Suppose that
H Ci P5. Then every H-free graph G is also Ps-free and G is a disjoint
union of complete graphs. Thus, tw(G) = w(G) — 1.

Suppose now that H is neither edgeless nor an induced subgraph of P,
and that the class of H-free graphs is (tw, w)-bounded. By Corollary 9.0.5,
H is an induced subgraph of some complete bipartite graph and also an
induced subgraph of the line graph of some elementary wall. In particular,
H must be isomorphic to a complete bipartite graph K, ,, with 1 <p <g¢q
(note that we must have p,q > 1 since H is not edgeless). Furthermore,
since line graphs of elementary walls are {claw, Cy}-free (or, equivalently,
{K13, Koo}-free), we infer that H must be isomorphic to either Kj; or
K 5. Thus, H is an induced subgraph of P, a contradiction. H

Let us now consider the induced topological minor relation. Towards this
end we need the following definition. A block-cactus graph is a graph in
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which every block is either a cycle or a complete graph. Hartinger, in her
PhD thesis [121], proved the following result.

Lemma 9.2.2 (Hartinger [121]). A graph G is a block-cactus graph if and
only if G 1s K -induced-minor-free.

In fact, the approach described in the thesis can also be used to show
that the two properties are also equivalent to excluding K; as an induced
topological minor.

Lemma 9.2.3 (Lemma 3.2 in [76]). Let G be a graph. Then, the following
conditions are equivalent:

1. G is K -induced-minor-free.
2. G is K, -induced-topological-minor-free.

3. G is a block-cactus graph.

Proof. Since every induced topological minor in G is also an induced minor,
G is K -induced-topological-minor-free if it is K ; -induced-minor-free.

Suppose that G is K -induced-topological-minor-free and that GG is not a
block-cactus graph. We first show that GG contains a hole. Suppose not.
Then G is a chordal K -free graph, and thus a block graph (see [148]),
that is, a graph every block of which is a complete graph. But then, G is
a block-cactus graph, a contradiction. Hence, G must contain a hole C,
and in particular there exists some block B of G such that V(C') C V(B).
Since B is connected but not a cycle, there exists a vertex x € V(B)\V(C)
with a neighbor in V(C). If [N(z) N V(C)| > 2, it is easy to see that G
contains a subdivision of K, as an induced subgraph, a contradiction.
Thus, |[N(x) NV(C)| = 1 and every vertex in V(B) \ V(C) has at most
one neighbor in C. Now, take a vertex z € V(B) \ V(C) which has a
neighbor v € V(C') such that z minimizes the length of a shortest path
P between z and C' not containing v. We know that P must exist since
B has no cut-vertex. Also, we may assume that v has no other neighbor
in P, otherwise we could replace z with this vertex and get a shorter
path. Let o' € V(C) be the vertex of P in V(C) \ {v} and 2’ be the
neighbor of v' in P. Recall that 2’ has only one neighbor in V' (C). Using
a similar argument as for v, we may assume that v’ has no other neighbor

in P. The minimality of P implies that the internal vertices of P do not
have a neighbor in C'. Hence, G[V(C) U V(P)] is a subdivision of K, a

contradiction. This shows that every K -induced-topological-minor-free
graph is a block-cactus graph.

Finally, let G be a block-cactus graph and let H be an induced minor of G.
It is not difficult to see that the class of block-cactus graphs is closed under
vertex deletions and edge contractions. Therefore, H is also a block-cactus
graph. Since K is not a block-cactus graph, H cannot be isomorphic to

K, . Therefore, G is K -induced-minor-free. O
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In the case of block-cactus graphs we can easily derive the following result.

Lemma 9.2.4 (Lemma 3.3 in |76]). The class of block-cactus graphs is
(tw, w)-bounded, with a binding function f(k) = max{k — 1,2}.

Proof. The treewidth of a graph G is the maximum treewidth of its blocks
(see, e.g., [28]). Since the treewidth of a complete graph of order k is k — 1
and the treewidth of a cycle is two, the result follows. ]

We can now state the following characterization of (tw,w)-bounded graph
classes when excluding a single forbidden induced topological minor.

Theorem 9.2.5 (Theorem 3.4 in [76]). Let H be a graph. Then, the class
of H-induced-topological-minor-free graphs is (tw,w)-bounded if and only
if one of the following conditions holds.

1. H C C5 or H Ciy C4, wn which case the binding function is
f(k)=Fk—1.
2. H = K, in which case a binding function is f(k) = max{k —1,2}.

3. H is edgeless, in which case a binding function s

f(k)=R(k+1,|V(H)|) —2.

Proof. 1f H is edgeless, then Lemma 9.0.1 applies. If H Cis Csor H Cis Cy,
then H Ci,, C4. Hence, by Observation 8.0.1, the class of H-induced-
topological-minor-free graphs is a subclass of the class of chordal graphs,
and is thus (tw,w)-bounded. If H = K", then according to Lemma 9.2.3
the class of H-induced-topological-minor-free graphs is the class of block-
cactus graphs, and Lemma 9.2.4 applies.

For the converse direction, suppose that H ¢ Cs, H Zis Cy, H 2 K,
H is not edgeless, and that the class of H-induced- topological-minor-free
graphs is (tw,w)-bounded. By Corollary 9.0.5, H is an induced topolog-
ical minor of some complete bipartite graph and an induced topological
minor of the line graph of some 1-subdivided wall. Since the line graph
of every 1-subdivided wall is planar, subcubic, and claw-free, H must also
be planar, subcubic, and claw-free. Furthermore, since H is an induced
topological minor of some complete bipartite graph, we must have that
H Ciyy Ko 3, since otherwise either H would not be planar or it would not

be subcubic. Finally, claw-freeness implies that H € { P, P5, Cs, Cy, K },
a contradiction. ]

9.3 Forbidding an induced minor

Finally, we turn to graph classes excluding a single graph H as an induced
minor. First, we will show that the two classes of K- and Wj-induced-
minor-free graphs are (tw,w)-bounded.

In 2018, Belmonte et al. [21] and Bresar et al. [46] observed that the
following result can be derived from the proof of Theorem 9 in [132].
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Theorem 9.3.1. For every graph F and every planar graph H, the class of
graphs that are both F-minor-free and H-induced-minor-free has bounded
treewidth.

Notice that a complete graph is excluded as a minor if and only if it is
excluded as an induced minor. Thus, we get the following corollary to
Theorem 9.3.1.

Corollary 9.3.2 (Corollary 4.4 in [76]). For every positive integer p and
every planar graph H, the class of { K, H }-induced-minor-free graphs has
bounded treewidth.

Let us recall that the Hadwiger number n(G) is the largest value p such
that K, is a minor of G. From the definition it follows that no graph G
contains K g1 as a minor or as an induced minor. We can thus prove
the following result.

Corollary 9.3.3 (Corollary 4.5 in [76]). Let H be a planar graph. The
class of H-induced-minor-free graphs is (n,w)-bounded if and only if it is
(tw, w)-bounded.

Proof. Suppose that the class of H-induced-minor-free graphs is (n,w)-
bounded and let f be an (7, w)-binding function for the class. Let k € N
and let G be an H-induced-minor-free graph with w(G) = k. Then
n(G) < f(k), that is, G is Kf)41-induced-minor-free. By Corollary 9.3.2,
the treewidth of G can be bounded from above by some constant g(k) de-
pending only on k. Thus, g is a (tw,w)-binding function for the class.

The converse direction holds due to the fact that n(G) < tw(G) + 1 which
follows from Lemma 9.0.2. O]

Since both K., and W, are planar, by Corollary 9.3.3, it suffices to
show that the class of K; -induced-minor-free graphs and the class of Wy-
induced-minor-free graphs are (1, w)-bounded. We begin with the former.

Theorem 9.3.4 (Theorem 4.1 in [76]). For each p > 2, the class of
K, -induced-minor-free graphs is (n,w)-bounded, with a binding function
f(k) = max{2p — 4, k}.

Proof. Fix p > 2 and k € N, and let G be a K, -induced-minor-free graph

with w(G) = k. Let ¢ = max{2p — 4,k} + 1 We want to show that G
contains no K, as a minor. Suppose for a contradiction that G contains

K, as a minor. Fix a minor model M = (X, : v € V(K,)) of K, in
G such that the total number of vertices in the bags, that is, the sum
> _uev(k,) | Xul, 1s minimized.

If for all u € V(K,) we have [X,| = 1, then the set ek )Xu 1 a
clique in G, implying that w(G) > |V(K,)|=q¢>k+1, a contradiction.
Therefore, there exists some v € V(K,) such that | X, 2 2. Furthermore,
note that for every vertex y € X, there exists a vertex v(y) of K, —u such
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that y has no neighbors in X, since otherwise replacing the bag X, with
{y} would result in a minor model of K, smaller than M. Since |X,| > 2
and the subgraph of G induced by X, is connected, there exists a vertex
xr € X, such that the subgraph of G induced by X, \ {x} is connected.
(For example, take = to be a leaf of a spanning tree of G[X,].)

Let Z be the set of vertices z € V(K,) \ {u} such that x has a neighbor in
X.. Suppose first that [Z] > (¢—1)/2. Recall that X, is a bag in which

x has no neighbor. In particular, v(z) # v and v(z) € Z. Then, the bags
from (X, : z € Z) along with {z} and X,,) form an induced minor model

of Ko Since |Z]|+22>(q—1)/2+22> (2p—4)/2+ 2 = p, we obtain

a contradiction with the fact that G is Kp_—induced—minor—free.

Finally, suppose that |Z| < (¢ — 1)/2. The minimality of M implies that
Z is non-empty and for some w € Z we have (UveXw N@)) N X, = {z}.
Let Z"' = V(K,)\ (ZU{u}). Note that for every vertex z € Z' there exists
an edge from X, to X, \{x}. Since |Z|+|Z'| =q¢—1and |Z]| < (¢—1)/2,
we have |Z'| > (¢ — 1)/2. Furthermore, w € Z and hence w ¢ Z’. Thus,
the bags from (X, : z € Z’) along with X, \ {z} and X, form an induced

minor model of K|_Z/\+27 leading again to a contradiction with the fact that

G is Kp_ -induced-minor-free. O

Using similar techniques but with more involved arguments we can now
show that also the class of W-induced-minor-free graphs is (7, w)-bounded.

Theorem 9.3.5 (Theorem 4.2 in [76]). The class of Wy-induced-minor-
free graphs is (n,w)-bounded, with a binding function f(k) =k +5.

Proof. Fix a positive integer k and let G be a Wy-induced-minor-free graph
with w(G) = k. Let ¢ = k+ 5 (note that ¢ > 6) and F' be the graph K .
We claim that G does not contain F' as an induced minor. We denote by
U C V(F) the set of universal vertices in F. To derive a contradiction,
suppose that G contains F' as an induced minor and fix an induced minor
model M = (X, : u € V(F)) of Fin G such that the size of |J,cy X is
minimized. We will refer to this condition as property (x). We denote by
x and y the two non-adjacent vertices in F'. It is clear that if for all u € U
we have | X,| = 1, then the set |,y Xu is a clique in G, a contradiction

since |U| = ¢ —2 > k = w(G). Hence, there exists a vertex u € U such
that | X,| > 2.

Partition the bag X, arbitrarily into two non-empty bags X,, and X,,,
both inducing a connected subgraph in G. (For example, we can take
¢ to be a leaf of a spanning tree of G[X,] and set X,, = {¢} and
Xy, = Xy \ {¢}.) Let M’ be the collection of bags obtained from M by
removing the bag X, and adding the bags X, and X,,. Let F’ be the
graph obtained from the subgraph of G induced by the union of bags in
M' by contracting each of the bags in M’ into a single vertex. Note that
the vertex set of F" is (V(F) \ {u}) U {u1,us} and that M’ is an induced
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minor model of F” in G. In particular, I is an induced minor of G. Notice
that u; and wus are adjacent in F’. Let U’ = U \ {u} and observe that
U C V(F"). Note that dp:(uy) > 2, otherwise u; would only be adjacent
to ug, and thus we could replace X, with X,, in M to obtain an induced
minor model of F' in G that would contradict the fact that M satisfies
property (x). For the same reason, dp (us) > 2.

Suppose first that dp(u;) = 2. Let v be the neighbor of u; different from
ug. If v = z, then we could redefine X, = X, and X, = X, UX,, in M to
obtain an induced minor model of F'in G showing that M does not respect
property (x). Thus, v # z. Similarly, v # y. Consequently, v € U’. The
fact that M satisfies property (x) also implies that v is not adjacent to
uy. Since |U'| = |U| —1 = q— 3 > 2, there is a vertex w € U'\ {v}.
Note that w is not adjacent to u;, and hence must be adjacent to wo.
We obtain that {z,us,y,v} induces a Cy in F’ and {z,us,y,v} C N(w).
Therefore, G' contains Wy as an induced minor, a contradiction. Thus, we
have dp/(u1) > 3. By symmetry, we also have dp/(ug) > 3.

For i € {1,2}, let A; be the set of vertices in U" adjacent to w;. By
symmetry, it suffices to consider the following two cases depending on A;
and As.

Case (1) Al g AQ and AQ {q Al.

Let v € A1\ Ay and w € Ay \ A;. Notice that v and w are adjacent, and
therefore {v, uy, uz, w} induces a Cy in F’. Suppose first that u; is adjacent
to neither x nor y. Then uy is adjacent to both x and y. Furthermore, since
dp(u1) > 3, vertex u; must have a neighbor z € U’ \ {v,w}. Hence, every
vertex in {v, uy, uz, w} has a neighbor in the set {z,y, z}. Since {z,y, 2}
induces a connected subgraph of F’, we infer that Wy is an induced minor
of F’, and thus of GG, a contradiction. A similar conclusion is obtained if
uo is adjacent to neither x nor y. We may thus assume that u, is adjacent
to either x or y, and the same for uy. Since |U'| = |U| -1 =q¢—3 > 3,
there is a vertex z € U’\ {v, w}. Again, since {x,y, 2} induces a connected
subgraph of F’, we conclude that W, is an induced minor of F', and thus
of G, a contradiction. See Figure 9.3(a) for an illustration.

Case (2): A; C A,

Necessarily, As = U’, and hence uy cannot be adjacent to both x and y,
otherwise M would not satisfy property (x). Without loss of generality,
assume that wuo is not adjacent to x. Then wu, is adjacent to z.

Suppose first that Ay is a proper subset of As. Then there exists a vertex
w € Ay \ A;. Note that the vertices {z, ui, us, w} induce a Cy in F’. We
claim that A; = (). Indeed, suppose for a contradiction that there exists a
vertex v € Ay. Then v # w and v is universal in F’. Therefore, F’ contains
an induced copy of Wy in F” with vertex set {z, uy, us, w, v}; in particular,
W, is an induced minor of G, a contradiction. Thus, A; = (), as claimed.
This means that u; does not have any neighbors in U’, and hence using
the inequality dp (uy) > 3 we infer that Np/(u1) = {uo, z,y}. Recall that
|U’| > 3. Choose any vertex z € U’ \ {w}. Note that every vertex in F’
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Figure 9.3: Representation of the different cases considered in the proof of Theo-
rem 9.3.5. The induced minor contains all plain edges and is a subgraph of the graph
induced by plain and dotted edges. Black squared vertices induce a Cy and black round
vertices are contracted into a single vertex (see [76]).

is adjacent to either y or 2. In particular, since {y, 2} N {x, uy, up, w} =0
and {y, z} induces a connected subgraph of F’, we conclude that Wy is an
induced minor of F', and thus of G, a contradiction. See Figure 9.3(b) for
an illustration.

We may thus assume that A; = Ay. The fact that M satisfies property (*)
implies that u; cannot be adjacent to both z and y. Thus, since uy is
adjacent to z, it is not adjacent to y. Consequently, usy is adjacent to .
Now, observe that the graph obtained by contracting the edge {us,y} in
F’ is isomorphic to F'. Hence, we can modify M by redefining X, = X,
and X, := X, U X, and get a minor model of I'. However, this implies
that M does not respect property (%), a contradiction. See Figure 9.3(c)
for an illustration.

We conclude that G is K -induced-minor-free, and following Theo-
rem 9.3.4 we obtain that 7(G) < max{2q — 5, k} = 2k + 1. []

As a consequence of Theorem 9.3.4 and Theorem 9.3.5, together with
Corollary 9.3.3 we obtain the following two results.

Corollary 9.3.6 (Corollary 4.7 in [76]). The class of Wy-induced-minor-
free graphs is (tw,w)-bounded.

Corollary 9.3.7 (Corollary 4.6 in |76]). The class of Ky -induced-minor-
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free graphs is (tw,w)-bounded.

Finally, we finish the complete dichotomy in terms of one forbidden graph
by showing that the class of K3 -induced-minor-free graphs is (tw,w)-
bounded for which we need several definitions from the beginning of Chap-
ter 8. We make use of the following well known result due to Skodinis [184].

Theorem 9.3.8 (Skodinis [184]). Let s be a positive integer and let
G be the class of graphs in which all minimal separators have size
at most s.  Then, G is (tw,w)-bounded, with a binding function

f(k) = max{k,2s} — 1.
Using Theorem 9.3.8, we can now prove the following result.

Lemma 9.3.9 (Lemma 4.10 in [76]). For every q € N, the class of K -
induced-minor-free graphs is (tw,w)-bounded, with a binding function

f(k) = max{k,2R(k+1,q) —2} — 1.

Proof. Fix two positive integers ¢ and k, and let G be a K ,induced-
minor-free graph with w(G) = k. We claim that every minimal separator
in G has size at most R(k + 1,¢) — 1. Suppose this is not the case, and
let u and v be two non-adjacent vertices in G such that |[S| > R(k+1,¢q)
for some minimal u,v-separator S in G. Since |S| > R(k+ 1, q), Ramsey’s
theorem implies that G[S] contains either a clique of size k + 1 or an
independent set of size g. Since w(G[S]) < w(G) = k, we infer that
G[S] contains an independent set I of size q. Let C, and C, denote the
connected components of G — S containing v and v, respectively. By the
minimality of S, every vertex in S has a neighbor in C, and a neighbor
in C,. But now, the sets V(C,), V(C,), and {z} for all x € I form the
bags of an induced minor model of Ky, in G, a contradiction. Therefore,

every minimal separator in G has size at most R(k + 1,q) — 1. Using
Theorem 9.3.8, we obtain that tw(G) < max{k,2R(k+1,q)—2}—1. O

Due to Lemma 9.0.4 and Corollaries 9.3.6, and 9.3.7 we can now state the
following characterization.

Theorem 9.3.10 (Theorem 4.13 in [76]). Let H be a graph. Then, the
class of H-induced-minor-free graphs is (tw,w)-bounded if and only if one
of the following conditions holds: H Cis Wy, H Ciy Ky, H Cis Ky for
some q € N, or H Cj, thq for some q € N.

Proof. Suppose that the class of H-induced-minor-free graphs is (tw,w)-
bounded. Since, by Lemma 9.0.4, the class of balanced complete bipartite
graphs is (tw,w)-unbounded, H must be an induced minor of some com-
plete bipartite graph K, ,. Let M = (X, : u € H) be an induced minor
model of H in K,,. We define two types of bags in M: the tiny bags
containing a single vertex and the large bags containing at least 2 vertices.
It is clear that the set of large bags corresponds to a clique in H, while
the union of the tiny bags induces a complete bipartite subgraph ot K, ,,.
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Hence, H = K, , * K, for some p,q,r > 0 where * represents the join
of the two graphs that is, the addition of all possible edges between ver-
tices in K, , and vertices in K,. Without loss of generality, we assume
that p < ¢g. Observe that H needs to be planar, otherwise the class of
H-induced-minor-free graphs would contain the class of elementary walls,
which by Lemma 9.0.4 is (tw,w)-unbounded. Hence, we can analyze the
possible values for p, ¢, and r that allow H to be planar. Let us first notice
that p < 2, as otherwise H would contain K33 as a subgraph and would
thus not be planar. Slmﬂarly, r < 4 since otherwise H would contain K3 as
a subgraph. Also, it is easily observed that if p = 1, then H = Ko qo*x K1,
and similarly if ¢ = 1, then H = K, g * K, ;1. Hence, we may assume that

p € {0,2} and g # 1. Consider the following cases:

e Caser =4: Then p = q =0, otherwise K5 Cg H. Hence, H = K.

e Case r = 3: Then p = 0, otherwise K33 Cy H. If ¢ > 3, then
K33 Cs H, and thus ¢ < 2. If ¢ = 0, then H = K3, and if ¢ = 2,
then H = K .

e Case r = 2: Then p = 0, otherwise K33 C; H. This implies that
H= qu.

e Case r = 1: If p = 2, then ¢ = 2 (since otherwise K33 Cs H) and
H=W, It p=0, then H = K, .

e Case r = 0: Then H is edgeless or H = Ko .

Thus, H Cis Wy, H Cis K5, H Cis Koy, or H Cis K
as desu"ed

. for some q € N,
For the converse, suppose first that H Cis Ko, or H Cjq K + for some

g € N. It is not difficult to notice that K+q is an induced minor of Ky 441,

obtained by contracting one edge. From Lemma 9.3.9 it then follows that
the class of H-induced-minor-free graphs is (tw,w)-bounded. If H Ci, Wy

or H Cis Ky, then Corollaries 9.3.6 and 9.3.7 apply. ]



Chapter 10

Tree Decompositions with Bounded
Independence Number

Let G be a graph and let 7 = (T, {X;}tcv (1)) be a tree decomposition

of G. The independence number of T, denoted by a(7T), is defined as the
maximum independence number over all bags X; of a graph G[X] induced
on the vertices of X;. The tree-independence number of GG, denoted by
tree-a(G), is then the minimum independence number among all possible
tree decompositions of G. This parameter was initially introduced by
Yolov [209] (under the name a-treewidth) and rediscovered independently
in [77, 78|. Note that, unlike in treewidth, we are not interested in tree
decompositions of smallest possible width, but rather those with smallest
possible independence number.

Our main motivation to study the tree-independence number is as follows.
Consider a tree decomposition of constant width. Then, for a given prob-
lem, each bag of the tree decomposition interacts with an optimal solution
to the problem only in a bounded number of ways, all of which can be enu-
merated efficiently. Using this fact we may often use dynamic programming
approach which leads to efficient algorithms for the given problem. To gen-
eralize the idea, we may, instead of constant width, require that for each
bag there is only a polynomial number of ways in which an optimal solu-
tion can interact with the bag, all of which can be enumerated efficiently.
A particular case is when for each bag, the number of vertices that inter-
act with an optimal solution is bounded. In recent years, this approach
was independently suggested also by Maria Chudnovsky in several of her
talks [54, 55, 56, 57]. To this end, note that bounded tree-independence
number implies that the number of vertices that an optimal solution to the
MAX WEIGHT INDEPENDENT SET problem can contain from any given
bag is bounded. Given a graph G together with vertex weights for each
vertex of G, MAX WEIGHT INDEPENDENT SET problem asks to find an
independent set in G with the largest possible weight sum.

106
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10.1 Tree-independence number: basic properties

With Theorem 8.2.6 we have already mentioned a couple possible charac-
terizations of chordal graphs. We now show that chordal graphs can also
be characterized using the tree-independence number.

Theorem 10.1.1 (Theorem 3.3 in [77]). Let G be a graph. Then
tree-a(G) < 1 if and only if G is chordal.

Proof. Suppose that G is a chordal graph. Then, by Theorem 8.2.6, G
has a clique tree and thus tree-a(G) < 1. Conversely, if G has a tree
decomposition 7 with independence number at most one, then every bag
of 7 is a clique in G. Since T is a tree decomposition, for every vertex u of
G the subgraph T, of T induced by the set {t € V(T : u € X;} is a tree.
Furthermore, since each bag of T is a clique, two distinct vertices v and v
of G are adjacent if and only if they belong to a same bag, which is in turn
equivalent to the condition that 7, and T}, have a vertex in common. Thus,
G is the intersection graph of the collection of subtrees {7}, : u € V(G)}.
Applying Theorem 8.2.6, we conclude that G is chordal. O

In particular we have that tree-a(K,) = 1 for all n. We now prove that
the tree-independence number of all cycles (with the exception of Cj) is
equal to 2.

