
P
O
L
IČ

A
R

Z
A
K
L
J
U
Č
N
A

N
A
L
O
G
A

(F
IN

A
L
P
R
O
J
E
C
T

P
A
P
E
R
)

20
22

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

ZAKLJUČNA NALOGA

(FINAL PROJECT PAPER)

PRESLEPITEV SISTEMOV ZA ZAZNAVANJE

GOLJUFANJA Z ZLORABO APLIKACIJ

TRETJIH OSEB Z OMREŽNO USMERJENIM

RAZVOJEM

(Exploiting Third-party Software To Bypass Anti-cheat

Detection Systems Through Network-driven Development)

KLEMEN JANEZ POLIČAR

UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

(Final project paper)

Preslepitev sistemov za zaznavanje goljufanja z zlorabo

aplikacij tretjih oseb z omrežno usmerjenim razvojem

(Exploiting third-party software to bypass anti-cheat detection systems through

network-driven development)

Ime in priimek: Klemen Janez Poličar

Študijski program: Računalnǐstvo in informatika

Mentor: izr. prof. dr. Jernej Vičič

Somentor: asist. Aleksandar Tošić

Delovni mentor: mgr. Filip Kliber

Koper, avgust 2022

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 II

Ključna dokumentacijska informacija

Ime in PRIIMEK: Klemen Janez POLIČAR

Naslov zaključne naloge: Preslepitev sistemov za zaznavanje goljufanja z zlorabo ap-

likacij tretjih oseb z omrežno usmerjenim razvojem

Kraj: Koper

Leto: 2022

Število listov: 43 Število slik: 8

Število referenc: 42 Število tabel: 3

Mentor: izr. prof. dr. Jernej Vičič

Somentor: asist. Aleksandar Tošić

Delovni mentor: mgr. Filip Kliber

Ključne besede: Anticheat, Preslepitev

Izvleček:

Razvoj sistemov proti goljufanju je že od samega začetka igra mačke in mǐsi. Ob

razvoju programa za goljufanje se algoritem za detekcijo v sistemu proti goljufanju

prilagodi. Program je zaznan kot zlonameren, njegovim uporabnikom je prepovedano

nadaljnje igranje igre, nakar se program prilagodi — znova ga ni mogoče zaznati in pro-

ces se ponovi. V zaključni nalogi predstavljamo nov pristop za preslepitev obstoječih

sistemov proti goljufanju, s katerim lahko bolje zavarujemo uporabnike programa pred

zaznavo in posledicami goljufanja. V zaključni nalogi je opisana tako teoretična os-

nova nove metode kot tudi implementacija v računalnǐski igri Albion Online. Naš cilj

je usmeriti industrijo k prilagoditvi sistemov proti goljufanju za preprečitev uporabe

omenjene metode za goljufanje.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 III

Keyword documentation

Name and SURNAME: Klemen Janez POLIČAR

Title of final project paper: Exploiting third-party software to bypass anti-cheat de-

tection systems through network-driven development

Place: Koper

Year: 2022

Number of pages: 43 Number of figures: 8

Number of references: 42 Number of tables: 3

Mentor: Assoc. Prof. Jernej Vičič, PhD

Co-Mentor: Assist. Aleksandar Tošić

Practical mentor: Mgr. Filip Kliber

Keywords: Anticheat, Bypass

Abstract: The development of anti-cheat systems has always been a game of cat and

mouse. Once cheating software is discovered by anti-cheat companies, they respond

by adapting their systems to detect it. The program is flagged as malicious and its

users are prohibited from playing the game, after which the cheat program adapts — it

becomes undetectable once again and the process repeats itself. In our work we present

a novel approach for bypassing existing anti-cheat systems, which promises better pro-

tection from detection and sanctioning. Our thesis describes the theoretical basis of the

new method as well as its implementation in the popular video game Albion Online.

Our goal is to direct the industry towards adapting anti-cheat systems to prevent the

use of our bypass.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 IV

Acknowledgements

I would like to express my gratitude to my mentor and co-mentor for their guidance,

expertise and positivity. I am grateful to my friends and family, my older brother in

particular, for his suggestions and enthusiasm.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 V

