
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Master’s thesis

(Magistrsko delo)

Classes of graphs with tree-independence number at most two

(Razredi grafov z drevesnim neodvisnostnim številom največ 2)
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Ključna dokumentacijska informacija

Ime in PRIIMEK: Mirza REDŽIĆ
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jveč 2
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Izvleček:

V teoriji grafov imamo pogosto opravka s problemi, ki so algoritmično zelo zahtevni.

Natančneje, tudi najbolǰsi znani algoritmi ne morejo rešiti takšnih problemov v poli-

nomskem času. V takšnih primerih se lahko odločimo, da vhodne podatke omejimo

na način, ki nam omogoča, da problem rešimo v polinomskem času na omejeni vhodni

množici. V zadnjem času lahko pogosto vidimo, da se kot način za učinkovito omeje-

vanje vhoda uporabljajo različne mere strukturne zapletenosti grafa, imenovane širinski

parametri grafov. V magistrskem delu se ukvarjamo s širinskim parametrom, imen-

ovanim drevesno neodvisnostno število, in obravnavamo razrede grafov, za katere je

vrednost tega parametra navzgor omejena z 2. Spoznamo tudi tri grafe s drevesnim

neodvisnostnim številom vsaj tri, katerih ima vsak pravi induciran minor drevesno

neodvisnostno število navzgor omejeno z 2. V celoti opǐsemo razred grafov, za katere

sta tako drevesna širina kot drevesno neodvisnostno število omejena z 2. Natančneje,

pokažemo, da je drevesno neodvisnostno število grafa G z drevesno širino največ 2

omejeno z 2 natanko takrat, ko graf G ne vsebuje induciranega minorja izomorfnega

grafu, ki ga poimenujemo C∗
6 , sicer pa je enako 3.
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Abstract:

In graph theory, we often need to solve the problems that are algorithmically very

difficult. In particular, even the best known algorithms cannot solve such problems

in polynomial time. In such cases, we may decide to restrict the input in a way that

allows us to solve the problem on this input set in polynomial time. In recent times,

we can often see various measures of the structural complexity of a graph, called graph

width parameters being used as a way to restrict the input efficiently. In this thesis we

consider one such width parameter called tree-independence number. In particular,

we identify several classes of graphs for which this parameter is bounded by two. We

also discover three graphs with tree-independence number at least three, whose every

proper induced minor has tree-independence number bounded by two. We completely

characterize the class of graphs with treewidth and tree-independence number both

bounded by two. In particular, we show that within graphs with treewidth at most

two, the tree-independence number is at most 2 if one graph in this class, which we

name C∗
6 , is excluded as an induced minor, and otherwise it equals 3.
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1 INTRODUCTION

In graph theory, one often needs to tackle problems that are algorithmically very dif-

ficult. In particular, even the best known algorithms cannot solve such problems in

polynomial time. When faced with such a problem, one often needs to find a way to

compromise either generality, or the accuracy of the solution, in order to successfully

obtain a polynomial time algorithm. Based on what is more important for a particular

application, one can either find some polynomial-time ρ-approximation algorithm (for

some positive ρ > 1) that produces a solution that is not necessarily correct, however

the output is at most by factor ρ away from the actual solution of the problem, or if an

exact solution is required, one can sacrifice the generality of the solution, by restricting

the input in a way that allows us to solve the problem on this input set in polynomial

time.

If one decides to take the second approach, there are many ways to restrict the

input that may be applied. Obviously, the main goal is to have a restriction on the

input that is as weak as possible, while still allowing for polynomial-time solutions.

In recent times, we can often see various measures of the structural complexity

of a graph, called graph width parameters being used as a way to restrict the input

efficiently.

When a width parameter is bounded by a fixed constant in some family of graphs

F , this often leads to a development of an efficient dynamic programming algorithm on

a graph from F that exploits the properties that the graphs with bounded width pa-

rameter possess, usually by applying a divide-and-conquer approach on some particular

decomposition. An example of such a decomposition is tree decomposition, where the

graph is decomposed into a tree-like structure, where each node of the tree corresponds

to a subset of vertex set of the original graph, satisfying certain conditions.

In this thesis, we consider the classes of graphs that have the width parameter

called tree-independence number bounded by 2. For the relevant definitions, see the

next chapter.

The maximum weight independent set problem asks, given a graph G and a non-

negative weight function on vertices of G, what is the maximum weight of an indepen-

dent set in G. This problem is known to be NP-hard in general (see, e.g., [18]).

However, as Dallard, Milanič and Štorgel observed in [10], in the families of graphs

with the tree-independence number bounded by a fixed constant k, if a tree decom-

position that corresponds to this independence number is known, then the maximum
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weight independent set problem is solvable in polynomial time. In particular, they

provided an algorithm that uses such a tree decomposition to obtain the solution to

the maximum weight independent set problem in time O(nk+1), where n is the number

of vertices of the input graph.

We notice that the time complexity of their algorithm depends on the independence

number of a tree decomposition, so if we can efficiently decide if a graph has small

tree-independence number, while producing a tree decomposition that corresponds

to this tree-independence number, we can also efficiently solve the maximum weight

independent set problem for graphs this particular family.

It is known that we can recognize graphs that have tree-independence number at

most one in polynomial time (see, e.g., [10]). Also, for each fixed k ≥ 4, recognition of

graphs with tree-independence number at most k is known to be NP-hard (see [9]).

Thus the next natural step is to consider the graphs with tree-independence number

at most two and ask if we can recognize them efficiently in general. A bit easier question,

that we will explore in this thesis is, what are some particular classes of graphs in which

we can efficiently recognize the graphs that have tree-independence number at most 2.

In this thesis, we explore this question and find some classes of graphs where this is

true. We start off by giving some definitions and graph concepts that are required to

develop the results of the thesis. We proceed by giving a few examples of graph classes

that are completely contained in the class of graphs with tree-independence number

bounded by 2, by using some previously known bounds and developing algorithms that

yield a tree decomposition of independence number at most 2, given any graph from

these classes. We then develop polynomial-time algorithms for deciding if H-free graphs

have tree-independence number at most 2, for various choice of small graphs H. Then

in the fifth chapter, we find three minimal examples of graphs with tree-independence

number greater than 2. In particular, for each of those graphs, every proper induced

minor has tree-independence number at most 2, while the graph has tree-independence

number strictly larger than 2. We proceed by developing some necessary and sufficient

conditions for having tree-independence number bounded by 2, within the class of

graphs whose treewidth is bounded by 2. We show that within this class of graphs,

it is sufficient to forbid a single graph, as an induced minor in order to have tree-

independence number bounded by 2. Then, in the seventh chapter, we look into some

of the sufficient conditions for graphs to have tree-independence number bounded by

2 in class of chordal bipartite graphs. We conclude the thesis with a brief summary of

the obtained results and by stating some of the relevant open problems.
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2 PRELIMINARIES

Before proceeding to the main part, we first overview some basic definitions and nota-

tions used in the thesis.

2.1 GRAPH THEORY PRELIMINARIES

Unless stated otherwise, we are only considering the finite, simple, connected, undi-

rected graphs and given a graph G, we denote the vertex set and the edge set of G by

V (G) and E(G) respectively. Sometimes, if it is clear from the context which graph

we are referring to, we only use V and E to denote the vertex set, and the edge set

respectively.

Two vertices u and v are adjacent in a graph G if there is an edge between them.

We denote this by u ∼ v. If no such edge exists, then they are said to be nonadjacent.

The order of a graph G represents the cardinality of V (G). A graph G is trivial if its

order is 1. Otherwise, it is nontrivial.

The neighbourhood of a vertex v, denoted N(v), is the set of all vertices that are

adjacent to v. The degree of a vertex v, denoted deg(v), is equal to the cardinality

of its neighbourhood. The closed neighbourhood of a vertex v, denoted N [v], is the

neighbourhood of v together with v itself.

Let {u, v} be an edge in a graph G. The subdivision of {u, v} is the operation of

deleting the edge {u, v}, adding a new vertex w, and adding two edges, one between u

and w and another between v and w.

Given a positive integer k, we say a graph is k-regular if every vertex of the graph

has degree equal to k. If a graph is 3-regular, we say that it is cubic.

A path on n ≥ 3 vertices is a graph P whose vertices can be labeled as v1, . . . , vn so

that E(P ) = {{vi, vi+1} | i ∈ {1, . . . , n− 1}}. We say that n− 1 is the length of such

a path and a path is called trivial if it has length 0. We denote the path where vi = i

for all i, as in the definition above, as Pn.

A cycle on n ≥ 3 vertices is a graph C whose vertices can be labeled as v1, . . . , vn

so that E(C) = {{vi, vi+1} | i ∈ {1, . . . , n− 1}} ∪ {v1, vn}. We denote the cycle where

vi = i, for all i, as in the definition above, as Cn.

A complete graph is a graph in which every two distinct vertices are adjacent. We

denote the complete graph on n vertices as Kn.
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A graph is bipartite if its vertex set can be partitioned into two sets A and B such

that every edge in G has one endpoint in A and the other in B.

A graph is complete bipartite if there exists a partition of vertex set into sets A

and B such that every vertex in A is adjacent to every vertex in B and there are no

other edges. If |A| = m and |B| = n, we denote such a graph as Km,n. A claw is the

complete bipartite graph K1,3. Adding an edge between two nonadjacent vertices in a

claw results in a graph called the paw. We refer to the complement of the paw graph

as co-paw.

A graph G is complete multipartite if its vertex set can be partitioned into k inde-

pendent sets X1, . . . , Xk such that whenever u ∈ Xi and v ∈ Xj, for some i ̸= j, then

u and v are adjacent.

Two graphs G and H are isomorphic, if there exists a bijection

ϕ : V (G) → V (H)

such that u ∼ v if and only if ϕ(u) ∼ ϕ(v). Such function is called an isomorphism

between G and H. If G and H are isomorphic, we write G ∼= H.

If G is a graph, we say that S ⊆ V (G) is a cutset if G − S is disconnected. For

a positive integer k, a graph G is k-connected if G has more than k vertices and no

cutset with fewer than k vertices. If S is a cutset such that no proper subset of S ′ is a

cutset, we say that S is a minimal cutset. A clique cutset is a cutset that is a clique.

If S = {v} is a cutset, we say that the vertex v is a cut-vertex. A cut partition of a

graph G is an ordered partition (A,B,C) of the vertex set of G such that A and B are

nonempty and no edge in G connects a vertex in A with a vertex in B.

Let G and H be graphs. Then H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆
V (G) and E(H) ⊆ E(G).

Example 1. A path on n vertices is a subgraph of a cycle on n vertices.

Let G be a graph and let S ⊆ V (G). An induced subgraph G[S] is the graph whose

vertex set is S and for any pair u, v ∈ S, it holds that u and v are adjacent in G[S] if

and only if u and v are adjacent in G. Notice that if H is an induced subgraph of G,

it is also a subgraph of G. The converse, however does not hold, as can be seen in the

following example.

Example 2. Pn−1 is an induced subgraph of Cn. On the other hand, Pn is a subgraph

of Cn, but it is not an induced subgraph.

Given a graph H, G is H-free if it contains no induced subgraph isomorphic to H.

For a family of graph F , G is F -free if it is H-free for every H in F .