Theorem 10.1.2 (Lemma 4.2 in [78]). For every integer n > 4, the tree-
independence number of the cycle C), is exactly 2.

Proof. Since C,, is not a chordal graph, Theorem 10.1.1 implies that
tree-a(C,) > 2. Let vy,...,v, be an order of the vertices of C,, along
the cycle. We construct a tree decomposition T = (T,{X; : t € V(T)}) of
C,, as follows. The tree T is a path on (n — 2) vertices (t1,...,t,-2). For
eachi € {1,...,n—2}, the bag X;. consists of vertices {v;, v;+1,v,}. Note
that in every bag X of 7 there exist two consecutive vertices of C),, and
hence G[X] contains at least one edge. Furthermore, each bag X contains
exactly 3 vertices. This implies that a(G[X]) < |X| — 1 = 2. Hence,
a(T) < 2 and consequently tree-a(C),) < 2. []

Recall that a block-cactus graphs is a graph in which every block is a cycle
or a complete graph. Theorems 10.1.1 and 10.1.2 imply the following.

Corollary 10.1.3 (Corollary 4.3 in [78|). The tree-independence number
of any block-cactus graph is at most 2.

Next, observe that the trivial tree decomposition of any graph G (i.e., all
the vertices are contained in the unique bag) has independence number
equal to a(G). Therefore, the following observation immediately follows.

Observation 10.1.4 (Observation 3.7 in [77]). For every graph G we have
tree-a(G) < aG).

Let us now prove the following lemma, which we will also use in order to
prove that the tree-independence number is NP-hard to compute.
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Lemma 10.1.5 (Lemma 3.4 in [77]). Let G be a graph and let G’ be the
graph obtained from two disjoint copies of G by adding all possible edges
between them. Then tree-a(G') = a(G).

Proof. Let us denote by GG7 and G5 the two disjoint copies of GG such that
V(G) = V(G1) UV(Gsy). Observe that every independent set in G’ is
entirely contained in either Gy or G2 and hence, we have a(G’) = a(G).
Thus, the trivial tree decomposition of G’ has independence number equal
to a(G) and consequently tree-a(G’) < a(G).

For the converse direction, let us consider an arbitrary tree decomposition
T = (I, {Xi}ievr)) of G'. By Lemma 8.2.5, there exists a vertex
v € V(G) and a node t € V(T) such that Njv] C X;. Assume with-
out loss of generality that v € V(G). Then V(Gs2) C N(v) C X;, and
therefore a(G'[X;]) > a(G2) = «a(G). Thus, every tree decomposition
of G’ contains a bag inducing a subgraph with independence number at
least a(G). This shows that tree-a(G’) > «(G). Therefore, equality must
hold. []

As a consequence of Lemma 10.1.5, there exists an infinite family of graphs
attaining the equality from Observation 10.1.4, namely, the family of com-
plete balanced bipartite graphs K, ,

Corollary 10.1.6 (Corollary 3.6 in [77]). For every positive integer n, we
have
tree-a( K, ) =n.

On the other hand, the gap between tree-independence number and inde-
pendence number can be arbitrarily large, as can be seen already by trees.
Moreover, since computing the independence number of a graph is NP-hard
(see [147]), the hardness result follows directly from Lemma 10.1.5.

Theorem 10.1.7 (Theorem 3.5 in [77]). Computing the tree-independence
number of a given graph s NP-hard.

Another hardness result was obtained by Dallard et al. |75] where the
authors solved the problem of recognizing graphs with tree-independence
number at most k£ when k£ > 4.

Theorem 10.1.8 (Dallard et al. [75]). For every constant k > 4, it is
NP-complete to decide whether tree-a(G) < k for a given graph G.

Another way of bounding tree-independence number is by bounding
treewidth as is shown with the following theorem.

Theorem 10.1.9 (Theorem 3.8 in [77]). For every graph G, tree-a(G) <
tw(G) + 1, and this bound is sharp: for every integer k # 2 there exists
a graph G ‘such that tree- a(G) =k and tw(G) =k — 1.

Proof. From the definitions it directly follows that the independence num-
ber of any tree decomposition is at most its width plus one. Thus, taking 7



CHAPTER 10. TREE DECOMPOSITIONS WITH BOUNDED INDEPENDENCE NUMBER 109

to be a tree decomposition of G' with minimum possible width, we obtain
tree-a(G) < a(T) < width(T) + 1 = tw(G) + 1.

For k = 1, the graph K satisfies tree-a(K7) = k and tw(K;) =k — 1.

Fix k > 3, let S = {1,...,k}, and let G be the graph obtained from a
complete graph with vertex set S by replacing each of its edges 77 with
k paths of length two connecting ¢ and j. We claim that tw(G) = k — 1
and tree-a(G) = k. Since tree-a(G) < tw(G) + 1, it suffices to show that
tw(G) < k — 1 and that tree-a(G) > k.

The inequality tw(G) < k—1 follows from Theorem 8.2.1 and the observa-
tion that the graph G’ obtained from G by adding to it all edges between
vertices in the set S is a chordal graph with clique number k.

It remains to show that tree-a(G) > k. Consider an arbitrary tree decom-
position T = (T, {X; }+ev(r)) of G. We claim that there exists a bag of T
having independence number at least k. This is clearly the case if there
exists a bag X; such that S C X;. Thus, we may assume that no bag of T
contains S. By Lemma 8.2.4, there exist two distinct vertices ¢, 7 € S that
are not contained in the same bag of 7. Since ¢ and j are not contained
in a same bag of 7, the subtrees T; and T} are disjoint. Note that, by
construction of G, the vertices ¢ and j have k common neighbors. Let
u € N(i) N N(7) be such a vertex. Then u belongs to a bag in 7 contain-
ing ¢, and similarly for j. In other words, T}, intersects T; and T}, which
implies that 7; UT,, UTj; is connected. Let P be the path in T" connecting
T; and T}. Clearly, P is a subgraph of T}, and thus for any node t € P,
the bag X; of T contains u. Since this holds for every common neighbor
of ¢ and 7, every such bag contains N (i) N N(j), which is an independent
set of size k. Thus, as T can be any tree decomposition of G, we conclude
that tree-a(G) > k. []

Note also that in Theorem 10.1.9 we require that k& # 2, otherwise, if
we would have k = 2, then that would imply that tree-a(G) = 2 and
tw(G) = 1. However, tw(G) = 1 implies that G is acyclic. In particu-
lar, this implies that G is chordal, which is a contradiction with Theo-
rem 10.1.1.

We next show that tree-independence number behaves well under induced
minors. Observe that deleting edges can increase the tree-independence
number of a graph, thus we may not consider monotonicity under minors.

Proposition 10.1.10 (Proposition 3.9 in [77]). Let G be a graph and G’
an induced minor of G. Then tree-a(G’) < tree-a(G).

Proof. Let T = (T,{Xi}ev(r)) be an arbitrary tree decomposition of
G. First, we show that the deletion of a vertex does not increase the
tree-independence number. Let v be a vertex of G. Let T’ be the tree
decomposition obtained from 7 by removing v from all of the bags that
contain it. Observe that 7' is a tree decomposition of G — v. Clearly,

a(T") < «(T), and hence tree-a(G — v) < tree-a(G).
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Now, we show that the contraction of an edge does not increase the tree-
independence number. Let e = uv be an edge of G and G/e denote the
graph obtained from G after contracting the edge e. We denote by w
the vertex of G/e that corresponds to the contracted edge. We construct
a tree decomposition 7' = (T, {X{}cv(r)) (where T' is the same tree as

in T) of G/e as follows. For each node t of 7', we have two cases: if
X; contains neither u nor v, then we set X; = X;; otherwise, we set
X/ = (Xi\{u,v})U{w}. We claim that 7" is a tree decomposition of G /e
such that a(7") < a(T). First, observe that T’ is a tree decomposition
of G /e, as it satisfies all the defining conditions of a tree decomposition.
To verify that «(7") < a(T), fix a bag X/ of 77 and let I C X/ be
an independent set in G/e. If w ¢ I, then I also corresponds to an
independent set in G[X], and hence |I| < a(G[X;]). On the other hand,
if w € I, then either (I'\ {w})U{u}) or (I'\ {w})U{v}) is an independent
set in G[Xt] In particular, we again get that |I| < oz(G[Xt]). Thus, we
have in both cases that |I| < a(T). It follows that a(7") < a(T), and
hence tree-a(G/e) < tree-a(G).

If G’ is an induced minor of G, then G’ can be obtained from G by a
sequence of vertex deletions and edge contractions, which implies that
tree-a(G') < tree-a(G). O

Finally, we now show that bounded tree-independence number implies
(tw,w)-boundedness and the existence of a polynomial (tw,w)-binding
function.

Lemma 10.1.11 (Lemma 3.2 in [77]). For every positive integer k,
the class of graphs with tree-independence number at most k is (tw,w)-
bounded, with a binding function f(p) = R(p+ 1,k + 1) — 2, which is a
polynomial of degree k.

Proof. By Lemma 8.1.2 R(p, k) < (p?if) for all positive integers p and

k. For fixed k, this is a polynomial in p of degree k — 1.

Let us now fix p € Z, and let G be a graph such that w(G) = p and
tree-a(G) < k. Fix a tree decomposition 7 of G with independence num-
ber at most k. Note that every bag of 7 induces a subgraph of G with
independence number at most k£ and clique number at most p. Thus, for
every bag X of T, Ramsey’s theorem implies that | X | < R(p+1,k+1)—
It follows that tw(G) < R(p+ 1,k + 1) — 2, as claimed.

10.2 Tree-independence number: forbidding a struc-
ture

In the previous chapter we gave a complete characterization of (tw,w)-
bounded graph classes in terms of a single forbidden graph with respect
to one of the six considered relations (subgraph, topological minor, minor,
and their induced variants). In this and the following sections, we in fact
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prove that the same characterization in terms of a single forbidden graph
holds for classes of graphs of bounded tree-independence number.

First, let us prove that the same characterization holds for the subgraph,
topological minor, and minor relations.

Theorem 10.2.1 (Theorem 7.3: parts 1-3 in [78|). For every graph H,
the following statements hold.

1. The class of H-subgraph-free graphs has bounded tree-independence
number if and only if H € S.

2. The class of H-topological-minor-free graphs has bounded tree-
independence number if and only if H is subcubic and planar.

3. The class of H-minor-free graphs has bounded tree-independence
number if and only if H is planar.

Proof. Fix a graph H and one of the three graph containment relations.
Let G be the class of graphs excluding H with respect to this rela-
tion. Assume first that G has bounded tree-independence number. Then,
by Lemma 10.1.11, G is (tw,w)-bounded. Thus, for each of the three
graph containment relations, the forward implication holds due to Theo-
rems 9.1.4, 9.1.6, and 9.1.7.

Conversely, Theorems 9.1.4, 9.1.6, and 9.1.7 also imply that G has bounded
treewidth. Then, by Theorem 10.1.9, the tree-independence number is
bounded for the class G. n

For the remaining three graph containment relations, let us first prove the
following, which is a part of the results of Theorem 7.3: parts 4-6 in [78].

Theorem 10.2.2. Let H be an edgeless graph and let G be the class of
H-free graphs. Then G has bounded tree-independence number.

Proof. Let H be an edgeless graph with n vertices and let G be H-free.
Then every graph in G has independence number at most n — 1 and thus,
by Observation 10.1.4, G has bounded tree-independence number. ]

We now give a characterization of graph classes with bounded tree-
independence number in terms of a single forbidden induced subgraph.

Theorem 10.2.3 (Theorem 7.3: 4 in [78]). Let H be a graph. The class
of H-free graphs has bounded tree-independence number if and only if H
15 either an induced subgraph of P3 or an edgeless graph.

Proof. Fix a graph H and let G be the class of H-free graphs. Assume
that G has bounded tree-independence number. By Lemma 10.1.11, G is
(tw,w)-bounded. Then, by Theorem 9.2.1, the forward implication holds.

Conversely, if H is an edgeless graph, then, by Theorem 10.2.2, G has
bounded tree-independence number by |V (H)| — 1. We may thus assume
that H is an induced subgraph of P3. In that case, for every graph G in
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G, every connected component of G is a complete graph and thus chordal.
By Theorem 10.1.1, G has tree-independence number 1. It follows that G
has bounded tree-independence number by 1. ]

Next, we give a characterization of graph classes with bounded tree-
independence number in terms of a single forbidden induced topological
minor.

Theorem 10.2.4 (Theorem 7.3: 5 in [78]). Let H be a graph. The class
of H-itm-free graphs has bounded tree-independence number if and only if
H is either an induced topological minor of Cy or K, , or H 1is edgeless.

Proof. Fix a graph H and let G be the class of H-itm-free graphs. Assume
that G has bounded tree-independence number. By Lemma 10.1.11, G is
(tw, w)-bounded. Then, by Theorem 9.2.5, the forward implication holds.

Conversely, it H is edgeless, then, again by Theorem 10.2.2, G has bounded
tree-independence number by |V (H)| — 1. Next, assume that H is an in-
duced topological minor of C5. Then, G is a subclass of the class of Cy-itm-
free graphs. By Observation 8.0.1, G is a subclass of chordal graphs. By
Theorem 10.1.1, G has bounded tree-independence number by 1. Finally,
we may assume that A is an induced topological minor of K, . Then,
by Lemma 9.2.3, G is a subclass of the class of block-cactus graph. By
Corollary 10.1.3, G has bounded tree-independence number by 2. ]

The cases when H is an induced minor are somewhat more complicated
and will be considered in the following sections.

10.3 Tree-independence number: K, -im-free graphs

Let G be a graph. The pmc-independence number of G, denoted by
apme(G), 1s the maximum independence number of a subgraph of G in-
duced by some potential maximal clique in G (see Section 8.3 for the defi-
nition). Let pu denote the matriz multiplication exponent, i.e., the smallest
real number such that two n X n binary matrices can be multiplied in time
O(n#*) for all € > 0. A result from [9] shows that pu < 2.37286. We
can now prove that the pmc-independence number is an upper bound on
tree-independence number.

Lemma 10.3.1 (Lemma 3.3 in [78|). Let G be a graph and n be the
number of vertices of G. Then tree-a(G) < apymc(G). Moreover, a tree
decomposition of G with at most n nodes and independence number at
most Qpm(G) can be computed in time O(n*logn).

Proof. First, we compute a minimal triangulation G’ of G in time
O(n*logn) due to [130]. Since every minimal triangulation is a chordal
graph, we then use an algorithm due to Berry and Simonet [25] to compute
in time O(|V(G")| + |E(G")|) = O(n?) a clique tree T = (T,{X; : t €
V(T)}) of G" with at most |V (G’)| = n nodes. Note that every bag of
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T is a maximal clique of G/, and hence a potential maximal clique in G.
Furthermore, clique tree 7T is also a tree decomposition of G. Since the
independence number of this tree decomposition is at most qm.(G), this
gives an upper bound on the tree-independence number of G.

Let us now consider the class of K -im-free graphs. Note that for ¢ = 1,
Ko7 = Pj and the class of Ky j-im-free graphs is a subclass of the class
of chordal graphs and so the tree-independence number of the class is
bounded by 1. Note that for any ¢ > 2, the class of K ,im-free graphs
contains the class of chordal graphs (see Observation 8.0.1), in particular,
if ¢ > 3, the class of chordal graphs is properly contained in the class of
K 4-im-free graphs.

Lemma 10.3.2 (Lemma 3.2 in [78]). Let q be a positive integer. A graph
G s Ky g-induced-minor-free if and only if every minimal separator in G
induces a subgraph with independence number less than q.

Proof. Fix ¢ > 1 and a graph G. Let S be a minimal separator in G,
and let C' and D be two S-full components of G — S. Note that for any
independent set I of G contained in S, deleting from G all vertices in
V(G)\ (V(C)UV(D)UI) and then contracting all edges fully contained
within C' or D yields a graph isomorphic to Ky 7|, showing that G contains
Ky 7 as an induced minor. Thus, if G is K3 4induced-minor-free, then

a(G[9]) < gq.

Suppose now that G contains K5, as an induced minor. Fix a bipartition
{A, B} of Ky, such that A = {a1,a2} and B = {b1,...,b,}, and let
M = (X, : u € V(Ky24)) be an induced minor model of Ky, in G that
minimizes the sum ), 5 |Xp|. Since each vertex b € B has degree two
in Ky,, the minimality of M implies that |X3| = 1 for all b € B. Let
I = UpepXp and W = T U X, U X,,. Since M is an induced minor
model of K5, in G, the set I is independent in G, while the sets X,, and
Xa, induce connected subgraphs of G with no edges between them. In
particular, since every vertex in I has a neighbor in G in both X, and
Xa,, we infer that I is a minimal separator in the subgraph of G induced
by W. Furthermore, since I U (V(G) \ W) separates X,, from X, in G,
there exists a minimal separator S in GG such that I C S. Consequently,
a(GIS]) = || = |B| = g. .

Qbserve that Theorem 8.3.5 and Lemma 10.3.2 directly imply the follow-
ing.
Lemma 10.3.3 (Lemma 3.9 in |78]). For every integer ¢ > 2 and every

Ky ;-induced-minor-free graph G, the pmc-independence number of G is
at most 2q — 2.

Note that in the case when ¢ = 2, the upper bound given by Lemma 10.3.3
is not sharp as chordal graphs have pmc-independence number equal to
1 due to the fact that the potential maximal cliques coincide with the
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maximal cliques. Hence, for every chordal graph G, apm.(G) < 1. The
bound can also be improved for the case ¢ = 3.

Lemma 10.3.4 (Lemma 3.10 in [78]). Let G be a K3 3-induced-minor-free
graph. Then apm(G) < 3.

Proof. Suppose for a contradiction that G is a Kjs-induced-minor-free
graph that contains an independent set I of size 4 that is contained in a
potential maximal clique X. By Theorem 8.3.1, every two non-adjacent
vertices in X are in the neighborhood of some component of G — X. We
can thus fix, for any two distinct vertices z,y € I, a component C(x,y) of
G — X in which both x and y have a neighbor. Next, we show that these
components are pairwise distinct. Suppose that this is not the case. Then
there exists a component C' of G — X with at least three neighbors in 1.
By Theorem 8.3.1, the neighborhood of V(C') is a minimal separator in
G. However, by Lemma 10.3.2 no minimal separator in GG contains three
pairwise non-adjacent vertices, which implies that |[N(V(C)) N I| < 2,
a contradiction. To complete the proof, let us fix, for any two distinct
vertices x,y € I, an arbitrary induced x, y-path P(z,y) in G such that all
internal vertices of P(x,y) belong to C(z,y). Writing I = {z,y,u,v}, we
now see that x, y, the path P(z,y), the path formed by taking P(x,u)
together with P(u,y), and the path formed by taking P(z,v) together
with P(v,y) form an induced subgraph of G isomorphic to a subdivision
of Ky3. This contradicts the fact that G is K s-induced-minor-free. [

For Kjs-im-free graphs, the bound given by Lemma 10.3.4 is achieved
by the 6-cycle. This follows from the fact that Cg = (v1, v2, v3, v4, U5, Vg)
has a tree decomposition with exactly two bags X; = {vy,vs3,v5} and

Xy = {vg,v4,v6}, formed by two disjoint maximum independent sets.
Thus, apm(Cs) = 3.

Using Lemmas 10.3.3 and 10.3.1, we immediately get the following result.

Theorem 10.3.5 (Theorem 3.11 in [78]). For every integer ¢ > 2 and ev-
ery

K 4-induced-minor-free graph G with n wvertices, the tree-independence
number of G is at most 2qg — 2. Moreover, a tree decomposition of G
with at most n nodes and with independence number at most 2q — 2
can be computed in time O(n*logn), where p < 2.37286 is the matriz
multiplication exponent.

Recall that the tree-independence number of the complete bipartite graph
K, 14-1 is equal to ¢ — 1 (see Corollary 10.1.6) which gives a lower
bound on the tree-independence number of K -im-free graphs, while The-
orem 10.3.5 gives the upper bound of 2¢—2 for such graphs. Thus, for every
graph G in the class of Ky -im-free graphs, ¢ — 1 < tree-a(G) < 2¢ — 2.
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10.4 Tree-independence number: refinements

In order to prove that the tree-independence number is bounded in the
classes of WW,-im-free graphs and K; -im-free graphs we will use slightly
different definitions. Although, we could apply a very similar approach as
will be described in the remaining sections of this chapter to prove that
the tree-independence number is bounded in the above mentioned graph
classes, this will allow us to obtain better algorithmic results presented in
the next chapter.

Definition 10.4.1 (Definition 4.1 in [77]). Given a non-negative in-
teger ¢, an {-refined tree decomposition of a graph G is a pair
T = (T, {(Xt, Up)tev(r)}) such that T = (T, {X;}rev(r)) is a tree decom-
position of G, and for every ¢t € V(T) we have U; C X; and |U;| < £. We
refer to T as the underlying tree decomposition of T.

Note that any concept defined for tree decompositions is naturally defined

also for the f-refined tree decompositions by considering the underlying
tree decomposition.

Using the definition of the ¢-refined tree decompositions, we can now use
the sets U; to give the following refined definition of the tree-independence
number.

Definition 10.4.2 (Definition 4.2 in [77]). Given a non-negative integer

¢, the residual independence ‘number of an f-refined tree decomposition 7
of a graph G, denoted by a(7), is defined as

a(T) = max a(GIX\ U]

The (-refined tree-independence number of a graph G is defined as the
minimum residual independence number of an /-refined tree decomposition

of G, and denoted by (-tree-a(G).

Observe that each (-refined tree decomposition 7 = (T, {(X4, Up)revin) })

of a graph G is also an (¢ + 1)-refined tree decomposition. It follows that
for all graphs G, (¢ + 1)-tree-a(G) < fl-tree-a(G) for all £ > 0. Fur-
thermore, setting Uy = () for all ¢ € V(T') we get that for each ¢ > 0,

&(7\‘) = «(T), where T is the underlying tree decomposition of T. Thus,
the following observation immediately follows.

Observation 10.4.3 (Observation 4.3 in [77]). For every graph G and
every integer ¢ > 0, we have

l-tree-a(G) < tree-a(G) < l-tree-a(G) + L.
In particular, equalities hold when ¢ = 0, i.e., O-tree-a(G) = tree-a(G).

Using Observation 10.4.3 together with Lemma 10.1.11, we can now state
the following result, which is a generalization of Lemma 10.1.11 in terms
of the f-refined tree-independence number.
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Lemma 10.4.4 (Lemma 2.11 in [78]). For every two non-negative in-
tegers k and €, the class of graphs with £-refined tree-independence
number at most k is (tw,w)-bounded, with a binding function
flp) =R+ 1,k+1)+—2, which is a polynomial of degree k. In
particular, for every positive integer k, the class of graphs with tree-
independence number at most k is (tw, w)-bounded, with a binding function

fp) =R+ 1Ek+1)—2.

Observe that Theorem 10.1.1 states that a graph G has a O-refined tree
decomposition with residual independence number at most 1 (also inde-
pendence number 1) if and only if G is chordal. In addition, Theorem 8.2.3
states that a chordal graph satisfies tw(G) = w(G) —1. We now generalize
this result for every integer ¢ > 0.

Proposition 10.4.5 (Proposition 4.5 in |77]). Let ¢ be a non-negative in-

teger and let G be a graph admitting an £-refined tree decomposition T with

residual independence number at most 1. Then wz’dth(?) <tw(G) +{ and
tw(G) <w(G) — 1+ L.

