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Č
N
A

N
A
L
O
G
A

(F
IN

A
L
P
R
O
J
E
C
T

P
A
P
E
R
)

20
22

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE
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Izvleček:

Obstaja globalna težava v zvezi z naraščajočim številom vozil in stanjem obstoječe

infrastrukture cestnega omrežja [36]. Vedno povečavajoče število osebnih in dostav-

nih vozil predstavlja vedno povečavajočo težavo za infrastrukturo, kar povzroča vse

pogosteǰse prometne zastoje [2]. Cestna omrežja so ključna za gospodarsko rast vsake

države [30]. Nujna je strateška širitev, ustrezno vzdrževanje in optimizacija teh omrežij,

da se zagotovi učinkovita povezava znotraj geografske regije.

Raziskali bomo možne rešitve tega problema. S spremembo tipov križǐsč bomo spremi-

njali topologijo cestnega omrežja, da bi povečali pretočnost. Rešitev problema je težko

najti, saj bi iskanje najbolǰsega cestnega omrežja za določeno regijo trajalo zelo dolgo.

Zaradi narave problema in ker je računsko neizvedljivo razviti neposredno rešitev je

iskanje optimalne rešitve neizvedljivo. V takih primerih je nujen hevristični pristop.

Torej, bomo raziskovali uporabo genetskih algoritmov [26] za učinkovito iskanje pro-

stora možnih rešitev. Kot ciljna funkcija bo uporabljen prometni simulator, prilagojen

problemu (zagotavlja simuliran pretok za rešitev).

Naš pristop bomo potrdili s poskusom optimizacije obstoječega cestnega omrežja mesta

Koper [37], Slovenija.
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Abstract:

There is a global problem regarding the increasing number of vehicles and the state

of existing road network infrastructure [36]. The ever-growing number of personal

and delivery vehicles presents an ever-growing problem to the infrastructure, resulting

in more frequent traffic congestion [2]. Road networks are essential for the economic

growth of every country [30]. It is necessary to make strategic expansion, adequate

maintenance, and optimization of these networks to guarantee an efficient connection

within a geographic region.

We will be exploring potential solutions to this problem. By changing intersection types

we will be changing the road-network topology in order to increase the throughput.

The solution to the problem is difficult to discover, since finding the best road-network

for a given region would take a very long time.

The nature of the problem makes searching for the optimal solution infeasible, because

it is computationally infeasible to develop a direct solution for. In such cases, a heuristic

approach is necessary. Thus, we will explore the use of Genetic algorithms [26] to

efficiently search the space of possible solutions. As an objective function, a traffic

simulator tailored to the problem will be used (delivering a simulated throughput for

the solution).

We will validate our approach by attempting to optimize the existing road network of

the town of Koper [37], Slovenia.
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1 Introduction

The work of Church, Gödel, and Turing was one of the more significant achievements of

twentieth-century mathematics, particularly in the fields of logic and computer science.

In the 1930s, they provided a precise definition of what it means for a problem to be

computationally solvable. Which showed that there are incomputable problems in logic

and computer science [35]. Because there is no reliable, exact method to solve certain

problems and because some problems are so complex that they are computationally

infeasible to develop a solution for, we separated them into complexity classes. These

classes help scientists in grouping the problems based on how much time and space they

require to solve them and verify the solutions. Therefore, we have these complexity

classes:

• P class

If a deterministic Turing machine can solve a problem in polynomial time, that

problem belongs in the complexity class P. Every problem in this class has

a solution which takes polynomial time on the input size n. I.e. f(n) is

of form xknk + xk − 1nk − 1 + ... + x2n
2 + x1n + x0 such that xk, ..., x0

are constant factors (possibly even 0). The polynoms order is the largest

exponent k such that xk ̸= 0 [14].

• E Class

If a deterministic Turing machine can solve a problem in exponential time,

that problems belongs in the complexity class E. An example of the time

complexity would be: f(n) = 3n or f(n) = n2n. It does not matter, if

f(n) contains a polynomial part, because the exponential part (n is in the

exponent) is largely dominating the complexity. An example would be:

f(n) = 2n/6 + 7x9 has the complexity O(2n/6) = O(2n), which is an expo-

nential function. Furthermore, if a problem belongs to the complexity class

P , then it also belongs to the class E, because P ⊂ E. Note that E isn’t the

most complex class of problems. An example of a more complex problem

would be the problem with the complexity, O(n!) (n! = n(n− 1)(n− 2)...1)

which is more difficult [14].
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• NP Class

The problems that can be solved by a non-deterministic Turing machine in po-

lynomial time belong to the NP complexity class. The word “Nondetermini-

stic” means there may be several ways for the computation to be executed.