Let G be a graph. We say that H is an induced minor of G if H can be obtained

from G by deleting vertices and contracting edges. Notice that an induced minor of G
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is not necessarily a subgraph of G. For example, K3 is an induced minor of C4 (can be

obtained from C4 by contracting any edge), but it is clearly not a subgraph.

Example 3. Let G be the Petersen graph. Then K3,3 is an induced minor of G.

Proof. Consider the Petersen graph, labeled as in Figure 1. First contract the edge

{5, 8} to vertex 5, to obtain the graph as in Figure 2a. Then contract the edge {0, 1},

to vertex 0, as in Figure 2b. Then contract the edge {7, 9}, to vertex 7, to obtain

the graph as in Figure 2c. And finally delete vertex 6 to obtain K3,3 as can be seen

in Figure 2d, where the two parts of a bipartition are labeled by red and blue color

respectively.

Figure 1: The Petersen graph with vertices labeled.

Given a graph H, a graph G is said to be H-induced-minor-free if it admits no

induced minor isomorphic to H. For a family of graph F , a graph G is F -induced-

minor-free if it is H-induced-minor-free for every H in F .

Let G be a graph. Then we say H is a minor of G if H can be obtained from G

by deleting vertices and edges and contracting edges. Notice that if H is an induced

minor of G, it is also a minor of G, but not the other way around. For example, P3 is

a minor of K3, but not an induced minor. Given a graph H, a graph G is said to be

H-minor-free if it admits no minor isomorphic to H. For a family of graph F , a graph

G is F -minor-free if it is H-minor-free for every H in F .

Let G1 and G2 be graphs. The disjoint union of G1 and G2, denoted by G1 + G2

(sometimes we will also denote it G1 ∪G2), is the graph obtained from G1 and G2 by

taking the disjoint unions of their respective vertex sets and edge sets. If G is a graph

and k a positive integer, we denote by kG the graph obtained by taking k disjoint

copies of G.
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(a) The Petersen graph with edge

{5, 8} contracted.

(b) The graph from Figure 2a

with edge {0, 1} contracted.

(c) The graph from Figure 2b

with edge {7, 9} contracted.

(d) The graph from Figure 2c

with vertex 6 deleted, isomor-

phic to K3,3 with parts labeled

red and blue.

Figure 2: A sequence of edge contractions and vertex deletions to obtain K3,3 from the

Petersen graph.
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Let G1 and G2 be graphs. The join of G1 and G2, denoted by G1 ∗G2, is the graph

obtained from the disjoint union of G1 and G2 by adding all the edges {u, v} where

u ∈ V (G1) and v ∈ V (G2).

Example 4. For every positive integer n, the complete bipartite graph Kn,n is isomor-

phic to the join nK1 ∗ nK1.

A Hamiltonian cycle in a graph G is a subgraph of G that is isomorphic to a cycle

of order |V (G)|. If G admits a Hamiltonian cycle, then G is Hamiltonian graph.

2.2 SOME BASIC GRAPH INVARIANTS

Let G = (V,E) be an undirected simple graph.

We say a set S ⊆ V is an independent set if for all u, v ∈ S, u and v are nonadjacent.

Similarly, a set S ⊆ V is a clique if any two distinct vertices in S are adjacent.

The independence number of G is the size of a largest independent set in G and

is denoted α(G). The clique number of G is the size of a largest clique in G and is

denoted ω(G). A graph coloring is a function c : V → N such that for any two vertices

u, v, whenever uv ∈ E, it holds that c(u) ̸= c(v).1 We say that a graph can be colored

with k colors (or is k-colorable) if it admits a coloring c with |{c(v) | v ∈ V }| ≤ k. If

c(v) = i, we say that v is colored with color i.

The chromatic number of G is the smallest integer k such that G is k-colorable. It

is denoted χ(G).

Notice that a graph G = (V,E) is bipartite if and only if its chromatic number is

at most 2. In that case, the sets A,B, where A is the set of all vertices colored with

the first color and B = V \ A, are the parts of a bipartition.

A feedback vertex set in a graph G is a set of vertices intersecting all cycles. The

feedback vertex number of G is the smallest cardinality of a feedback vertex set in G.

2.3 TREE DECOMPOSITION, TREEWIDTH

In this section, we will introduce a very important and widely used width parameter,

called treewidth (see, e.g., [1–3]). This parameter was first introduced by Bertelè and

Brioschi in 1972 in [3]. It was then rediscovered independently by Halin in 1976 in [17],

Robertson and Seymour in 1984 in [20], and Arnborg and Proskurowski in [1].

Given a graph G, we say that a pair T = (T, {Xt}t∈V (T )) is called a tree decom-

position of G if T is a tree, for every node t ∈ V (T ), Xt is a subset of V (G) and the

following properties hold:2

1For simplicity, we denote an edge {u, v} as uv.
2To make a distinction between the vertices of G and T , we will refer to vertices of T as nodes.
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• Vertex Coverage: ⋃
t∈V (T )

Xt = V (G)

• Edge Coverage:

∀uv ∈ E(G) ∃t ∈ V (T ) : u, v ∈ Xt

• Consistency:

For all u ∈ V (G), the subgraph of T induced by the set {t ∈ V (T ) | u ∈ Xt} is

connected (in particular forms a subtree of T )

Colloquially, we call any node t ∈ V (T ) a bag and we say a vertex v ∈ V (G) is contained

in bag t if v ∈ Xt. In this thesis we will mostly use this terminology.

We denote by Tv the subtree of T induced by all the bags that contain v.

The width of a tree decomposition T = (T, {Xt}t∈V (T )) is equal to maxt∈V (T ) |Xt|−1.

The treewidth of a graph G, denoted tw(G), is equal to the minimum width of a tree

decomposition of G.

We can see an example of a graph G in Figure 3a and one possible tree decomposi-

tion of G in Figure 3b. From this example we can conclude that tree width of G is at

most 2. One can prove that it is indeed equal to two, but more on that a bit later.

(a) (b)

Figure 3: A graph G and a tree decomposition of it.

2.3.1 Treewidth and chordal graphs

Let C be a cycle in a graph G. A chord of C is an edge in G that connects two

nonadjacent vertices in C.

A graph G is chordal if every cycle in G of length at least 4 has a chord. An example

of chordal graph can be seen in Figure 3a.
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A graph is perfect if each of its induced subgraphs has the property that its chro-

matic number is equal to its clique number. The strong perfect graph theorem says

that G is perfect if and only if it does not contain an odd cycle or an odd anticycle

(complement of a cycle) of length at least 5 as an induced subgraph (see [7]). From

this it follows easily that chordal graphs are perfect.

Now we will see an equivalent definition of treewidth that considers the size of the

largest clique in the chordal extension of G (see, e.g., [4]). Namely:

tw(G) = min{ω(H) − 1 | G ⊆ H and H is chordal}

Now from this definition we obtain a few direct consequences.

• If tw(G) = k then χ(G) ≤ k + 1.

• If G is chordal, then tw(G) = ω(G) − 1.

• If G is a forest, then tw(G) = 1.

• For all positive integers n, tw(Kn) = n− 1.

From the second consequence, we can directly see that the graph G from Figure 3a has

treewidth equal to 2.

2.3.2 (tw, ω)-bounded graph classes

An (integer) graph invariant is a mapping from the class of all graphs to the set of

nonnegative integers N that does not distinguish between isomorphic graphs. Fol-

lowing [11], given two graph invariants ρ and σ and a graph class G, we say that G
is (ρ, σ)-bounded if there is a function f : N → N (called (ρ, σ)-binding function)

such that for every graph G ∈ G and every induced subgraph G′ of G it holds that

ρ(G′) ≤ f(σ(G′)).

The most known pair of invariants (ρ, σ), for which the concept of (ρ, σ)-bounded

graph classes was studied in the literature corresponds to (ρ, σ) = (χ, ω). The corre-

sponding graph classes are called χ-bounded (see [16]).

We say that a graph class G is (tw, ω)-bounded if there exists a function f : N →
N such that for every graph G ∈ G and every induced subgraph G′ of G, we have

tw(G′) ≤ f(ω(G′)). Such a function f is called a (tw, ω)-binding function for the class

G.

Note that every graph G satisfies ω(G) ≤ χ(G) ≤ tw(G) + 1. Both inequalities

hold with equality for all induced subgraphs of G if and only if G is chordal. Thus

(tw, ω)-boundedness generalizes chordality in graphs and every (tw, ω)-bounded graph

class is also χ-bounded.
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2.4 TREE-INDEPENDENCE NUMBER

In this section we give the definition of the most important width parameter for this

thesis, namely the tree-independence number. This parameter was first introduced by

Dallard, Milanič and Štorgel in [10]. Below we state their definition of the parameter.

The independence number of a tree decomposition T of a graph G is defined as

the maximum independence number over all subgraphs of G induced by some bag

of T . The tree-independence number of a graph G is then defined as the minimum

independence number over all tree decompositions of G.

A graph class G has bounded tree-independence number if there exists an integer k

such that every graph in G has tree-independence number at most k. Graph classes of

bounded tree-independence number include various families of graph classes: classes of

bounded treewidth, classes of bounded independence number, chordal graphs (which

are precisely graphs with tree-independence number at most one), etc. All of these

bounds and results will be discussed shortly.

Theorem 2.1 (Ramsey’s theorem). For every two positive integers k and ℓ, there

exists a least positive integer R(k, ℓ) such that every graph with at least R(k, ℓ) vertices

contains either a clique of size k or an independent set of size ℓ.

It follows from Ramsey’s theorem that every graph class with bounded tree-

independence number is polynomially (tw, ω)-bounded. In this sense, boundedness

of the tree-independence number is a refinement of (tw, ω)-boundedness.

However, an open question by Dallard, Milanič and Štorgel (see [10]) is whether

every (tw, ω)-bounded graph class is polynomially (tw, ω)-bounded, or whether every

polynomially (tw, ω)-bounded graph class has bounded tree-independence number.

It is known that the tree-independence number of a graph cannot be increased

under the induced minor relation, as stated in the lemma below.

Lemma 2.2 (see [10]). Let G be a graph. If H is an induced minor of G, then

tree-α(H) ≤ tree-α(G).

Motivated by the previous lemma, we say that G is a minimal graph of tree-

independence number greater than k if tree-α(G) > k and tree-α(H) ≤ k for every

proper induced minor H of G.

We next state a lemma that we will often use in this thesis that was proved by

Dallard, Milanič and Štorgel in [10].

Lemma 2.3. Let C be a clique cutset in a graph G and let (A,B,C) be a cut partition

of G. Let GA = G[A∪C] and GB = G[B∪C], and let TA, TB be tree decompositions of

GA and GB respectively. Then we can compute in polynomial time a tree decomposition

T of G, such that α(T ) = max{α(TA), α(TB)}.
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The following lemma was also proved in [10].

Lemma 2.4. Let G be a graph and let G′ be the join of two copies of G. Then

tree-α(G′) = α(G).

Corollary 2.5. For every positive integer n, we have tree-α(Kn,n) = n.

Proof. Kn,n is obtained as the join nK1 ∗ nK1.
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3 EXAMPLES OF GRAPHS WITH

TREE-INDEPENDENCE NUMBER AT

MOST TWO

In this chapter, we consider some simple examples of graph classes that have tree-

independence number at most two.

The following basic observation (see [10, Observation 3.5]) relates the tree-independence

number with the independence number.

Lemma 3.1. Let G be a graph. Then tree-α(G) ≤ α(G).