Proof. Let T = (T, {(Xs, Up)tev(r)}) be an l-refined tree decomposition
and let X; be a largest bag of the underlying tree decomposition. Note

that since 7 has residual independence number at most 1, we get that
X \ U; induces a clique in G. Using Theorem 8.2.3, we have that

width(T) = |X,| — 1 = U] + | X, \Uy| =1 < £+ w(G) — 1< 0+ tw(G).

In addition, since each bag induced a clique in G after removing at most
¢ vertices, it follows that tw(G) < w(G) — 1+ ¢. O

We will now give some algorithmic results that will be used in the next
chapter. We start by showing that, for a clique cutset C' with a cut-
partition (A, B,C), if we are given the f-refined tree decompositions of
the graphs G[AUC] and G[B U], then we can combine the two in order
to obtain an f-refined tree decomposition of the whole graph in linear time
with respect to the size of the starting f-refined tree decompositions.

Proposition 10.4.6 (Proposition 4.6 in |[77|). Let C' be a clique cutset in a
graph G and let (A, B,C) be a cut-partition of G. Let G4 = G[AUC] and

Gp = G[BUC], and let T4 and Tp be L-refined tree decompositions of G

and G, respectively. Then we can compute in time O(|Ta| + \TBD an (-
refined tree decomposition T of G such that a(T) max{oz(TA) (7]9)}

Proof. Since C'is a clique in G4 and in G, by Lemma 8.2.2 there exists a
bag X 4 of T4 such that C' C X4, and a bag Xp in Tp such that C' C Xp.

Take the disjoint union of the tree T4 of 7\;1 with the tree Tg of 7\79, and
add an edge connecting the nodes corresponding to X4 and Xp. This
results in a tree such that, if we combine the two assignments of the pairs
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(X, Uz) to the nodes of the trees of Ta and Tp into one, we obtain an

(-refined tree decomposition T = (T, {(X4, Up) hevery) of G. Indeed, since
every vertex of G is a vertex of G4 or G g, every vertex of (G is in at least

one bag of 7. A similar argument shows that for every edge of GG, both
endpoints belong to a common bag. Finally, let us verify that for every
vertex u € V(G) the subgraph of T induced by the set of bags containing
u is connected. If u € A U B, then this follows from the corresponding

properties of 7\}1 and 7}3. Suppose now that u € C. Then the subgraph

T4(u) of T4 induced by the set of bags of T4 containing w is connected and
contains the node corresponding to X4. Similarly, the subgraph T (u)

of Tg induced by the set of bags of Tp containing u is connected and
contains the node corresponding to Xp. Thus, the subgraph T'(u) of T
induced by the set of bags of T containing w is isomorphic to the graph
obtained from the disjoint union of T4(u) and Tp(u) together with the
edge between X 4 and Xp, and hence T'(u) is connected. By construction,

T is an (-refined tree de/zgomposition with residual independence number
a(T) = max{a(Ta),a(Ts)}. Finding a bag X4 such that C C X4 can

A~

be done in time O(|T4]), and similarly for Xp. Thus, the time complexity
of the above procedure is O(|Ta| + |T5|)- []

Taking ¢ = 0, as a corollary, we get the following.

Proposition 10.4.7 (Proposition 3.10 in [77]). Let C' be a clique cutset in
a graph G and let (A, B,C) be a cut-partition of G. Let G4 = G[AU C]
and Gp = G[BUC], and let Ty and Tp be tree decompositions of G 4
and Gp, respectively. Then we can compute in time O(|Tal + |Tg|) a tree

decomposition T of G such that a(T) = max{a(Ta),a(Tp)}.
Moreover, Proposition 10.4.7 further implies the following result.

Corollary 10.4.8 (Corollary 3.11 in [77]). Let C' be a clique cutset in a
graph G, let (A, B,C) be a cut-partition of G, and let G4 = G[A U C]
and Gp = G[BUC]. Then

tree-a(G) = max{tree-a(G4), tree-a(Gp)} .

Proof. To justify that tree-a(G) = max{tree-a(G4), tree-a(Gp)}, note
first that G4 and Gp are induced subgraphs of G and hence

max{tree-a(G ), tree-a(Gp)} < tree-a(G)

by Proposition 10.1.10. For the converse inequality, let 74 and Tg be tree
decompositions of G 4 and Gp, respectively, such that o(74) = tree-a(G 4)
and a(7Tp) = tree-a(Gp). Proposition 10.4.7 implies the existence of a tree
decomposition T of G such that (7)) = max{a(74),a(7Tp)}. It follows
that

tree-a(G) < a(T)
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= max{a(Ta), o(Tp)}
= max{tree-a(G4), tree-a(Gp)} . O

10.5 Tree-independence number: reductions

We will now use block-cutpoint trees and SPQR. trees in order to reduce
the problem of computing ¢-refined tree decompositions with small residual
independence number to triconnected components.

Let f : ZT x Z* + Z* be a function. We say that [ is superadditive if
the inequality

fx1+ 2o, y1 +12) > [, y1) + f22,92)

holds for all x1,x9,y1,y2 € Z". Note that any superadditive func-
tion is non-decreasing with respect to both coordinates. Indeed, for all
T1, T2,y € Z* with z1 < x9, we have f(z1,y) < f(z1,y) + f(22 —$1,0) <
f (s, y), which shows that f is non-decreasing in the first coordinate.

similar argument shows that f is non-decreasing in the second coordinate.

10.5.1 Reduction to 2-connected graphs

First, we apply Proposition 10.4.6 to clique cutsets of size at most one
in order to reduce the problem to the case of 2-connected graphs in a
hereditary graph class G.

Proposition 10.5.1 (Proposition 4.1 in [78]). Let G be a hereditary graph
class for which there exist non-negative integers k and € such that for each
2-connected graph in G, with n vertices and m edges, one can compute in
time f(n,m) an K—reﬁned tree decomposition with at most g(n, m) nodes
and residual independence number at most k, where f and g are super-
additive functions. Then, for any graph G in G with n > 1 vertices and
m edges, one can compute in time O(n+m+ f(2n,m)) an (-refined tree
decomposition of G with O(n+g(2n,m)) nodes and residual independence
number at most max{2 — {, k}.

Proof. Let G € G be a graph with n > 1 vertices and m edges. Using
Breadth-First Search and the Hopcroft-Tarjan algorithm [134], we com-
pute in time O(n + m) the connected components Gy, ..., G, of G and
the corresponding block-cutpoint trees 11, ..., T),. Let Ba(G;) and Bs(G;)
denote the sets of blocks of G; with exactly two, resp. at least three, ver-
tices. For each component GG; we compute an f-refined tree decomposition

,/7\~Gi of G; recursively as follows.

At each step of the recursion, let G be the current graph and B be a leaf
block of G. Initially, we take G, = G;.

1. First, if G% = B, then we consider the following two cases.
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If B € By(G;), then B is a complete graph of order at most two.

In this case we compute the f-refined tree decomposition TG; of G

consisting of a single node ¢t whose bag X; is V(G?) and the set Uy
to be any subset of V(G?) with min{¢, 2} vertices. We can compute

T, in constant time; note that this f-refined tree decomposition of
G satisfies

0(Te;) = a(Gi[X \ U]
< | X — U]
= 2 — min{/, 2}
= max{2 — ¢,0}
< max{2 —{, k}.

Otherwise, B € B3(G;) is 2-connected, and we compute in time
FUV(G)I, |E(G;)]) an L-refined tree decomposition T¢r of G} with

at most f(|V (G|, |E(G))|) nodes and residual independence num-
ber at most kK < max{2 —{, k

2. Second, if G, # B, let (X,Y,Z) be a cut-partition where
X =V(B )\{v} Y = V(G}) \V(B), and Z = {v} for the unique

cut-vertex v of G} contained in B. We then compute an ¢-refined

tree decomposition ?G’ of G by recursively computing (-refined tree

decompositions of the block B and the graph G;[Y U Z], and applying
Proposition 10.4.6 to the cut-partition (X,Y, Z).

This recursive procedure takes time

O(IB(G)+ > f(V(B),IEB))

B€B3 )

=0 T)l+ Y f(V(B)IEB))

BeB(G;)

The total number of nodes of 72;1. is upper bounded by

Bo(G)l+ ) g(IV(B),|IE(B)))

BGBg )

L)l + Z g\V ) E(B)]) -

BeB(G

IA

Finally, we create an f-refined tree decomposition T of G with residual
independence number at most max{2 — ¢, k} by combining the ¢-refined
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tree decompositions 7A'C;1, . ,7A'C;p of its connected components in the ob-

vious way (for example, by iteratively applying Proposition 10.4.6 with
respect to a sequence of cut partitions involving the empty clique Cutset)

The number of nodes of 7 is the sum of the numbers of nodes of TG over
all i € {1,...,p}. The overall running time of the algorithm is

Z\V \+Z Z fIV )| 1E(B)])

=1 BeB(G

An inductive argument based on the number of blocks shows that for
every connected graph H with at least one cut-vertex (and thus with at
least two blocks), we have |C(H)| < |B(H)| < |V(H)| — 1. Thus, for all
i€ {l,...,p}, we have |V (1;)| = |B(G;)|+|C(G:)| < 2|V (G;)| — 3, which

implies > 7 |[V(T;)| = O(n). Furthermore, for all i € {1,...,p}, we have
Y. VBI=IVG)+ Y (drv) 1)
BeB(G;) veC(Gy)

= [V(Gi)| + |E(T3)| — |C(Gy)]
= [V(G)|+ [V(T3)| =1 = |C(Gy)]
= [V(Gi)| +1B(Gi)| -1
< 2[V(Gi)| -2

and

Y. BB Y |EB) =BG

Since f is superadditive and non-decreasing in the first coordinate, we have

Z fIV IEB))<f{ > V(B Y IE®B)

BeB(G BeB(Gy) BeB(G;)
< [ 2V(G)| =2, [E(G)]) -

Applying the superadditivity and monotonicity properties of f once again,
we obtain

> FEIVG) -2 |B(G <f<2z|v |—2p,Z\E )
< f(2n,m).

and the running time of the algorithm is O(n+m+ f(2n,m)), as claimed.
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The number of nodes of ? s at most

p

Dol V@I+ Y g(IVB)LIEMB))

1=1 BEB(GZ)

Applying the same arguments as we did above for the function f to the

function g leads to an upper bound for the number of nodes of T given by
O(n + g(2n,m)). ]

10.5.2 Reduction to triconnected components

Let G a 2-connected graph and S be an SPQR-tree of G. Recall that
every R-node a of S corresponds to the triconnected component GG, of G.
As already observed in Lemma 8.5.1, G, is an induced topological minor
of G. Moreover, the subgraph H of G induced by V(G,) is a spanning
subgraph of G, and every edge in G, that is not an edge of GG is a virtual
edge. Suppose that GG, has bounded tree-independence number. In order
to infer that H has bounded tree-independence number, then, for the set
F of virtual edges within GG,, we must be able to find a vertex cover S of
F with a bounded number ¢ of vertices. Note that this is in line with the
notion of f-refined tree decompositions, as deleting every vertex of S from
G, results in an induced subgraph of G.

An easy example shows that the independence number of triconnected
components can be small while the tree-independence number is large (see
also Example 4.8 in [78]). Consider a graph G obtained from the complete
graph K,, n > 4, by subdividing each edge once. Note that the unique
triconnected component G, corresponding to the unique R-node a of G
is formed by the original vertices of K, thus forming a clique in G,. It
follows that G, has independence number 1 while G contains a K;; as an
induced topological minor, where ¢ = |4 |. Thus, by Corollary 10.1.6 and

Proposition 10.1.10, we obtain that tree-a(G) > tree-a(K; ;) = [5].

We will now give several definitions that will help us reduce the problem of
computing ¢-refined tree decompositions with small residual independence
number from 2-connected graphs to triconnected components.

Definition 10.5.2 (Definition 4.9 in |78]). Let G be a graph, F* C E(G)
and G’ a subgraph of G. We say that a set U C V(G') is an F™*-cover of
G’ if U contains at least one endpoint of every edge in E(G') N F*.

Definition 10.5.3 (Definition 4.10 in [78]). Let G be graph and

—~

F* C E(G). An f-refined tree decomposition T = (T, {(X¢, Up)tev(r)})
of G is said to be F*-covering if for every node t € V(T') the set U; is an
F*cover of G[X|.

Definition 10.5.4 (Definition 4.11 in [78]). Let G be a graph class, let
G be a graph in G, and let F* C E(G). We say that F* is a G-safe set
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of edges of G if deleting from G any subset of F* results in a graph that
belongs to G.

Definition 10.5.5 (Definition 4.12 in [78]). Let G be a graph, F' C E(G),
and 7T a tree decomposition (either usual or ¢-refined) of G. An F-mapping

of 7 is a mapping with domain F' assigning to every edge e € I’ a node
te € V(T') such that e C X;..

Note that for any graph G, any set F' C E(G), and any (usual or ¢-refined)
tree decomposition 7 of G, there exists an F-mapping of 7, since the
endpoints of every edge in GG are contained in some bag of 7. Furthermore,
it is clear that an F-mapping of 7 can be computed in polynomial time.
However, for a more efficient computation of an F-mapping of 7T, it may
be best to compute it together with 7. To this end, we define the following
property of a graph class and also a problem associated with it.

Definition 10.5.6 (Definition 4.13 in [78|). Given two non-negative in-
tegers k and ¢, a graph class G is said to be (k,{)-tree decomposable if
for every 3-connected graph G € G and any G-safe set F™* of edges of G,
there exists an F*-covering (-refined tree decomposition of G' with residual
independence number at most k.

(k,¢)-TREE DECOMPOSITION(G)
Input: A 3-connected graph G € G and two sets of edges F* C F C
E(G) such that F* is G-safe.
Output: An F*-covering f-refined tree decomposition T of G with resid-
ual independence number at most £ and an F-mapping of T.

For a (k,{)-tree decomposable graph class G closed under induced topo-
logical minors, the following key lemma reduces the problem of computing
(-refined tree decompositions with bounded residual independence num-
ber of 2-connected graphs in G to the (k,¢)-TREE DECOMPOSITION(G)
problem.

Lemma 10.5.7 (Lemma 4.14 in [78|). Let G be a graph class closed
under induced topological minors for which there exist non-negative in-
tegers k and ¢ such that G is (k,{)-tree decomposable and (k,l)-TREE
DECOMPOSITION(G) can be solved in time f(n,m) on graphs with n ver-
tices and m edges so that the resulting £-refined tree decomposition has
g(n,m) nodes, where f and g are superadditive functions. Then, for
any 2-connected graph G in G, with n vertices and m edges, one can
compute in time O(m + f(2n,3m)) an (-refined tree decomposition of G
with O(n + g(2n,3m)) nodes and residual independence number at most
max{3 — ¢, k}.

Proof. Let G be a 2-connected graph in G with n vertices and m
edges. We compute in time O(n + m) an SPQR-tree S of G. Let

—~

T =(T,{(X;,U;) : t € V(T)}) be the O-refined tree decomposition of G
corresponding to the SPQR-tree S. Note that 7T is f-refined. Our goal is
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to obtain an f-refined tree decomposition of G' of bounded residual inde-
pendence number by updating 7 iteratively, as follows.

First, we iterate over all P-nodes b in S and set U, to be any subset of
Xy with cardinality min{¢, 2}. Since the number of P-nodes is O(n), this
modification takes time O(n). Furthermore, for each P-node b we then
have

a(G[Xp\Up)) < | Xp|—|Up| = 2—min{¥¢, 2} = max{2—¢,0} < max{3—(,k}.

Then, for each R-node or S-node a in S we compute an a-bounded ¢-refined
tree decomposition 7, of G, (using the assumption of the lemma in the

case of R-nodes) and replace the corresponding node in T with 7\; Let us
describe the update procedure in detail. For each node a of S that is an
R-node or an S-node, we perform the following three steps.

Step 1. We compute two sets of edges F) and Fj such that
F*CF, C E(G,). Recall that node a is adjacent in S to P-nodes only,
and for every neighbor b of a in S, the set X; corresponding to the
node b is a 2-cutset in G such that the two vertices in X, are ad-
jacent in G,. We define F, = {X, : bisadjacent to a in S} and
Fr={e€ F,:eis avirtual edge in G,}. Clearly, F, and F can be ob-
tained in time O(dg(a)).

The second step relies on the following property of the sets F.

Claim 10.5.8. For each R-node or S-node a of S, the set [ is a G-safe
set of edges of G,,.

Proof of Claim 10.5.8. By Lemma 8.5.1, there exists a subdivision G, of
G, that is an induced subgraph of G. We want to show that deleting from
G, any subset of edges in F) results in a graph in G. Since every edge
e € FY is a virtual edge of G, the two endpoints of e are non-adjacent in
G. Thus, the edges in F) correspond to a collection of internally vertex-
disjoint paths { P, : e € F} such that each P, is an induced path of length
at least two in H, (and thus in G) connecting the endpoints of e. Consider
an arbitrary set /° C F)'. Since G/, is an induced subgraph of G, each real
edge in GG, is also an edge in G,. It follows that the graph G, — F can be
obtained from G/, by deleting the internal vertices of P, for all e € F' and
by contracting to a single edge each path P, for all e € F\ F. Hence,
G, — F is an induced topological minor of G/, and thus of G. Since G € G
and G is closed under induced topological minors, we have G, — F € G,
as claimed. |

Step 2. We compute an (-refined tree decomposition 7, = (To, {( X, UL -
t € V(T,)}) of G[X,] with residual independence number at most
max{3 — ¢, k} and an F,-mapping of 7,. We do so by computing an
(-refined tree decomposition of G,. Since G[X,] is a subgraph of G, the
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decomposition 7. is also an (-refined tree decomposition of G[X,]. We
consider two cases depending on whether a is an S-node or an R-node of

S.

e If a is an S-node of S, then G, is a cycle and we can apply a similar
approach as in Theorem 10.1.2. In time O(|V(G,)|) we compute a
cyclic order vy, ..., vy of the vertices /E)f the cycle. We construct the
desired f-refined tree decomposition 7, of G, as follows. The tree T,
is an (h — 2)-vertex path (t1,...,t4-2); for each i € {1,. — 2},
the bag X' consists of vertices {UZ, Vit1, Un}, and Uf is any subset of

X{ with exactly min{/, | X |} vertices. Note that every bag X¢ of 7.
has size 3 and hence

a(GIXP\UY)) < | X —|Uf| <max{3 —¢,0} <max{3 -/, k}.

The corresponding F,-mapping of 'T can be obtained as follows. For
each edge e = v;v;41 € F, with 1 <7 < h (indices modulo h), we do
the following: if 1 <7 < h— 2, wemap etot; € V(T,);ifi=h—1,
we map e to t,_o € V(T,); and if i = h, we map e to t; € V(T,).
Clearly, both 7, and the F,-mapping can be obtained in O(|V (G,)|)

time.

e Otherwise, a is an R-node of S. Recall that G is closed under induced
topological minors. By Lemma 8.5.1, (G, is an induced topological
minor of G € G, and thus GG, belongs to G. By Claim 10.5.8, F is a
G-safe set of edges of GG,. Since G, is 3-connected, by the assumption
of the lemma, we can compute an ) -covering (-refined tree decom-

position ﬁ\; of GG, with residual independence number at most k& and
an F,-mapping of 7, in time f(|V(G,)|, |E(G,)|). Let t be a node of
7. Since U is an F~cover of G,[X}'], every virtual edge in G,[X}']

has an endpoint in Uf. We infer that the subgraphs of G and G,
induced by the set X"\ U/ are the same and thus,

A(GIXE\US]) = a(Gu[ X\ Uf]) < a(T,) < k < max{3 — £, k}.

Step 3. This step consists in, informally speaking, replacing the node a
and the bag X, in 7 by the newly computed ¢-refined tree decomposition

T, of G,. We first compute the forest 77 = (T'— a) + T, and then make 7"
connected by iterating over all neighbors b of a in S. Since every edge of
S has exactly one endpoint which is a P-node and a is not a P-node of S,
we infer that b must be a P-node of S, and thus X} contains exactly two
vertices in GG, which are adjacent in G,. Let e € E(G,) be the edge with
endpoints in X;. By thg\deﬁnition of F,, the edge e belongs to F,. Recall

that an F,-mapping of 7, has been computed in Step 2. Hence, given the

edge e, the F,-mapping of 7, returns, in constant time, a node c of the
tree T, whose bag X, contains the endpoints of e. We connect b to cin 1".
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Notice that once all the neighbors of a have been considered, 7" becomes
a tree. We now set 7 = (T, {(X3,Uy) : t €e V(T —a)} U{(XUF) : u €

V(T,)}). It is not difficult to verify that after this modification, 7 remains
an (-refined tree decomposition of GG. The time complexity of this step is

proportional to O(dg(a) + |Ta|).

We now reason about the overall time complexity of Steps 1-3 for a fixed
R-node or S-node a of S. Recall that Ng and Ng denote the sets of
R-nodes and S-nodes of S, respectively. Assume first that a € Ng.

Then the complexity is O(ds(a) + |V(Go)| + |T.]). Since G, is a cycle

and our construction of 7, implies that |7, = O(|V(G,)|), this sim-
plifies to O(ds(a) + |[V(G,)]). Assume now that a € Ng. Then the

complexity is O(ds(a) + f(|V(Ga)], |E(Ga)|) + |Ta|), which simplifies to
O(ds(a) + f(IV(Ga)l, | E(Ga)])) since [Ta| < f(IV(Ga)l, [E(Ga)l)-
By construction, the final ¢-refined tree decomposition T has residual in-

dependence number at most max{3 — ¢, k}. The overall time complexity
of the algorithm is

O(n+m+ > (ds(a)+|[V(Go))+ D _ (ds(a) + f(IV(Ga)l, IE(Ga)]))) .

a€Ng aENR

or, equivalently,

On+m+ > dsa)+ Y V(G + > FIV(GIE(GL)]) -

a€NrUNg ac€Ng a€Ngr

Lemma 8.5.3 implies that } v [V(Ga)| < D ucnuns [Xal < 3n—6. Fur-
thermore, we know that )\, ds(a) = [E(S)| = O(m) due to [116].
Since the function f is superadditive, we have

D FIVGILIEG)) < F( ) V(G Y 1B(G

a€Ng a€Ng a€ENR

By Lemma 8.5.3, we also have that . [V(Ga)| < 2n. Additionally, by
Lemma 8.5.4 we get that Y . [F(G,)| < 3m. Since f is non-decreasing

in each coordinate and m > n as G is 2-connected, the running time
simplifies to O (m + f(2n,3m)).

The number of nodes of 7A' 1s at most

[Nl + D (IV(Ga)l =2) + Y g(IV(G), [E(Ga)]) -

a€Ng a€NR
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Following the fact that |Np| < |V(S)| = O(n) and by Lemma 8.5.3,
we get that [Np| + >, (IV(Go)| —2) = O(n). Applying the same
arguments as we did for the function f to the function g shows that
> ey 9V (Ga)l, |E(GL)]) < g(2n,3m). Thus, the number of nodes of 7
is of the order O(n + g(2n,3m)). This completes the proof. O

We can now combine the reduction using block-cutpoint trees (see Propo-
sition 10.5.1) with the reduction using SPQR trees (see Lemma 10.5.7) to
obtain the following result.