[35] Class NP exists between the class P and the class E : E ⊆ NP ⊆ E.

Meaning that all problems in the complexity class NP also belong to the

class E, and a deterministic Turing machine (or a computer program) can

solve it in exponential time. It could happen that some of these problems

can be solved faster, maybe in polynomial time, and that would mean they

actually belong to the class P . But, it is not known if all of them are solvable

in polynomial time by some algorithms [14].

• NP -complete Class

NP -complete problems are a subset of the class NP . A problem x is in the

NP -complete class if:

1. x ∈ NP (A non-deterministic Turing machine problem can solve the

problem in polynomial time)

2. All other problems in class NP can be reduced to the problem x in

polynomial time.

This means that in the complexity class NP the NP -complete problems are

the most difficult problems. If just one of them is solvable in polynomial

time, this would imply that we could solve all the problems in the class NP

in polynomial time [14].

• NP -hard Class

The NP -hard don’t belong in class NP , but all problems in class NP can be

reduced to them. We can see that NP -complete class problems are a sub-

set of the NP -hard class, and that’s why NP -complete class problems are

sometimes called NP -hard as well [14].

To summarize:

P ⊆ NP ⊆ E

NP -complete ⊆ NP

NP -complete ⊊ NP -hard
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Now we will look at a subset of problems. These are the optimization problems.

Any arbitrarily chosen optimization problem can be defined as objective and feasibility

functions and as an instance drawn from a finite set A. The goal is to try to find a value

in the set A such that we obtain the maximum (or minimum) value of the objective

function subject. The formal definition of the optimization problems can be found

in [18] and [28].

Heuristic optimization is mostly used to solve this kind of problems. The word

“heuristic” derives from Greek “herusken”. It means “to discover.” So a heuristic

attempts to use the methods and rules of discovery or assisting in problem-solving.

Problem-solving is the act of defining a problem; determining the cause of the problem;

identifying, prioritizing, and selecting alternatives for a solution; and implementing a

solution. Furthermore, heuristics are relatively simple procedures that are designed to

find good but not necessarily the best, most optimal solution to the given problem [38].

There are many types of heuristic algorithms in the literature. A short summary of

such algorithms follows: alpha-beta search [23], genetic algorithms [27], backtracking,

hill-climbing [19], simulated annealing [1], tabu search [12], etc.

Notice the difference between metaheuristic and heuristic algorithms is that heuristics

are often problem-dependent, that is, you define a heuristic for a given problem. Me-

taheuristics are problem-independent techniques that can be applied to a broad range

of problems. A heuristic is, for example, choosing a random element for pivoting in the

Quicksort (a sorting algorithm). A metaheuristic knows nothing about the problem it

will be applied to, it can treat functions as black boxes. The authors of the article [4]

describe the black box as: “A black box is a fiction representing a set of concrete sy-

stems into which stimuli S impinge and out of which reactions R emerge.” Find out

more about them in [4].

Metaheuristic algorithms are divided into two types: single solution and population-

based metaheuristic algorithms, as depicted in the figure 1 below.
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Figure 1: Classification of metaheuristic Algorithms

Single-solution metaheuristic algorithms use a single candidate solution and im-

prove it using local search. The solution obtained from single-solution based meta-

heuristics, on the other hand, may become stuck in local optima [21]. Tabu search

(TS), microcanonical annealing (MA), simulated annealing and guided local search are

examples of some well-known single-solution based metaheuristics. Population-based

metaheuristics utilizes numerous candidate solutions during the search process. These

metaheuristics preserve population variety and keep solutions from becoming trapped

in local optima. Here are some well-known population-based metaheuristic algorithms:

genetic algorithm (GA) [25], ant colony optimization (ACO) [8], particle swarm optimi-

zation (PSO) [17], spotted hyena optimizer (SHO) [5], seagull optimization (SOA) [7],

and emperor penguin optimizer (EPO) [6,16].