List of Contents

1 Introduction 1

2 Anti-cheat systems 2

2.1 History and motivation for development 2

2.2 Existing solutions . 4

2.3 Architecture of a modern anti-cheat system 5

2.4 Traditional approach for bypassing anti-cheat systems 6

3 Methodology for bypassing anti-cheat systems 10

3.1 Collecting information about the game 10

3.2 Sending commands to the game . 11

3.3 Limitations . 12

3.4 Comparison with traditional approaches 13

3.5 Potential solution for preventing our technique 13

4 Implementation in Albion Online 15

4.1 Automate currency generation . 15

4.2 Using packet sniffing to collect information about the game 15

4.3 Sending input commands to the game through a VNC connection . . . 17

4.4 Deployment architecture . 18

4.5 Automating in-game actions . 19

4.5.1 Movement . 19

4.5.2 Interacting with NPCs . 21

4.5.3 Running trade missions . 22

4.5.4 Recording routes . 23

5 Results 25

6 Conclusion 27

7 Povzetek v slovenskem jeziku 28

8 References 30

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VI

List of Tables

1 Comparison of information gathering techniques 11

2 List of valid steps in routes . 24

3 Expected profit calculations per hour for each contract 25

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VII

List of Figures

1 Traditional exploit-patch lifecycle of a game 4

2 Architecture of a modern-age anti-cheat system 6

3 Moving the cheat software out of bounds of the anti-cheat 10

4 Packet parsing steps . 17

5 Cheat implementation deployment architecture 19

6 Moving the local character towards a waypoint 21

7 Trade mission bot steps presented as a state machine 22

8 Hierarchy of trade mission steps . 23

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 VIII

List of Abbreviations

AAA triple-A. 5

API application programming interface. 6, 7, 9, 12, 18

CEO chief executive officer. 5

CSV comma-separated values. 23

DLL dynamic-link library. 5, 6, 8

DNS domain name system. 5, 7, 18

EAC Easy Anti-Cheat. 5

ESP extrasensory perception. 7, 8

FPS first-person shooter. 3, 4, 13

GUI graphical user interface. 7

LAN local area network. 18

MMORPG massively multiplayer online role-playing game. 1, 2, 15

NPC non-player character. 16, 21, 22, 24, 29

opcode operation code. 16

PPTP point-to-point tunneling protocol. 18

PVP player versus player. 15, 23

RAM random-access memory. 18

SSD solid state drive. 18

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 IX

UDP user datagram protocol. 16

VAC Valve Anti-Cheat. 4

vCPU virtual centralized processing unit. 18

VNC virtual network computing. 17, 20

VPN virtual private network. 13, 18, 29

VPS virtual private server. 18

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 1

1 Introduction

The purpose of this thesis is to present a novel technique for bypassing anti-cheat

detection systems. Alongside the development of the now-massive gaming industry,

there was an ever-increasing need for sophisticated anti-cheat systems. However, as

the anti-cheat systems advanced, so did the cheats themselves. Bypassing an anti-

cheat system nowadays is no easy feat due to its exceedingly steep learning curve.

These systems are designed not only to prevent but to highly discourage any novice

from entering this field. There are numerous protection techniques employed, all of

which must be addressed in order to create a functioning cheat solution. Failure to do

so will result in detection and sanctioning. Not only is developing an undetected cheat

difficult, but it is also tedious to maintain, as the software must constantly be updated

to work with newer game versions and anti-cheat system updates. Our technique

applies approaches that decouple the cheat software from the game’s inner workings,

which in turn greatly reduces the likelihood of needing to patch the cheat once the

game’s publisher pushes an update.

The importance of sophisticated anti-cheat solutions is noticeably increasing as the

gaming industry grows larger and larger. Video games are becoming ever more popular,

which is reflected in the revenue growth of the sector [32]. An important metric for

evaluating anti-cheat solutions is the wide variety of cheating techniques it can detect.

Any successful online game that merits a broad player base must be paired with a

strong anti-cheat solution if it is to remain popular [34].

Throughout this thesis, we will explain the motivation fueling the discovery of

our technique. We will describe the theory of our technique, providing implementation

examples along with a real-world application for Albion Online [8], a popular massively

multiplayer online role-playing game (MMORPG). Our implementation incorporates

the trojan horse concept [13], which is no novelty in the space of cybersecurity, however,

it is integrated in such a way that has so far been unheard of in in-game cheating. We

compare our technique to existing methods within the field, listing the benefits and

drawbacks. Our concluding remarks describe what parts of the industry our thesis

affects and how companies can adapt their anti-cheats.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 2

2 Anti-cheat systems

Anti-cheats are software systems designed to prevent hacking and cheating in video

games, building upon three important tenets: prevention, detection, and deterrence [39].

Today, the most renowned anti-cheat systems use methods, similar to most antivirus

software methods, to scan for malicious behavior [2]. They are designed to work with

multiple games using general protection techniques, although some have dynamic ca-

pabilities, tailored to specific games. Their sole purpose is to reduce the number of

cheaters in video games, thus ensuring a fair experience for players.

2.1 History and motivation for development

Anti-cheat systems have been around since the inception of multiplayer video games

around the year 1980 [2,15]. At first, most cheat developers were just tech-savvy players

looking to abuse their practical skills in games. As the gaming industry evolved, a new

industry emerged in parallel. Developers began to package and sell their cheats, which

made cheating more accessible to casual players [5]. With the rise in popularity, there

was a growing concern about the legality of distributing and making a profit off of such

software. Many cheats modified the game code, which raised copyright legality issues.

Companies began to claim the cheats should fall under derivative work copyright law,

an argument that has not been universally accepted among jurisdictions [23]. Some

countries such as South Korea have even gone so far as to pass an amendment into law

with the specific intent of preventing cheating in video games [18].

There was a growing issue that players were being disincentivized from playing

games that had been overrun by cheaters [4, 34]. Additionally, as more and more

people started playing competitive online games, the problem with cheaters began

affecting other aspects of the gaming industry. Playing games used to merely be a

hobby, but in the past decade, gaming has opened up various careers, such as e-sports

and streaming [6]. With the widespread adoption of gaming, along with financial

incentives, separating cheaters from fair players had never been as vital for the health

of the gaming industry [4, 22].