Theorem 10.5.9 (Theorem 4.16 in [78]). Let G be a graph class closed
under induced topological minors for which there exist non-negative in-
tegers k and ¢ such that G is (k,{)-tree decomposable and (k,{)-TREE
DECOMPOSITION(G) can be solved in time f(n,m) on graphs with n ver-
tices and m edges so that the resulting £-refined tree decomposition has
g(n,m) nodes, where f and g are superadditive functions. Then, for any
graph G in G with n > 1 wvertices and m edges, one can compute in
time O(n + m + f(4n,3m)) an L-refined tree decomposition of G with
O(n + g(4n,3m)) nodes and with residual independence number at most
max{3 — (, k

Proof. By Lemma 10.5.7, there exist positive integers ¢ and d such that
for any 2-connected graph G € G with n vertices and m edges, one can
compute in time ¢ - (m + f(2n,3m)) an f-refined tree decomposition of
G with residual independence number at most max{3 — ¢, k} and with

d - (n + g(2n,3m)) nodes. Let k = max{3 — £,k} and let us define
two functions, f : Zy X Zy — Zy and g : Zy X Zy — Zy, as tol-
lows: for each (z,y) € Z; X Z, we set f(x,y) = c- (y + f(2x,3y)) and

g(x,y) =d- (x+ g(2z,3y)). Thus, G is a hereditary graph class such that
for each 2-connected graph G in G with n vertices and m edges, one can

compute in time f(n, m) an {-refined tree decomposition T with g(n,m)
nodes and with residual independence number at most k. Furthermore,
the fact that f and g are superadditive implies that f and g are superad-
ditive. By Proposition 10.5.1, for any graph G in G with n > 1 vertices

and m edges, one can compute in time O(n + m + f(2n, m)) an {-refined

tree decomposition of G with O(n + §(2n,m)) nodes and with residual
independence number at most max{2 — ¢, k} = max{3 — ¢,k}. Since

f@2n,m) =c-(m+ f(4n,3m)) and g(2n,m) = c- (n + g(4n,3m)), the
theorem follows. O

10.6 Tree-independence number: W -im-free graphs
In this section and the next one, we apply Theorem 10.5.9 in order to prove

that if G is the class of H-induced-minor-free graphs for H € {W,, K; },
then G has bounded tree-independence number. In particular, we show
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that G is (1, 3)-tree decomposable and also develop an algorithm running in
polynomial time for the (1,3)-TREE DECOMPOSITION(G) problem. If we
combine this result with Theorem 11.1.2 we are able to get an O(|V (G)]?)
algorithm for the MAX WEIGHT INDEPENDENT SET problem in case of
vertex-weighted graphs G from the class G. In a similar way, applying
Theorem 11.2.6 leads to an algorithm running in polynomial time for the
MAX WEIGHT INDEPENDENT PACKING problem.

Since the (k,¢)-TREE DECOMPOSITION(G) problem deals with
3-connected graphs, we first need to characterize the 3-connected graphs
in G. Let us start with the class of Wy-induced-minor-free graphs.

Figure 10.1: A graph containing W, as an induced minor obtained by contracting the
dotted edge [78].

Lemma 10.6.1 (Lemma 5.1 in [78]). Let G be a 3-connected graph. Then
G is Wy-induced-minor-free if and only if G is chordal.

Proof. First, let us assume that G is a 3-connected Wj-induced-minor-free
graph. Suppose that there exists an induced cycle C' of length at least 4 in
G. Since G is 3-connected, it follows that every component of G — V (C)
has at least three distinct neighbors among the vertices of C'. Additionally,
every component of G — V(C') must have at most three distinct neighbors
in C', otherwise we could contract the component with at least four distinct
neighbors in C into a single vertex, delete all the other components and
contract the edges of C' to obtain a Wy as an induced minor. It follows
that G — V(C') must have at least two distinct components. Let H be a
component of G — V' (C'), with vertices u, v, and w being the three distinct
neigchbors of H in C. Observe, that there must exist a component H’
of G — V(C), such that H' has neighbors z,y, and z in C, where x is
a vertex in the middle of the u,w-path in C' containing v (notice that x
may be equal to v), y is a vertex in the middle of the u,w-path in C' not
containing v, and z may be any vertex of C' distinct from vertices x and y.
If not, then {u,w} is a cutset in G of size two. Next observe, that since y
is distinct from the vertices u,v, and w and at least one of the vertices u or
w is distinct from the vertices x, y, and z, we can always contract the edges
of C'into a cycle of length four, to obtain an induced minor isomorphic to
the graph depicted in Figure 10.1. Finally, contracting the dotted edge as
shown in Figure 10.1, we obtain W, as an induced minor, a contradiction.
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For the other direction, assume that G is a chordal graph. Suppose that
G contains Wy as an induced minor. It follows that GG also contains C} as
an induced minor. But then, G contains some cycle of length at least four
as an induced subgraph which is a contradiction with the assumption that
G is chordal. ]

By Lemma 10.6.1, we have that every 3-connected graph in the class G con-
sisting of Wj-induced-minor-free graphs is chordal. In order to show that
G is (1, 3)-tree decomposable and to develop a linear-time algorithm for
the (1,3)-TREE DECOMPOSITION(G) problem (Lemma 10.6.3), we need
to define the following concepts closely related to chordal graphs.

A total order of a set V' of elements is a permutation (vy, ..., v,) of V such
that any two elements are comparable, i.e., for any pair of elements x and y
from the set V', x < y or y < x, where the relation < is antisymmetric, i.e.,
if t <yandy <z then x =y. A vertex ordering of a graph G is a total
order (vy,...,v,) of its vertices. A module in G is a set M C V(G) such
that every vertex not in M that has a neighbor in M is adjacent to all the
vertices in M. A mopler in G is an inclusion-maximal module M C V(G)
that is a clique and its neighborhood N (M) is either empty or a minimal
separator in G. A perfect moplex partition of G is an ordered partition
(My, ..., My) of V(G) such that for all i € {1,...,k}, M; is a moplex
in the subgraph of G induced by UfZiMj. Given an ordered partition
m=(Z1,...,Z) of V(G) and a vertex ordering o = (vy,...,v,) of G, we
say that o is compatible with © it v; € Z,, v; € Z,, and p < ¢ imply ¢ < j.
It was shown by Berry and Bordat |24] that every graph has a moplex. It
follows that every graph has a perfect moplex partition. A perfect moplex
ordering of GG is a vertex ordering compatible with a perfect moplex parti-
tion. Using graph search algorithms such as Lexicographic Breadth-First
Search (LexBFS) [178] or Maximum Cardinality Search (MCS) [189], one
can compute in linear time a perfect moplex ordering of a given graph b
reversing the ordering returned by LexBFS or MCS (see [24, 26, 23|).

Lemma 10.6.2 (Lemma 5.2 in [78]). Let G be a chordal graph with n
vertices and m edges and F C E(G). Then, one can compute in time
O(n + m) a cliqgue tree T of G with at most n nodes and an F-mapping

of T.

Proof. Using LexBFS or MCS, we compute in linear time a perfect moplex
ordering (vy,...,v,) of G. Berry and Simonet gave in |25] a linear-time al-
gorithm that takes as input a connected chordal graph G and a perfect mo-
plex ordering of G, and computes a clique tree T of G. We explain the idea
of their algorithm in terms of the perfect moplex partition (M, ..., My)
of G corresponding to the given perfect moplex ordering. The bags of the

computed clique tree 7 are the maximal cliques of GG, which are exactly
the sets X7, ..., Xy of the form X; = Ng,[M;] for all i € {1,...,k} where

G is the subgraph of GG induced by U’]‘?:iMj. The algorithm processes the

moplexes in order from M. to M. It starts with a clique tree T of G with
a tree containing a unique node k£ and the corresponding bag X, = M.
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Then, for each i = k —1,...,1, the algorithm computes a clique tree 7;
of G; from the clique tree 7;11 of G;11 by adding to the tree of 7,11 a new
node i associated with bag X;, and an edge (7, j) where j is the smallest
number in {¢ + 1,...,k} such that there is an edge in G from M, to M;.
The final clique tree of G = G is given by T = Tj.

We compute an F-mapping of 7 as follows. For each edge vjv; € F such
that ¢ < j, we assign the edge v;v; to the unique node p € {1,...,k} of
T such that v; € M,. This can be done in time O(|F|) = O(|E(G)|).

Let us justify that the so-defined mapping is indeed an F-mapping of T .
Consider an edge v;v; € F with ¢ < j, and let p and ¢ be the unique
nodes of 7 such that v; € M, and v; € M,, respectively. Since the
vertex ordering (v1, . .., v,) is compatible with the perfect moplex partition
(M, ..., My), we have p < gq. We need to show that v; and v; both belong
to X, = Ng [M,]. First, we have that v; € M, C X,,. Second, since p < ¢,
we have v; € V(G)) and thus v; is adjacent to v; in G,. In particular, we
have v; € Ng [M,]. Thus, v;v; C X, which is what we wanted to show.

Let now GG be an arbitrary chordal graph with n vertices and m edges.
The above approach can be extended in a straightforward way to the case
when G is not connected, by computing the connected components and
applying the above algorithm to each component. The resulting forest of
clique trees of the components can be turned into a clique tree of G by
adding the appropriate number of edges between the clique trees of the
components. By construction, the obtained clique tree 7 of G has at most
n nodes. ]

Lemma 10.6.3 (Lemma 5.3 in [78|). Let G be the class of Wy-induced-
minor-free graphs. Then G is (1,3)-tree decomposable and (1,3)-TREE
DECOMPOSITION(G) can be solved on graphs with n vertices and m edges
in time O(n - m) so that the resulting 3-refined tree decomposition with
restdual independence number at most 1 has at most n nodes.

Proof. Let G be a 3-connected Wy-induced-minor-free graph with n ver-
tices and m edges and let F* C F C E(G) such that F* is g safe. We

Want to compute an F*-covering 3-refined tree decomposition ’T of G with
(T) < 1, together with an F-mapping of T .

By Lemma 10.6.1, G is chordal. By Lemma 10.6.2, one can compute in

linear time a O-refined tree decomposition 7 = (T, {(X, Up) hevir)) of
G with residual il independence number 1 having at most n nodes and an
F-mapping of T. Note that T already satisfies all the desired properties,

except that it may fail to be F*-covering. To fix this, we next redefine the
sets Uy for all t € V(7).

Let t € V(T). If | X3| <4, then we set U; to be any subset of min{|X|, 3}
vertices of X;. This in particular implies that | X; \ U;| < 1, and hence U,
is an F™=cover of G[X;] of size at most 3.
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Now suppose that | X;| > 5. Consider the set L of all edges in F™* that have
both endpoints in X;. We claim that any two edges in L have a common
endpoint. Suppose that this is not the case, and let e = uv and f = zxy
be two disjoint edges in L. As |X;| > 5, there exists a vertex z in X,
distinct from any of u, v, x,y. Since X; is a clique in G, the subgraph H
of G induced by {u,v,x,y, z} is isomorphic to K5, and thus H — {e, f} is
isomorphic to Wy. This implies that G — {e, f} is not Wy-induced-minor-
free. However, since {e, f} C L C F* this is a contradiction with the fact
that F'* is G-safe.

If L = (0, we set Uy = (). Otherwise, we choose an arbitrary edge
e =axy € L and set U = {x,y}. Such a set U; can be computed in time
O(|X¢| - |F*]) = O(n - m), by iterating over the edges in F** and checking
whether their endpoints both belong to X;. Note that since any two edges
in L have a common endpoint, all edges of the graph G[X; \ U;] are in
E(G) \ F*, and thus Uy is an Fcover of G[X}] of size at most 2. O

Theorem 10.5.9 and Lemma, 10.6.3 imply the following.

Theorem 10.6.4 (Theorem 5.4 in [78]). For any Wy-induced-minor-free
graph G with n vertices and m edges, one can compute in time O(n-m) a
3-refined tree decomposition of G with O(n) nodes and residual indepen-
dence number at most 1.

Proof. The class of Wj-induced-minor-free graphs is closed under induced
topological minors, and Lemma 10.6.3 shows that Theorem 10.5.9 is sat-
isfied with k = 1 and ¢ = 3, f(n,m) = O(n - m), and g(n,m) = n.
Therefore, given a Wy-induced-minor-free graph G with n vertices and
m edges, Theorem 10.5.9 implies that one can compute an f-refined tree
decomposition of G with O(n) nodes and with residual independence num-
ber at most max{3 — ¢,k} = 1 in time O(n +m + f(4n,3m)), which is
O(n - m). O

Note that Lemma 10.4.4 and Theorem 10.6.4 imply that the class of
Wy-induced-minor-free graphs admits a linear (tw,w)-binding function
f(p) = R(p+1,2) +3 — 2 = p+ 2. Furthermore, the approach used in to
prove Theorem 10.6.4 can be used to show that if G is a Wj-induced-
minor-free graph, then the inequality tw(G) > n(G) — 1, which holds for
all graphs, is in fact satisfied with equality. In order to see this, let us
assume that G is 2-connected. Then the proof of Theorem 10.6.4 provides
a tree decomposition of GG obtained from tree decompositions of graphs G,
over all R- and S-nodes a of a fixed SPQR tree of G. Using the structure
of the corresponding graphs G,, we can then verify that the constructed
tree decompositions have only bags with at most n(G,) vertices. Thus,
applying Corollary 8.5.2 we can show that the whole tree decomposition
of G contains only bags with at most n(G) vertices.

Proposition 10.6.5 (Proposition 5.6 in [78|). If G is a Wy-induced-
minor-free graph, then tw(G) = n(G) — 1.
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Remark 10.6.6. We remark that for general classes of H-induced-minor-
free graphs where H is planar, only the existence of a function bounding the
treewidth in terms of the Hadwiger number is known (see Corollary 9.3.3;
see also |21, 46, 132]).

Next, by Theorem 10.6.4, we have that every Wy-induced-minor-free graph
G satisfies the 1nequahty 3-tree-a(G) < 1. We can thus use Observa-
tion 10.4.3 to obtain the following result.

Corollary 10.6.7 (Corollary 5.7 in [78|). The tree-independence number
of any Wy-induced-minor-free graph is at most 4.

Remark 10.6.8 (Remark 5.8 in [78]). The bound on the tree-
independence number given by Corollary 10.6.7 is sharp: there exist
arbitrarily large 2-connected Wj-induced minor-free graphs with tree-
independence number 4. Take an integer ¢ > 4 and let I} be the graph
obtained from a complete graph with vertex set S = {1, 2 3,4} by re-
placmg each of its edges 77 with ¢ paths of length two connectlng ¢ and
j. Note that Fj, has exactly 4 vertices of degree more than two. Neither
deleting Vertices nor contracting edges having an endpoint of degree at
most two can increase the number of vertices of degree more than two. It
follows that every induced minor of F, has at most 4 vertices of degree
more than two. Since the graph Wy has 5 vertices and minimum degree
3, we infer that F, is Wj-induced-minor-free, and hence tree-a(F;,) < 4
by Theorem 10.6.4. To see that the inequality is satisfied with equality, it
suffices to show that tree-a(Fy) > 4. But this was already observed in the
proof of Theorem 10.1.9.

10.7 Tree-independence number: K -im-free graphs

Let us now apply the same approach as was described at the beginning of
Section 10.6 to the class of K. -induced-minor-free graphs. Similarly, we
begin with the characterization of the 3-connected graphs in the class. Let
us first state the following useful result regarding 3-connected graphs.

Theorem 10.7.1 (Tutte [192]). Every 3-connected graph with at least 5
vertices has an edge whose contraction results in a 3-connected graph.

Theorem 10.7.2 (Theorem 6.2 in [78]). For every graph G, the following
statements are equivalent.

1. G 1is 3-connected and K. -induced-minor-free.

2. G 1is either a complete graph with at least four vertices, a wheel, a

K3737 or a C6.

Proof. 1t is straightforward to verify that if G is either a complete graph
K, with n > 4, a wheel, G = K33, or G = (g, then G is 3-connected and
K¢ -induced-minor-free.
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We prove the converse direction using induction on n = |V(G)|. So let G
be a 3-connected K; -induced-minor-free graph. Since G is 3-connected,
n > 4, and if n = 4, then G is complete since otherwise it would contain a
vertex of degree at most two. Suppose that n > 5. By Theorem 10.7.1, G
has an edge e = uv whose contraction results in a 3-connected graph G'.
Since G’ is also K -induced-minor-free, the induction hypothesis implies
that G’ is either a complete graph, a wheel, G' = K33, or G' = Ci. We
analyze each of the four cases separately.

Case (1): G’ is a complete graph.

In this case, Ng(u) U Ng(v) = V(G) \ {u,v}. Let a = [Ng(u) \ Ng(v)|,
b = |Ng(u) N Ng(v)|, and ¢ = |Ng(v) \ Ng(u)|. If a = ¢ = 0, then G
is complete. We may thus assume by symmetry that a > 0. It b > 2,
then any two vertices from Ng(u) N Ng(v), along with u, v, and a vertex
from Ng(u) \ Ng(v), would induce a subgraph of G isomorphic to Ky, a
contradiction. Thus b < 1. Since G is 3-connected, we have dg(v) > 3
and hence ¢ = dg(v) — (b+1) > 2—b > 0. If a = ¢ = 1, then the 3-
connectedness of G implies that b = 1, and G is isomorphic to W;. We may
thus assume by symmetry that a > 2. If b = 1, then any two vertices from
Ne(u) \ Ng(v), along with u, a vertex from Ng(u) N Ng(v), and a vertex
from Ng(v) \ Ng(u), form an induced subgraph of G isomorphic to K; , a
contradiction. Thus b = 0 and consequently ¢ = dg(v) —1 > 2. But now,
the graph obtained from the subgraph H of G induced by u, v, any two
vertices from Ng(u)\ Ng(v), and any two vertices from Ng(v)\ Ng(u) by
contracting an edge from wu to one of the vertices in V(H)N(Ng(u)\ Ng(v))
is isomorphic to Ky, a contradiction.

Case (2): G’ is a wheel W,,_5 with n > 6.

Let = be the universal vertex in G’ and let C be the cycle G’ — z, with a
cyclic order of the vertices vy, ..., v, 2. We analyze two subcases depend-
ing on whether the vertex w of G’ to which the edge uv was contracted
corresponds to x, the central vertex of the wheel, or not.

Case (2.1): w=ux.
In this case, V(C) C Ng(u) U Ng(v). Since G is 3-connected, each of
u and v has at least two neighbors on C'. Suppose first that each of u

and v has only two neighbors on C'. Since C' has at least four vertices,
the neighborhoods of u and v on C are disjoint. Thus |V(C')| = 4 and

G is either Cg or K33, depending on whether the two neighbors of u on
C are adjacent or not. We may thus assume that one of u and v, say v,
has at least three neighbors on C'. If u and v are both adjacent to three
consecutive vertices on C, say v;,v,41, V42 (indices modulo n — 2), then

the subgraph of G mduced by {u,v v],vﬁl,vﬁg} is isomorphic to Ky,
a contradiction. Thus, we may assume in particular that u is not adja-
cent to vy, and, consequently, v is adjacent to v1. Let v; and v; be the
two neighbors of u on C such that 7 is as small as possible and 7 is as
large as possible. Then 1 <7 < 5 < n — 2. Now, if v has a neighbor in
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{ve, ..., vj_1} and a neighbor in {v;,...,v,_2}, then contracting in G all
the edges of the paths (ve,vs,...,vj1) and (vj, vjt1,...,Vy—2) results in
a graph isomorphic to K5, a contradiction. Similarly, if v has a neighbor
in {vy,...,v;} and a neighbor in {v;,1,...,v, 2}, then contracting in G
all the edges of the paths (ve,vs,...,v;) and (viy1, Vise, ..., Uy o) results
in a graph isomorphic to K., a contradiction. Next, if v has at least two
neighbors in {v;,...,v;}, say vy, and vy, with k1 < ko, then contracting
in G all the edges of the paths (vq, vs, ..., vk,) and (Vg 41, Vkyt2s - - -, Up—2)
results in a graph isomorphic to K , a contradiction. Thus, all the neigh-
bors of v in {vg, ..., vy} arein {vy, ..., v;i_1} orin {v,41,...,v,—2}. We
may assume Wlthout loss of generahty that all the nelghbors of v are in
{vg,...,v;_1}. Consequently, i > 3 and the vertices vy and v5 are adjacent
to v and non-adjacent to u. It follows that contracting in G all the edges
of the paths (vs, v4,...,v;-1) and (vj,vj41,. .., Us—2,v) results in a graph
isomorphic to Ky, a contradiction.

Case (2.2): w#x.

We may assume without loss of generality that w = wv;. Thus,
Ng(u) U Ng(v) = {u,v,v,_9,x,v2}. Since G is 3-connected, each of the
vertices vy and v,_9 must have a neighbor in the set {u,v}. If the edges
in G having one endpoint in {ve, v,_o} and the other one in {u,v} form
a matching of size two, then v and v must both be adjacent to x since G
is 3-connected, and hence G is a wheel, W,,_1, in this case. We may thus
assume without loss of generality that u is adjacent to both vy and v,,_s.
Furthermore, since dg(v) > 3, we may assume that v is adjacent to v, _s.
Suppose that v is not adjacent to x. Then v is adjacent to vo and u is
adjacent to x, and contracting in G' the edge vv, and all the edges of the
path (vs,...,v,_3) results in a graph isomorphic to K, a contradiction.
Hence, v is adjacent to x. But now, contracting in G the edge uv, and all
the edges of the path (vs,...,v,_3) results in a graph isomorphic to K,
a contradiction.

Case (3): G’ is isomorphic to Ks3.

Let w be the vertex of G’ to which the edge uv was contracted and let
A = {uy,us,w} and B = {v1,v9,v3} be the two independent sets parti-
tioning V(G’). Since A forms an independent set in G, it follows that
both u and v are non-adjacent with the vertices u; and us in GG. On the
other hand, B C Ng(u) U Ng(v), and, since G is 3-connected, each of u
and v has at least two neighbors in B. We may assume without loss of
generality that v and v are both adjacent to vy. Since each vertex in the
set {u, v} has a neighbor in the set {v1,v3} and vice versa, we may assume
without loss of generality that u is adjacent to v; and v is adjacent to vs.
It follows that contracting in G' the edges uv; and vwvs results in a graph
isomorphic to Ky , a contradiction.

Case (4): G is isomorphic to Cg.
Let vy,...,vg be a cyclic order of the vertices of the Cy. It follows that
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in G, the three odd-indexed vertices form a clique, and the same is true
for the even-indexed vertices. Additionally, in G’ we also have the edges
v1vy, V3V, and vovs. We may assume that vy is the vertex obtained by
contracting the edge uv. Therefore, Ng(u) U Ng(v) = {u, v, vs, vyq,v5}
and, since GG is 3-connected, each of the vertices © and v has at least two
neighbors among the vertices {vs, vy, v5}. Since each vertex in the set
{u,v} has a neighbor in the set {v3,vs} and vice versa, we may assume
without loss of generality that u is adjacent to v3 and v is adjacent to vs.
Furthermore, we may assume without loss of generality that u is adjacent
to v4. Now, if v is adjacent to vz, then contracting the edges uvy and vovs
results in a graph isomorphic to K5, a contradiction. On the other hand,
if v is adjacent to vy, then contracting the edges vvs and vsvg results in a
graph isomorphic to K5, again a contradiction. ]

We can now use Theorem 10.7.2 in order to derive the following algorithmic
result which will help us apply Theorem 10.5.9 to the class of K; -induced-
minor-free graphs.

Lemma 10.7.3 (Lemma 6.3 in [78|). Let G be the class of K -induced-
minor-free graphs. Then G is (1,3)-tree decomposable and (1,3)-TREE
DECOMPOSITION(G) can be solved on graphs with n vertices and m edges
in time O(n + m) so that the resulting tree decomposition has at most
n — 3 nodes.

Proof. Let G be a 3-connected K, -induced-minor-free graph, let
n=|V(G)|, and let F* C F' C E(G) such that F* is G-safe. We want to

compute an F*covering 3-refined tree decomposition 7 of G with residual
independence number at most 1, together with an F-mapping of 7.