In the following chapters we will explain how genetic algorithms function, what pro-

blem we are trying to find a more optimal solution for, and how we developed the

optimization software.
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2 Genetic Algorithms

2.1 Definition

Genetic algorithms are a type of heuristic optimization or problem-solving technique.

They adhere to Darwin’s principle of evolution via genetic selection. It is essential to

establish the biological background of GAs at this point. These biological terms are

used in the spirit of analogy with real biology, however the entities they correspond to

here are far simpler.

All living organisms consist of cells, and each cell contains a set of one or more chromo-

somes. These chromosomes are strings of DNA that function as a “blueprint” for the

organism. A chromosome can be divided into genes. They are functional blocks of the

DNA, and each encodes a particular protein. From an abstract point of view, we can

think of genes as encoding a trait, such as eye color. Alleles are the distinct possible

“settings” of a trait (e.g., blue, brown, green). Each gene is located on the chromo-

some at a specific locus (position). In many organisms, each cell contains multiple

chromosomes. The complete collection of these chromosomes (of the genetic material),

is called the genome of the organism [27].

GAs use a highly abstracted version of the evolutionary process to evolve solutions

of a given problem. All GAs work with a population of artificial chromosomes. These

are strings of a defined finite alphabet (like binary, or octal). In chromosomes, each

locus (specific position on chromosome) has two or more, depending on the alphabet,

possible alleles (variant forms of genes) - 0 and 1 (in case of binary). Chromosomes are

regarded as points in the solution space and each of them has a fitness, a real number,

which represents the quality of the solution, for that particular problem [16,24].

To simplify, we have the population, which consists of chromosomes, these chromosomes

are encoded in a certain way using an alphabet, and they have a fitness value which

represent their quality.

2.2 How do genetic algorithms work?

For easier understanding, we’ll say individuals instead of chromosomes. Genetic al-

gorithms initiate with a population of individuals chosen at random. Check figure 2
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for reference. These are processed using biological-inspired genetic operators, namely

selection, crossover and mutation, by iterative replacing of its population. Firstly,

GAs evaluate the fitness of each individual in the population. Then they select better

individuals (chromosomes) based on their fitness value for further processing. Next,

GAs create the offspring by combining the individuals genomes of 2 or more previously

selected individuals and then finally, they mutate the genomes, to keep diversity in the

population. Then we repeat this sequence of selecting, crossing over and mutating,

until some stop criterion is reached, or we become satisfied with the more optimal

solution the GA has created.

Figure 2: Genetic Algorithm

The string interpretation of Individuals is fully dependent on the problem. A string

of 20 bits may represent a single integer value in one problem, yet it may represent the

appearance of 20 separate components in some other complicated process. The ability

of common representations to be utilized in this manner for a wide range of issues is a
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strength of GAs.

Yet, chromosomal encoding will only carry a limited amount of problem-specific in-

formation. The fitness function encodes a large portion of the significance of a single

chromosome for a certain organism [24].

Before we continue with an even deeper explanation of the specific parts of genetic

algorithms, it is valuable to mention some operations used in GAs as they are highly

modular in nature, it is important to have an idea of what kind of GAs exist. We can

see some of the different “modules” of genetic algorithms in the figure 3 below.

Figure 3: Operations in GA
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2.2.1 Chromosome encoding

The encoding techniques are important for most computing problems because we are

compiling the high level, human understandable, information into something a compu-

ter can interpret. The provided information about the problem has to be encoded into

strings of data [13, 22]. Some forms the data can take are binary, octal, hexadecimal,

value-based and tree [16].

In binary encoding, each individual is defined as a string of 1s and 0s [33]. Each

bit in the encoding conveys the individuals’ characteristics. It allows for more rapid

implementation of crossover and mutation operators. But, converting to binary costs

additional effort, and algorithm accuracy is dependent on binary conversion. The bit

string is modified according to the problem we are trying to solve. Because of natural

representation and epistasis (the interaction of genes that are not alleles), the binary

encoding technique is inappropriate for some engineering design challenges [16].

In the octal encoding scheme, the individual is represented by strings that consist of

octal numbers (0-7) [16]. In the hexadecimal encoding technique, the individual is

represented by strings of hexadecimal numerals (0-9, A-F) [16,20,33,34].

The permutation encoding approach is commonly utilized in ordering problems.

The individual is represented in this encoding technique with a string of integers that

stand for a location in a sequence [16].