Proof. Consider the following tree decomposition

T0 = (({t}, ∅), {Xt})

where Xt = V (G). Then clearly Xt induces the entire graph G and we thus obtain

that

tree-α(G) = min
T

α(T ) ≤ α(T0) = α(G[Xt]) = α(G),

where the minimum iterates over all tree decompositions T of G.

Corollary 3.2. Every graph with independence number at most 2 also has tree-

independence number at most 2.

Lemma 3.3. For any integer n ≥ 2, the complete bipartite graph K2,n has tree-

independence number equal to 2.

Proof. Fix a bipartition {R,B} of K2,n with |R| = 2 and |B| = n, say R = {r1, r2}
and B = {bi | i = 1, . . . , n}. We refer to the vertices in R and B as red and blue

respectively. Consider the tree decomposition

T =
(
P⌈n

2
⌉, {Xt}t=1,...,⌈n

2
⌉

)
of K2,n, where P⌈n

2
⌉ denotes the path graph with vertices 1, . . . , ⌈n

2
⌉ in order along the

path and the bags are defined as follows:

Xt = {r1, r2, b2t−1, b2t}

for all t = 1, . . . , ⌈n
2
⌉, with the exception that the last bag equals {r1, r2, bn} if n is

odd. We can see an example for n = 4 in Fig. 4. It is easy to see that this construction
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Figure 4: The graph K2,4 and a tree decomposition of it.

is indeed a tree decomposition, as each blue vertex is contained in exactly one bag,

each red vertices is contained in every bag, and these bags form the path, which is a

connected graph. The first two properties of tree decomposition are trivially satisfied.

Now we need to prove that the independence number of this decomposition is at

most 2. Each of the bags induces a subgraph isomorphic to K2,2, which clearly has

independence number 2. Thus we can conclude that tree-α(K2,n) ≤ 2.

To conclude that the equality holds, we can argue that, since n ≥ 2, K2,n clearly has

K2,2
∼= C4 as induced subgraph, namely a cycle of order 4 without a chord. However

Dallard, Milanič, and Štorgel proved in [10] that a graph has tree-independence number

at most 1 if and only if it is chordal. Thus tree-α(K2,n) = 2 as desired.

We will state the result cited at the end of the last proof as a lemma, since we will

use it a few more times.

Lemma 3.4. A graph G has tree-independence number at most 1 if and only if it is

chordal.

Let H be a graph and F be a family of connected subgraphs of H. The intersection

graph F is the graph G whose vertices correspond to the members of F and there is

an edge between two vertices that correspond to subgraphs H1 and H2 if and only if

V (H1) ∩ V (H2) is nonempty.

A feedback vertex set in a graph G is a set of vertices intersecting all cycles. The

feedback vertex number of G is the smallest cardinality of a feedback vertex set in G.

The clique cover number of a graph G is the minimum integer k such that V (G) is a

union of k cliques.
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Proposition 3.5. Let H be a graph with feedback vertex number at most k and let G

be the intersection graph of a family F of connected subgraphs of H. Then tree-α(G) ≤
k + 1.

Proof. Let X be a feedback vertex set in H such that |X| ≤ k. Let S be the set of

those connected subgraphs from F that are fully contained in H −X.

By definition, H − X is a forest, and thus, by [14] the graph G[S] is a chordal

graph. From this, by Lemma 3.4 we can compute a tree decomposition T of G[S] with

independence number at most 1.

Now we consider the subgraphs from F that are not in S. Clearly, if we fix any

vertex v from V (G) \ S, the set of all subgraphs from F that contain v forms a clique.

Hence, the clique cover number of G − S is at most |X|. Therefore, if we add G − S

to every bag of T , we obtain a tree decomposition of G with independence number at

most |X| + 1, which is at most k + 1. The result follows.

Observation 3.6. The bound from the previous proposition is sharp. More precisely,

for each nonnegative integer k there exists a graph H with with feedback vertex number

k and a family F of connected subgraphs of H such that the intersection graph G of F
satisfies tree-α(G) = k + 1.

Proof. Let n = k + 1, let B be the complete bipartite graph Kn,n, and let H be the

graph obtained from B by subdividing each edge exactly once. For each v ∈ V (B), let

us denote by Hv the subgraph of H induced by the closed neighborhood of v, and let

F = {Hv | v ∈ V (B)}. Finally, let G be the intersection graph of F .

By Proposition 3.5, it suffices to show that the feedback vertex number of H is

at most n − 1, while tree-α(G) ≥ n. By construction, the graph G is isomorphic to

B ∼= Kn,n, and hence tree-α(G) = n by Corollary 2.5. It remains to show that the

feedback vertex number of H is at most n− 1. To this end, observe that each cycle of

H corresponds to a unique cycle in B and consequently each feedback vertex set of B

is also a feedback vertex set of H. Furthermore, any subset of size n− 1 of one of the

two parts in a bipartition of B is a feedback vertex set of B.

Corollary 3.7. Let H be a graph that contains a vertex v such that H − v is a forest.

Let G be the intersection graph of a family F of connected subgraphs of H. Then

tree-α(G) ≤ 2.

Proof. Follows directly from the Proposition 3.5, by taking k = 1 and considering the

corresponding feedback vertex set X = {v}.

A block of a graph G is a maximal connected subgraph of G without cut-vertices.

The block-cutpoint graph H of a connected graph G is a bipartite graph that has a
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vertex corresponding to every block in G and a vertex corresponding to every cut-

vertex in G. There is an edge between a vertex of H corresponding to a block B and

a vertex corresponding to a cut-vertex v in if the vertex v is contained in the block B

in the graph G. It follows directly from the definition that the block-cutpoint graph is

connected and acyclic, hence a tree.

A graph G is a cactus graph if it is connected and every block of G is either K2 or

a cycle, or if G ∼= K1.

Lemma 3.8. Let H be a cactus graph and let G be the intersection graph of a family

F of connected subgraphs of H. Then tree-α(G) ≤ 2.

Proof. If H is a K1, then G is a complete graph and the result is trivial. So suppose

H has at least 2 vertices.

Let H ′ be the block-cutpoint graph of H. We proceed by induction on the number

of vertices of H ′ (equivalently, the number of blocks in H). If H ′ is isomorphic to K1,

or K2, then we are done by Corollary 3.7. Assume that for some n > 1 and for all

block-cactus graphs with at most n− 1 blocks, any intersection graph G of a family of

connected subgraphs satisfies tree-α(G) ≤ 2.

Suppose H has n blocks. Since H ′ is a tree, it has a vertex v of degree 1 (a leaf)

and this vertex cannot correspond to a cut-vertex in H.

Consider the block B of H that corresponds to a leaf of H ′. This block contains

a vertex v that is a cut-vertex in H. Thus the vertices in G that correspond to those

subgraphs from F that contain v form a clique cutset C in G.

Moreover C cuts G in two (not necessarily connected) parts. The first part, G1,

corresponds to those subgraphs of H that are completely contained in B − v and

this part obviously induces a chordal graph. The second part, G2, together with C,

corresponds to the intersection graph G′ of a family of connected subgraphs of the

graph H − (B \ {v}), which has n− 1 blocks.

By Lemma 2.3, the tree-independence number of G is at most

max{tree-α(G[V (G1) ∪ C]), tree-α(G[V (G2) ∪ C])} .

Thus, since the graph G1 is a chordal graph, by Lemma 3.4, we can obtain a tree

decomposition T of independence number at most 1. We can then add a clique C to

every bag of T to obtain a tree decomposition of G[V (G1) ∪ C] with independence

number at most 2.

For the graph G′ = G[V (G2) ∪ C], we apply the induction hypothesis to conclude

that it has tree-independence number at most 2.

Thus tree-α(G) ≤ 2 as desired.

A graph G is outerplanar if it has a planar drawing such that each vertex is incident

with the outer face. It is known that a graph G is outerplanar if and only if it is



Redžić M. Classes of graphs with tree-independence number at most two.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 16

{K2,3, K4}-minor-free (see [21]). Before considering the tree-independence number of

outerplanar graphs, we first prove the following structural lemma.

Lemma 3.9. If G is a connected outerplanar graph without clique cutsets, then G is

either K1, K2, or a cycle.

Proof. Let G be a connected outerplanar graph with no clique cutset. If G has less

than three vertices, it is clearly either a K1 or a K2.

So assume that G has at least 3 vertices. Since G has no clique cutsets, it has no

cut vertices. Thus G is 2-connected. Then by [21], G has a unique Hamiltonian cycle

in a planar embedding such that each vertex in incident with the outer face.

To conclude the proof, it is sufficient to observe that if an outerplanar graph has

a cycle of length at least 4 that contains a chord e, then the endpoints of this chord

belong to the outer face, by definition, and thus they form a clique cutset of size 2.

Proposition 3.10. Let G be an outerplanar graph. Then tree-α(G) ≤ 2.

Proof. If G has a clique cutset, then we can apply Lemma 2.3. Thus we can assume

without loss of generality that G contains no clique cutsets.

Then by the previous lemma, it is either K1, K2, or a cycle. In any case, we are

done, as K1, K2 are trivial, and if we have a cycle, we may apply Corollary 3.7.

A graph G is a split graph if its vertex set can be partitioned into two sets C, I such

that C is a clique and I is an independent set. Clearly, split graphs are chordal, hence

by Lemma 3.4, they have tree-independence number at most 1.

A slightly more general class are the so-called pseudo-split graphs. A graph G is

pseudo-split if its vertex set can be partitioned into three sets C, I, S, such that C is

a clique, I is an independent set and S is either an empty set, or induces a C5 in G,

furthermore, every vertex in C is adjacent to every vertex in S and every vertex in I

is nonadjacent to every vertex in S.

Lemma 3.11. If G is a pseudo-split graph, then tree-α(G) ≤ 2.

Proof. Let G be a pseudo-split graph. Then V (G) can be partitioned into a clique

C, an independent set I and a set S that is either empty, or induces a C5, as in the

definition.

If S is empty, we are done, as we observed above, so we assume that S is nonempty.

In particular, S induces a C5.

Note that either C, or I may also be empty, but if C is empty, then G is either

disconnected, in which case we are done by strong induction and Lemma 2.3, or G is

isomorphic to C5, in which case we are done by Lemma 3.1. On the other hand, if I

is empty, by construction, we obtain a graph that has independence number at most 2

(the join of a complete graph and a C5), and by Lemma 3.1, we are also done.
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Hence, we may assume without loss of generality that all the three sets C, S and

I are nonempty. Construct a path decomposition of G as follows. Let k = |I| + 1 be

the number of bags. Put C in each bag and add a distinct vertex from I to each of the

first k − 1 bags arbitrarily. Finally add S to the last bag.

Clearly, every vertex will be in at least one bag.

Given an edge e in E(G), observe that it either has at least one endpoint in C or

connects two vertices in S. But by construction of our path decomposition, for every

vertex u in V (G) and v ∈ C, there exists at least one bag that contains both u and v.

Moreover, S is contained in the last bag along the path. Thus for any edge in G, there

exists a bag that contains both of its endpoints.

Finally, notice that given a vertex u ∈ C, the graph Tu is isomorphic to a path,

namely, it is connected. Furthermore, given v ∈ I, the graph Tv is isomorphic to K1.

Similarly for w ∈ S, Tw is isomorphic to K1. Thus Tv is connected for any v ∈ V (G),

and the construction provided is indeed a tree decomposition.