By Theorem 10.7.2, G is either a complete graph with at least four vertices,
a wheel, K33, or Cg. In constant time we check if G = K33 or G = Cg. If
this is not the case, then G is either a complete graph or a wheel. One can
distinguish among these two cases in constant time using vertex degrees.
We consider each of the four cases independently.

Case (1): G is a complete graph.
In this case, G admits a trivial O-refined tree decomposition 7T with a
tree T' consisting of only one node ¢ and a unique bag X; = V(G). The

corresponding F-mapping of 7 maps each edge e € I to t. Note that
| X¢| > 4 since G is 3-connected. We set U; to be any subset of X; of
cardinality 3 and claim that U, is an F*-cover of G[X;] = G. Suppose this
is not the case and let e = xy be an edge in F* such that {x,y} N U; = 0.
Then the subgraph of G — e induced by U, U {z,y} is isomorphic to K
and thus G — eA§Z G. However, this contradicts the assumption that £ is

G-safe. Hence, T is an F*-covering 3-refined tree decomposition of G with
residual independence number at most 1.

Case (2): G is a wheel W,,_; with n > 5.
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In linear time we identify the universal vertex vy in G and compute a
cyclic order vy, ..., v,_1 of the vertices of the cycle G — vy. We construct

the desired 3-refined tree decomposition 7 = (T, {(X;, Ut) bev(r)) of G
as follows. The tree T is an (n — 3)-vertex path (¢,...,t,_3); for each
i€{l,...,n — 3}, the bag X consists of the vertices {vg, v;, Vit1,v,-1},
and we set Uy, to an arbitrary subset of X;, with cardinality 3. Following

the fact that | X; \ Uy| < 1, we get that T is an F™-covering 3-refined tree
decomposition of G with residual independence number at most 1. The

corresponding F-mapping of T can be obtained as follows. For each edge
e=uvv; € Fwith0<i<j<n-—1, wemapetot, € V(T) where

t; fl<i<j<n-—2or(i,j)=(1,n—1),
te=4q t; ifi=0andj<n-3,
t,—3 otherwise.

Note that both 7 and the F-mapping can be obtained in linear time.

Case (3): G is K33.

Let A and B be the two independent sets partitioning V (G). Then G has a
tree decomposition such that every bag X; contains all the vertices of A and
exactly one vertex of B, and thus |X;| < 4. This tree decomposition can

be turned into an F*-covering 3-refined tree decomposition 7 with residual
independence number at most one by defining, for instance, U; = A for

—~

all nodes t. In this case, both the 3-refined tree decomposition 7 and an
arbitrary F-mapping of 7 can be obtained in constant time.

Case (4): G is Cg.

Let u and v be two non-adjacent vertices of G and let (uq, ug, us, uy) be a
4-vertex path formed by the vertices of G other than u and v. Labeling
the vertices of a 3-vertex path with the sets {uy,us, u, v}, {us,us, u,v},
{ug, uq, u,v} in order yields a tree decomposition of G with bags of size
4. Again, the tree decomp/gsition can be turned into an F™covering 3-

refined tree decomposition 7 with residual independence number at most
one by taking, for each bag X;, the set U; to be an arbitrary subset of X,

with cardinality 3. This 3-refined tree decomposition 7 and an arbitrary
F-mapping of T can be obtained in constant time.

In each case, the computed 3-refined tree decomposition has at most n — 3
nodes. ]

Theorem 10.5.9 and Lemma 10.7.3 imply the following.

Theorem 10.7.4 (Theorem 6.4 in [78]). For any K5 -induced-minor-free
n-vertex graph G, one can compute in linear time a 3-refined tree decom-

position of G with O(n) nodes and residual independence number at most
1.
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Proof. The class of K; -induced-minor-free graphs is closed under induced
topological minors, and Lemma 10.7.3 shows that Theorem 10.5.9 is sat-
isfied with k = 1, £ = 3, f(n,m) = O(n + m), and g(n,m) = n. There-
fore, given a K; -induced-minor-free graph G with n vertices and m edges,
Theorem 10.5.9 implies that one can compute a 3-refined tree decompo-

sition of G with O(n) nodes and residual independence number at most
max{3 —/,k} = 1in time O(n+m+ f(4n,3m)), which is O(n+m). O

Similarly as for the class of Wy-induced-minor-free graphs, Lemma 10.4.4
and Theorem 10.7.4 imply the existence of a linear (tw, w)-binding function
f(p) = p+ 2 for the class of K -induced-minor-free graphs. Moreover, in
a similar way as mentioned before Proposition 10.6.5, our approach that
leads to the proof of Theorem 10.7.4 can be used to show the following.

Proposition 10.7.5 (Proposition 6.6 in [78|). If G is a K; -induced-
minor-free graph, then tw(G) = n(G) — 1.

Theorem 10.7.4 and Observation 10.4.3 imply the following.

Corollary 10.7.6 (Corollary 6.7 in [78|). The tree-independence number
of any K -induced-minor-free graph is at most 4.

Remark 10.7.7 (Remark 6.10 in [78]). Consider again the family {F, },>4
of graphs from Remark 10.6.8. The same arguments as used therein to
show that graphs F|, are W;-induced-minor-free also show that these graphs

are K -induced-minor-free. Thus, the bound on the tree-independence
number given by Corollary 10.6.7 is sharp; there exist arbitrarily large
2-connected K; -induced minor-free graphs with tree-independence num-
ber 4.



Chapter 11

Maximum Weight Independent Set
and Generalizations

In the previous chapter we set up some important notions and results
that will be useful in this chapter. In what follows, we will prove that the
weighted version of the INDEPENDENT SET problem is efficiently solv-
able in all (tw,w)-bounded graph classes that we discussed before (see
Table 9.1 on p.95 for a quick summary). Let us now give the definition of
the problem.

MAXIMUM WEIGHT INDEPENDENT SET (MWIS)
Input: A graph G and a weight function w : V(G) — Q™.
Output: An independent set [ in G of maximum possible weight w(7),

where w(l) =), o, w(z).

In what follows, we will discuss solvability of the MWIS problem in (tw, w)-
bounded graph classes excluding a single structure (see also Section 8
in [76]).

Theorem 11.0.1. For every graph H and every graph class G the follow-
ing holds.

o I[fHeS and G s the class of H-subgraph-free graphs, or

o if H is a subcubic planar graph and G s the class of H-topological-
manor-free graphs, or

e if H is a planar graph and G is the class of H-minor-free graphs

then MAXIMUM WEIGHT INDEPENDENT SET problem s solvable in lin-
ear time for the class G.

Proof. Due to Theorems 9.1.4, 9.1.6, and 9.1.7, in all three cases the class
G has bounded treewidth. We can thus use the linear-time algorithm of
Bodlaender [27] to compute a tree decomposition of the input graph G
of constant width. Then we use the approach of Arnborg, Lagergren, and

137



138

Seese [15] in order to compute a maximum weight independent set in linear
time with the help of previously computed tree decomposition. [

Theorem 11.0.2. Let H Cis P3 or H is edgeless and let G be the class of
H-free graphs. Then MAXIMUM WEIGHT INDEPENDENT SET problem
is solvable in polynomial time for the class G.

Proof. Suppose first that H Ci; P3. Then every H-free graph is a dis-
joint union of complete graphs. Thus, in order to find a maximum weight
independent set in any H-free graph G, it is enough to find a vertex of
maximum weight in each of the complete graphs. This can be done in
linear time by first computing the connected components of G using a
Breadth First Search algorithm and then for each connected component
(which is a clique in G) iterate over the vertices of it to find one with
maximum weight.

Finally, if H is edgeless, then every H-free graph contains independent
sets of size at most |V (H)| — 1. Thus, we can enumerate all independent

sets of G and in time O(|V(G)|VH)I=1) compute one with a maximum
weight. ]

Note that the proof of Theorem 11.0.2 actually gives a linear time algo-
rithm in the case when H C;, P;.

In the proof of the next theorem, we will require the following definition.
The clique-width of a graph G is the minimum number of labels needed to
construct GG using the following four operations:

e Creation of a new vertex v with label .
e Disjoint union of two labeled graphs G and H.

e Joining by an edge each vertex with label 7 to each vertex with label
J.
e Renaming label ¢ to j.

Theorem 11.0.3. Let H Ciyyyy Cy, or H Ciyy K, or H is edgeless
and let G be the class of H-itm-free graphs. Then MAXIMUM WEIGHT
INDEPENDENT SET problem is solvable in polynomial time for the class

g.

Proof. Suppose first that H Ci,,, C4. Then, by Observation 8.0.1, G is a
subclass of the class of chordal graphs, for which a linear time algorithm
for the MWIS problem is known [104].

Next, assume that H Ci,, K, . Then, by Lemma 9.2.3, G is a subclass
of the class of block-cactus graphs. From the fact that the clique-width
of every block-cactus graphs is at most 6 (see [144]) and the algorithm
of Courcelle et al. [63], it follows that the MWIS problem is solvable in
polynomial time for the class G.
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Finally, if H is edgeless, then every H-itm-free graph is also H-free and
hence, from the proof of Theorem 11.0.2 it follows that the maximum

weight independent set can be computed in time O(|V(G)|VUEI=), O

Theorems 11.0.1, 11.0.2, and 11.0.3 settle all the cases of (tw,w)-bounded
graph classes excluding a single graph H with respect to one of the six
discussed graph containment relations, with the exception of the induced
minor relation. To this end, we will first show that for every & > 1, the
MAXIMUM WEIGHT INDEPENDENT SET problem is solvable in polyno-
mial time provided that the input graph is given along with a tree decom-
position with independence number at most k. Next, we will generalize
this result by showing polynomial-time solvability of a more general prob-
lem, called the MAXIMUM WEIGHT INDEPENDENT PACKING problem
under the same setting.

11.1 Maximum Weight Independent Set problem

A tree decomposition T = (T, {X;}ev(r)) of a graph G is said to be
rooted if we distinguish one node r of T', called a root node, which we take
as the root of T'. Rooting a tree decomposition naturally gives a parent-
child relations in the tree T'. A leaf of a rooted tree T' is a node with
no children. We follow [65] for the following definition. We say that a
tree decomposition (1', { X }sev(r)) is mice if it is rooted and the following
conditions are satisfied:

(a) If t € V(T) is the root or a leaf of T, then X; = ();
(b) Every non-leaf node t of T is one of the following three types:

e Introduce node: a node ¢ with exactly one child ¢’ such that
X = Xy U {v} for some vertex v € V(G) \ Xy;

e Forget node: a node ¢ with exactly one child ¢’ such that
X; = Xy \ {v} for some vertex v € Xy;

e Join node: a node ¢t with exactly two children ¢; and ¢y such
that Xt = th = Xt2.

In what follows, we assume that both introduce and forget nodes are also
labeled with the unique vertex v which is introduced or forgotten. We
say that an f-refined tree decomposition is nice if its underlying tree de-
composition is nice. Given a graph G and a tree decomposition 7 of G
with width at most k£, one can compute a nice tree decomposition of GG
with width at most &k in polynomial time (see, e.g., [65]). We use the same
approach in order to prove the following lemma.

Lemma 11.1.1 (Lemma 5.1 in [77]). Given an {-refined tree decom-
position T = (T, {(Xs, Up) beviry) with width k of a graph G, one
can compute in time O(k* - |[V(T)|) a nice {-refined tree decomposition
T = (T, {(Xy, Up) Yvevry) of G that has at most O(k - |V (T)|) nodes



140 11.1. MAXIMUM WEIGHT INDEPENDENT SET PROBLEM

and such that for every node t" € V(T") there exists a node t € V(T') such
that Xy C X, and Uy = U, N Xyp. In particular, a(T’) < a(T)

Proof. Consider the following algorithm.

1. We traverse the tree T" and check for every two adjacent nodes ¢t and
t" in T if the bags X; and Xy are comparable (i.e., if X; C Xy or
Xy C Xy). If say, Xy C Xy, then we contract the edge tt' and label
the resulting node with the pair (Xy, Uy). Hence, we now assume
that no two adjacent nodes of T" have comparable bags.

2. We choose a node of T with degree at most one as its root r and
compute the corresponding parent-child relationship in 7'

3. We assure that each node has at most two children, by replacing each
node t of T" with d > 3 children ¢4, ..., cq with a path consisting of d
nodes t1, ..., 4, each associated with the same pair (X, U;), making
t1 a child of the parent of ¢, and for all j € {1,...,d}, making ¢; a
child of ¢; (note that if j < d, then ¢;,; is also a child of ¢;).

4. For every node t of T" with exactly two children ¢; and t,, we label
t as a join node. For ¢ € {1,2}, if X; # X}, then we subdivide the
edge tt; and associate the pair (X3, U;) to the new node.

5. For each leaf node ¢ of T, we add a new node t’ associated with the
pair (0,0) and make ¢’ a child of t.

6. We add a new node 7’ associated with the pair ((),0) and make r a
child of 7" (that is, 7’ becomes the new root).

7. For every node t of T' that is not already labeled as a join node
there is a unique child ¢ of . We replace the edge t't with a path
(t'=to,...,tp, tps1, ..., tprq = t) of length p+q where p = | Xy \ Xy
and g = | Xy \ Xy|. For alli € {1,...,p}, the node ¢; is a forget node
labeled with (X, U;,) where X;, forgets one vertex from X, , \ X;
and Uy, = Up N Xy,. Similarly, for all j € {1,...,¢—1}, the node ¢,
is an introduce node labeled with (X; . ,U; ) where X;  introduces
one vertex from Xj \ Xty and Uy o = U N Xy . The last node
of the path is the node ¢, which is an introduce node.

Note that each of the above steps modifies an f-refined tree decomposition

into another one. Let us denote by 7/ = (T", {(Xy, Up) }rev(r) the final

(-refined tree decomposition. By construction, every non-leaf node of T”
has a unique label (an introduce node, a forget node, or a join node) and

T’ is a nice f-refined tree decomposition of G such that for every node ¢’
of T”, there exists a node t in T such that Xy C X; and Uy = U; N Xy,

Consider a node ¢’ of 7" such that &(’7/\") = a(G[Xy \ Uy]) and let t be a
node of T such that Xy C X; and Uy = U; N Xy. Then

X \Up =Xp \(UNXy) =Xy \ U C X3\ Uy
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and hence

AT = (G[Xp \ Uy]) < a(G[X; \ Uh) < Q(T).

We now reason about the complexity of obtaining T by considering the
complexity of each aforementioned step. Step 1 takes O(k?) time for ev-

ery edge of T, and thus O(k* - |V(T)|) overall; the resulting tree T" has
O(|V(T)|) nodes. Step 2 can be done in time O(|V(T)]). Step 3 can be
done in time O(|V(T)|) and results in a tree T" with O(|V(T)|) nodes.

Step 4 can be done in time O(k* - |V(T)|) and Step 5 in time O(|V(T)]);
both steps yield a tree with O(|V(T")]) nodes. Step 6 can be done in con-

stant time. Finally, Step 7 can be done in time O(k? - |V (T')|) and results
in an (-refined tree decomposition with O(k - |[V(T")|) nodes. O

We can now use Lemma 11.1.1, as well as adapt the dynamic programming
approach for solving the MAX WEIGHT INDEPENDENT SET problem in
graph classes of bounded treewidth (see, e.g., [65]) to graph classes with
bounded /-refined tree independence number, for some integer ¢ > 0.

Theorem 11.1.2 (Theorem 5.2 in [77]). For every integer k > 1, MAX
WEIGHT INDEPENDENT SET is solvable in time O(2°-|V (G)|F+1- |V (T)|)
if the input vertez-weighted graph G is given with an €-refined tree decom-
position T = (T, {(Xy, Up) hevr)) with residual independence number at
most k.

Proof. Let n = |V(G)| and w : V(G) — Q4 be the weight function.
We first apply Lemma 11.1.1 and compute in time O(n? - |V(T)|) a nice
(-refined tree decomposition 7' = (T", {(X,, Ut) }rev(ry) of G with O(n -
|V(T)|) bags and such that

aT)<aT) <k.

Recall that, by definition, T is rooted at some node r of 7", For every node
t € V(T"), we denote by V; the union of all bags Xy such that t' € V(T")
is a (not necessarily proper) descendant of ¢ in 7.

For each node t € V(T"), we compute the family S; of all sets S C X; that
are independent in G. Note that each set S € &; is the disjoint union of
sets S1 and Sy where S; = SNU; and Sy = SN (X \ Uy). Since T is an
(-refined tree decomposition with residual independence number at most k,
we have that |S;| < |Uy| < € and |Ss| < a(G[X: \ Uy]) < k. It follows that
the family S; can be computed in time Q2! . | X, \ Uy|*) = O(2° - n¥)
by enumerating all O(2°) candidate sets for S;, all O(n*) candidate sets
for S9, and verifying if the union S; U S5 is independent in . This can
be done in constant time if a set S with |S| < k 4 ¢ is independent in
G, since k + ¢ is constant and we assume that G is represented with an
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adjacency matrix. If it is not represented with an adjacency matrix, we can
first compute such a representation from the adjacency lists in time O(n?).
We then traverse the tree T bottom-up and use a dynamic programming
approach to compute, for every node t € V(7") and every set S € &, the
value of c[t, S], defined as the maximum weight of an independent set I in
the graph G[V] such that I N X; = S.

Since 7 is nice, we have X, = (); in particular, the only independent set S
with S C X, is the empty set. Furthermore, V, = V(G), and hence c|r, ()]
corresponds to the maximum weight of an independent set in G, which is
what we want to compute.

We consider various cases depending on the type of a node t € V(T"). For
each type we give a formula for computing the value c[t, S] for all S € §;
from the already computed values of c[t’, S’] where ¢’ is a child of ¢ in T"

and S’ € Sy.

Leaf node. By the definition of a nice tree decomposition it follows that

X = 0. Thus, we have §; = {0}, V; = 0, and c[t, 0] = 0.

Introduce node. By definition, ¢ has exactly one child ¢ and
X; = Xy U {v} holds for some vertex v € V(G) \ Xy. For an arbitrary set
S € S;, we have

[t S ifveg S,
C[t, S] = { C[t/, g \ {U}] + w(v) otherwise.

Forget node. By definition, ¢ has exactly one child ¢ in 7" and
X: = X¢ \ {v} holds for some vertex v € Xy. Note that for a set S € &,
the set S U {v} belongs to Sy if and only if it is independent in G, that is,
if no vertex in S is adjacent to v. For an arbitrary set S € &;, we have

(lt. ] = { max{c[t',S],c[t’, S U{v}]} if no vertex in S is adjacent to v,
T c[t’, 5] otherwise.

Join node. By definition, ¢ has exactly two children ¢; and ¢5 in 7" and
it holds that X; = X;, = X,,. For an arbitrary set S' € §;, we have

c[t, S| = c[t1, S] + c[t2, S] — w(S).

The only way in which our algorithm differs from the standard one
(see [65]) is that we compute c[t, S] only for sets S in the family S;, and
not for all subsets of the bag X;. We therefore omit the description of the
recurrence relations leading to the dynamic programming algorithm and
the proof of correctness.

It remains to estimate the time complexity. We need time O(n? - |V (T)))
to compute 7'. At each of the O(n-|V(T')|) nodes t € V(T"), we perform a
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constant-time computation for each set S € &, resulting in an overall time
complexity of O(2° - n*) per node. Thus, the total time complexity of the
algorithm is O(n? - |V(T)]) +O(n - |V (T)| - 2°-n¥) = O2" - n**1.|V(T))),
as claimed. ]

In the case when ¢ = 0, we can use Observation 10.4.3 to immediately get
the following corollary of Theorem 11.1.2.

Corollary 11.1.3 (Corollary 5.3 in [77]). For every k > 1, MAX

WEIGHT INDEPENDENT SET is solvable in time O(|V (G)|FL . |V(T)|)
if the input vertex-weighted graph G is given with a tree decomposition
T = (I' { X }iev(r)) with independence number at most k.

11.2 Maximum Weight Independent Packing prob-
lem

In order to state what a MAXIMUM WEIGHT INDEPENDENT PACKING
problem is, we will first describe one construction and give some related
results.

Let G be a graph and let H = {H, } ;e be a family of connected subgraphs
of G. By G(H), we denote the graph with vertex set J, in which two
distinct elements ¢, 7 € J are adjacent if and only if H; and H; either have
a vertex in common or there is an edge in G' connecting them. The above
construction was considered by Cameron and Hell in [52]. In particular,
they focused on the following case. Let G be a graph and let F be a (finite
or infinite) set of connected graphs. By H(G, F) we denote the family of
all subgraphs of GG isomorphic to a member of F. In particular, we have
that:

o for H =H(G,{K1}), we get that G(H) = G, and

o for H = H(G, {K>}), we get that G(H) is isomorphic to the square
of the line graph of G.

A square graph of a graph G is the graph obtained from G by adding to
it all the non-edges uv of G such that u and v have a common neighbor
in G. A construction similar to G(H) was studied by Duchet [88]. More
recently, Gartland et al. [107] considered the special case when H consists
of all connected induced subgraphs of G, referring in this case to the derived

graph G(H) as the blob graph of G.

Cameron and Hell [52] also proved that for any chordal graph G, any set
F of connected graphs, and H = H(G,F), the graph G(H) is chordal,
which is a generalization of an analogous result due to Cameron [51] in the
case when F = {K>s}. Due to Theorem 10.1.1, the result of Cameron and
Hell states that tree-a(G(H)) < 1 whenever tree-a(G) < 1. We now give
a generalization of this result in the following way. We show that mapping
any graph G to the graph G(H), where H is an arbitrary collection of
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non-null connected subgraphs of GG, cannot increase the tree-independence
number. That implies that for any graph class G with bounded tree-
independence number and any set F of connected non-null graphs, also

the class {G(H) : G € G,H = H(G, F)} has bounded tree-independence

number.

Lemma 11.2.1 (Lemma 6.1 in [77]). Let G be a graph, let
T = (I, {Xi }iev(r)) be a tree decomposition of G, and let H = {H;}jes
be a finite family of connected non-null subgmphs of G. Then
T = (T {X hievir)) with X; = {j € J : V(H;) N Xy # 0} for all
t € V(T) is a tree decomposition of G(H) such that o(T") < a(T).

Proof. Let us first show that 7’ is a tree decomposition of G(H). First,
note that since V(G(H)) = J, for each t € V(T) the set X is indeed a
subset of V(G(H)).

Let j € J be a vertex of G(H). Fix a vertex v € V(H;) and consider any
bag X; of T such that v € X;. Then v € V(H,;) N X; and hence j € Xj].
Thus, every vertex of G(H) belongs to a bag of T”.

Let {7, 7} be an edge of G(H). Assume first that the subgraphs H; and
H; have a vertex in common, say v. Since 7 is a tree decomposition of G,
there exists some ¢ e V(T) such that v € X;. The fact that v € V(H; )ﬂXt
implies that ¢ € X], and similarly, 7 € X]. Assume now that there exist
vertices u € V(H;) "and v € V(H;) such that uv € E(G). Since T is a tree
decomposition of G, there exists some t € V(T) such that {u,v} C X;.
The fact that u € V(H ) N X implies that ¢ € X]. Similarly, the fact that
v € V(H;)N X, implies that j € X|. Hence, for every edge of G(H) there
exists a bag of 7' containing both endpomts of the edge.