In the value encoding technique, the individual is represented by a string of values.

These values can be real numbers, integers, or characters [11]. This encoding approach

may be useful in solving difficulties involving more sophisticated values. In such cases,

binary encodings may fail [16].

In tree encoding, the individual is represented by a tree of commands. These com-

mands can be in any programming language. This is similar to the representation

of repression in tree format [15]. This type of encoding is generally used in evolving

programs or expressions [16].

2.2.2 Fitness

The fitness function computes the fitness of individuals. This fitness is problem de-

pendent. A trivial example would be GA used on OneMax problem, where we have

individuals in the form of strings of length n. Where each value in the string can be a 0

or 1, thus there are 2n possible individuals. Our population starts with a population of

randomly generated individuals. The goal is to get to a string of all 1s, and we measure

fitness of individuals by counting how many 1s they have. The more they have, the

fitter they are. Similarly to this problem, we compute fitness for others as well [24].



Deljanin P. Developing a genetic algorithm for optimizing traffic network topologies by using an

agent-based simulator.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 9

2.2.3 Selection

The selection procedure is used to derive fitter individuals. The individuals with higher

fitness should have a greater chance of being selected than those with lower. Because

we want our population to become fitter, and thus to make our solution better. Se-

lection can be created with replacement. This means that fitter individuals will get

selected multiple times, or even be recombined with themselves [24]. Some of the better

known selections are the roulette wheel, rank, tournament, boltzmann and stochastic

universal sampling. We will now explain some of these we used in detail.

Roulette wheel selection works in the following way [32]:

1. Calculate the probability of selection by dividing the individuals’ fitness with the

population’s fitness (sum of all fitness values of all individuals in the population).

2. Divide the roulette wheel into sections based on the probability computed in the

previous step.

3. Spin the wheel n times (Here n is the population size). The sector on which

the roulette pointer stops is selected, so the individual that corresponds to that

sector goes to the next steps of GA. (crossover and mutation)

Rank selection works like this: First, we sort the population by fitness values of

individuals. Then we assign the ranks in a way where the fittest individual gets rank

n, and the least fit gets rank 1. Then the ranks are assigned to all other individuals

linearly according to their fitness. Even if the fitness of 2 different individuals are the

same, they get unique ranks [32]. Then, similarly to the roulette wheel selection, we

set the ranks on to a roulette wheel, and spin n times, to select the individuals for next

steps in GA.

We would like to note here that rank-based selection helps in preventing premature

convergence caused by exceptionally fit individuals. It does this because the fittest

individuals are always assigned the same selection probability, regardless of their fitness.

But, because the best individuals are not that different from others in the population,

this strategy may result in delayed convergence [31].

Tournament selection is one of the most popular selection methods, due to ease of

implementation and efficiency, say the authors of the paper: [32].
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In this selection method, arbitrary n individuals are selected in the following way:

1. The population gets shuffled.

2. Some m amount of individuals (tournament size) is picked from the population.

3. From those, m the fittest individual is picked for next steps in GA.

4. Then we simply repeat this procedure n times, to get n individuals.

2.2.4 Crossover

The crossover method is used to combine the genetic information of 2 or more indi-

viduals. Some of the better known crossover procedures are single-point, two-point,

k-point, uniform, order, partially matched, shuffle, reduced surrogate, cycle, and pre-

cedence preserving crossovers [16]. In the diagrams below we used only 1s and 2s to

represent the values of strings, for easier comprehension, in reality we would have some

bits, or other sort of encoding we have talked about previously. Now we will further

explain the crossovers we used in our implementation:

Single point crossover splits the genomes of 2 individual in half and crosses them

like in the figure 4 below, effectively making 2 more individuals [16].

Figure 4: Single point crossover

Two point and K-point crossovers split the individuals’ genomes in 2 or more

points. Then, as previously, crosses them and creates “offspring”. We can see the

procedure in the figure 5 below.
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Figure 5: Two point crossover

Similarly, we would have more than 2 of this splitting points with the k-point

crossover. Logic is the same [16].

Uniform crossover splits the genomes of 2 individuals on every value in the string.

For each value, we toss a coin to decide if we will swap the values of individuals genomes.

In the image 6 below, we can see the swap happening with a perfectly fair coin toss,

for easier explanation, so every second value gets swapped. In a real scenario, some of

the 1s and 2s wouldn’t be changed [16].