One of the oldest and most popular MMORPGs that has had two decades of prob-

lems with botting is RuneScape, developed by Jagex. At the time, there were no clear

and proven methods of developing anti-cheat systems. Jagex’s first large response

to the influx of cheaters happened on December 10, 2007, when they announced the

removal of free trade and heavily restricted wilderness gameplay, along with other

game features that bots would abuse [29]. The changes were highly controversial, as

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 3

they greatly affected fair players, leading to strong backlash by the community. In

spite of this, the changes proved to be very effective in greatly decreasing the preva-

lence of bots. The bots had adapted to these changes throughout the years, which

caused Jagex to launch an update code-named ClusterFlutterer, also known as Bot

Nuking Day [30]. This update detected reflection and injection bots, which led to

over 1.5 million bans [30]. Finally, in September of 2012, Jagex launched Botwatch, a

heuristic-based anti-cheat system that monitors user gameplay and detects non-human

behavior [40]. The problem with relying so heavily on heuristics became disastrously

apparent on September 27, 2012. Nearly 40,000 legitimate accounts had received an

unappealable permanent ban within less than an hour by the anti-cheat system, due to

a bug that had been pushed to production. This event had later been labeled Botwatch

rogue banning glitch [40].

There are many more cases of games with a long history of cheat development.

Quake is a notable first-person shooter (FPS) game that was one of the first to present

the difficulty of fighting cheat developers in an open-source environment [27].

The traditional exploit-patch lifecycle for cheats in games is similar to that of

malware and anti-virus software [2,14]. The development of the anti-cheat industry has

largely been guided by this never-ending cycle. As new methods for cheat development

emerged, anti-cheat companies responded and adapted their solutions to prevent such

techniques [14]. The state of combating cheating today is more diverse and complex

and varies from game to game, however, in principle, the cycle remains the same.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 4

Figure 1: Traditional exploit-patch lifecycle of a game

Source: A Novel Approach to the Detection of Cheating in Multiplayer Online

Games [14]

2.2 Existing solutions

Punkbuster is one of the first widely-adopted commercial anti-cheat systems to have

had a lasting impact. It was developed by Tony Ray and first released in September

2000, motivated by the developer’s negative experience in Team Fortress Classic [17].

It had been integrated into some of the most popular FPS franchises of the decade,

such as the Call of Duty series, Battlefield, Quake, Far Cry, etc. Punkbuster works

as an external process that must be running for players to join cheat-proof servers.

Players could still play on servers that had disabled Punkbuster, though these are

often overrun with cheaters and are thus avoided by fair players. Tony Ray has stated

that cheaters regularly find ways around Punkbuster, but a quick software patch would

mend the problem, that is until the next exploit, which is in line with the traditional

lifecycle depicted in Figure 1 [17,42].

Valve Anti-Cheat or VAC for short was developed by Valve in 2001, soon after

the introduction of Punkbuster. They released the anti-cheat solution together with

their massively popular game Counter Strike in 2002. VAC has matured extensively

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 5

throughout the years and it was one of the first anti-cheats to adopt domain name

system (DNS) cache scanning, for which they were initially widely criticized, out of

fear of what they could be doing with such information [20,38]. In fact, Valve’s trust-

worthiness has been put into question many times due to their aggressive approaches

to cheat detection. Valve’s chief executive officer (CEO) Gae Newell issued a statement

in 2014 addressing the social engineering aspect, claiming that such criticism was being

devised by cheat developers to discredit Valve’s trust-based system [19].

nProtect Gameguard is considered to be one of the three anti-cheat solutions that

dominate the online game security market [25]. It was developed by INCA Internet,

a company that holds more than 70% of the market share of information security for

Korean financial institutions and more than 90% of game portal security [41]. The

software consists of both a user-mode and kernel-mode rootkit, proactively preventing

cheat software from running [2]. Due to its intrusive nature, GameGuard has also been

the target of widespread criticism.

Easy Anti-Cheat or EAC for short is a well-renowned kernel-mode anti-cheat, having

reached 275,000,000 monthly active users by 2019 [21]. It was developed by Kamu

in Helsinki and was acquired by Epic Games in 2018, which thereinafter led to its

integration alongside many high-budget high-profile games, often referred to as triple-

A (AAA) titles, such as Apex Legends, Fortnite, Rust, and many more [12]. EAC

represents the next generation of anti-cheats, as it runs largely in the cloud, utilizing

big data to detect cheaters.

2.3 Architecture of a modern anti-cheat system

The architecture of anti-cheat systems varies from company to company, however, at

the current state most top-end anti-cheats use a standard architecture, consisting of

four main components: the master server, a kernel driver, an external process, and an

internal dynamic-link library (DLL), all of which are interconnected [21].

The anti-cheat server runs on the internet. When a user opens the game executable,

the anti-cheat service establishes a connection to the server. If this connection is

terminated for whatever reason, the service of the anti-cheat is flagged as no longer fully

operational, which suspends the game session immediately [21]. This prevents users

from playing the game without the anti-cheat running. The server transmits challenges

to the client to discover whether the game client is engaged in unauthorized behavior [1].

Additionally, it receives alerts that are produced whenever something irregular happens

on the host computer. The anti-cheat service will dump the suspicious process or DLL

and send it back to the server for analysis [21].

Another component running on the host computer is the anti-cheat driver. Run-

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 6

ning in ring 0, the driver is guaranteed full memory and hardware access [15], providing

powerful capabilities which may otherwise not be possible to implement for an exclu-

sively user-level anti-cheat.