Given an arbitrary bag, it is either a union of a clique with a single vertex, or

induces a join of a clique and a C5. In any case, it is clear that the independence

number of the graph induced by any bag is at most 2. This concludes our proof.
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4 CLASSES OF H-FREE GRAPHS FOR

VARIOUS SMALL GRAPHS H

In this chapter, we will develop necessary and sufficient conditions for H-free graphs

having tree-independence number at most two, for various choice of small graphs H.

Observation 4.1. Let G be 3K1-free graph. Then tree-α(G) ≤ 2.

Proof. If G is 3K1-free, then for any three vertices u, v, w, there is at least one edge

between them (as otherwise G[{u, v, w}] is a 3K1). Equivalently α(G) ≤ 2, and by

Lemma 3.1, we are done.

Observation 4.2. Let G be P3-free graph. Then tree-α(G) ≤ 1.

Proof. Suppose G contains an induced cycle C of length at least 4. Then consider

any three consecutive vertices in that cycle. Call them u, v, w in order. The induced

subgraph G[{u, v, w}] is connected by the choice of the vertices, and thus can either

be a P3 or a K3. Since G is P3-free, G[{u, v, w}] is a K3. This implies that there is an

edge between u and w, which is a chord in C. Thus G is chordal and consequently has

tree-independence number at most 1 by Lemma 3.4.

Proposition 4.3. Let G be P3-free graph. Then G is a complete multipartite graph.

Furthermore, tree-α(G) ≤ 2 if and only if there exists at most one part with more than

two vertices.

Proof. Assume first that G has tree-independence number at most two and suppose

for a contradiction that there are at least two parts with more than two vertices. We

notice that deleting a vertex from G cannot increase the tree-independence number,

that is, tree-α(G[X]) ≤ tree-α(G) for any X ⊆ V (G). However, K3,3 is an induced

subgraph of G and since tree-α(K3,3) = 3 by Corollary 2.5, we obtain a contradiction.

Conversely, suppose that there is at most one part with more than two vertices.

Since deleting a vertex cannot increase the tree-independence number, it suffices to

consider the case when there exists a part with more than 2 vertices. Call this part X

and denote its vertices by xi, i ∈ {1, . . . , t}. Now we construct a path decomposition

of G, as follows. Make a path with t bags. In each bag put every vertex from V \X.

Finally in each bag i put one vertex xi from X. It is easy to see that this construction

results in a path decomposition. Furthermore, since the set V \X is a union of at most
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two cliques in G and every xi is adjacent to all vertices from V \X, the independence

number of such a decomposition is 2, as desired.

The class of cographs is defined recursively as follows.

• K1 is a cograph.

• Whenever G1, G2 are cographs, their disjoint union G1 ∪G2 is also a cograph.

• Whenever G is a cograph, then so is its complement G.

• There are no other cographs.

It is known that cographs are exactly P4-free graphs (see, e.g., [8]).

Proposition 4.4. A cograph G has tree-independence number ≤ 2 if and only if it is

K3,3-free.

Proof. Suppose first that a graph G has tree-independence at most 2. To show that

it does not contain K3,3 as an induced subgraph, we only have to notice that deleting

vertices cannot increase the tree-independence number and since by Corollary 2.5, K3,3

has tree-independence number 3, we are done.

Conversely, suppose that a cograph G is K3,3-free and proceed by strong induction

on number of vertices. First, we may notice that tree-α(K1) = 1. Then suppose that

for any K3,3-free cograph G that has at most n vertices, tree-α(G) ≤ 2. Consider any

disconnected K3,3-free cograph G with n+ 1 vertices. This graph is a disjoint union of

two K3,3-free cographs G1 and G2, each having at most n vertices. Then the induction

hypothesis applies and both G1 and G2 have the tree-independence number at most

2. Therefore, if we take a tree decomposition of G1 with independence number 2 and

a tree decomposition of G2 with independence number 2, we can take their union and

add a single edge between them to obtain a tree decomposition of G with independence

number 2. Hence, we may assume that G is connected. But, as any cograph can be

obtained from a copies of the one-vertex graph by applying the operations disjoint

union and join, we notice that G can be obtained by taking several cographs with at

most n vertices each, which we will refer to as components for the rest of this proof,

and joining them together, adding all the edges between every pair of components.

Assume that every such component has independence number at most 2. Notice

that joining two graphs, both having independence number at most k, yields a graph

with independence number at most k. A simple inductive argument can be applied to

show that this implies that G has independence number at most 2 and by Lemma 3.1

the tree-independence number of G is at most 2.
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So we may assume that there is at least one component in G with independence

number greater than 2. Suppose there are two separate components G1, G2 with inde-

pendence number greater than 2. But then take any independent set of size 3 of G1

and any independent set of G2 of size 3 and notice that they induce K3,3 in G, which

is a contradiction.

Finally, consider the case when G has exactly one component C with independence

number more than 2. Since the order of each component is strictly smaller than that

of G, we can apply the induction hypothesis to infer that tree-α(C) ≤ 2. Notice

that G − V (C) has the independence number at most 2. So to conclude the proof,

it is sufficient to show that a join of a graph with independence number at most

two and a graph with tree-independence number at most two has tree-independence

number at most two. Let G1 be a graph such that tree-α(G1) ≤ 2. Let G2 be a

graph such that α(G2) ≤ 2. Take any tree decomposition of G1 with independence

number at most 2. Now add to each bag all the vertices from G2. Notice that this

yields a tree decomposition of G1 ∗ G2 and furthermore, as each bag induces a graph

obtained by joining two graphs with independence numbers at most two, it follows

that this decomposition has independence number at most two. Thus G1 ∗ G2 has

tree-independence number at most two and this concludes the proof of our lemma.

In the last proof, we demonstrated a fact about the tree-independence number that

may be useful in the future, so it would be convenient to write it separately as a

corollary.

Corollary 4.5. Let G1 and G2 be graphs such that tree-α(G1) ≤ 2 and α(G2) ≤ 2.

Then tree-α(G1 ∗G2) ≤ 2.

We now consider the class of co-paw-free graphs. First we state a theorem due to

Olariu.

Theorem 4.6 (Olariu [19]). Let G be a connected paw-free graph. Then G is either

K3-free or complete multipartite.

We say a graph G is co-connected if its complement G is connected. Taking the

complementary statement of Olariu’s theorem, we obtain the following corollary di-

rectly.

Corollary 4.7. Let G be a co-connected co-paw-free graph. Then G is either 3K1-free

or P3-free.

Proof. If G is a co-connected co-paw-free graph, then G is a connected paw-free graph.

By Olariu’s theorem, G is either K3-free, or complete multipartite. Thus G is either

K3
∼= 3K1-free, or it is a complement of a complete multipartite graph, which is just a

disjoint union of complete graphs, and hence P3-free.
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Lemma 4.8. If G is a co-connected co-paw-free graph then tree-α(G) ≤ 2.

Proof. Follows directly from the previous corollary and Observations 4.1 and 4.2.

Lemma 4.9. If G is a co-paw-free graph that is not co-connected, then tree-α(G) ≤ 2

if and only if G is K3,3-free.

Proof. If G is not co-connected, then its complement is disconnected, thus can be

separated into two subgraphs G1, G2, such that there are no edges between them. But

this means that G can be written as G1 ∗G2. Suppose first that tree-α(G) ≤ 2. Then

to show that it is K3,3-free, we notice that deleting vertices cannot increase the tree-

independence number and we know that K3,3 has tree-independence number equal to

3 by Corollary 2.5.

Conversely, assume that G is K3,3-free. Then clearly at most one of the subgraphs

G1 and G2 has independence number more than 2. We may assume without loss of

generality that α(G1) ≤ 2. Consequently tree-α(G1) ≤ 2, by Lemma 3.1.

Now consider G2. If G2 is co-connected, then tree-α(G2) ≤ 2 follows from Lemma 4.8.

Otherwise, we may apply a simple inductive argument to show that tree-α(G2) ≤ 2.

Thus, since tree-α(G1) and tree-α(G2) are both at most 2, using Corollary 4.5, also

tree-α(G) ≤ 2.

Proposition 4.10. If G is a co-paw-free graph, then tree-α(G) ≤ 2 if and only if G is

K3,3-free.

Proof. Follows directly from the previous two lemmas.
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5 EXAMPLES OF GRAPHS WITH

TREE-INDEPENDENCE NUMBER

GREATER THAN TWO

In this chapter, we will give a few examples of graphs that have tree-independence

number strictly greater than 2.

The following lemma was proved by Dallard et al. in [10].

Lemma 5.1. Let G be a graph and let T = (T, {Xt}t∈V (T )) be a tree decomposition of

G. Then there exists a vertex v ∈ G and a node t ∈ V (T ) such that N [v] ⊆ Xt.

As immediate consequence, we get the following result.

Corollary 5.2. If G is a cubic triangle-free graph, then tree-α(G) > 2.

Proof. By the previous lemma, in any tree decomposition of G, there exists a bag that

contains the closed neighbourhood of a vertex. Since G is cubic, the neighbourhood of

any vertex contains 3 vertices. We claim that these vertices form an independent set

in G. Suppose for a contradiction that the neighbourhood of any fixed vertex u does

not form an independent set.

Then there exist vertices v, w ∈ N(u) such that v ∼ w. But then u, v, w induce a K3,

which contradicts the assumption that G is triangle free. Thus, any tree decomposition

of G has independence number at least 3.

Another simple example of graphs with tree-independence number at least three

are the complete bipartite graphs Km,n for any m,n ≥ 3.

Lemma 5.3. If m,n ≥ 3, then tree-α(Km,n) ≥ 3.

Proof. By Corollary 2.5, tree-α(K3,3) = 3. Clearly if m,n ≥ 3, then K3,3 is an induced

minor of Km,n. Then by Lemma 2.2, tree-α(Km,n) ≥ tree-α(K3,3) = 3, as desired.

Proposition 5.4. The graph K3,3 is a minimal graph with tree-independence number

greater than two.

Proof. From Corollary 2.5, it follows that tree-α(K3,3) = 3, so it is sufficient to argue

that if we delete a vertex, or contract an edge, we always obtain a graph with tree-

independence number at most two.
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We observe that deleting any vertex yields the same graph up to isomorphism,

namely K2,3. By Lemma 3.3, tree-α(K2,3) = 2.

Hence, we consider the operation of contracting an edge. If we contract any edge

in K3,3, we obtain a chordal graph, which has tree-independence number at most one

by Lemma 3.4.

Let Q3 denote the graph from Fig. 5a, colloquially known as the cube graph.

Lemma 5.5. It holds that tree-α(Q3) = 3.

Proof. By Corollary 5.2, tree-α(Q3) ≥ 3, so it is sufficient to find the tree decomposition

of Q3 that has independence number equal to 3. Consider a tree decomposition from

Fig. 5b. Clearly, the first and the last bags induce a claw and the inner bag induces a

C6 in Q3, all of which have independence number equal to 3.

Lemma 5.6. If we contract an edge, or remove a vertex from Q3 we get a graph with

tree-independence number equal to 2.

Proof. First notice that all the vertices and edges of cube are the same up to iso-

morphism. Formally, this means that for any pair of vertices u, v there exists an

automorphism of the cube graph mapping u to v and for every pair of edges e, f , there

exists an automorphism mapping e to f .