Figure 6: Uniform crossover

2.2.5 Mutation

Mutation is a method used to keep genetic diversity in the population. Some of the

better known mutations are displacement, scramble and simple inversion. We will now

proceed with the explanation of the displacement mutation as it is the only one we

implemented, thus it’s the only one relevant to this topic [16].

Displacement mutation displaces a substring of the individuals’ genome. The place

of displacement is randomly chosen, under constraints that the displaced genome is

still valid after the operation. There are 2 other variants of displacement mutation

which we would like to mention. The exchange and insertion mutations. Read more

about them in this article [16].
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3 Implementation

3.1 Problem definition

There is a global problem regarding the number of vehicles and the state of existing

road network infrastructure [36]. Every year there are more and more vehicles, and

the current infrastructure cannot keep up with that, resulting in more frequent tra-

ffic congestion [2, 36]. Road networks are essential for the economic growth of every

country [30]. It is necessary to make strategic expansion, adequate maintenance, and

optimization of these networks to guarantee an efficient connection within a geographic

region. We attempted to replicate this problem by simulating it on the traffic network

of Koper. As we previously mentioned, for such problems, it is difficult to find a con-

crete solution to, since it takes a long time, so we used genetic algorithms to optimize

the existing traffic network of Koper [37] and decrease congestion.

For the implementation of both the simulator and the genetic algorithm, we used Java

programming language [3].

3.2 Simulator

The simulator we used in our optimization works in the following way when executed.

First, it loads up all the intersections, from a provided JSON file [9,10]. All intersections

are loaded with their x and y locations, the data that keeps track of which road is the

main road, and which are secondary, and most importantly the type of the intersection.

This type can be 1, 2 or 3, a normal intersection, semaphore controlled intersection or

a roundabout, respectively. Additionally, there are the type 0, which are the parkings,

and the type 5 which are the vehicle emitters (more on them later). Then it loads

the road data, with which the simulator constructs the road network. It does so by

connecting the intersections in a way that checks which roads are incoming, and which

are outgoing, in order to make sure the network is connected properly. We should

mention here that each road has its own speed, so vehicles that go over them have that

set speed, and that each type of intersection has its own implementation.

Now when the whole road network is set up, the simulator starts emitting the vehicles,

this is where the vehicle emitters (type 5) come in. They calculate a random shortest



Deljanin P. Developing a genetic algorithm for optimizing traffic network topologies by using an

agent-based simulator.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 13

route from the emitting point to some of the parkings (type 0) and emit vehicles across

the city in a way that follows real world Koper traffic. We measured the amount of

vehicles that passed in certain locations (where emitters emit from) and simulated daily

traffic of Koper. On the figure 7 below, you can see what the simulator looks like with

the GUI on (graphical user interface = GUI). The circles (vertexes) on the map are the

intersections, emitters, and the parkins (color depicts which one it is, and what type).

The lines are the roads and the blue squares are the vehicles.

Figure 7: Traffic simulator

Lastly, we should mention here a couple of things. The simulator is sped up, so a

whole simulation takes about 3-5 minutes without a GUI, and with the GUI it depends

on the hardware of the machine you are running it on. One simulation simulates one
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entire 24-hour day. Upon completion, it returns the amount of seconds all vehicles spent

on the intersections on average. (amount of time spent on intersections / amount of

cars)

3.3 Genetic algorithm

Before we dive deep into the explanation of each specific package and class, we would

like to briefly explain how we implemented the GA. In the figure 8 below, we can see

the algorithms of our Implementation.

Figure 8: Implemented genetic algorithm
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In the implementation of the GA, we have 3 packages which separate the logic of

the project. The algorithms, data, and entity packages.

3.3.1 Data package

Data package is used for reading and writing to memory. In it, we have four classes

Config, ConfigData, DataManager, and IntersectionData. We should mention here

that there are two configs. One is for the simulators, and the other is for the GA.

• Config class is the config for the genetic algorithm, it stores the information for

population size, number of threads used for execution, maximum generation for

GAs stop condition, mutation probability for the individuals’ genomes, simulation

speed of individual simulations that are executed, seed of simulation vehicles, the

period of time which decides how long the simulation will run, and which genetic

algorithm will be used for optimization.

Furthermore, this class is used as a template when reading a JSON file from

disk (in this case, config.json for the GA). This is the first thing we do, as the

information previously mentions is critical for any part of this program.