The internal component of an anti-cheat is a DLL that is loaded directly into

the game’s process. This DLL is responsible for analyzing the memory of the game,

constantly monitoring memory regions to discover if any new executable region has

been allocated or if a thread has executed code from an unexpected region of memory

and more [21].

Finally, the external process running in ring 3 provides an overview of the system.

It scans all the running processes, prohibiting the use of blacklisted programs [15]. It

manages the logic of the driver and the connection with the master servers [21].

Figure 2: Architecture of a modern-age anti-cheat system

Source: Unveiling the Underground World of Anti-Cheats, Blackhat Europe 2019 [21]

2.4 Traditional approach for bypassing anti-cheat

systems

To correctly bypass an anti-cheat system, it must first be considered what sort of cheat

is appropriate. Cheat software is separated into two main categories: external and

internal [26]. External cheats are independent programs running in their own process,

often relying on indirect means to gather information and interact with the game.

These cheats may rely on the use of Microsoft Windows application programming

interface (API) calls to manipulate the game’s memory and simulate inputs. In order

to discover information about the game’s runtime, the cheat will require a valid handle

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 7

to the game process. Some of the protection techniques which target external cheats

are the following [21,33]:

• Detect suspicious handles — The anti-cheat system monitors any valid han-

dles to the game process and verifies which program has created the handle. If

the program is unsigned or has been signed by an unreputable source, it may be

deemed suspicious and in need of further analysis [21].

• Monitor Windows API calls—The anti-cheat system hooks various Windows

API functions, such as memory manipulation calls, redirecting their execution to

the anti-cheat, so as to analyze the behavior of programs that are calling such

functions [21].

• Detect unsigned executables — The anti-cheat system monitors all running

applications and, if it detects that an unsigned executable is running, it may

monitor the behavior of the program more closely [21].

• Detect emulated inputs — The anti-cheat system detects input commands

that have been injected through non-physical media [3, 33].

• Screenshot detection—The anti-cheat system takes a screenshot of the player’s

desktop, which reveals extrasensory perception (ESP) cheating from an external

graphical user interface (GUI) [2, 14].

In general, an external cheat is more or less safe to use and will not result in an

immediate ban until it has been marked as malicious and put on a blacklist by the

anti-cheat company. Once this has happened, the cheat will face aggressive protection

techniques designed to detect whether or not the software is running. The items listed

below are just some of the known detection techniques cheat developers must face once

their software has been flagged as malicious [2]:

• Signature-based detection — The malicious software’s unique byte patterns

are stored and actively scanned for by the anti-cheat software [2, 15].

• DNS cache scans — The player’s DNS cache is scanned for domain names

associated with cheating. Uncovering that the player has visited such a website

increases the probability that the player may be cheating [2, 15,20].

On the other end of the spectrum, there are internal cheats. In contrast to their

counterpart, these operate within the memory space of the game, making them much

more difficult to detect when developed properly. The items listed below are some of

the most common features anti-cheats provide to tackle internal cheats. They are used

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 8

to determine whether or not a process is behaving in a suspicious manner and, if they

deem so, they may ban the player immediately or send over information about the

process’s runtime to their server for further analysis [2, 21].

• Game executable hash validation — The anti-cheat system creates a crypto-

graphic hash of the player’s game executable binary and compares it to the hash

stored in the central server. If the hashes do not match, the player’s executable

has been modified [2, 15].

• Prevent DLL injection — The anti-cheat system closely monitors all DLL

files that are loaded by the game and prevents any malicious code from being

loaded [21].

• Detect thread execution with suspicious context — The anti-cheat system

analyzes each region of the game’s memory and monitors executable regions,

detecting thread execution within an unexpected region of memory [21].

• Binary validation challenges — The anti-cheat system continuously performs

binary validation challenges, which compare hashes of in-memory binary code

with the same code in the binaries on the filesystem. A mismatch indicates there

has been memory tampering [2].

• Control of access flags — The anti-cheat system constrains tampering with

various regions of memory with restrictive access flags [21].

• Prevent thread injection and hijacking — The anti-cheat system detects

and prevents malicious attempts at creating new threads in the game’s process

or hijacking existing threads [2].

• Screenshot detection—The anti-cheat system takes a screenshot of the player’s

game, which reveals ESP or modified game visuals from the game’s internal

graphics engine.

Anti-cheat systems that also consist of a kernel driver include an even broader

overview of the system and control over applications running alongside the game. Some

of the protection techniques are the following [21]:

• Register kernel callbacks—The anti-cheat system hooks into kernel API calls

to monitor and handle low-level events on the system [21].

• Rejection of kernel/user mode debugging — The anti-cheat system pre-

vents the player from running the game if the operating system is running in

debug mode [21].

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 9

• Block blacklisted/unsigned drivers — The anti-cheat system prevents cer-

tain drivers from running, to prevent cheaters from entering kernel space. Such

drivers are either vulnerable to exploitation or are unsigned [21].

• Detection of virtual environments — The anti-cheat system detects virtual

environments and prevents the game from running. The reasoning for this feature

is that anti-cheat systems cannot detect cheating software outside the virtual

environment [21].

In addition to defeating all these protective measures, there are considerations that

must be made during the development of the cheat software. Numerous protection

techniques must also be developed for the cheat itself, to prevent anti-cheat developers

from targeting the cheat specifically, as well as to discourage others from stealing the

proprietary technology [2].