Thus it is enough to consider the operations of deleting the vertex 0 and contracting

the edge {0, 1}.

Consider the cube graph with vertex 0 deleted depicted on Fig. 6a and its tree

decomposition depicted on Fig. 6b. Clearly the first bag from top induces a path P3 in

our graph and the remaining 3 bags induce a P4 in the graph. Thus this tree decom-

position has independence number equal to two and furthermore, the graph Q3−0 has

independence number at most two. However, we notice that the vertices {1, 3, 5, 7}
induce a C4, and hence this graph is not chordal, and in particular tree-α(Q3− 0) = 2.

Consider now the cube with edge {0, 1} contracted on Fig. 6c and its tree decom-

position on Fig. 6d. Clearly the first and the last bags induce the same graph (up to

isomorphism), which has 4 vertices and the clique number equal to 3. It follows that

independence number is equal to 2. Finally, the inner two bags induce a P4. Thus the

independence number of this decomposition is at most 2 and again, by noticing that

the vertices {2, 3, 6, 7} induce a C4, we can conclude the equality.

As an immediate consequence of the previous two lemmas, we obtain the following.

Proposition 5.7. The cube graph Q3 is a minimal graph with tree-independence num-

ber greater than two.
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(a) Cube graph Q3 (b) A tree decomposition ofQ3

with independence number 3

Figure 5: Cube graph Q3 with a tree decomposition

We now define another graph, for which we show that it has tree-independence

number equal to three, and that it is a minimal such graph. Let C∗
6 be the graph

constructed as follows.

• Start with an edgeless graph on three vertices A,B,C.

• Add two paths of length two between any pair of vertices A,B,C. (See Fig. 7.)

Lemma 5.8. It holds that tree-α(C∗
6) = 3.

Proof. We first show that tree-α(C∗
6) ≤ 3, by giving a tree decomposition with inde-

pendence number 3. We assume that the vertices of C∗
6 are labeled as in Fig. 7. Let

T = (P6, {Xt}1≤t≤6) where P6 denotes the path graph with vertices 1, . . . , 6 in order

along the path and the bags are defined as follows

Xt = {A,B,C, xt}

for all t ∈ {1, . . . , 6}. It is easy to see that T is indeed a tree decomposition of C∗
6 and

furthermore that the independence number of the subgraph induced by each bag Xt is

3. Hence tree-α(C∗
6) ≤ 3, as claimed.

To show the converse inequality tree-α(C∗
6) ≥ 3, suppose for a contradiction that

tree-α(C∗
6) ≤ 2. Then, there exists a tree decomposition T = (T, {Xt}t∈V (T )) of C∗

6
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(a) The cube graph Q3 with vertex 0 re-

moved

(b) A tree decomposition of

Q3 with vertex 0 removed

(c) The cube graph Q3 with edge {0, 1}
contracted

(d) A tree decomposi-

tion of Q3 with edge

{0, 1} contracted

Figure 6: The maximal proper induced minors of the cube graph Q3, together with

their tree decompositions of independence number two.
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such that the independence number of T is at most two. Notice that this means that

there is no bag that contains all of the vertices A,B,C, as otherwise we would get a

bag that induces a subgraph of C∗
6 with independence number ≥ 3. Using [10, Lemma

2.3], we can see that this implies that there exists a pair of vertices from {A,B,C}
such that no bag contains this pair. We may assume without loss of generality that

this pair is A,B (since otherwise we can relabel the vertices accordingly).

But, since x1, x2 are the common neighbours of A and B, there is a shortest path

P from TA to TB (of length at least 1) in our tree decomposition and furthermore any

bag in this path contains both x1 and x2. Note that the latter is true, since both Tx1

and Tx2 intersect both TA and TB, and since the set of all bags containing x1 forms a

subtree, there must be a (shortest) path from TA to TB where every bag contains x1

and similarly with x2. And since we are in a tree, this path is unique.

But then, since we assumed that α(T ) ≤ 2, we know exactly what this path looks

like. Namely, it starts with a bag that is exactly equal to {A, x1, x2} and then has

t ≥ 0 bags that contain only {x1, x2} and ends with a bag equal to {B, x1, x2}. Notice

that if any bag on this path contained any other vertex from C∗
6 , we would obtain a

bag that induces a subgraph of C∗
6 with independence number greater than 2, which is

a contradiction.

We order the bags of P linearly so that the first bag is in TA, the last bag is in TB,

and the bags between them are ordered in the natural order.

Similarly, we know that there exists a (possibly trivial) path Q between TB and

TC where every bag on the path contains x3, x4. Furthermore, each bag on this path

contains exactly x3, x4 and some subset of {B,C}. Order the bags along this path

similarly as with P , so that the first bag is in TB and the last bag is in TC (notice that

here the first bag might also be the last).

Finally, using the same arguments as above, there exists a path R from TA and TC

where each bag contains x5, x6. Furthermore, each bag on this path contains exactly

x5, x6 and some subset of {A,C}. Similarly, we order the bags so that we begin the

path in TA and finish in TC .

Fix any bag Xu ∈ TC and let Xv be the bag corresponding to the endpoint of P in

TA. There is a unique path in TA from this bag to the first bag in R.

Then we can reach any bag in TC (in particular Xu) from this one by just following

R. Notice that for any internal vertex of this path, the corresponding bag does not

contain any of the vertices x1, x2, by the assumption that α(T ) ≤ 2.

Similarly, from Xv we could use P to reach TB and then there exists a unique path

to the first bag of Q. Then we can follow Q to reach a bag in TC from where we can

reach any bag from TC (in particular Xu) by following a unique path in TC . Notice

that this path contains at least one bag which contains vertices x1, x2.

Notice that we know the exact structures of P,Q and R and in particular, by the



Redžić M. Classes of graphs with tree-independence number at most two.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 27

Figure 7: Construction of the C∗
6 graph.

assumption that α(T ) ≤ 2, they have to be disjoint. Thus the gluing of the paths

described above indeed yields paths.

We thus obtain a contradiction, since we found two distinct paths between two fixed

vertices Xu and Xv in a tree.

We now proceed to show that this graph is a minimal graph with tree-independence

number greater than 2.

Lemma 5.9. Any proper induced minor G of C∗
6 has tree-α(G) ≤ 2.

Proof. Assume that C∗
6 is labeled as in Fig. 7. We will first consider removing a vertex

from C∗
6 . There are two choices of a vertex to remove up to isomorphism. Namely, we

can remove the vertex A, or the vertex x6 without loss of generality, otherwise we can

relabel the graph accordingly.

If we remove A, then the tree decomposition T = (P6, {Xt}1≤t≤6), where P6 denotes

the path graph with vertices 1, . . . , 6 in order along the path and the bags are defined

as follows

Xt = {B,C, xt}

for all t ∈ {1, . . . , 6} clearly has the independence number 2.

If we remove x6, then the tree decomposition depicted on Fig. 8 has independence

number 2.

Now we consider contracting an edge. There is only one choice up to isomorphism,

namely without loss of generality we contract Ax6 into A (since otherwise we can

relabel vertices accordingly). We only have to notice that the tree decomposition from

Fig. 8 works for this graph as well and we are done.
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Proposition 5.10. The graph C∗
6 is a minimal graph with tree-independence number

greater than two.

Proof. Follows directly from the previous two lemmas.

Figure 8: A tree decomposition of the graph C∗
6 − x6 with independence number 2
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6 SERIES PARALLEL GRAPHS

The following definition originates from [13]. A graph G is two-terminal series parallel,

with terminals s and t, if it can be produced by a sequence of the following operations:

• Create a new graph, consisting of a single edge connecting s and t.

• Given two two-terminal series parallel graphs X and Y , with terminals sX , tX and

sY , tY , respectively, form a new graph G = P (X, Y ) by identifying s = sX = sY

and t = tX = tY . This is known as the parallel composition of X and Y . An

example of parallel composition of two graphs from Fig. 9a can be seen on Fig. 9c.

• Given two two-terminal series parallel graphs X and Y , with terminals sX , tX

and sY , tY , respectively, form a new graph G = S(X, Y ) by identifying s = sX ,

tX = sY , and t = tY . This is known as the series composition of X and Y . An

example of series composition of two graphs from Fig. 9a can be seen on Fig. 9b.

A graph G is series parallel if it contains a pair of vertices s and t such that G is a

two-terminal series parallel graph with terminals s and t.

A maximal parallel decomposition of a series parallel graph G is a finite sequence

(X1, . . . , Xk) of induced subgraphs of G defined recursively as follows. If G ∼= K2 or G is

a series composition of two smaller series parallel graphs, then G has a unique maximal

parallel decomposition, namely (X1) with X1 = G. If G is a parallel composition of

two smaller series parallel graphs X and Y , with maximal parallel decompositions

(X1, . . . , Xk) and (Y1, . . . , Yℓ), then their concatenation (X1, . . . , Xk, Y1, . . . , Yℓ) is a

maximal parallel decomposition of G. We say that a maximal parallel decomposition

(X1, . . . , Xk) of a series parallel graph G is trivial if k = 1 and nontrivial, otherwise. If

(X1, . . . , Xk) is a maximal parallel decomposition of G, we write G = P (X1, . . . , Xk).

Notice that after fixing the terminal vertices, the number k of parallel components in

the maximal parallel decomposition is uniquely determined. Furthermore, the maximal

parallel decomposition is invariant under reordering of the Xi’s, thus there are exactly

k! maximal parallel decompositions that result in the same graph. More formally,

P (X1, . . . , Xk) = P (Xσ(1), . . . Xσ(k)), for any permutation σ of {1, . . . , k}.

A maximal series decomposition of a series parallel graph G is a finite sequence

(X1, . . . , Xk) of induced subgraphs of G defined recursively as follows. If G ∼= K2 or

G is a parallel composition of two smaller series parallel graphs, then G has a unique

maximal series decomposition, namely (X1) with X1 = G. If G is a series composition
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(a) Two series parallel graphs X and Y , with terminal vertices s, t

and s′, t′ respectively, coloured red.

(b) Series composition

S(X,Y ) of graphs X and Y .

(c) Parallel composition P (X,Y ) of graphs X

and Y .

Figure 9: Two series parallel graphs and their series and parallel compositions.



Redžić M. Classes of graphs with tree-independence number at most two.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 31

of two smaller series parallel graphs X and Y , with maximal series decompositions

(X1, . . . , Xk) and (Y1, . . . , Yℓ), then their concatenation (X1, . . . , Xk, Y1, . . . , Yℓ) is a

maximal series decomposition of G. We say that a maximal series decomposition

(X1, . . . , Xk) of a series parallel graph G is trivial if k = 1 and nontrivial, otherwise.

If (X1, . . . , Xk) is a maximal series decomposition of G, we write G = S(X1, . . . , Xk).

Notice that, after fixing the terminal vertices, there are exactly two maximal series

decompositions that result in the same graph. In particular S(X1, X2, . . . , Xk−1, Xk) ∼=
S(Xk, Xk−1, . . . X2, X1).

If G = P (X1, . . . , Xk) (respectively G = S(X1, . . . , Xk)), we say that the Xi’s are

the parallel components of G (respectively series components).

Lemma 6.1 (Brandstädt et al. [5]). Every series parallel graph G has treewidth at

most two. Furthermore, if G is 2-connected, then it has treewidth at most two if and

only if it is series parallel.