• ConfigData class, similarly to the Config class, stores some information, but

this time for the simulator itself. This class keeps the simulation speed, the seed

of the simulations vehicles, and the simulation time (all 3 are saved in both of

the classes).

This class is used as a template when reading from a base config.json file for the

simulator, or when writing to generation specific config files for the simulators.

We will explain more about this file writing (saving to disk) later.

• IntersectionData class is again a template class used for saving information

of each intersection. It keeps the information for the type of the intersection,

parking, or emitter (0,1,2,3 and 5 as previously mentioned), the data about main

and non-main roads, and the x and y coordinates.

• DataManager is the class that has the most logic in this package. It handles

the files saving process (writing to disk) in this project.

Its 4 most important features are:

– population write method, which saves (writes to disk) the config file of a

simulator for a specific generation.

– individual write method, that saves (writes to disk) the intersection data of

a provided individual into a JSON file.
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– delete generation files method, which removes all executed (completed situ-

ations) simulation files (more about execution later). It removes all except

the ones of the fittest individuals in the population, so we can run the si-

mulation later and see what GA came up with.

– generation csv write method, that writes the population size, algorithm

used, mutation chance, name of the fittest individual and their fitness into

a CSV file.

3.3.2 Entity package

The entity package contains most of the functionality, and logic in the project. It has

the following classes: Main, Optimization, Population, Individual, Executor, Tuple,

IndividualComparator and an ENUM Intersection (binary representation of intersecti-

ons). This package contains the gist of the project, and in it our GA is used, simulations

are executed, configs are read and parsed, population and individuals are defined as

well as the executors. Before we proceed, it is important to mention that we have two

different lists of values. One is a list of complete intersection information (x,y, road

priority and type), used when reading from or writing to disk (memory), and the other

is a list of simple Intersection ENUM values, used for changing Intersection types. We

will now further explain what each class is used for and how it operates.

• Main class is our starting point of execution. It reads the program arguments,

and the provided config. Then it parses that information and initializes the

population, the GA which we will use, and the optimization (more on them later).

Finally, the instance of the optimization, we previously created, is started, and

our procedure starts.

• Intersection ENUM is a binary representation of our 3 types of intersection.

Namely, the roundabout, regular intersection and the semaphore controlled in-

tersection. This class is basically one of these three values: “BASIC”, “SE-

MAPHORE” or “ROUNDABOUT”, but represented in a binary format.

• Individual class is used for storing the necessary information of each individual

(our Individuals are a bit more complex than chromosomes). This information

includes a list of intersections, individual’s fitness, paths to the generation config

and the individuals’ intersection JSON file, and it’s name (i.e., 0 1, 3 24, where

the 0 and 3 before the underscore are the generation counts, and the numbers

after the underscore are the individual counts, forming an individual name, used

when writing the fittest individual to CSV, and when separating Individuals

simulation files into directories). Now we’ll explain the methods in this class:
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– Individual constructor methods are used for creating individuals. There are

two of them, and depending on the arguments we either create a completely

new individual with a random intersection list, or we make a new individual

and assign the intersection list to it. We have this because of the GAs (figure

8, depicts the initial population and the later ones).

– randomize intersection method creates a new list of intersections and rando-

mly fills it up with the 3 basic intersection values we previously mentioned

(“BASIC”, “SEMAPHORE” or “ROUNDABOUT”). Used for the creation

of the initial population.

– type converter method is used for converting “BASIC”, “SEMAPHORE” or

“ROUNDABOUT” basic binary values into numbers, 1,2,3 respectively.

– initialise method is used for saving the information of the entire intersec-

tion list. It iterates the list and to each intersection a new type is assigned

from the intersection ENUM list we created randomly, or from the inter-

section ENUM list GA provided, through the constructor. Here we use the

type converter method for each of these values in order to save numbers

instead of bits.

– other methods such as prints, getters, and setters for some values in the class

are also present, but they are trivial as they are self-explanatory (getters get

the value of a variable, and setters set the values of variables).

• Executor class is used for starting a single simulation. It extends JAVAs class

Thread, which enables us to run multiple simulations in parallel (more paral-

lel execution in the Optimization class) [3]. Two main methods that must be

explained are:

– initialise method takes as a parameter an individual which it has to execute.