• Anti-debugging techniques — The cheat program’s control flow is modified

upon detection of debugging software to prevent analysis of the program’s be-

havior [2].

• Minimizing the footprint — The cheat program uses generic or commonly-

used programming patterns, such as hooking into the Windows API instead of

directly hooking into the game’s code, to make itself less distinguishable [2].

• Masking the footprint — The cheat program is obfuscated to prevent analysis

of the binary file. A common method of obfuscation is packing, which hides the

executable within another executable that decrypts it on runtime [2].

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 10

3 Methodology for bypassing

anti-cheat systems

Understanding the vast amount of protective features employed by anti-cheat services,

as described in Chapter 2.4, there was a clear incentive to approach cheat development

in a different manner. Circumventing each of the techniques separately becomes a very

difficult and tedious task.

Our approach proposes a separation of the cheat program from the host computer

running the anti-cheat software. Taking into account the fact that anti-cheats work by

continuously scanning the host computer, as described in Chapter 2, moving the cheat

software out of bounds of the anti-cheat voids currently known protection techniques.

Figure 3: Moving the cheat software out of bounds of the anti-cheat

3.1 Collecting information about the game

The first challenge that arises from the idea of separation is: how will the cheat obtain

information about the game? We propose four different solutions:

1. Reroute network traffic to the cheat server and parse the game packets (assuming

the traffic is not encrypted)

2. Send a video stream of the game to the cheat server and gather information using

computer vision

3. Send an audio stream of the game to the cheat server and gather information

through audio analysis

4. A hybrid approach

By intercepting the network traffic, we are able to uncover valuable information that

the game client sends to the server. Any interaction our player makes that is visible to

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 11

other players within the game and vice versa is information that is undoubtedly being

sent over the network and can thus be parsed.

On the other hand, sending a video stream would allow us to parse information from

the game using computer vision techniques. We are given all the information that any

regular player is given, which in theory means we should be able to replicate any fair

player behavior. Depending on our use case, we may be limited in terms of response

time. Due to this limitation, this technique may not be applicable to fast-paced games.

Parsing information from an audio stream could also be a viable solution, be it very

limited in terms of the features the cheat could offer. The complexity of the analysis

that is performed depends on the use case; a trivial program could simply scan whether

or not the volume level exceeds a certain threshold.

The hybrid approach is comprised of a simple program, which is used to read the

game’s memory, and this is then sent to the cheat server. The pros of using this

approach are, that we are guaranteed to have a smaller footprint than if the program

contained the entire business logic, that we have access to all the game’s information

we might otherwise be stripped of and that we protect the cheat from being reverse-

engineered by other bot developers. The largest con of this approach is that the

program is once again detectable, resulting in potential bans for its users.

Table 1: Comparison of information gathering techniques

Packet

sniffer

Computer

vision

Audio

analysis

Memory

scanner

Computationally

intensive

low high neutral low

Information re-

trieval capability

neutral high low high

Vulnerable to de-

ception

yes yes yes no

Stability across up-

dates

neutral high neutral low

Complexity low high neutral low

3.2 Sending commands to the game

The second obstacle to overcome is: how will the cheat send input to the game? We

propose three different solutions:

1. Sending spoofed network packets to the game server

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 12

2. Sending input commands to the game through a third-party application

3. A hybrid approach

Sending spoofed network packets to the game server will allow us to execute very

precise commands that may otherwise be difficult to emulate had we restricted ourselves

to input commands. By choosing this technique we open ourselves to the risk of

detection since games often have protective features in place to uncover spoofed packets.

This approach is also more complex due to the fact that we need to reverse-engineer

the game’s protocol in order to inject our own packets.

Sending input commands is a very straightforward approach to automating in-game

actions, as we just simulate ordinary player mouse movements and keystrokes. In order

to remain stealthy, we exploit a third-party application that runs on the host computer.

By communicating with this application, we instruct it to send input commands to

the game client. The third-party application thus behaves as a trojan horse for the

cheat software. The criteria for selecting an application is that the program must be

controllable over a network and is able to send commands to the game.

The hybrid approach proposes a similar concept to what is described in Chapter 3.1.

We are able to send commands using a simple program running on the host machine.

The program can execute commands using any of the existing techniques, such as

simulating input commands, be it using the Microsoft Windows API or other input

data stream injection techniques, or by modifying the game’s memory, etc.

3.3 Limitations

Excluding the hybrid approach, our technique provides much more limited cheating

potential than traditional approaches. If we use any of the options mentioned in chap-

ters 3.1 and 3.2, we are stripped of the ability of reading and modifying the game’s

memory. As a result, it is of our opinion that the use of our technique is more appro-

priate for botting software, which emulates real player behavior, in contrast to giving

players an upper hand with additional information about the game or modifying the

game’s behavior.

Since we are limited in the methods with which we can gather information about

the game’s state, there may be information that is impossible to discover using our

technique, which may not be the case with traditional approaches.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 13

3.4 Comparison with traditional approaches

The use of traditional methods for bypassing anti-cheats is generally quite risky for

the end-user. Any bypass that is developed will eventually be patched by anti-cheat

companies once discovered. When this happens, any user caught using the bypass

will be sanctioned as per the game company’s directive, most often with an immediate

permanent hardware ban [2,10]. This can happen because the cheat’s usage has become

detectable, whereas the use of our technique is merely preventable, as is further outlined

in Chapter 3.5.