Next, consider an arbitrary vertex j € J of G(#H). We need to show that
the set of nodes t € V(T') such that j € X/ induces a connected subgraph
of T. Let us denote for each vertex v € V(H;) by T, the subgraph of
T induced by the nodes t € V(T) such that v € X;. Since T is a tree
decomposition of G, each T, is a connected subgraph of T', that is, a
subtree. For a node t € V(T), the condition j € X] is equwalent to
the condition V(H;) N X; # 0, that is, there exists a vertex v € V(H;)
such that v € X;. Therefore, 7 € X/ 1f and only if there exists a vertex
v € V(H ) such that ¢ belongs fo the tree T,. It thus suffices to show that
the union 7 of the trees T, over all vertices v € V(H,) forms a connected
graph. Suppose for a contradiction that T} is not connected and fix a
component C' of Tj. Let us denote by U the set of vertices u € V(H,)
such that V(T,) C V(C’) Since V(C) # V(T}), we have U # V(H;). By
the connectedness of Hj, there is an edge uv € E(H;) such that u € U
and v € V(H,;)\U. Let t be a node of T" such that {u,v} C X;. The trees
T, and T}, both contain node ¢, and hence the connected component C' of
T} contains both T, and T),. This implies that v € U, a contradiction.

It remains to show that a(7) > a(7"). Let t be a node of T" maximizing
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the independence number of the subgraph of G(H) induced by X/. Let
k be this independence number and let I C J be an independent set
of cardinality k in the subgraph of G(#) induced by X;. Then for any
two distinct elements 4,7 € I the graphs H; and H; are vertex-disjoint
subgraphs in H such that no edge of G has one endpoint in H; and the
other one in H;. Each element ¢ € I belongs to the bag X/, which implies
that V(H;) N X; # 0, and hence there exists a vertex u; in V(H;) N X;.
Since any two distinct vertices u; and wu; belong to the subgraphs H; and
H; of G, which are vertex-disjoint and with no edges between them, the

set {u; : ¢ € I} is an independent set of cardinality &k in the subgraph of
G induced by X;. This shows that a(7) > k = «(7"), as claimed. O

Lemma 11.2.1 immediately gives the following result.

Theorem 11.2.2 (Theorem 6.2 in [77]). Let G be a graph and let H be a
finite famuly of connected non-null subgraphs of G. Then

tree-a(G(H)) < tree-a(G) .

In particular, Theorem 11.2.2 implies that for any graph G, the tree-
independence number of its blob graph is bounded by tree-a(G).

We also prove the algorithmic version of Lemma 11.2.1 which we will use
later on. Before we state it, we will state the following standard lemma
(see, e.g., [112]) that will be necessary for the analysis of the time com-
plexity.

Lemma 11.2.3 (Lemma 6.3 in [77]). Let V = {v1,...,v,} be a set and
let S = {S;}icr be a finite family of subsets of V.. Then there exists an
algorithm running in time O(|V| + |I| + >_,c; |Si|) that sorts each set S;
with respect to the ordering vy, ..., v, of

Proof. Let B be the bipartite incidence graph of the family S, that is, B
has vertex set V' U I, and edge set {{v,i} :v e Vi€ I,v € S;}. We can
compute the adjacency lists of the graph B in time O(|V |+ I+, 1Si|)
as follows. We fix an ordering of the set I, say I = {i1,...,4,}. For each
1 € I, the set S; already gives the adjacency list of 7. We initialize the
adjacency lists for each v € V' to the empty lists. For all j =1,...,m, we
iterate over the elements v of S;; and add ; to the end of the adjacency
list of vertex v. We now have the adjacency lists of all vertices of B; those
for v € V are already sorted, while those for ¢ € I need not be.

To sort the adjacency lists for vertices ¢ € I, we iterate over the adjacency
lists of vertices v € V' in a similar way as we did above for ¢ € I. We reset
the adjacency lists for all © € I to the empty lists. For allt=1,...,n, we
iterate over the elements j € I of the adjacency list of v; and add v; to the
end of the adjacency list for vertex j € I. At the end of this procedure, the
adjacency list of each ¢ € I will contain exactly the elements of .5;, sorted
with respect to the ordering vy, ..., v, of V. The total time complexity of
the procedure is proportional to the number of vertices and edges of the
graph B, that is, O(|V|+ [I| + >,/ |Sil)- ]
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We are now ready to state the algorithmic version of Lemma 11.2.1.

Corollary 11.2.4 (Corollary 6.4 in [77]). There exists an algorithm that
takes as input a graph G, a finite family H = {H;}c; of connected non-
null subgraphs of G, and a tree decomposition T = (T, {Xt}tGV(T)) of G,
and computes in time O(|J|- ((|J|+ |V (D)|)- |V(G)|+|E(G)|)) the graph
G(H) and a tree decomposition T' = (T, {X[}tevr)) of G(H) such that
a(T") < oT).

Proof. Fix an arbitrary ordering of the vertex set of G.  Using
Lemma 11.2.3, we first sort the vertex set of each of the graphs H;, j € J,

as well as each bag Xy, t € V(T), with respect to the fixed ordering of
V(G), in time

0<V(G)|+|J+ZV(Hj)I> +0<V(G)|+V I+ D Xt) =

JjeJ teV(T

=o((17]+ V(1)) - IV(©G)])

Note that using this sortedness assumption, we can compute the union and
the intersection of any two sorted sets X, Y C V(G) in time O(|V (G)]). To
compute the graph G(H), we only need to explain how to compute its edge
set, since the vertex set is J. For each 5 € J, we perform a BFS traversal up
to distance two from a new vertex v; added to G which we make adjacent
to all the vertices of H;. Let R; be the set of vertices of G reached this way.

Then, for all i € J\ {j}, the graph H; is adjacent to H; in G(H) if and
only if at least one vertex of H; belongs to R;. This can be tested in time
O(|V(G)]) by first sorting the set R; and then computing the intersection
V(H;)NR;. Hence, this procedure over all j € J can be carried out in time

O(|J|-(IV(G)HIE(G))+O( IV (G)]) = O( TV (G) [+ E(G)])-
To compute 77, we need to compute for each ¢ € V(T') the bag X] consist-
ing of all vertices j € J of G(H) such that V(H;) N X, # (. All the inter-
sections V' (H;)NX; can be computed in time (’)(\J| \V(T)|-|V(G)]). Thus,
the total time complexity of the algorithm is O(|J|*-|V (G)|+|J|-|E(G)|+

(
[T VD) - [V(G)]) = O] - ([T + VD)) - [V(G)] + [E(G)])).

We are now ready to give the definition of the MAXIMUM WEIGHT INDE-
PENDENT PACKING problem. Let G be a graph and let H = {H,};cs be
a family of connected subgraphs of G. A subfamily H’ of H is an indepen-
dent H-packing in G if for every pair of graphs H; and H; in H', H; and H;
are vertex-disjoint (V(H;) NV (H;) = 0) and there is no edge connecting
H; and H; in G, i.e., H' is an independent set in the graph G(H). Assume
that the subgraphs in H are equipped with a weight function w : J — Q%



CHAPTER 11. MAXIMUM WEIGHT INDEPENDENT SET AND GENERALIZATIONS 147

assigning weight w; to each subgraph H;. For a set I C J, the weight of
the family ‘H' = {H,}icr is defined as the sum ), ; w;.

MAXIMUM WEIGHT INDEPENDENT PACKING
Input: A graph G, a finite family H = {H, };c; of connected non-null

subgraphs of GG, and a weight function w : J — Q% on the
subgraphs in H.
Output: An independent H-packing in G of maximum weight.

The MAXIMUM WEIGHT INDEPENDENT PACKING problem is a common
generalization of several problems studied in the literature, including;:

e The MAXIMUM WEIGHT INDEPENDENT JF-PACKING problem,
which is a special case when F is a fixed finite family of connected
graphs and H = H(G, F) is the set of all subgraphs of G isomorphic
to a member of F.

e The INDEPENDENT JF-PACKING problem (see [52]), which corre-
sponds to the unweighted case.

e The MAXIMUM WEIGHT INDEPENDENT SET problem, which corre-
sponds to the case F = {K;}.

e The MAX WEIGHT INDUCED MATCHING problem (see, e.g., |3,
171]), which corresponds to the case F = {K>}.

e The DISSOCIATION SET problem (see, e.g., [170, 208, 210]), which
corresponds to the case when F = { K7, K5} and the weight function
assigns to each subgraph H;, j € J, the weight equal to |V (H;)]|.

e The k-SEPARATOR problem (see, e.g., [22, 159]), which corresponds
to the case when JF contains all connected graphs with at most
k vertices, the graph G is equipped with a vertex weight function
w: V(G) = QF, and the weight function on H assigns to each sub-
graph H;, 7 € J, the weight equal to ZmeV(Hj) w(x).

In order to reduce the MAXIMUM WEIGHT INDEPENDENT PACKING
problem to the MAXIMUM WEIGHT INDEPENDENT SET problem in poly-
nomial time, we can use the following observation.

Observation 11.2.5 (Observation 7.1 in [77]). Let G be a graph, let
H = {H;}jcs be a finite family of connected non-null subgraphs of G, and
alet w: J — QF be a weight function on the subgraphs in H. Let I
be an independent set in G(H) of maximum weight with respect to the
weight function w. Then [ is an independent H-packing in G of maximum
weight.

We can now use Corollaries 11.1.3 and 11.2.4, and Observation 11.2.5, to
obtain an analogous result to Corollary 11.1.3 for the MAXIMUM WEIGHT
INDEPENDENT PACKING problem.
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Theorem 11.2.6 (Theorem 7.2 in [77]). Let k be a posi-
tive integer. Then, giwen a graph G and a finite famaly
H ={H;}jes of connected non-null subgraphs of G, the MAXIMUM
WEIGHT INDEPENDENT PACKING problem can be solved in time

O] - (| + V(D)) - V(G)| + |E(G)| + | I - [V(T)]) if G is given
together with a tree decomposition T = (T, { X }ev(r)) with independence
number at most k.

Proof. Let G be a graph, let H = {H,};es be a finite family of connected
non-null subgraphs of G, let w : J — Q" be a weight function on the
subgraphs in H, and let 7 = (T, {X; }4ev (1)) be a tree decomposition of
G with independence number at most k. B Corollary 11.2.4, we can
compute in time O(|J| - ((|[J] + |[V(T)]) - ]V(G)| + ]E(G)\)) the graph
G(H) and a tree decomposition 7' = (T, {X]}ev(r)) of G(H) with in-
dependence number at most k. Using Corollary 11.1.3, we now compute
in time O(|J|*™ - |V(T)|) an independent set I in G(H) of maximum
weight with respect to the weight function w. By Observation 11.2.5, 1
is a maximum-weight independent H-packing in GG. The claimed running
time follows. [

The case when the subgraphs in ‘H have bounded order generalizes the
MAXIMUM WEIGHT INDEPENDENT JF-PACKING problem. In particular,
for this case, the time complexity can be slightly improved compared to
the one obtained by directly applying Theorem 11.2.6.

Theorem 11.2.7 (Theorem 7.3 in |77]). Let k and r be two positive inte-
gers. Then, given a graph G and a finite family H = {H,}jes of connected
non-null subgraphs of G such that |V (H;)| < r for all j € J, the MAX-
IMUM WEIGHT INDEPENDENT PACKING problem can be solved in time
O (|V(G)|" ) \V(T)|) if G is given together with a tree decomposition
T = (I, {Xi }tev(r)) with independence number at most k.

Proof. We assume that G is represented with an adjacency matrix, since
otherwise we can first compute such a representation from the adJacency

lists in time O(]V (G)]?). Note that |V (G(H))| = |J| = O(|V(G)]"), since
by assumption each graph in H has at most r vertices, and for any such set
of vertices we have at most 2" ~1/2 = O(1) choices for the edge set. We
compute the edge set of G(H) in time O(|V(G(H))]*) = O(|V(G)["),
as follows.  For every two distinct 7,5 € J, we check in time
O(max{|V(H;)|,|V(H )|}) O(1) if H; and H; have a vertex in com-
mon. If this is the case, then we add {i, 7} to the edge set of G(H). If
this is not the case, then we check in time O(|V(H;)|-|V(H;)|) = O(1)
if there is an edge in G' connecting a vertex of H; with a vertex of Hj.
this is the case, then we add {1, j} to the edge set of G(H).

For the rest of the proof, we use the same approach as in the proof of
Theorem 11.2.6. In particular, we compute the tree decomposition 7" of

G(H) in time O(|J[ - [V(T)| - [V(G)]) = O([V(G)[*! - [V(T)]), and a
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maximum-weight independent set I in G(H) in time O(|J|*™L - |V(T)|) =
O(|[V(G)["*+1) . |[V(T)|). The total time complexity of the algorithm is
OV (G |* + V(G| - [V (T)| + [V(G)|"*+D - |V (T)|), which simplifies
to O(|V(G)|"*+D - |V (T)]), as claimed. O

As an immediate corollary we get the following.

Corollary 11.2.8 (Corollary 7.4 in [77]). Let F be a nonempty finite set of

connected nonnull graphs and let r be the maximum number of vertices of
a graph in F. Then, for every k > 1, the MAX WEIGHT INDEPENDENT

F-PACKING problem is solvable in time O (|V(G)|"*"*V - |V(T)|) if the
input graph G is given with a tree decomposition T = (T, {X; }yev (1)) with
independence number at most k.

As a remark, note that we did not derive a result generalizing Corol-
lary 11.2.8 with the use of the f-refined tree decompositions of bounded
residual independence number. The reason behind this is the fact that
Lemma 11.2.1 does not seem to generalize to f-refined tree decompositions
in a way that the the residual independence number would be preserved.
To see this, let us consider the following example.

Example 11.2.9 (Remark 7.5 in [77]). Fix two positive integers ¢ and p
and let G be the tree consisting of a vertex a adjacent to £ other vertices
forming a set B = {by,..., by} such that each b; is also adjacent to p ver-
tices of degree one, forming a set Cj. Let T = (T, {X;}iev (1)) be a tree
decomposition of G' such that 7" is the graph K ,, the high-degree node of
T is labeled with the bag {a} U B, and the pf leaves of T" are labeled with
bags corresponding to the edges in G containing a vertex of degree one. To
make this tree decomposition f(-refined, we set U; = B for the high-degree
node t of T and U, = () for all the other nodes. The residual independence
number of this f-refined tree decomposition is 1. Let H = H(G,{K>2})
be the family of all connected subgraphs of G of order two. Then, the
graph G(#) is isomorphic to the graph obtained from the graph Kj, by
substituting a clique of size £+ 1 into the vertex of degree ¢ and a clique of
size p into each vertex of degree one (see, e.g., [58] for the definition of sub-

stitution). Let 7" = (T, { X/ }1ev(r)) be the tree decomposition of G(H) as
defined in Lemma 11.2.1, that is, X; = {H € V(G(H)) : V(H)N X; # 0}
for all t € V(T'). Then, there is no way to turn 7' into an f(¢)-refined
tree decomposition of G(H) with residual independence number 1. Indeed,
consider the bag X; = {a} U B of T labeling the high-degree node of T
Since every edge of G has an endpoint in X}, the bag of T’ corresponding
to node ¢ is X{ = V(G(H)). Using the structure of the graph G(H), we
see that the smallest subset U/ of X| such that the independence number
of the subgraph of G(#H) induced by X \ U} is 1 has size (¢ — 1)p, which
cannot be bounded from above by any function depending only on /.
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11.3 The classes of K; -, Wy-, and K; -im-free graphs

In this section we give the proof to the following theorem.

Theorem 11.3.1. Let H G, Koy, for some g > 2, or H Gy Wy, or
H Gy K5, or H is edgeless and let G be the class of H-im-free graphs.
Then MAXIMUM WEIGHT INDEPENDENT SET problem is solvable in
polynomial time for the class G.

Note that the edgeless case is the same as in the proof of Theorem 11.0.2.
For the remaining three cases see Theorems 11.3.3, 11.3.6, and 11.3.9,
respectively.

11.3.1 K5 ,induced-minor-free graphs

Theorems 10.3.5 and 11.2.6 have the following consequence for the MAX-
IMUM WEIGHT INDEPENDENT PACKING problem.

Theorem 11.3.2 (Theorem 3.14 in [78]). For every integer q > 2,
given a Ky -induced-minor-free  graph G and a finite family
H ={H;}jes of connected nonnull subgraphs of G, the MAXIMUM
WEIGHT INDEPENDENT PACKING problem can be solved in time
O(|J]- V(G| - (IV(G)| + [T]*72)).

Proof. Let G be an n-vertex K ,-induced-minor-free graph, H = {H,} ;e
a finite family of connected non-null subgraphs of G, and w : J — Q" a
weight function. By Theorem 10.3.5, we can compute in time O(n*logn)
a tree decomposition T = (T, {X; }ev(r)) of G with O(n) nodes and with
independence number at most 2g—2. Thus, by Theorem 11.2.6, MAXIMUM
WEIGHT INDEPENDENT PACKING problem can be solved on G in time
O(J] - n-(n+ |J272)). ]

Applying Theorem 11.3.2 to the case when H corresponds to the set of all
1-vertex subgraphs of the input graph G, we obtain the following.

Corollary 11.3.3 (Corollary 3.15 in [78]). For every integer q > 2,
the MAXIMUM WEIGHT INDEPENDENT SET problem is solvable in time
O(n?1) on n-vertex Ky -induced-minor-free graphs.

For the case ¢ = 3 the bounds on the running time of the algorithm
proving Theorem 11.3.2 can be improved by using Lemma 10.3.4 instead
of Lemma 10.3.3, which, by Lemma 10.3.1, improves the upper bound on
the tree-independence number of Kj s-induced-minor-free graphs from 4
to 3. We thus obtain the following.

Theorem 11.3.4 (Theorem 3.16 in [78]). Let G be an n-verter K 3-
induced-minor-free graph and let H = {H;}je; be a finite fam-
ily of connected non-null subgraphs of G. Then the MAXIMUM
WEIGHT INDEPENDENT PACKING problem can be solved in time
O(J|- V(G| - (IV(G)| + |J]®)). In particular, the MAXIMUM WEIGHT
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INDEPENDENT SET problem is solvable in time O(n®) on n-verter Ko 3-
induced-minor-free graphs.

Let us remark that Theorem 11.3.4 gives an answer to the question of
Beisegel et al. in |19, 20], regarding the complexity of the MAX INDEPEN-
DENT SET problem in the class of 1-perfectly orientable graphs. We say
that a graph G is 1-perfectly orientable if its edges can be oriented in such
a way that no vertex has a pair of non-adjacent out-neighbors, i.e., for a
directed edge (u,v), u is the in-neighbor of v and v is the out-neighbor
of u. The class of 1-perfectly orientable graphs was introduced in 1982
by Skrien [185] and studied by Bang-Jensen et al. [18] and, more recently,
by Hartinger and Milani¢ [122] and by Bresar et al. [46]. A known result
states that every l-perfectly orientable graph is K& 3-induced-minor-free
(see [122]), and hence, applying Theorem 11.3.4 we get the following re-
sult.

Corollary 11.3.5 (Corollary 3.17 in |78]). The MAXIMUM WEIGHT IN-

DEPENDENT SET problem is solvable in time O(n®) on n-vertex 1-perfectly
orientable graphs.

11.3.2 Wj-induced-minor-free graphs

Corollary 10.6.4 and Theorem 11.1.2 imply the existence of a polynomial-
time algorithm for the MAXIMUM WEIGHT INDEPENDENT SET problem
in the class of Wy-induced-minor-free graphs.

Corollary 11.3.6 (Corollary 5.9 in [78]). The MAXIMUM WEIGHT IN-

DEPENDENT SET problem can be solved in time O(n?) for n-vertex W,-
induced-minor-free graphs.

Remark 11.3.7 (Remark 5.10 in [78]). The improvement in the running
tlme when using Theorem 11.1.2 instead of Corollary 11.1.3 is significant:

O(n?) instead of O(n"),

Furthermore, since a 3-refined tree decomposition with residual indepen-
dence number at most 1 has independence number at most 4, Corol-
lary 10.6.4 and Theorem 11.2.6 imply the existence of a polynomial-time
algorithm for the MAXIMUM WEIGHT INDEPENDENT PACKING problems
in the class of Wy-induced-minor-free graphs.

Theorem 11.3.8 (Theorem 5.11 in [78]). Given a Wy-induced-minor-free
graph G and a finite family H = {H;}jc; of connected non-null subgraphs
of G, the MAXIMUM WEIGHT INDEPENDENT PACKING problem can be

solved in time
O(J|- V(G| - (IV(G)] + |J]") -

Proof. Let G be an n-vertex Wy-induced-minor-free graph, given along
with a finite family H = {H,},c; of connected non-null subgraphs and a
weight function w : J — Q. By Corollary 10.6.4 and Observation 10.4.3,
we can compute in time O(n?) a tree decomposition T = (T, {Xi }rev(r )
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of G with O(n) nodes and with independence number at most 4. Thus,
by Theorem 11.2.6, the MAXIMUM WEIGHT INDEPENDENT PACKING
problem can be solved on G in time O(|J|- |V (G)|- (|V(G)| + |J[Y)). O

11.3.3 K, -induced-minor-free graphs

Corollary 10.7.4 and Theorem 11.1.2 have the following algorithmic con-
sequence for the MAXIMUM WEIGHT INDEPENDENT SET problem in the
class of K -induced-minor-free graphs.

Corollary 11.3.9 (Corollary 6.9 in |78]). The MAXIMUM WEIGHT IN-

DEPENDENT SET problem can be solved in time O(n3) for n-vertex Kj -
induced-minor-free graphs.

Remark 11.3.10 (Remark 6.10 in |78]). Similarly as for the class of Wy-
induced-minor-free graphs (see Remark 11.3.7), the improvement in the
running time when using Theorem 11.1.2 instead of Corollary 11.1.3 is
significant: O(n?) instead of O(n").

Corollary 10.7.4 and Theorem 11.2.6 imply the existence of a polynomial-
time algorithm for the MAXIMUM WEIGHT INDEPENDENT PACKING
problems in the class of K -induced-minor-free graphs.

Theorem 11.3.11 (Theorem 6.11 in [78]). Given a K -induced-minor-
free graph G and a finite family H = {H;}jes of connected non-null sub-
graphs of G, the MAXIMUM WEIGHT INDEPENDENT PACKING problem
can be solved in time

O] V(&) - V(G +[19) -

Proof. Let G' be an n-vertex K; -induced-minor-free graph, given along
with a finite family H = {H,},c; of connected non-null subgraphs and a
weight function w : J — Q. By Corollary 10.7.4 and Observation 10.4.3,
we can compute in linear time a tree decomposition 7 = (T, {X; }ev (1))
of G with O(n) nodes and independence number at most 4. Thus, by The-
orem 11.2.6, the MAXIMUM WEIGHT INDEPENDENT PACKING problem
can be solved on G in time O(|J| - [V(G)] - (|V(G)| + |J[*)). O
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Final Remarks to Part 11

Let us now give some remarks to the second part of this thesis.

12.1 Remarks on (tw,w)-boundedness and open ques-
tions

In Chapter 9, we showed for which graphs H with respect to one of the
six graph containment relations is the class of graphs G excluding H with
respect to the relation (tw,w)-bounded. Then in Chapter 10, we showed
that when forbidding a single graph H with respect to one of the six
graph containment relations, (tw,w)-boundedness is equivalent to having
bounded tree-independence number. Moreover, Lemma 10.1.11 shows that
a graph class having bounded tree-independence number is polynomially
(tw,w)-bounded, in particular, it is (tw,w)-bounded. Let us now state
these observations as a corollary.

Corollary 12.1.1 (Corollary 7.4 in |78|). For every graph H and each
of the siz graph containment relations (the subgraph, topological minor,
and minor relations, and their induced variants), the following statements
are equivalent for the class G of graphs excluding H with respect to the
relation.

1. G is (tw,w)-bounded.
2. G is polynomially (tw,w)-bounded.
3. G has bounded tree-independence number.

Furthermore, whenever the above conditions are satisfied, there 1is
a polynomial-time algorithm for computing a tree decomposition with
bounded independence number of a graph in G.

This opens up many interesting questions with respect to (tw,w)-
boundedness. Among those, it would be interesting to understand (tw, w)-
bounded graph classes defined by finitely many forbidden structures.