It saves the paths needed for execution (the generation specific config.json

path and the individuals intersection.json path).

– run method creates a system specific command and runs it. A command

looks like the following for windows operating systems:

cd "C:\Users\G6\IdeaProjects\diploma\diploma\simulator" &&

java -jar Simulator.jar false ..\generations\0\config.json

..\generations\0\0_3\intersections.json

The cd and the path after moves the program to the required directory. Then

it starts the Simulator.jar with java and the following arguments. The false

stands for no GUI, and the next two paths are used to designate the locations of

the config for the simulator and the intersection.json to load and run the simulator
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on. When the simulator completes the simulation, it returns the fitness and

assigns it to the Individual which was provided to it in the initialise method.

• Population class stores the necessary information about the population. All

of the individuals (stored in a vector), the generation count, the population size

(provided by the config loaded in Main), the list of instances (objects) of class

IntersectionData, an instance of ConfigData class, and it’s generation specific

copy as well as the path to the generation specific config.json. This class is used

for setting up the population for execution. It contains the following methods:

– Population constructor methods, which are used for creating populations.

Similarly to the Individual class, here we have 2 methods that are called

the same but are used in different ways. One is used when creating the first

population, and the other is used for overwriting the existing population

with a new one (for the GA).

– initialiseGeneration method checks if the population already exists. If it

does not exist, the method creates new individuals. If it does exist, it sets

up the individual names, their new generation config and intersection paths.

Furthermore, it calls the initialise method for each individual in the popula-

tion. It uses an instance of DataManager class to save all individuals in the

memory (writes all individuals to disk), and prepares them for execution.

– getFittestIndividualSORTED & getFittestIndividual methods either first sorts

the population and then returns the fittest individual, or just returns the

fittest individual since the population was previously sorted.

– loadIntersections & loadConfig methods load the intersections and config

data from JSON files on disk. They both use template classes, we previously

mentioned, IntersectionData and ConfigData respectively.

– other methods such as prints, getters, and setters for some values in the class

are also present, but they are trivial as they are self-explanatory.

• Optimization class when instantiated sets the parsed parameters provided by

the Main class. These are the same mandatory config variables we previously

mention in the Data package. This class is used for looping the GA until we

reach the MaxGeneration, our stop condition.
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This class has two methods:

– Optimization constructor method sets up the required variables loaded in

Main. It initializes a new instance of a DataManager and an instance of a

blocking queue (in laymen terms, a blocking queue is a queue that works

properly when using parallelism in our programs) [3].

– Start method, first initializes everything we need for parallel execution. (i.e.,

blocking queue, executor service etc.) Then the main part of the program

starts. We loop until the MaxGeneration is reached. In every iteration

(repetition) of the loop, the following happens in order:

1. The population is initialized (initialiseGeneration is called).

2. All individuals in the population are added into the blocking queue we

previously defined.

3. Now, until this queue is completely empty, we assign the individuals to

the executors and then execute them in batches.

4. Join the Threads (Executors), meaning we wait until all of them finish.

5. Sort the population by fitness, write the fittest individual into a CSV

file, and remove files of all other individuals from the disk.

6. Use the GAs method, select.

7. Use the GAs method, crossover

8. Use the GAs method, mutate

• Tuple class is a simple class used for storing two instances (objects) of the

Individual class. We need this for some of the GAs methods.

• IndividualComparator class is used for comparing two instances of the Indi-

vidual class, based on their fitness values.

3.3.3 Algorithms package

This package stores all of the genetic algorithms we have implemented. We would

like to define a variable here, for easier use and explanation. Let n be the size of the

population. These are the classes we implemented:

• Abstract GA class is used as a template for other classes. All other GAs extend

this one. It contains the basic 3 methods, select crossover, and mutate. Read

more about abstraction in [3].

• GenericGA which has implemented the 3 methods like this:
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– select sorts the population by using an instance of the IndividualComparator

class, selects the upper half (the fitter half, n/2) and deletes the lower half.

– crossover uses single point crossover. It iterates the newly selected popu-

lation 2 at a time. It splits the lists of Intersections of both individuals,

in half and crosses them over. So the 1st half of the 1st individual and the

2nd half of the 2nd individual are merged into a single new list for the first

child, and the opposite is done for the second child. So the 1st half of the

2nd individual and the 2nd half of the 1st individual are merged into a single

new list for the second child.