Our technique inherently evades most protective features current anti-cheats have

in their arsenal. Furthermore, cheat developers no longer need to worry about pro-

tecting their software from reverse engineering. Taking the traditional approach, each

protective measure for the specific anti-cheat system would need to be counteracted

individually. This is in contrast with our method, which greatly reduces the barrier to

entry for developers.

A large drawback that must be mentioned is that due to network latency and

largely increased computational intensiveness compared to traditional approaches, our

technique is unsuitable in applications that demand quick response time, such as FPS

and other fast-paced games.

3.5 Potential solution for preventing our technique

The use of our technique largely invalidates cheat detection and player sanctioning

as a viable anti-cheat solution. When implemented properly, it is not possible to

differentiate fair players from cheaters. This is because fair players may also be using

third-party software for their own non-exploitative needs.

We propose anti-cheat companies focus their attention on prevention in regard to

our technique, rather than attempting to detect cheaters outright. The difference

between prevention and detection is subtle. Detection is defined as successfully dis-

covering an illegal action, whereas prevention inhibits future cheating using a specific

technique [11, 28]. There are a couple of potential solutions that could prevent the

usage of our technique:

• Prohibit usage of well-known third-party applications that are able to inject input

commands while the game is running (eg. remote desktop applications)

• Prohibit packet redirection (eg. disallow virtual private network (VPN) connec-

tions) while the game is running

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 14

The proposed solutions could be implemented similar to virtual machine detection

— the anti-cheat detects that the game is running in a virtual environment and prevents

gameplay. Although the two solutions could prevent cheaters from using our technique,

they come with a potentially large drawback: along with cheaters, also fair players

would be affected as well, hence they would need to be carefully assessed.

Both of the proposed solutions can also be patched by the cheat developer. The

cheat developer may switch to a different third-party application and could avoid packet

redirection prevention, for example by duplicating network traffic, possibly on the

router (therefore out of bounds of the anti-cheat), by sending a copy of the packets to

the cheat server.

Apart from direct approaches, heuristics analysis could be a viable detection method.

By processing the player’s behavior the anti-cheat should be able to determine the

probability of whether or not the player is behaving in a non-human fashion [2]. The

required complexity of heuristic analysis solutions depends on the level of sophistication

of the cheat software, meaning its effectiveness will vary among use-cases.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 15

4 Implementation in Albion Online

Albion Online is a free medieval fantasy MMORPG developed by Sandbox Interactive,

a studio based in Berlin, Germany. Albion features a player-driven economy, classless

combat system, and intense player versus player (PVP) battles. The game runs on

all major platforms: Microsoft Windows, Linux, macOS, Android, and iOS [8]. In the

year 2021, the game ranked 23rd among the most played games reaching over 140,000

daily active users [24]. Albion Online is protected by Easy Anti-Cheat, mentioned in

Section 2.2, which is to say it is the anti-cheat system we bypassed in our thesis.

4.1 Automate currency generation

The purpose of the cheat we have designed is to behave as a gold-farming bot, auto-

matically producing in-game currency. There are many ways of making an income in

Albion Online. The activity we will be focusing on are trade missions.

Trade missions are an activity available through faction warfare that involves pur-

chasing city heart fragment resources in a faction city and transporting them to a

smuggling post near another city. After successfully completing a trade mission our

character is awarded city heart fragments, which can be sold on the global exchange

for a profit [9]. Our bot will be running trade mission quests in succession. Players

may choose between three different options when starting a trade mission, depending

on their attitude towards risk:

1. Minor contract requires 3 heart fragments and returns 4 as a reward

2. Medium contract requires 7 heart fragments and returns 9 as a reward

3. Major contract requires 15 heart fragments and returns 18 as a reward

In the case that the player’s character dies during the trade mission, the quest is

canceled, which incurs losses. The losses, as well as the rewards, are gradually larger,

depending on the chosen option.

4.2 Using packet sniffing to collect information about

the game

For gathering information about the game’s state we chose option 1 from Chapter 3.1.

Albion Online uses Photon Realtime, a renown and well-documented software service

for their networking solution [7]. Due to its popularity, there are publicly available

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 16

open-source libraries that handle decoding network packets. This greatly lowers the

barrier to entry for developing a network-based cheat for Albion Online. Because of the

vast amount of real-time data that is persistently sent between clients in Albion, most

of the network traffic is not encrypted, including information about player movement

and interaction with non-player characters (NPC).

For our implementation, we utilized libpcap [35], a system-independent interface

for user-level packet capture, which is well-known for its integration in Wireshark,

a widely-used network protocol analyzer [36]. We filter packets by their source and

destination port, according to Albion’s networking protocol.

Once the appropriate packet arrives, the first thing we do is extract the payload.

Albion’s real-time data is transported using the user datagram protocol (UDP). Next,

we parse the packet type. Packets are separated into two categories:

Request packet This packet is sent from our client to Albion’s server, most often

containing but not limited to information about our character’s activity

Event packet This packet is sent to our client from Albion’s server, most often con-

taining but not limited to information about other players’ activity

After working out which packet type we are dealing with, we parse the packet

operation code (opcode). This opcode will determine what sort of content we can

expect to parse in the next step and which handler should be initiated. Assuming no

unexpected errors have occurred during parsing, we finalize the procedure by passing

the packet contents to the appropriate handler.