Lemma 6.2 (Dallard et al. [10]). For every graph G, tree-α(G) ≤ tw(G) + 1, and this

bound is sharp.

Corollary 6.3. If G is a series parallel graph, then tree-α(G) ≤ 3.

Proof. Follows directly from Lemmas 6.1 and 6.2.

By Corollary 6.3, series parallel graphs seem like a good candidate for graphs with

tree-independence number at most two. However, we can observe that the graph C∗
6

is a series parallel graph with terminal vertices A and C, as labeled in Fig. 7 and

has tree-independence number equal to 3 by Lemma 5.8. Thus, a natural question to

ask is what are some necessary and sufficient conditions for series parallel graphs to

have tree-independence number at most 2. We proceed to show that in the class of

series parallel graphs, forbidding C∗
6 as an induced minor is not only necessary but also

sufficient to bound the tree-independence number by two.

Lemma 6.4. Let G be a series parallel graph with terminal vertices s and t and G =

P (X1, . . . , Xr), with r ≥ 2, such that for each i, Xi = S(Y i
1 , . . . , Y

i
si

) with si ≥ 2, and

at most one Y i
j is non-chordal. Furthermore, assume that G has no clique cutsets.

Then for each i ∈ {1, . . . , r}, there exists a tree decomposition of Xi with independence

number at most 2 and with a bag that contains both terminal vertices s and t of G.

Proof. We proceed by strong induction on the number of vertices in the largest parallel

component. If all of the parallel components Xi have at most 3 vertices, then each Xi

is chordal, and by Lemma 3.4 admits a tree decomposition of independence number

1. Adding the vertex s to every bag of such a tree decomposition yields a desired tree

decomposition of Xi.
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Suppose that whenever each parallel component Xi of G has at most n vertices,

for some n ≥ 3, the assertion holds. Now assume that in the graph G each parallel

component has at most n + 1 vertices. Sort the parallel components by their number

of vertices, so that |V (X1)| ≥ |V (X2)| ≥ . . . ≥ |V (Xr)|. Consider the largest parallel

component X1. We first explain how to obtain a desired tree decomposition of X1. If

X1 is chordal, then by Lemma 3.4 X1 admits a tree decomposition of independence

number 1; adding the vertex s to every bag of such a tree decomposition yields a desired

tree decomposition of X1.

Assume now that X1 is non-chordal. Denote the series components of X1 by

Y1, . . . , Ys. Recall that at most one of these components is non-chordal, and, since

X1 is non-chordal, exactly one of these components is non-chordal. Let Yj be the

non-chordal series component of X1.

Since s ≥ 2, each of the parallel components of Yj has at most n vertices. Thus,

the induction hypothesis applies and we can obtain a tree decomposition of Yj with

independence number at most 2 that contains both terminal vertices of Yj.

Since G has no clique cutsets, it is easy to see that every other (chordal) series

component of X1 has to be isomorphic to K2.

Denote the terminal vertices of Yj by x and y so that the length of a shortest path

from s to x in X1 is shorter than the length of a shortest path from s to y. Denote the

vertices on the unique path in X1 from x to s by x0 = x, x1, . . . , xp = s (possibly p = 0)

and from y to t by y0 = y, y1, . . . , yq = t (possibly q = 0). Assume w.l.o.g. p ≤ q.

Construct the tree decomposition as follows.

If p = 0, start with the tree decomposition of Yj as constructed above. Identify a

bag B that contains both x = s and y. Add q bags arranged in a path, where the i-th

bag along the path contains vertices yi−1, yi, x = s, for all i = 1, . . . , q. Connect the first

bag along this path to B. Clearly this construction yields a desired tree decomposition.

Hence, we may assume that 1 ≤ p ≤ q. Again, start with a tree decomposition of

Yj as constructed above and identify a bag B that contains both x and y. Add p bags

arranged in a path, where the i-th bag along the path contains vertices xi−1, xi, yi−1, yi

for all i = 1, . . . , p. Connect the first bag along this path to B. Finally, add q− p bags

arranged in a path, where i-th bag along the path contains vertices s = xp, yp+i−1, yp+i,

for all i = 1, . . . , q − p.

This construction yields the desired tree decomposition for X1. Repeat for all the

parallel components of G with n + 1 vertices and apply the induction hypothesis for

the parallel components with at most n vertices.

Lemma 6.5. Let G be a series parallel graph with terminal vertices s and t and no

clique cutsets such that G = P (X1, . . . , Xr), with r ≥ 2, where each parallel component

has at most one non-chordal series component. Then there exists a tree decomposition
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of G with independence number at most 2 and with a bag that contains both terminal

vertices s and t of G.

Proof. By Lemma 6.4, each of the parallel components X1, . . . , Xr has a tree decompo-

sition with independence number at most two with a bag that contains both terminal

vertices s and t, of G. Take such a tree decomposition of every parallel component of

G and identify a bag Bi in parallel component Xi that contains both s and t.

Add an edge between Bi and Bi+1 for every i ∈ {1, . . . , r − 1} to obtain a desired

tree decomposition of G.

Theorem 6.6. Let G be a series parallel graph. Then tree-α(G) ≤ 2 if and only if G

is C∗
6 -induced-minor-free.

Proof. Assume first G has tree-independence number at most 2. By Lemmas 2.2

and 5.8, G must be C∗
6 -induced-minor-free.

Conversely, assume that G is C∗
6 -induced-minor-free. We assume without loss of

generality that G has no clique cutsets, since otherwise we can apply Lemma 2.3 along

with an inductive argument on the number of vertices.

If G has a nontrivial maximal series decomposition, it clearly has a cut vertex, so

we can assume that G has a trivial maximal series decomposition and a nontrivial

maximal parallel decomposition. In particular, let G = P (X1, . . . , Xk) for some k ≥ 2.

We consider two cases separately:

• k = 2,

• k ≥ 3.

Assume first that k ≥ 3. Then, by assumption of no clique cutsets, we can assume

that the terminal vertices of G (denoted s and t) are nonadjacent to each other.

If there exists a parallel component of G, Xi, that contains two non-chordal series

components Yj and Yk, then G contains C∗
6 as an induced minor. Thus every Xi

contains at most one non-chordal series component and by Lemma 6.5, we are done.

Now consider the case when k = 2. We have two subcases:

• both X1 and X2 are non-chordal,

• at most one parallel component is non-chordal.

If both X1 and X2 are non-chordal, then, since G is C∗
6 -induced-minor-free, each of

them has at most one non-chordal series component. We are done by Lemma 6.5.

On the other hand, if w.l.o.g. X2 is chordal, then X1 may have at most two non-

chordal series components. If X1 has at most one non-chordal series components, we

are done similarly as above, so we may assume there are exactly two such non-chordal

components.
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Let Yi and Yj be the non-chordal series components of X1. Clearly, since G is

C∗
6 -induced-minor-free and has no clique cutsets, each of the parallel components of Yi

and Yj has at most one non-chordal series component.

Suppose Yi has terminal vertices x and y. Then there exists a series parallel graph

isomorphic to G, but having x and y as terminal vertices. This graph clearly has parallel

components with at most one non-chordal series component, and hence Lemma 6.5

applies again.

This shows that any C∗
6 -induced-minor-free series parallel graph with no clique

cutsets is isomorphic to a series parallel graph whose every parallel component has at

most one non-chordal series component. Applying the result from Lemma 6.5 concludes

the proof.

The following theorem follows directly from the previous one and relates the graphs

with treewidth at most two and the graphs with tree-independence number at most

two.

Theorem 6.7. Let G be a graph with tw(G) ≤ 2. Then tree-α(G) ≤ 2 if and only if

G is C∗
6 -induced-minor-free.
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7 CHORDAL BIPARTITE GRAPHS

Let G be a bipartite graph. We say that G is chordal bipartite if each cycle of length

at least 6 has a chord (see, e.g. [6, 15]).

We first explore a simple class of chordal bipartite with a lot of structure.

Lemma 7.1. Let T be a tree and let GT be the graph constructed as follows. Subdivide

every edge of T once and add two new vertices u, v. Connect u, v by an edge to every

vertex that corresponds to a vertex of T (an example of this construction with T ∼= P3

can be seen on Fig. 10). Then GT is chordal bipartite.

Proof. It is sufficient to show that such a graph GT is bipartite and that each cycle

of length at least 6 has a chord. Let P ⊆ V (GT ) be the set of the vertices of GT

that correspond to vertices of T and Q ⊆ V (GT ) be the set of vertices of GT that

correspond to edges of T and the universal vertices u and v. It is obvious that every

edge of GT has one endpoint in P and another in Q and that P ∪Q = V (GT ). Thus,

GT is bipartite.

Since G is bilartite, every cycle in G has an even number of vertices. Furthermore,

since T is a tree, every cycle contains either u or v. Since u and v are nonadjacent,

every cycle must contain at least two vertices corresponding to the vertices of T , xi

and xj. If these are the only two vertices, then clearly our cycle is of length 4.

So suppose that a cycle C contains more than 2 vertices corresponding to vertices

of T . Then observe that C cannot contain both u and v. We may assume without loss

of generality that C contains u. But then, let xi, xj, xk be any three vertices in C that

correspond to vertices of T , ordered so that the unique path in C − u from xi to xk

contains xj. Notice that if such order does not exist, then they cannot be contained in

the same cycle in GT .

But then clearly the edge {u, xj} is a chord in C, showing that we cannot have

induced cycle of length greater than 4.

Lemma 7.2. Let GT be a graph as constructed in Lemma 7.1. Then tree-α(GT ) ≤ 2.

Proof. First notice that we can partition the vertices of GT in three parts, where each

part forms an independent set.

• The first part consists of two vertices, u and v.

• The second part consists of the vertices that correspond to the vertices of T .
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Figure 10: Example of construction from Lemma 7.2 with T ∼= P3.

• The third part consists of the vertices that correspond to the edges of T .

Furthermore, each of the vertices in the third part has degree equal to two and is

adjacent only to the vertices that correspond to the endpoints of the corresponding

edge in T .

We proceed by strong induction on the number of vertices in T . Notice that the

claim holds whenever |V (T )| ≤ 2, as if T ∼= K1, then G ∼= P3 and if T ∼= K2, with

vertices x, y and an edge e between them, then GT is just a P3 with endpoints x and

y together with two vertices, u and v, that are both adjacent to x and y. Thus, we

can obtain a tree decomposition with independence number 2 by taking two adjacent

bags and putting {x, y, e, u} in the first bag and {x, y, e, v} in the second. Clearly both

bags induce a C4 and we are done. For later use, observe that the constructed tree

decomposition T has the property that for every vertex z of GT that corresponds to a

vertex of T , there exists a bag in T that has {u, v, z} as a subset.

Before proceeding, we prove the following claim. If T is a tree with |V (T )| > 2 and

T = (T ′, {Xt}t∈V (T ′)) is a tree decomposition of graph GT as described above, with

α(T ) ≤ 2, then for every vertex x of GT that corresponds to a vertex of T , there exists

a bag in T that has {u, v, x} as a subset.