Since we have to return 2 instances (objects) of the Individual class, here

we use the Tuple class to return both of the children, and add them to the

new population.

– mutate randomly changes some intersections in the list of Intersections. It

does this by iterating through the list, and at every iteration it generates a

local random number. If that number is less than or equal to the mutation

chance, we flip the value to one of the other two values (since we have 3,

“BASIC”, “SEMAPHORE” or “ROUNDABOUT”).

• TournamentGA

– select works in the following way:

1. Define the new population, which is the size of n/2 (after crossover, it

will have the same size as before). Define a new vector of type Indivi-

dual (vector is a data structure of flexible size) which is the size of the

tournament. Let this size be some t. In our case t = 5.

2. Loop until we reach the n/2.

3. In each iteration, we shuffle the population and pick t individuals. After

that, we pick the fittest of the those and insert it into the new popu-

lation, and remove it from the original population, so we won’t have

duplicates.

– crossover is the same as in GenericGA.

– mutate is the same as in GenericGA.

• Tournament2PointGA

– select is the same as in TournamentGA.

– crossover uses the two point crossover. It iterates the newly selected po-

pulation 2 at a time. This method splits the lists of Intersections of both
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individuals, in 3 peaces, and crosses them over, similarly to the single point

crossover. Refer to our explanation of 2 point crossover and the diagram 5

for a deeper explanation.

– mutate is the same as in GenericGA.

• TournamentUniformGA

– select is the same as in TournamentGA.

– crossover uses uniform crossover. It iterates the population 2 at a time.

For both, individuals it again iterates their Intersection lists, and for each

Intersection a random number is rolled between 0 and 1. If this number

is less than 0.5 then Intersections are swapped. Thus resulting in two new

Individuals, as before. Refer to the diagram 6 for a deeper explanation.

– mutate is the same as in GenericGA.
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4 Results

In this section, we will talk about the results of the executed simulations. We ran these

on a university server with rough specifications.

In the figure 9 we can see the progress of various genetic algorithm implementations

in traffic network optimization. On the y − axis we can see the fitness of the fittest

individual. On the x− axis we can see the generation count. The fitter the individual

is, the lower is its fitness values. Hence, the graph has decreasing values as the GA

explores more optimal solutions. The occasional moving up of the fitness is caused

by the mutations. Furthermore, we can see that the most optimal solution was found

by the TournamentUniformGA, depicted with light blue color in the figure 9. Since it

reached the lowest fitness value compared to other GAs.
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5 Discussion

In the results, we saw that the road network can be optimized. Now the further

steps would be to make the simulator more realistic, and to make it, so any road

network can be imported and optimized, one of possible implementations is using the

OpenStreetMap [29]. This would require a lot of work, as many road networks don’t

have only 3 types of simple intersections, but others as well with more incoming and

outgoing roads. This is where GA would also have to be expanded, by adding any

new intersection types to the simulator, we would also have to add them to the GA.

Additionally, we could also expand the algorithm to multi-criteria optimization, and

add rules to which types can be converted into others and at what cost, financially,

logistically and in how much time. To expand, we could also research the mutation

factors, and implement more combinations of different GAs to gain a better vision of

their comparisons.
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6 Povzetek naloge v slovenskem

jeziku

Ta članek smo začeli s kratko klasifikacijo problemov glede na to, kako težko jih je

rešiti. Nato smo razložili, kako za določene probleme obstajajo tehnike in algoritmi,

ki nam lahko pomagajo da pridemo do optimalneǰse rešitve. To so namreč hevristične

funkcije, ki smo jih pojasnili. Nato smo opisali genetske algoritme, saj so podnabor

hevrističnih funkcij, in ponazorili, kako delujejo.

Definirali smo problem in kako ga bomo poskušali rešiti. Nato smo dodatno pojasnili,

kako deluje simulator na podlagi agentov, in kako ga uporabljamo v genetskem algo-

ritmu za simulacijo več primerkov različnih cestnih omrežij.

Podrobno smo razložili implementacijo genetskega algoritma in kako optimizira cestno

omrežje. Nato smo zaključili z rezultati večkratnih izvedb različnih variacij GA.

Na koncu smo zaključili z razpravo, v kateri smo razložili, kaj bi še lahko naredili

za izbolǰsavo simulatorja in genetskih algoritmov ter kako lahko še razširimo celoten

projekt.
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