153
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Question 12.1.2 (Question 9.1 in [76]). Which graph classes defined by
larger finite sets of forbidden structures (with respect to various graph
containment relations) are (tw,w)-bounded?

In particular, it would be interesting to understand which (tw, w)-bounded
graph classes defined by finitely many forbidden induced subgraphs have
bounded tree-independence number. As discussed in |76], in the case of
subgraph relation, at least one excluded structure would have to be from
S, in the case of topological minor relation, at least one excluded structure
would have to be a subcubic planar graph, and in the case of minor relation,
at least one excluded structure would have to be planar. Each of those
would give a subclass of some (tw,w)-bounded graph class obtained by
excluding a single structure.

In case of forbidden induced subgraphs, however, Lozin and Razgon [160]
proved that the following holds.

Theorem 12.1.3 (Lozin and Razgon [160]). For any graphs Hy, ..., Hp,
the class of {H.,...,Hy}-free graphs has bounded treewidth if and only

if the set {Hy,...,H,} contains a complete graph, a complete bipartite
graph, a graph from SP, and the line graph of a graph from S.

As a direct consequence of Theorem 12.1.3, we obtain the following result
characterizing (tw, w)-bounded graph classes in terms of finitely many for-
bidden induced subgraphs.

Corollary 12.1.4 (Corollary 9.3 in [76]). For any graphs Hu, ..., H,, the
following conditions are equivalent.

1. The class of {Hy, ..., Hy}-free graphs is (tw,w)-bounded.
2. The class of {K4, H,...,Hy}-free graphs has bounded treewidth.

3. The set {Hl,...,'Hp} contains a complete bipartite graph, a graph
from S, and the line graph of a graph from S.

Proof. 1f the class of {Hj, ..., H,}-free graphs has a (tw,w)-binding func-
tion f, then the treewidth of any {K4, Hy,..., Hy}-free graph is at most
f(3). Thus, (1) implies (2). By Theorem 12.1.3, (2) implies (3). Fi-
nally, if the set {H1, ..., H,} contains a complete bipartite graph, a graph
from S, and the line graph of a graph from S, then by Theorem 12.1.3

for every positive integer k there exists a constant f(k) such that every
{Kys1, Hi, ..., Hy}-free graph has treewidth at most f(k). Thus, the class

of {Hi,..., H,}-free graphs is (tw,w)-bounded and (3) implies (1). O
For the induced topological minor and induced minor relations, Ques-
tion 12.1.2 remains open.

Another possible question is the following (see also Question 9.4 in |76]).

Question 12.1.5 (Question 8.4 in [78]). Is every (tw,w)-bounded graph
class polynomially (tw,w)-bounded?
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In some cases (see Theorems 9.1.4, 9.1.6, 9.1.7, 9.2.1, and 9.2.5) we even
obtained linear (tw,w)-binding functions. Thus, one may ask for neces-

sary and/or sufficient conditions for a graph class to be linearly (tw,w)-
bounded.

Question 12.1.6 (Question 9.5 in [76]). Which graph classes have a linear
(tw, w)-binding function?

Going back to Question 12.1.5, in [78], we posed the following conjecture.

Conjecture 12.1.7 (Conjecture 8.5 in [78]). Let G be a hereditary graph
class. Then G is (tw,w)-bounded if and only if G has bounded tree-
independence number.

Note that, thanks to Lemma 10.1.11, a positive answer to Conjecture 12.1.7
would give a positive answer to Question 12.1.5.

Recently, Abrishami et al. [2] proved that the class G of (even hole, di-
amond, pyramid)-free graphs is (tw,w)-bounded. To complement this
result, Abrishami et al. [1], proved that the class G has bounded tree-
independence number, thus providing another positive result towards Con-
jecture 12.1.7. In fact, both results were obtained for a superclass C of
(even hole, diamond, pyramid)-free graphs, namely, for (C}, diamond,
theta, pyramid, prism, even wheel)-free graphs. As explained in [1], the
fact that C is a superclass of G follows from the fact that (even-hole)-free
graphs are (theta, prism, even wheel)-free. Their result thus proves that
the MAXIMUM WEIGHT INDEPENDENT SET problem is solvable in poly-
nomial time in the class C. Moreover, in [1], they posed the following
conjecture.

Conjecture 12.1.8 (Abrishami et al. [1]). The class of (even hole,
diamond)-free graphs has bounded tree-independence number.

12.2 Further algorithmic results

In [77], we asked whether the MAXIMUM WEIGHT INDEPENDENT SET
problem is solvable in polynomial time in any class of graphs with bounded
tree-independence number. A result of Yolov (see [209], Theorem 4.5)
resolves this question in affirmative. Later, Dallard et al. [75], gave the
following algorithm with better running time and approximation for the
tree-independence number.

Theorem 12.2.1 (Dallard et al. [75]). There exists an algorithm that,

giwen an n-verter graph G and an integer k, in time 20(:) . nO&) cither
outputs a tree decomposition of G with independence number oat most 8k,
or concludes that the tree-independence number of G 1is larger than k.

Combining their work with the results from Chapter 11, this gives a
polynomial-time solvability for the MAXIMUM WEIGHT INDEPENDENT
PACKING problem, which is a generalization of the MWIS problem, in any
graph class with bounded tree-independence number.
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Further work in this direction was done by Milani¢ and Rzazewski [168] as
follows. Given a positive integer d, a distance-d independent setin a graph
G is a set of vertices at pairwise distance at least d. The DISTANCE-d
INDEPENDENT SET problem is defined as follows.

DISTANCE-d INDEPENDENT SET
Input: A graph G and a weight function w : V(G) — Q.

Output: A distance-d independent set I in GG of maximum possible weight
w(I), where w(I) =Y, ., w(z).

Note that in the case when d = 2 we obtain the classical MAXIMUM
WEIGHT INDEPENDENT SET problem.

Given a positive integer d, a graph G and a finite family H = {H,};cs
of connected non-null subgraphs of G, a distance-d H-packing in G is a
subfamily H' = {H,}iesr of subgraphs from H (i.e., I C J) that are at
pairwise distance at least d. We can thus define the following problem.

MAXIMUM WEIGHT DISTANCE-d PACKING
Input: A graph G, a finite family H = {H,}c; of connected non-null

subgraphs of GG, and a weight function w : J — Q7 on the
subgraphs in H.
Output: A distance-d H-packing in G of maximum weight.

Note that the MAXIMUM WEIGHT DISTANCE-d PACKING problem gen-
eralizes the problems discussed in Chapter 11. Given the above definitions,
Milani¢ and Rzazewski [168| proved the following result.

Theorem 12.2.2 (Milani¢ and Rzazewski [168]). For every positive inte-
ger d and every k > 1, given a graph G, a finite family H = {H;}jcs of
connected non-null subgraphs of G, and a weight function w : J — QF
on the subgraphs in H, the MAXIMUM WEIGHT DISTANCE-d PACKING
problem is solvable in time

O((IV(G)+ V(D)) - | E(G)|+

+ - VO] (] + VD) + [V(G)]) + [ V(D))
if G is given with a tree decomposition T = (T, { X }rev (1)) with indepen-
dence number at most k.

In particular, Theorem 12.2.2 generalizes the result of Theorem 11.2.6.

12.3 Other related work

The concept of (tw,w)-boundedness is part of the following more general
framework. Given two graph invariants p and o and a graph class G, we
say that G is (p, 0)-bounded if there exists a (p, 0)-binding function for G,
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that is, a function f : N — N such that for every graph G € G and every
induced subgraph H of G, we have p(H) < f(o(H)).

One of the examples is (3, x)-boundedness, where § denotes the color-
ing number of a graph, i.e., the largest integer k for which there exists
a subgraph of G with minimum degree k — 1. This property was stud-
ied by Jensen and Toft [142] in their book on graph coloring problems
where they referred to (5, x)-bounded graph families as color-bound. Next,
Gyéarfas and Zaker [119] studied (9, x)-bounded graph classes. Hermelin et
al. [131] considered classes of intersection graphs of arithmetic progressions
with bounded jumps and proved that they are (pw,w)-bounded, where
pw denotes the pathwidth of the graph. Note that every path decompo-
sition is a tree decomposition, but not vice versa. In addition, several
other pairs of invariants were studied in terms of (p, o)-boundedness. Per-
haps one of the most well-known and extensively studied is the case where
(p,0) = (x,w) (see, e.g., |31, 165, 211]). Such graph classes are usually
called y-bounded and were introduced by Gyértas in the late 1980s to gen-
eralize perfection [118] and studied extensively in the literature (see [181]
for a survey). Note that every graph G satisfies w(G) < x(G) < tw(G)+1,
where the first inequality holds with equality for all induced subgraphs of
G if and only if G is perfect, and both inequalities hold with equality for
all induced subgraphs of G if and only if G is chordal (see Theorem 8.2.3).
Thus, in a similar way as x-boundedness generalizes perfection, (tw,w)-
boundedness generalizes chordality, and every (tw,w)-bounded graph class
is also y-bounded.

Corollary 12.3.1 (Corollary 2.4 in |76]). Every (tw,w)-bounded graph
class 1s x-bounded.

By Lemma 10.1.11, we immediately get the following corollary of Corol-
lary 12.3.1.

Corollary 12.3.2. Every graph class with bounded tree-independence
number is x-bounded.

In fact, Lemma 10.1.11 implies polynomial x-boundedness.

As we noted in [76], our results on (tw, w)-bounded graph classes forbidding
a single induced minor (see Theorem 9.3.10) also provide new x-bounded
graph classes. To explain this further, let us give the following remark.

Remark 12.3.3 (Remark 4.15 in [76]). If H is an induced subgraph
of K, for some ¢ > 3, then y-boundedness of the class of H-induced-
minor-free graphs follows, e.g., from an application of Ramsey’s theorem
to the class of K ,-free graphs. The cases when H is an induced sub-
graph of Cy and K correspond, respectively, to the classes of chordal
and block-cactus graphs (by Observation 8.0.1 and Lemma 9.2.3). In
the former case, xy-boundedness follows from the fact that chordal graphs
are perfect. In the latter case, we can use the fact that block-cactus
graphs have bounded clique-width [144], which is a sufficient condition
for x-boundedness [32, 93|. The case when H is an induced subgraph of
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K, corresponds to the class of K -topological-minor-free graphs, and all
such graphs are 3-colorable [83]. In the case when H is isomorphic to any

of Wy, Ky, Ka3, or KQJC3, the above arguments do not apply since none

of the resulting classes is contained in the class of perfect graphs or in
any graph class of bounded chromatic number or bounded clique-width.
(This can be seen using the results of [21], the fact that complete graphs
are H-induced-minor-free, and that odd cycles of length at least 5 are
H-induced-minor-free but not perfect.)

Another notion related to the notion of tree-independence number is the
tree-chromatic number of a graph G, denoted by tree-x(G). Seymour [182]
introduced the tree-chromatic number of a graph G as the smallest non-
negative integer k such that G admits a tree decomposition, each bag of
which induces a k-colorable subgraph. Note that for every graph G, we
have w(G) < tree-x(G) < x(G) < tw(G) + 1, where the first inequality
is shown in [182]. It is a known fact that for every graph G, we have
that |[V(G)| < a(G) - x(G). Applying this inequality to every bag of
a tree decomposition T of G with a(T) = tree-a(G), we obtain that
tw(G) + 1 < tree-a(G) - x(G). With a similar reasoning as above, we also
obtain that tw(G) + 1 < a(G) - tree-x(G). A question is whether there
exists a common strengthening of these two inequalities.

Question 12.3.4 (Question 8.4 in [77]). Does every graph G satisfy
tw(G) + 1 < tree-a(G) - tree-x(G) ?

As observed in |77|, due to the above mentioned inequalities,
Question  12.3.4 holds whenever tree-x(G) = x(G) or whenever
tree-a(G) = a(G). In particular, this is the case for any class of graphs
in which the chromatic number coincides with the clique number, such as
the class of perfect graphs.

Remark 12.3.5. Let us remark that one of the difficulties in proving Ques-
tion 12.3.4 lies in the fact that for a single graph, the three parameters in
question might be minimized by distinct tree decompositions. However,
it is easy to see that if a graph G admits a tree decomposition with in-
dependence number tree-a(G) and chromatic number tree-y(G), then we
immediately get the inequality tw(G) + 1 < tree-a(G) - tree-x(G).

Another parameter, called the tree-clique cover number and denoted by
tree-X(G), analogous to tree-independence number, was recently intro-
duced by Abrishami et al. [1]. The clique cover number of a graph G
is the smallest number of cliques needed to cover the graph G. The clique
cover number of a tree decomposition T = (T, {X; }ev(r)) is defined as

the maximum clique cover number over all ¢ € V(T) of the graph G[.X].
The tree-clique cover number of a graph G is then defined as the minimum
clique cover number over all tree decompositions of G. An easy observation
shows that for all graphs G, we have tree-X(G) < tw(G) + 1. In addition,
Abrishami et al. [1] observed that for Cy-free graphs, we obtain the fol-
lowing relation between the tree independence number and the tree-clique
cover number.
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Lemma 12.3.6 (Abrishami et al. [1]). Let G be a Cy-free graph. Then

tree-a(G) < tree-X(G) < (tree—oz(QG) i 1) :

Moreover, they proved that for every non-negative integer C', there exists
a graph with tree-a(G) < 2 and tree-X(G) > C (see Remark 2.3 in [1] for
a construction of such graphs).



Chapter 13

Conclusion

In Part I, we have studied various vertex and edge colorings of plane
graphs and their corresponding graph coloring invariants focusing on the
classical vertex coloring and on various colorings with their constraints
given on the faces of plane graphs.

In Chapter 4, we considered the classical vertex coloring of plane graphs.
In particular, we focused on a result of Grotzsch (Theorem 4.0.2), which
states that plane graphs without triangles are 3-colorable. This led us
to consider the effect that triangles have on the vertex coloring of plane
graphs. Aksenov (Theorem 4.1.1) proved that if a plane graph has at
most three triangles, then it is 3-colorable. We mainly focused on certain
precolorings of plane graphs which can be extended to a 3-coloring of the
whole graph. In this sense, we improved several existing results in the case
of triangle-free plane graphs by proving their generalizations in the case of
plane graphs containing at most one triangle. In some cases, we managed
to generalize the existing results (e.g., Theorem 4.2.1), while in other cases
we partially generalized the existing results (e.g., Theorems 4.2.2, 4.2.3,
and 4.2.6). In addition, for several of our results, we also provided examples
of graphs proving that our results are best possible with respect to the
number of triangles. However, this leaves open a possible research direction
to consider allowing multiple triangles to only appear in a certain way in
a plane graph and still allow for the existence of various precolorings that
can be extended to a 3-coloring of the whole graph.

In Chapter 5, we then turn our focus to various facial colorings of plane
graphs. In particular, we begin by discussing the cyclic coloring of plane
graphs for which Conjecture 5.1.2 remains wide open and seems to be
difficult to approach. This led to the introduction of the /-facial vertex-
coloring. However, as Conjecture 5.2.1 remains open even in the case
when ¢ = 2, we then turn our focus to the /-facial edge-coloring. In this
case, we managed to confirm Conjecture 5.3.1 in the case when ¢ = 3
(Theorem 5.3.3), thus leaving open the cases when ¢ > 4.

Finally, in Chapter 6, we studied the facial-parity colorings constrained
to the faces of plane graphs where each color must appear zero or an

160



CHAPTER 13. CONCLUSION 161

odd number of times on each face of a plane graph. Both the vertex and
edge versions of the problem have been considered from various points of
view. In both variants, we give examples of 2-connected plane graphs that
require 12 colors in order to admit a facial-parity vertex(edge)-coloring
(Theorems 6.2.4 and 6.1.4), thus slightly tightening the interval on which
the correct upper bound lies, which is somewhere between 12 and 16
colors in the case of the edge variant and somewhere between 12 and 97
colors in the case of the vertex variant.

In Part II, we studied the effect of cliques on how close to a tree a graph
is by considering the relation between treewidth and clique number.

In Chapter 9, we considered the so-called (tw,w)-boundedness of graph
classes. In particular, we obtained a complete dichotomy in the case of
excluding a single forbidden structure with respect to the subgraph, topo-

logical minor, and minor relations, as well as their induced variants (The-
orems 9.1.4, 9.1.6, 9.1.7, 9.2.1, 9.2.5, and 9.3.10).

In Chapter 10, we studied the tree-independence number of graphs.
First we proved several properties of this graph invariant, the most
important among them being the implication that every graph class
with bounded tree-independence number is, in fact, also (tw,w)-
bounded (Lemma 10.1.11). Then, we continued by proving that in
the case of a single forbidden structure, a graph class is (tw,w)-
bounded if and only if it has bounded tree-independence number (Theo-
rems 10.2.1, 10.2.3, 10.2.4, 10.3.5, and Corollaries 10.6.7 and 10.7.6). This
also led to Conjecture 12.1.7, which essentially states that for a graph class
(tw, w)-boundedness implies having bounded tree-independence number.

Finally, in Chapter 11, we used the notion of tree-independence num-
ber in its refined version, the f-refined tree-independence number, in or-
der to prove that the MWIS problem (and also some of its generalization
the MAXIMUM WEIGHT INDEPENDENT PACKING problem) are solvable
in polynomial time in all (tw,w)-bounded classes of graphs presented in
Chapter 9. In particular, we used the f-refined tree-independence number
for the case of excluding a single induced minor (Theorem 11.3.1). For
the other five considered graph containment relations, it turns out that
we can prove polynomial-time solvability without the help of the tree-
independence number. These are one of the first results proving that the
tree-independence number might be useful when considering various algo-
rithmic problems on graphs. To what extent can one use this and similar
notions, however, remains to be seen. Defining known graph invariants
on the subgraphs induced by the bags of tree decompositions instead of
the whole graph leaves a wide range of possible research directions to be
explored.
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Povzetek v slovenskem jeziku

V tem delu obravnavamo razli¢ne invariante grafov povezane z barvan-
jem ravninskih grafov ter razli¢ne invariante in dekompozicije povezane
z drevesnimi dekompozicijami grafov v izbranih razredih grafov. S tem
namenom je disertacija razdeljena na dva dela. Glavna motivacija za
raziskave razli¢nih invariant grafov je poglobitev razumevanja strukturnih
lastnosti grafov ter algoritmicnih posledic, ki sledijo. Grafovska invari-
anta je funkcija, definirana na grafih, ki ima enake vrednosti za izomorfne
grafe. Skozi leta je bilo definiranih veliko razli¢nih invariant grafov.
Mnoge med njimi so tezko razumljive, ¢e jih opazujemo nad mnozico vseh
grafov, zato se pri raziskavah pogosto omejimo zgolj na specifi¢ne razrede
grafov. Razred grafov je mnozica grafov, ki je zaprta za izomorfizem (glej,
npr. [45, 111, 186]).

Ena izmed bolj znanih invariant grafov je kromaticno stevilo grafa, ki ga
ozna¢imo s x(G). To je najmanjse Stevilo barv, ki jih potrebujemo za bar-
vanje vozlis¢ grafa G tako, da nobeni dve sosednji vozlis¢i nista pobarvani
7 isto barvo. Takemu barvanju pravimo pravilno barvanje grafa. Raziskave
te invariante so se zacele s problemom stirih barv, ki ga je postavil Francis
Guthrie v letu 1852. Problem sprasuje po obstoju pravilnega barvanja z na-
jvec Stirimi barvami za vsak ravninski graf, to je graf, ki ga lahko vlozimo
v ravnino brez sekajoCih se povezav. Da za vsak ravninski graf obstaja
pravilno barvanje s stirimi barvami so v letih 1976-1977 dokazali Appel in
Haken [12, 13] ter Appel, Haken in Koch [14]. Kromati¢no stevilo grafa
predstavlja najmanjse Stevilo mnozic, na katere lahko razdelimo vozlisca
grafa tako, da nobena mnozica ne vsebuje para sosednjih vozlis¢. Mnozi-
cam posamezne barve pogosto pravimo barvni razredi. Razdelitve vozlisc¢
grafa lahko seveda naredimo tudi glede na drugac¢ne pogoje. Posledi¢no
je bilo skozi leta definiranih veliko razli¢nih invariant grafov povezanih z
barvanjem grafov. V prvem delu dlsertacue obravnavamo pravilna bar-
vanja ravninskih grafov, cikli¢no barvanje in njegove posplogitve, kot so
(-licna barvanja vlozitev ravninskih grafov, in nenazadnje tudi li¢cno-parna
barvanja vlozitev ravninskih grafov.

Po drugi strani pa lahko, namesto razdelitev vozlis¢ grafov na barvne
razrede, kjer ne dopus¢amo ponovitev elementov, raziskujemo razlicne
dekomporzicije grafov. Dekompozicija grafa je razdelitev mnozice vozlisé
na ve¢ mnozic imenovanih vrece, kjer dopusc¢amo, da se lahko posamezen
element pojavi v ve¢ razlicnih vrecah. Ob tem mora veljati, da za vsak
par sosednjih vozlis¢ obstaja vreca, ki vsebuje obe vozlis¢éi. Ena izmed
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taksnih dekompozicij je drevesna dekompozicija, kjer zahtevamo, da mora
biti vsako Vozliéée vsebovano v neki vreci, da mora za vsako povezavo ob—
da vrece, ki VSGbUJeJO izbrano vozlisce, tVOI"lJO drevo. Drevo je povezan
graf brez ciklov. Invarianta grafov, ki je povezana z drevesnimi dekom-
pozicijami, je drevesna Sirina grafa G, ki jo oznacimo s tw(G) in je enaka,
najmanjsi vrednosti med vsemi drevesnimi dekompozicijami velikosti na-
jveGje vrece drevesne dekompozicije minus ena. V grobem drevesna Sirina
meri podobnost grafa z drevesom. Ta koncept je vpeljal Halin leta 1976.
Zanimanje zanj pa se je razsirilo predvsem z njegovim ponovnim odkritjem
s strani Robertsona and Seymourja leta 1984 v ¢lanku z naslovom Graph
Minors III [175], ki je le eden izmed mnogih njunih ¢lankov v tej seriji.

Mnoge invariante grafov so NP-tezke (glej, npr. [105]). Kljub temu je
veliko invariant grafov mogoce izracunati v polinomskem casu v razredu
grafov z omejeno drevesno Sirino. Posledica tega je, da je drevesna Sirina
grafov postala pomembna invarianta grafov v mnogih raziskavah. V
drugem delu disertacije se tako usmerimo v obravnavo (tw,w)-omejenih
razredov grafov kjer w(@) predstavlja velikost najvecje klike grafa G,
to je najvec¢je mnozice paroma sosednjih vozlis¢. Nato se usmerimo v
obravnavo invariante imenovane drevesno neodvisnostno Stevilo grafa
in na koncu tudi na uporabo drevesnega neodvisnostnega Stevila pri
razresljivosti problema najtezje neodvisne mnozice.