Suppose that this is not true. Then if we look at Tx, there exists a shortest path P

in T ′ that starts with a bag that contains x and u and ends with a bag that contains

x, v. Let y and z be two other vertices of T ′. Clearly, because of the assumption that

α(T ) ≤ 2, there exists no bag of T that contains all three vertices x, y, z. Assume that

there is a bag that contains x, y and a bag that contains x, z. Then, since y is adjacent

to both u and v, Ty intersects with both T ′
u and T ′

v. But then, since the unique shortest

path from T ′
u to T ′

v in T ′
x is P , every bag along this path contains y. Similarly for z,

and this contradicts the assumption that no bag contains all x, y, z.

So without loss of generality T ′
x and T ′

z are disjoint. But then, since T ′
z and T ′

u
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intersect, as well as T ′
z and T ′

v, the shortest path Q between T ′
u and T ′

v (possibly

trivial) is such that every bag along Q contains z. But then, consider the endpoints of

P , call them B1 and B2, and any bag B3 along Q. Clearly, starting from B1, we can

follow (a unique path in) T ′
u to reach an endpoint of Q that contains u and then follow

Q to reach B3. Notice that there is exactly one bag along this path that contains x.

Alternatively, we can follow P to reach B2 and then follow (a unique path in) T ′
v to

reach an endpoint of Q that contains v. Then we follow Q to reach B3. Notice that

this path consists of at least two vertices that contain x. Thus, we have obtained two

distinct paths in T that connect B1 and B3, which yields a contradiction. This proves

the claim.

Suppose that for some n ≥ 3, for every tree T with |V (T )| < n, there exists a tree

decomposition T of G with α(T ) ≤ 2.

Let T be any tree with n vertices. Consider a leaf x in T and suppose that it is

adjacent to a vertex y and that the edge between them is labeled e.

We construct a tree decomposition of the corresponding graph GT .

Take two adjacent bags B1 and B2 and place x, y, u, v into B1 and x, y, e into B2.

Consider a tree decomposition T ′ of a graph GT−x such that α(T ′) ≤ 2. Note that such

a tree decomposition T ′ exists by the induction hypothesis. By the above claim and

the explicit construction for the case |V (T − x)| = 2, we may assume that there exists

a bag B′ of T ′ that contains u, v, y. Connect B1 to B′ to obtain a tree decomposition

of GT with independence number at most two.

We can notice that the construction from previous lemma almost always yields a

graph with an induced K2,3. We now consider the family of K2,3-free chordal bipartite

graph, and show that every such graph has tree-independence number at most two.

Before showing this, we need to prove a lemma regarding the structure of such

graphs. An edge {x, y} in G is called bisimplicial if N(x) ∪ N(y) induces a complete

bipartite graph.

Lemma 7.3. Let G be the class of connected K2,3-free chordal bipartite graphs. Then

G ∈ G if and only if G satisfies one of the following conditions.

• G is isomorphic to either K1, K2, or C4.

• G contains a cut-vertex v such that there exists a cut partition (A,B, {v}) of G

such that the graphs G[A ∪ {v}] and G[B ∪ {v}] both belong to G.

• G contains a clique cutset C of size 2 such that there exists a cut partition

(A,B,C) of G such that the graphs G[A ∪ C] and G[B ∪ C] both belong to G.

Proof. Assume first that G is a graph that satisfies one of the three conditions. If G

is isomorphic to either K1, K2, or C4, then G is a K2,3-free chordal bipartite graph.
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Assume next that G admits a cut partition (A,B,C) such that C is a clique of size

one or two and the graphs G[A ∪ C] and G[B ∪ C] both belong to G. Suppose for a

contradiction that G ̸∈ G. Since C is nonempty and the induced subgraphs G[A ∪ C]

and G[B ∪ C] are both connected, the graph G is also connected. We thus infer that

G contains an induced subgraph H isomorphic to either K2,3 or to a cycle of length

other than four. However, no such graph H admits a clique cutset, and therefore H is

an induced subgraph of either G[A ∪ C] or G[B ∪ C]. This contradicts the fact that

both of these graphs belong to G.

Conversely, assume that G is a connected K2,3-free chordal bipartite graph. If G

has 1, or 2 vertices, then G is isomorphic to either K1 or K2, respectively, as those are

the only such connected graphs. Assume now that G has at least three vertices. Since

G is connected, it has an edge. Golumbic and Goss showed in [15] that every chordal

bipartite graph that has an edge has a bisimplicial edge. Let {u, v} be a bisimplicial

edge in G. We may assume without loss of generality that deg(u) ≤ deg(v). Since the

edge {u, v} is bisimplicial, the subgraph of G induced by N [u] ∪N [v] is isomorphic to

the complete bipartite graph Km,n where m = deg(u) and n = deg(v).

If m = 1, then v is a cut-vertex in G and taking A = {u} and B = V (G)\{u, v}, we

obtain a cut partition (A,B, {v}) of G such that the graphs G[A∪{v}] and G[B∪{v}]

both belong to G.

Assume now that both m and n are at least 2. If, on the other hand, n ≥ 3, then

G contains an induced K2,3, contradicting the assumption that G ∈ G. So we conclude

that m = n = 2, that is, the set N [u] ∪ N [v] induces a K2,2
∼= C4 in G. Denote the

other two vertices in this set by w and z, where v ∼ w and u ∼ z. If |V (G)| = 4,

then V (G) = {u, v, w, z} and G is isomorphic to C4. Assume now |V (G)| > 4. By

connectedness, we may assume that there exists a vertex x ̸∈ {v, z} such that x ∼ w.

But then notice that in G−{w, z} there is no path between x and u. Therefore, taking

A = {u, v}, B = V (G) \ {u, v, z, w}, and C = {w, z}, we obtain a clique cutset C of

size 2 and a cut partition (A,B,C) of G such that the graphs G[A ∪C] and G[B ∪C]

both belong to G.

The following corollary is a direct consequence of the previous lemma.

Corollary 7.4. If G is a K2,3-free chordal bipartite graph, then tree-α(G) ≤ 2.

Proof. The statement follows from the previous lemma, as K1, K2, and C4 all have tree-

independence number at most 2 and otherwise, G has a clique cutset, so we can proceed

recursively, using Lemma 2.3 to construct a tree decomposition with independence

number at most 2.

We consider another class of chordal bipartite graphs and show that in this class it is

sufficient to forbid K3,3 as an induced subgraph. This is the class of 2K2-free bipartite
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graphs. It is easy to see that this class is indeed a subclass of chordal bipartite class

of graphs, since every cycle with at least six vertices contains an induced 2K2. The

structure of 2K2-free bipartite graphs is well known (see, e.g., [22]). We state the two

lemmas from [12] that will help us prove our desired result. Given a graph G, a set S

of vertices of G, and another set of vertices U , we say that U is universal to S if every

vertex in S has a neighbour in U . The definition is similar if U is a vertex, an edge, or

a subgraph of G.

Lemma 7.5. Let G be a connected graph and S be any minimal cutset of G. Let

G1, G2, . . . , Gl, (l ≥ 2) be the connected components in G − S. Then G is 2K2-free if

and only if it satisfies the following conditions:

• G− S contains at most one nontrivial component which is again 2K2-free.

• Every trivial component of G− S is universal to S.

• Every edge in the nontrivial component of G− S is universal to S.

• The subgraph induced by S is either connected or has at most one nontrivial

component which is again 2K2-free.

• If S and G − S both have a nontrivial component, say S1 and G1, respectively,

then every edge e = {u, v} in S1 is universal to M , where M = {x ∈ V (G1) |
{x, y} ∈ E(G) for all y ∈ S − (N(u) ∪N(v))}.

Lemma 7.6. If G is a connected 2K2-free bipartite graph, then for any minimal cutset

S of G, the following conditions are satisfied.

• S is an independent set.

• If G − S has a nontrivial component, say G1, then for every vertex x ∈ S,

N(x) ∩ V (G1) is an independent set.

• For every edge {u, v} in the nontrivial component G1, either u or v is universal to

S. Moreover, if u (without loss of generality) is universal to S, then N(v)∪S = ∅.

We can now prove the announced result.

Theorem 7.7. Let G be a 2K2-free bipartite graph. Then tree-α(G) ≤ 2 if and only if

G is K3,3-free.

Proof. Let G be a 2K2-free bipartite graph.

Assume first tree-α(G) ≤ 2. Suppose for contradiction that G contains K3,3 as

induced subgraph. But, since tree-α(K3,3) = 3 by Corollary 2.5 and deleting a ver-

tex cannot increase tree-independence number, it follows tree-α(G) ≥ 3, which is a

contradiction.
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Conversely, assume that G is K3,3-free. By Lemma 2.3, we can assume without loss

of generality that G contains no clique cutsets. Let S be any minimal cutset of G.

We proceed by considering two separate cases:

• |S| ≥ 3

• |S| ≤ 2

Suppose first |S| ≥ 3. By Lemma 7.6, if G− S has at least 3 components, then G

contains K3,3 (since vertices of S form an independent set and every component has

at least one vertex that is universal to S). Hence, since S is a cutset, we can assume

G− S has exactly two components.

Then by lemma Lemma 7.5, at most one of these two components is nontrivial.

Suppose that no component of G− S is nontrivial. Then G is isomorphic to K2,|S|

and we are done by Lemma 3.3.

Hence, we assume that there exists a nontrivial component G1. Now if there exists

at most one vertex in G1 that is universal to S, it is clear that this vertex is a cut-vertex

in G which contradicts the assumption of no clique cutsets.

On the other hand, if there are at least two vertices in G1 that are universal to S,

clearly these two vertices together with the trivial component G2 and any three vertices

in S form a K3,3, which is a contradiction to the assumption that G is K3,3-free.

This concludes the proof for the case when |S| ≥ 3.

Assume now that |S| ≤ 2. Notice that if |S| = 1, S is a cut-vertex in G and this

contradicts our assumption that G has no clique cutsets. Thus, we assume that |S| = 2

and label the vertices in S as u and v arbitrarily.

Again by Lemma 7.5, G − S has at most one nontrivial component. First assume

that G−S has no nontrivial components. Then, if we denote the components of G−S

by G1, . . . , Gr for some r ≥ 2, we can notice that for every i ∈ {1, . . . , r}, the set

V (Gi) ∪ S induces a P3. Hence we can construct a path decomposition by taking r

bags along the path and putting V (Gi) ∪ S in the i-th bag. Clearly this yields a valid

tree decomposition of independence number 2.

If on the other hand, there exists a nontrivial component of G − S, say G1, it

is unique and we can observe that it is sufficient to prove that there exists a tree

decomposition of G[V (G1) ∪ S] that contains a bag B such that S ⊆ B. Indeed, if

this is true, then we can apply the same argument as above, namely construct a path

decomposition where each bag contains one trivial component together with S, and

connect the first bag along this path to a bag in a tree decomposition of G[V (G1)∪ S]

that contains S.

So consider the graph H = G[V (G1) ∪ S]. If G1 is a tree, then we claim that the

structure of H corresponds the structure of a graph from Lemma 7.2, with the vertices

u, v from the lemma corresponding to the two vertices u, v in S.
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To argue this, it is sufficient to show that every vertex in G1 that is not universal

to S has degree equal to two, as other properties follow directly from Lemma 7.6.

Indeed, if there exists a vertex in G1 that is not universal to S and has degree 1,

then the vertex adjacent to it is a cut vertex and since G has no cut vertices, this

is impossible. On the other hand, if there exists a vertex x that is not universal to

S and has degree at least 3, we can notice that, by Lemma 7.6 every vertex in its

neighbourhood is universal to S and clearly N [x] ∪ S induce a K3,n for some n ≥ 3,

thus K3,3 is an induced subgraph, which contradicts the assumption that G does not

have an induced K3,3.