Handlers are registered for specific opcodes. For instance, the move request oper-

ation handler is designated for updating the local character position within our data

store.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 17

Extract UDP payload

Parse packet type

Parse packet
content

Initiate appropriate
handler

Parse packet
operation

Packet arrived

Figure 4: Packet parsing steps

4.3 Sending input commands to the game through

a VNC connection

In our implementation we chose option 2 from Chapter 3.2, utilizing a virtual network

computing (VNC) connection to send input commands to the client running Albion

Online. The cheat software communicates with TightVNC, our third-party application

of choice, instructing it where to move the mouse and which keystrokes to perform at

any given time [16].

Before we could start the TightVNC client on our cheat server, we needed to install a

graphical desktop environment. For our implementation, we opted for xfce4, a free and

open-source desktop environment for Linux [37]. In order to send input commands to

the TightVNC client, we used xdotool, an open-source program for simulating keyboard

input and mouse activity on unix-based systems [31].

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 18

4.4 Deployment architecture

To achieve the separation described in Chapter 3, we needed to design our deployment

architecture accordingly. There were multiple options that were taken into considera-

tion for what physical media to run the cheat software on:

1. On the host computer in a virtual machine

2. On a separate computer in the same local area network (LAN)

3. On a machine on the internet

Option 1 comes with the drawback that it could be possible for the cheat to be

detected since it is not physically out of bounds of the anti-cheat software. We chose

option 3, as it could scale effortlessly if implemented in a commercial product. Utilizing

the massive cloud computing industry, developers are able to deploy arbitrarily many

bot instances on-demand. Since all the traffic is routed through a server on the cloud,

each instance is inherently assigned a unique IP address, preventing DNS cache scan

detection.

Although deploying a new server for each instance would incur financial costs, low-

end servers have become very affordable. Furthermore, the ownership and server billing

can be passed on to the bot’s user. The user could supply the cheat provider with an

API access token to his server provider, effectively granting him full control.

In our implementation, we rented the cheapest server available from Digital Ocean

Inc., a popular cloud service provider. Our virtual private server (VPS) has the follow-

ing features: 1GB of random-access memory (RAM), 25GB Regular Intel solid state

drive (SSD) storage and 1 virtual centralized processing unit (vCPU) with a clock

speed of 1.8GHz, running Ubuntu 20.04 x64.

Because our software is no longer running on a machine connected to the same

network as the host computer running Albion Online, we are no longer able to observe

game packets. To fix this, we established a VPN connection from the host computer

to the cheat server, rerouting all network traffic, including traffic between the Albion

client and server.

The host computer is running Albion Online, along with Easy Anti-Cheat and a

TightVNC server. The machine will connect to the cheat server through the

Microsoft Windows Built-in VPN provider.

The cheat server is running the cheat program, a point-to-point tunneling protocol

(PPTP) VPN server, and a TightVNC client, which will connect to the host

computer.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 19

Host Computer

Cheat Server

Easy Anti-Cheat Server

Albion Online

TightVNC Server

Cheat Program

TightVNC Client

EasyAntiCheat

Albion Online Server

Packets

Packets

Packets

Figure 5: Cheat implementation deployment architecture

4.5 Automating in-game actions

4.5.1 Movement

By parsing packets representing our character’s movement within the game, we are

able to determine the precise location of our character. Given an array of waypoints

containing in-game coordinates, we are able to construct a route that can be taken by

the cheat program.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 20

Because we have chosen VNC to send commands to the game, we are taking control

of the cursor. This means we have to find out where to move the mouse in order to

move our character in the desired direction. In Albion Online, moving the character

requires the player to position his cursor in the direction towards which he wishes the

character to move and then hold the right mouse button. There are also other ways

of moving the character, however, due to its convenience, we have chosen to stick with

this method. Using the simple procedure written in Algorithm 1, which takes the

player’s current position and a waypoint as its arguments, we calculate the direction

our player should move towards to reach the waypoint. After calculating the direction,

we simply offset the cursor position relative to the center of the screen, because the

local character in Albion Online is always positioned in the center, regardless of its in-

game position. The coordinate system in Albion Online is slightly rotated compared to

the screen coordinate system, which is visualized as a tilted grid in Figure 6. To adjust

for this, the direction vector must be rotated by −π
4
. The pseudocode for positioning

the mouse cursor towards a waypoint can be seen in Algorithm 1.

Algorithm 1 Positioning the mouse cursor to move the character towards an in-game

coordinate
procedure MoveCursorTowardsGameCoordinate(character, waypoint)

offsetFromCenter ← 10% of screen height ▷ assuming height < width

direction.X ← waypoint.X − character.X

direction.Y ← waypoint.Y − character.Y

direction← rotate direction by− π
4

direction← normalize direction into interval [0,1]

offset← direction ∗ offsetFromCenter

cursorLocation← center + offset

end procedure

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 21

Figure 6: Moving the local character towards a waypoint

4.5.2 Interacting with NPCs

Interaction with NPCs in Albion Online can be initiated by clicking on them with

the mouse cursor. Pinpointing their exact location was slightly more difficult than

extracting our local character’s position since they do not move within the world —

they are statically positioned, which means there is no data about their position within

the network stream.