Prvi del

Prvi del disertacije za¢nemo z obravnavo 3-obarvljivosti ravninskih grafov.
Grotzschev izrek [114] pravi, da za vsak ravninski graf brez trikotnikov ob-
staja pravilno 3-barvanje. Hkrati pa vemo, da obstajajo ravninski grafi s
trikotniki, ki potrebujejo 4 barve v vsakem pravilnem barvanju vozlisc.
Eden izmed takih grafov je polni graf K. To nas vodi do raziskav o vplivu
trikotnikov na barvanje vozlis¢ ravninskih grafov. Aksenov [4] je pokazal,
da za vsak ravninski graf z najvec tremi trikotniki vedno obstaja pravilno
3-barvanje vozlis¢. Kasneje so se pojavili tudi krajsi dokazi (glej [33]
in [41]). V [41] so avtorji uporabili rezultat Kostochke and Yanceyja [150],
ki nam da najmanjse stevilo povezav k-kriticnega graf za poljuben k > 4.
Graf G je k-kriticen, ¢e je x(G) = k in za vsak induciran podgraf H
grafa G velja, da je X(H) < k. Ob tem avtorji pokazejo, da se dolocena
predbarvanja vlozitev ravninskih grafov brez trikotnikov lahko razsirijo
v pravilna 3-barvanja celotnega grafa. Glavno vpraSanje, povezano z
Grotzschevim izrekom, je vprasanje o tem, katera predbarvanja vlozitev
ravninskih grafov z najvec¢ enim trikotnikom se lahko razgirijo na pravilna
3-barvanja celotnega grafa, kjer nam je v pomoc¢ prej omenjeni rezultat
Kostochke and Yanceyja. Najprej pokazemo, da lahko vsako predbarvanje
para vozliS¢ v vlozitvi ravninskega grafa z najve¢ enim trikotnikom razsir-
imo na 3-barvanje celotnega grafa (Izrek 4.2.1). Nato pokazemo, da lahko
vsako predbarvanje vozlis¢ lica dolzine najve¢ 4 v vlozitvi ravninskega
grafa z najvec¢ enim trikotnikom razsirimo na 3-barvanje celotnega grafa
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(Izrek 4.2.3). Na koncu poglavja pa pokazemo, da lahko za vsako vo-
zlisce stopnje najve¢ 3 v vlozitvi ravnmskega grafa predbarvanje, kjer vse
njegove sosede pobarvamo 7 isto barvo, razsirimo na 3-barvanje celotnega
grafa (Izrek 4.2.6). Nenazadnje podamo tudi primere, ki dokazujejo tesnost
nasih rezultatov. Ob tem omenimo 8e en rezultat. Adinamicno barvanje je
pravilno barvanje vozlis¢ grafa GG, za katero obstaja vozlisce v stopnje vsa]
2, ki ima vse sosede pobarvane z isto barvo. Iz definicije sledi, da mora
za obsto] adinamicnega barvanja obstajati vozlis¢e z neodvisno sosescino,
to je tako vozlisce, ki ne lezi na nobenem trikotniku. Surimova idr. [199]
so postavili domnevo, ki pravi, da za vsak ravninski graf z najve¢ enim
trikotnikom, ki omogoca adinamic¢no barvanje, obstaja adinamicno bar-
vanje z najve¢ tremi barvami. Kot posledico Izreka 4.2.6 pokazemo, da je
domneva resni¢na (Izrek 7.1.3).

Nadaljujemo 7 obravnavo ciklicnega barvanja vlozitev ravninskih grafov,
to je tako barvanje vozlis¢ vlozitve ravninskega grafa, da nobeno lice ni
sosednje z dvema vozlis¢ema enake barve. Cikli¢no barvanje sta definirala
Ore in Plummer [169] leta 1969. Iz definicije direktno sledi, da za tako bar-
vanje potrebujemo vsaj toliko barv, kot je dolzina A*(G) najdaljsega lica.
Domneva, cikli¢nega barvanja pa pravi, da L%A*(G)j barv vedno zadosca

za poljuben A*(G) > 3. Leta 1987 sta Plummer in Toft [172] podala prvo
druzino vlozitev ravninskih grafov, ki dosezejo mejo podano v Domnevi
ciklicnega barvanja. O zahtevnosti Domneve ciklicnega barvanja prica de-
jstvo, da je znano le to, da domneva velja za majhno Stevilo primerov, in
sicer za A*(G) € {3,4,6}. Vec je znanega v primeru vlozitev 3-povezanih
ravninskih grafov, za katere sta Plummer in Toft [172] postavila dom-
nevo, da zados¢a A*(G) + 2 barv za vsak A*(G) > 3. Razli¢ni rezultati
(glej [136 137, 139, 92]) in dejstvo, da za A*(G) € {3,4}, domneva sov-
pada z Domnevo (ﬂkh(:nega barvanja, kazejo na resni¢nost domneve Plum-
merja in Tofta za vse A*(G) € {5,...,15}. Kot posplositev ciklicnega

barvanja so leta 2005 Kral, Madaras in Skrekovski [154] definirali ¢-licno
barvanje vozlis¢ vlozitev ravninskega grafa, to je tako barvanje vozlisc,
kjer vsaki dve vozlisci sosednji z istim licem na razdalji najvec £ na tem
licu pobarvamo z razli¢nima barvama. Kral, Madaras in Skrekovski [154]
so postavili tudi domnevo, da za vsako taksno barvanje potrebujemo na-
jve¢ 3¢ + 1 barv. Opazimo lahko, da v primeru, ko je A*(G) < 20 + 1,
(-licno barvanje sovpada s ciklicnim barvanjem. V splosnem je znano
le, da je domneva resni¢na za £ = 1, kar dokazuje izrek Stirih barv, saj
je vsako pravilno barvanje vlozitve ravninskega grafa tudi 1-licno bar-
vanje. V primeru vloZitev ravninskih grafov brez trikotnikov so Dvoriék,

Skrekovski in Tancer [97] postavili domnevo, da 3¢ barv vedno zados¢a.
Podobno kot Izrek stirih barv dokazuje veljavnost domneve ¢-licnega bar-
vanja v primeru, ko je ¢ = 1, Grotzschev izrek (Izrek 4.0.2) v splosnem
dokazuje veljavnost domneve /-licnega barvanja vlozitev ravninskih grafov
brez trikotnikov. Tudi ta domneva ostaja odprta za preostale vrednosti
¢ > 2. Poseben primer (-licnega barvanja vozlis¢ vlozitve ravninskega
grafa je (-licno barvanje povezav, kjer je edina razlika ta, da namesto vo-
zlis¢ barvamo povezave tako, da vsak par povezav na razdalji najvec¢ ¢ na
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sprehodu po robu lica velja, da sta pobarvani z razlicno barvo. Taksno
barvanje so definirali leta 2015 Luzar, Mockovciakova, Sotak, Skrekovski

in Sugerek [162]. Prav tako so postavili domnevo, da zadostuje 3¢+ 1 barv
za vsako (-licno povezavno barvanje poljubne vlozitve ravninskega grafa.
Da je ¢-licno barvanje povezav poseben primer /(- licnega barvanja vozIisc,
sledi iz dejstva, da lahko vsak graf G’ vedno spremenimo v tako imenovani
medialni graf M (G), to je, graf, kjer za vsako povezavo grafa GG ustvarimo
vozlisce v grafu M (G) in dodamo povezave med dvema vozlis¢ema u in
v grafa M (G) natanko tedaj, ko sta ustrezni povezavi v grafu G sosednji
na skupnem licu. Iz definicij obeh barvanj in medialnega grafa sledi, da je
vsako (-liéno barvanje vozlis¢ grafa M (G) tudi ¢-licno povezavno barvanje
grafa G. O domnevi f-licnega povezavnega barvanja je znanega nekoliko
ve¢. Primer, ko je £ = 1, je posledica izreka stirih barv. Primer, ko je
¢ = 2, so dokazali Luzar idr. [162]. S pomodjo metode prenosa naboja
pokazemo, da je domneva veljavna tudi za ¢ = 3 (Izrek 5.3.3).

Zadnja tematika prvega dela te disertacije so licno-parna barvanja vlozitev
ravninskih grafov. Leta 2009 sta Czap in Jendrol [70] definirala licno-
parno barvanje vozlis¢ vlozitve 2-povezanega ravninskega grafa kot po
licih pravilno barvanje vozlis¢, kjer je vsako lice sosednje 7 ni¢ ali pa z
lihim Stevilom vozlis¢ posamezne barve. Podobno so leta 2011 Czap,
Jendrol in Kardos [72| definirali licno-parno barvanje povezav vlozitve
povezanega ravninskega grafa brez mostov kot po licih pravilno barvanje
povezav, kjer je vsako lice sosednje z ni¢ ali pa z lihim Stevilom povezav
posamezne barve. Razlog, da je licno-parno barvanje vozlis¢ definirano
za vlozitve 2-povezanega ravninskega grafa in da je li¢cno-parno barvanje
povezav definirano za vlozitve povezanega ravninskega grafa je v tem,
da presecna vozlis¢a, oz. mostove, Stejemo dvakrat na zunanjem licu.
Med glavne motivacije za omenjeni barvanji spadajo parna barvanja,
ki so jih definirali Bunde, Milans, West in Wu [48, 49]. Definirana
so na slede¢ nacin. Za povezavno barvanje enostavnega grafa je parni
sprehod tak sprehod, da se na njem vsaka barva pojavi sodokrat. Parno
povezavno barvanje je taksno povezavno barvanje, ki nima nobenega
parnega sprehoda. 7 drugimi besedami, za vsako pot P obstaja barva
c, ki se na poti P pojavi lihokrat. Velja, da je vsako parno povezavno
barvanje tudi pravilno barvanje povezav grafa, saj dve sosednji povezavi
predstavljata pot dolzine 2, ki mora posledi¢no biti pobarvana z dvema

barvama. Se ena izmed motivacij so problemi pokritij grafov. Pravimo,
da grafi Hy,..., Hy tvorijo pokritje grafa G, ce za vsak 1 < 1 < k, velja,
da je H; podgraf grafa G in, da je J,.,.p E(H;) = E(G). Se posebej so
zanimiva ltha pokritja, to so taka pokritja grafa G, kjer ima vsak graf H;
le vozlisca lihih stopenj. Pyber [173] je leta 1991 pokazal, da ima vsak graf
liho pokritje z najve¢ Stirimi povezavno disjunktnimi podgrafi. Podobno
so Luzar idr. [163] pokazali, da lahko vsak multigraf brez zank pokrijemo
7z najvec Sestimi povezavno disjunktnimi podgrafi. Naj omenimo Se, da
je vsako li¢no-parno barvanje tudi 1-licno barvanje. Ce se vrnemo na
licno-parno barvanje vozlis¢, so Czap, Jendrol in Voigt [73] pokazali, da
lahko vsako vlozitev 2-povezanega ravninskega grafa pobarvamo z najvec
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118 barvami. Tri leta kasneje so Kaiser idr. [143] mejo izboljfali na 97
barv, kar je trenutno najboljsi rezultat. V primeru zunanje- ravninskih
grafov, to je grafov, ki jih lahko vlozimo v ravnino tako, da so vsa vozlisca
inciden¢na z zunanjim licem, je znanega nekoliko vet. Leta 2011 je
Crzap |66] pokazal, da najve¢ 12 barv zadoS¢a za li¢no-parno barvanje
povezav vlozitev 2-povezanih ravninskih grafov. Ob tem je pokazal tudi
obstoj zunanje-ravninskega grafa, ki potrebuje 10 barv. Leto kasneje so
Wang, Finbow in Wang [203] uspeli pokazati, da za zunanje-ravninske
grafe vedno zadostuje 10 barv, pri ¢emer obstajata le dva grafa, ki to mejo
tudi dosezeta. V primeru li¢no-parnega barvanja povezav so Czap idr. [72]
pokazali, da ima vsaka vlozitev povezanega ravninskega grafa brez mostov
licno-parno barvanje povezav z 92 barvami. Kasneje so Czap, Jendrol,
Kardos in Sotéak [69]vmej0 izboljsali na 20 barv, ta rezultat pa sta dodatno

izboljsala Luzar in Skrekovski [164], in sicer na 16 barv, kar je trenutno
najboljsi rezultat. Podobno kot pri li¢no-parnem barvanju vozlisc, je
tudi v primeru li¢no-parnega barvanja povezav nekoliko ve¢ znanega v
primeru zunanje-ravninskih grafov. Leta 2012 je Czap [67| pokazal, da za
vsako vlozitev povezanega zunanje- ravnmskega grafa brez mostov vedno
obstaja li¢no-parno barvanje povezav z najvec 15 barvami. Ta rezultat
sta tri leta kasneje izboljsala Balint in Czap [17], ko sta pokazala, da, z
izjemo le enega grafa, ima vsaka vlozitev povezanega zunanje-ravninskega
grafa brez mostov licno-parno povezavno barvanje z najve¢ 9 barvami,
edina izjema pa potrebuje natanko 10 barv. Tako za li¢no-parno barvanje
vozlis¢ kot tudi za li¢no-parno barvanje povezav pokazemo, da za vsako
celo stevilo ¢, kjer je 6 < ¢t < 12, obstaja neskonc¢na druzina grafov za
katere obstaja litno-parno barvanje vozlis¢, oz. povezav, in ki potrebujejo

natanko ¢ barv (Izreka 6.2.4 in 6.1.4). Se posebej to pokaZe obstoj grafov,
ki potrebujejo 12 barv.

Drugi del

V drugem delu disertacije se osredotocimo na raziskave razredov grafov
zaprtih za inducirane podgrafe, v katerih Je odsotnost velike klike tako
potreben kot tudi zadosten pogoj za omejeno drevesno Sirino. Ta last-
nost je imenovana (tw,w)-omejenost. Za razred grafov G pravimo, da je
(tw,w)-omejen, Ce obtaja taksna funkcija f, da za vsak graf G iz G in za
vsak induciran podgraf G’ grafa G velja, da je drevesna Sirina grafa G’
najve¢ f(w(G")). Taki funkeiji f pravimo (tw,w)-omejitvena funkcija. Za
vsak tetiven graf, to je graf brez induciranih ciklov dolzine vsaj 4, velja,
da je tw(G) = w(G) — 1. Razred tetivnih grafov je eden izmed najos-
novnejsih razredov grafov, ki je (tw,w)-omejen. V splognem velja, da je
za vsak graf tw(G) > w(G) — 1. Vprasamo se lahko torej, za katere
razrede grafov je drevesno Sirino mogoce omejiti z neko funkcijo v odvis-
nosti od kli¢nega Stevila. Ob tetivnih grafih so (tw,w)-omejeni tudi razredi
grafov z omejenim neodvisnostnim Stevilom, kar je posledica Ramseyevega
izreka (Izrek 9.0.1). Da bi bolje razumeli lastnost (tw,w)-omejenosti, se
osredotoc¢imo na obravnavo razredov grafov in na Sest razliénih znanih
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relacij vsebovanosti v grafih, ki so: podgraf topoloski minor, minor, in-
duciran podgraf, induciran topoloski minor in induciran minor. Za vsako
od omenjenih relacij v celoti karakteriziramo grafe H, za katere je razred
grafov, ki ne vsebujejo grafa H glede na izbrano relacijo, (tw, w)-omejen
(Izreki 9.1.4, 9.1.6, 9.1.7, 9.2.1, 9.2.5 in 9.3.10, katerih rezultati so povzeti
v Tabeli 9.1). V primeru prepovedanega podgrafa, topoloskega minorja in
minorja velja celo vec¢, in sicer, da imajo omejeno drevesno §irino. V neka-
terih primerih (glej Izreke 9.1.4, 9.1.6, 9.1.7, 9.2.1 in 9.2.5) pokaZemo tudi
obstoj linearne (tw,w)-omejitvene funkcije. Eno izmed moznih vprasanj
je torej, kaksni so potrebni in/ali zadostni pogoji, da je razred grafov
(tw, cu) omejen z linearno funkcijo. Ob tem naj omenimo, da je odprto tudi
vprasanje, ali je vsak (tw, w) -omejen razred grafov (tw, w)—omejen s poli-
nomsko funkcijo. Med moznimi nadaljnjimi raziskavami je tudi Vprasanje
kateri razredi grafov so (tw,w)-omejeni, ko prepovemo konéno mnoZico
grafov glede na eno izmed zgoraj omenjenih Sestih relacij vsebovanosti
grafov. V primeru prepovedanih induciranih podgrafov nam pri tem po-
maga rezultat Lozina in Razgona [160] (glej Izrek 12.1.3). Kot posledico
tega rezultata dobimo celotno karakterlzacuo (tw, w)-omejenih razredov
grafov, opisanih s kon¢éno mnozico prepovedanih induciranih podgrafov
(Posledica 12.1.4). 'V primeru prepovedanih induciranih topoloskih mi-
norjev in induciranih minorjev vprasanje ostaja odprto. Omenimo tudi,
da je koncept (tw,w)-omejenosti del veliko bolj splosne definicije. Za dve
invarianti grafov p in ¢ pravimo, da je razred grafov G (p, o)-omejen, ¢e
obstaja tak3na (p,o)-omejitvena funkcija f : N — N, da za vsak graf
G € G in vsak induciran podgraf H grafa G velja, da je p(H) < f(o(H)).
Med najbolj znanimi primeri je (x,w)-omejenost (glej, npr. [31, 165, 211]),
imenovana tudi y-omejenost, vendar obstajajo tudi drugi primeri (glej,
npr. [142, 119, 131]).

Nadaljujemo z obravnavo drevesnega neodvisnostnega stevila, ki je defini-
rano na naslednji nacin. Neodvisnostno Stevilo drevesne dekompozicije T
grafa GG je najvecje neodvisnostno stevilo med vsemi podgrafi grafa G, ki so
inducirani z neko vrec¢o drevesne dekompozicije 7. Drevesno neodvisnos-
tno stevilo grafa G je nato definirano kot najmanjse neodvisnostno stevilo
med vsemi drevesnimi dekompozicijami grafa G. Ta invarianta, ki jo oz-
nacimo s tree-a(G), je bila definirana s strani Yolova [209)] (pod imenom
a-drevesna §irina) in neodvisno s strani Dallarda idr. [77, 78]. Za raz-
liko od drevesne Sirine nas ne zanimajo drevesne dekompozmue Z najman-
jso §irino, ampak drevesne dekompozicije z najmanjsim neodvisnostnim
stevilom. Glavna motivacija za raziskovanje drevesnega neodvisnostnega
stevila je sledeca. Denimo, da imamo razred grafov, kjer ima vsak graf
drevesno dekompozicijo s §irino omejeno z neko konstantno vrednostjo.
V tem primeru velja, da za izbran problem vsaka vreca drevesne dekom-
pozicije seka optimalno resitev problema v omejenem Stevilu nacinov, ki jih
lahko u¢inkovito (v polinomskem ¢asu) nastejemo. Posledi¢no lahko upora-
bimo princip dinami¢nega programiranja, da najdemo optimalno reSitev
izbranega problema v polinomskem ¢asu. Kot posplositev te ideje lahko
zahtevo po konstantni drevesni Sirini nadomestimo z zahtevo, da vsaka
vrecCa seka optimalno resitev le na polinomsko mnogo nacinov, ki jih lahko
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v polinomskem casu nastejemo. Ta ideja je bila neodvisno predstavljena s
strani Marie Chudnovsky [54, 55, 56, 57]. Kot poseben primer lahko opaz-
imo, da omejeno drevesno neodvisnostno stevilo implicira dejstvo, da je
stevilo vozlis¢, ki jih lahko optimalna reSitev problema najtezje neodvisne
mnozice vsebuje v posamezni vrecéi, omejeno. Med rezultati drugega dela
te disertacije je med drugim tudi nova karakterizacija tetivnih grafov s po-
mocjo drevesnega neodvisnostnega Stevila. Velja namrec¢, da je drevesno
neodvisnostno §tevilo grafa G enako 1 natanko tedaj, ko je G tetiven graf
(Izrek 10.1.1). Omenimo Se, da je problem dolocitve drevesnega neodvis-
nostnega Stevila danega grafa NP-tezak (Izrek 10.1.7), kar sledi iz dejstva,
da za vsako drevesno dekompozicijo velja, da obstaja taksno vozlisce grafa,
da je njegova zaprta soseSCina v celoti vsebovana v vsaj eni vreci dekom-
pozicije. Med pomembnimi lastnostmi drevesnega neodvisnostnega Stevila
je tudi ta, da je vsak razred grafov z omejenim drevesnim neodvisnostnim
Stevilo pravzaprav tudi (tw,w)-omejen (Lema 10.1.11). Ob tem se pojavi
vprasanje kako je z obratno implikacijo, to je ali ima vsak (tw,w)-omejen
razred grafov tudi omejeno drevesno neodvisnostno stevilo. Nasa domneva
je, da je ta implikacija resni¢na. Resni¢nost domneve potrdimo za razrede
grafov opisane z enim prepovedanim grafom glede na eno od zgoraj omen-
jenih relacij vsebovanosti grafov. Bolj natancno, za vsak razred grafov
opisan v Tabeli 9.1 pokaZemo, da je (tw,w)-omejen natanko tedaj, ko ima
omejeno drevesno neodvisnostno Stevilo (Izreki 10.2.1, 10.2.3, 10.2.4, 10.3.5
in Posledici 10.6.7 in 10.7.6).

Na koncu se osredoto¢imo na vpraSanje o tem, kakSne algoritmicne im-
plikacije ima (tw,w)-omejenost na razlicne probleme, kjer se usmerimo
predvsem na problem najtezje neodvisne mnozice. Izreki 11.0.1, 11.0.2
in 11.0.3 razresijo vprasanje o polinomski resljivosti problema v vseh
(tw, w)-omejenih razredih grafov karakteriziranih z enim grafov H glede na
eno izmed Sestih relacij vsebovanosti grafov z izjemo relacije induciranega
minorja. Le-ta je osrednji rezultat tega dela disertacije. Bolj natan¢no, za
vsak k > 1 pokazemo, da je problem najteZje neodvisne mnozice resljiv
v polinomskem c¢asu v (tw,w)-omejenih razredih grafov karakteriziranih
z enim prepovedanim induciranim minorjem. To je posledica dejstva, da
imajo ti razredi grafov omejeno drevesno neodvisnostno stevilo in rezultata
s strani Dallarda idr. [75], ki pravi, da obstaja algoritem, ki za dan graf G
in pozitivno celo stevilo k£ v polinomskem c¢asu izracuna drevesno dekom-
pozicijo z neodvisnostnim Stevilom najvec¢ 8k ali pa zakljuci, da je drevesno
neodvisnostno stevilo grafa G vecéje od k, s ¢imer avtorji izboljsajo rezul-
tat, ki ga dobimo z uporabo rezultata Yolova [209]. Dodatno pokazemo, da
lahko v polinomskem ¢asu resimo tudi posplositev problema najtezje neod-
visne mnozice, in sicer problem najtezjega neodvisnega pakiranja. Prob-
lem najterega neodvisnega pakiranja prejme kot vhodni podatek graf G,
kon¢éno druzino ‘H = {H,}jes povezanih nepraznih podgrafov grafa G
in utezno funkcijo w : J — QT za podgrafe v H, kot izhodni podatek
pa zelimo najtezje neodvisno H-pakiranje v grafu G. Naj bo G graf in
naj bo H = {H; }JeJ druZina povezanih podgrafov grafa G. Z G(H) oz-

v v

natanko tedaj, ko imata grafa H in H; skupno vozlisce ali pa obstaja v



184 POVZETEK V SLOVENSKEM JEZIKU

grafu G povezava med njima. Ta konstrukcija je bila predstavljena s strani
Cameron in Hella [52]. Med drugim pokaZemo, da za poljuben graf G in
za poljubno mnozico nepraznih povezanih podgrafov grafa G velja, da je
neodvisnostno stevilo grata G vedno vsaj tako veliko, kot je neodvisnostno
stevilo grafa G(H) (Izrek 11.2.2). To pomeni, da za vsak razred grafov
G 7z omejenim neodvisnostnim Stevilom in za vsako mnozico F povezanih
nepraznih grafov velja, da ima razred {G(H) : G € G, H(G,F)}, kjer
je H(G, F) mnozica vseh podgrafov grafa G izomorfnih nekemu elementu
mnozice iz F, omejeno drevesno neodvisnostno stevilo. To vodi do rezul-
tata, da je problem najtezjega neodvisnega pakiranja mogoce resiti v poli-
nomskem ¢asu v vseh obravnavanih (tw,w)-omejenih razredih grafov (glej
Izrek 11.2.6).
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