Thus we conclude that the structure of H corresponds the structure of graphs from

Lemma 7.2, and as we already argued above, there exists a tree decomposition of this

graph with a bag B that contains both vertices u, v and we are done.

Thus, we assume that G1 contains a cycle. Notice that if G1 cannot contain a cycle

of odd length, since G has to be bipartite. Similarly, since G is 2K2-free, the only

allowed cycle is C4.

We now prove that H has a tree decomposition with independence number 2 that

has a bag containing both u and v.

Let G be a 2K2-free bipartite graph with no induced K3,3. Let S be a minimal

cutset of G of order two with vertices u and v and let G1 denote the largest component

of G− S. Let H = G[V (G1) ∪ S].

We proceed by strong induction on number of cycles in the largest component of

G− S. If this number is equal to 0, as argued above, we have the desired property.

Suppose now that for every G and H, defined as above, such that G1 has at most

n− 1 cycles, for some n ≥ 1, H has a tree decomposition T with α(T ) ≤ 2 and a bag

B such that S ⊆ B.

Consider a graph G such that its nontrivial component G1 contains n cycles. We

observe the graph H. We notice that H is still a 2K2-free bipartite graph with no

induced K3,3.

Furthermore, if we consider any 4-cycle abcd in G1. By Lemma 7.6, there exists a

pair of nonadjacent vertices of this cycle (w.l.o.g. a, c), that is universal to S.

We claim that {a, c} is a minimal cutset in H. It is sufficient to show that if we

remove {a, c} from H, there exists no path between b and d.

We prove this by showing that the shortest paths of different lengths are not pos-

sible.

• If there exists a shortest path of length 1 between b and d, then {a, b, c, d} induces

either a diamond or a K4, none of which is bipartite.

• If there exists a path of length 2 between b and d, label the vertices along the

path by b, x1, d, then b, u, v together with x1, a, c form K3,3.
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• If there exists a shortest path of length r ≥ 4 (since G is bipartite, no path

of length three between b and d can exist), label the vertices along this path

b, x1, . . . , xr−1, d. Then the set {b, x1, d, xr−1} induces a 2K2, which is again a

contradiction.

Hence, H is a 2K2-free bipartite graph with a minimal cutset {a, c}.

Now, if H − {a, c} has no nontrivial components, as we argued above, we can

construct a path decomposition where each bag contains one trivial component and

a, c. Witout loss of generality, assume that the bag containing u and the one containing

v are adjacent. Then we can put another bag between them that contains u, v, a, c,

which clearly induces a C4 and we are done.

On the other hand, if H − {a, c} has a nontrivial component H1, observe that this

component has fewer than n cycles by construction. By the induction hypothesis, there

exists a tree decomposition of H[V (H1)∪{a, c}] with independence number at most 2,

such that a bag in this decomposition contains {a, c} as a subset.

But then, we add all the trivial components to this composition by attaching the

path decomposition as constructed above to it, and again, we may assume w.l.o.g. that

the bag that contains u and the one that contains v are adjacent and again, we add a

bag that contains a, c, u, v between the two bags.

Thus there exists a tree decomposition of G[V (G1)∪S] with independence number

at most 2, such that u and v are contained in a same bag and as argued above, this is

sufficient to give us the desired result and conclude the proof.
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8 CONCLUSION AND FURTHER

WORK

In this thesis, we considered some classes of graphs with tree-independence number at

most 2.

We first gave an overview of known results and bounds on tree-independence num-

ber and why are we even studying it. Then, using these bounds and explicit tree-

decomposition constructions, we gave several examples of classes of graphs that have

tree-independence number at most two. We concluded that chapter by looking into

intersection graphs of a graph H for various choices of H.

Then, we considered the classes of H-free graphs for various small graphs H. In

particular, we considered all connected graphs of order 3 except K3 and showed that if

any one of these graphs is forbidden as an induced subgraph, we obtain an efficiently

testable characterization of graphs with tree-independence number at most two. We

obtained similar result for some selections of forbidden graphs H of order 4.

After this, we found three minimal obstructions for tree-independence number at

most two, that is, graphs that have tree-independence number greater than 2, but

whose every proper induced minor has tree-independence number at most 2. Those

include the cube graph Q3, the complete bipartite graph K3,3, and a particular 9-vertex

series parallel graph C∗
6 .

Using the inequality tree-α(G) ≤ tw(G) + 1, we then observed that graphs with

treewidth at most 2 necessarily have tree-independence number at most 3. We then

focused on the class of series parallel graphs, a class that contains all 2-connected

graphs with treewidth at most 2. We first observed that the graph C∗
6 is series parallel

graph with tree-independence number equal to 3, and showed that this graph is indeed

the only minimal obstruction in the class of graphs with treewidth at most two. More

precisely, we showed that within this class of graphs it is sufficient to forbid the graph

C∗
6 as an induced minor in order to bound the tree-independence number by 2.

Finally, we explored the class of chordal bipartite graphs, and in particular, we

looked into some sufficient conditions for these graphs to have tree-independence num-

ber at most two, like being {2K2, K3,3}-free, or K2,3-free.

However, even though we managed to find many graph classes for which we found

constructive proofs that lead to polynomial-time algorithms for computing tree decom-

positions with independence number at most two, this thesis probably opened more
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interesting questions than it answered. Below, we list a few of the most interesting

research questions related to this thesis.

Clearly, the most general and probably the hardest question to answer would be:

Given a graph G, is the problem of deciding if tree-α(G) ≤ 2 NP-complete? Regardless

of what the answer to this question is, it is still interesting to see if we can find some

more general classes in which we can recognize graphs with tree-independence nubmer

at most two efficiently.

In this thesis, we considered the class of chordal bipartite graphs. We showed that,

in this class, it is sufficient to forbid K2,3 to have tree independence number at most 2.

One trivial necessary condition is that we always have to forbid K3,3. Is this also

sufficient?

We also found a couple of minimal graphs with tree-independence number at least 3.

Can we find more such graphs? Is this list finite or infinite? Furthermore, given a graph

G with tree-independence number at least 3, can we determine in polynomial time if

G is a minimal graph with tree-independence number greater than 2? That is, can we

tell if there exists a proper induced minor H of G such that tree-α(H) ≥ 3?
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9 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

V teoriji grafov moramo pogosto reševati probleme, ki so algoritmično zelo zahtevni.

Natančneje, tudi najbolǰsi znani algoritmi ne morejo rešiti takšnih problemov v poli-

nomskem času.

V takšnih primerih se lahko odločimo, da vhodne podatke omejimo na način, ki

nam omogoča, da problem rešimo v polinomskem času na omejeni vhodni množici.

Obstaja veliko načinov omejevanja vhodnih podatkov, ki jih lahko uporabimo. Jasno

je, da je glavni cilj, da je omejitev čim splošneǰsa, obenem pa še vedno omogoča rešitve

v polinomskem času.

V zadnjem času lahko pogosto vidimo, da se kot način za učinkovito omejevanje

vhoda uporabljajo različne mere strukturne zapletenosti grafa, imenovane širinski

parametri grafov. Kadar je širinski parameter v neki družini grafov F navzgor ome-

jen s poljubno fiksno konstanto, to pogosto omogoča razvoj učinkovitih algoritmov

z uporabo dinamičnega programiranja na grafu iz družine F , ki izkorǐsča strukturne

lastnosti grafa, običajno z uporabo pristopa deli in vladaj na ustrezni razgradnji grafa.

Primer takšne razgradnje je drevesna dekompozicija. Drevesna dekompozicija grafa

G je tak par T = (T, {Xt}t∈V (T )), da je T drevo in za vse t ∈ V (T ) je Xt ⊆ V (G) ter

velja:

• pokritje točk: ⋃
t∈V (T )

Xt = V (G)

• pokritje povezav:

∀uv ∈ E(G) ∃t ∈ V (T ) : u, v ∈ Xt

• konsistentnost:

za vsako točko u ∈ V (G) je podgraf drevesa T , induciran z množico {t ∈ V (T ) |
u ∈ Xt} povezan.

Točke drevesa T imenujemo vreče in pravimo, da je točka v vsebovana v vreči t, če je

v ∈ Xt.

Številni širinski parametri so definirani z uporabo drevesne dekompozicije. Na-

jpomembneǰsa takšna parametra za to magistrsko delo sta drevesna širina in drevesno

neodvisno število.
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Širina drevesne dekompozicije je za ena zmanǰsana moč največje vreče v dekompozi-

ciji. Drevesna širina grafa G, označena s tw(G), je najmanǰsa možna širina drevesne

dekompozicije grafa G.

Neodvisnostno število drevesne dekompozicije T = (T, {Xt}t∈V (T )), grafa G,

označeno z α(T ), je definirano kot α(T ) = maxt∈V (T ) α(G[Xt]). Drevesno neodvisnos-

tno število grafa G je definirano kot najmanǰse možno neodvisnostno število drevesne

dekompozicije grafa G in označeno s tree-α(G).

Dallard, Milanič in Štorgel so v [10] dokazali, da so grafi z drevesnim neodvisnost-

nim številom največ 1 natanko tetivni grafi. Prav tako so Dallard, Fomin, Golovach,

Korhonen in Milanič v [9] dokazali, da je za vsako konstanto k ≥ 4 NP-težko odločiti,

ali ima dan graf drevesno neodvisnostno število največ k.

Naravni naslednji korak je obravnava grafov z drevesnim neodvisnostnim številom

največ 2. V magistrskem delu so obravnavani razredi grafov z drevesnim neodvisnost-

nim številom največ 2 in so izpeljani naslednji rezultati:

• Našli smo različne primere družin grafov z drevesnim neodvisnostnim številom

največ 2.

• V [10] so Dallard, Milanič in Štorgel dokazali, da če je H induciran minor grafa

G, tedaj je tree-α(H) ≤ tree-α(G). Zato definiramo, da je G minimalen graf z

drevesnim neodvisnostnim številom, večjim od k, če je tree-α(G) > k in za vsak

pravi induciran minor H grafa G velja tree-α(H) ≤ k. V magistrskem delu so

najdeni naslednji grafi, ki so minimalni z drevesnim neodvisnostnim številom,

večjim od 2: kocka (Q3), poln dvodelni graf K3,3 in graf C∗
6 , prikazan na sliki 7.

• Za različne izbire majhnih grafov H smo dokazali, da bodisi za vsak H-prost

graf G velja, da je tree-α(G) ≤ 2, ali pa za vsak H-prost graf G velja,

da je tree-α(G) ≤ 2, če in samo če graf G ne vsebuje induciranega podgrafa,

izomorfnega grafu K3,3.

• Obravnavali smo nekaj podrazredov tetivnih dvodelnih grafov, kot so na primer

2K2-prosti dvodelni grafi, ali K2,3-prosti tetivni dvodelni grafi.

• Grafi ki imajo drevesno širino omejeno z 2, imajo drevesno neodvisnostno število

omejeno s 3. Naj bo C∗
6 graf, ki je prikazan na sliki 7. V magistrskem delu

smo dokazali, da je drevesno neodvisnostno število grafa G z drevesno širino

največ 2 omejeno z 2 natanko takrat ko graf G ne vsebuje induciranega minorja

izomorfnega grafu C∗
6 , sicer pa je enako 3.
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