To determine their location, we helped ourselves with the position of our character.

During development, we moved our character on top of the NPC, with which we wanted

to interact with during the bot’s operation, and marked its coordinates. When the bot

is running and the character reaches a minimum distance threshold to the NPC, the

bot transitions from a movement state to interaction.

Once the interaction has been initiated, the exact behavior depends on which NPC

we are interacting with and what we would like to achieve. For instance, to begin

a trade mission, the bot initiates contact with the faction NPC, which opens up a

dialogue interface. Within this user interface, the bot must open the tab which lists

available trade missions, select the appropriate option and confirm the quest. Because

every NPC interaction is unique, each must be programmed individually.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 22

4.5.3 Running trade missions

Each trade mission quest run can be represented as a finite state machine consisting of

a combination of predefined and dynamically recorded steps. The condition to reach

a certain step is to have successfully completed the preceding step. The steps that are

taken can be described with eight basic sequential states:

Run to the bank This is the starting state. The character will run from the quest

NPC to the bank.

Bank items The character will interact with the bank NPC, depositing any reward

items and withdrawing the items required to begin the trade mission quest.

Run to quest The character will run from the bank to the quest NPC.

Start quest The character interacts with the faction leader, starting the trade mission

quest.

Run to smuggler The character will run from the faction leader to the distant smug-

gler.

Progress quest The character will interact with the smuggler, progressing the trade

mission quest.

Run to the city The character will run from the smuggler back to the faction city

from whence he came.

Finish quest The character interacts with the faction leader, finishing the trade mis-

sion quest.

Bank Start quest Run to smuggler Progress quest Run to city Finish quest

Success

Success Success Success Success

Death

Death

Success

Figure 7: Trade mission bot steps presented as a state machine

The predefined steps include banking, beginning the quest, and progressing the

quest, each of which consists of movement steps and/or interactions. The reason these

steps are predefined and cannot be overridden is that they are constant and necessary

for any such trade mission. It makes sense that the routes are represented as dynamic

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 23

steps, recorded by the bot user because these steps determine the majority of the

quest’s execution. Additionally, they are points of failure, because the character is

exposed to PVP combat, meaning they can be scored for efficiency and safety. The

transition between steps is executed when satisfying the condition for the step.

Trade mission

Run route step Interaction step

Progress questStart quest

Bank items Finish questRun to bank Run to quest

Run to smuggler Run to city

Recordable step

Predefined step

Figure 8: Hierarchy of trade mission steps

By implementing these various steps we are able to fully automate trade missions.

After each successfully completed trade mission, our character is issued a reward. We

are able to run these missions indefinitely, which in theory proposes an infinite source

of income. In practice, because we have not handled hostile player encounters, the bot

may eventually be killed and would need to be manually restarted. Even if we would

implement combat or fleeing behavior, it would be difficult to guarantee a successful

bot in such encounters. Another feature would be to automatically reset the bot in the

case of the character’s death.

4.5.4 Recording routes

There were two options that have been decided upon regarding running trade missions:

whether or not the route the bot takes should be fixed or whether the user can record

his own custom routes. We have developed our bot to support the latter, providing it

with a route configuration file as an argument. This file is in comma-separated values

(CSV) format, with each line containing the subsequent step that should be taken by

the bot, along with its arguments, as displayed in Table 2.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 24

Table 2: List of valid steps in routes

Name Arguments

Metadata origin destination name

Move x coordinate y coordinate

Cluster identifier alias

Quest

Each step is handled according to its function within the bot software. The step

transitions are not strictly adhered to, in that the step may be skipped if during the

bot’s operation it is determined that the bot has already satisfied an upcoming step’s

transition condition. More concretely, if the character’s position has updated to have

reached an upcoming waypoint, the bot skips the preceding waypoints. Each registered

step serves a specific purpose:

Metadata This entry is used to describe the route file. Therefore, a transition to the

next step is done immediately thereafter.

Move This step behaves as a waypoint towards which the character should move. The

waypoint is reached once the character is within a fixed distance threshold from

the waypoint’s coordinates.

Cluster This step marks the transition from one in-game cluster to another. Once a

cluster change packet has been parsed off the network stream, this step’s transi-

tion condition is satisfied.

Quest This step marks the arrival of the character to the smuggler NPC, initiating

the progress quest step and skipping to the next route step, which indicates the

beginning of the route back to the faction city.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 25

5 Results

For our thesis, we have successfully completed 303 sample runs. Each run was done on

a single route, from Fort Sterling to Aspenwood, Lymhurst. The duration of the trade

missions has a standard deviation of 20 seconds and the median of a successful run is

17.8 minutes. With our current estimate, we can expect to run 3.3 trade missions per

hour with an 8.6% chance of the character dying while running the mission.

Our results are the following. Let rate = 3.3 denote the number of trade mission

runs per hour, let error = 0.09 be the rate of error of our bot, which in our case means

death of our character and consequently failure of the trade mission, and let cost =

52, 000 be the cost of a single heart fragment, which is set to the approximate 4-week

average price of a heart fragment at the time of writing. To calculate the expected

profit for each contract we denote fee as the number of hearts that must be paid for

starting a trade mission and let reward denote the number of hearts that are rewarded

for successfully completing a trade mission. The values of these two parameters for

each contract are mentioned in Chapter 4.1. We calculate profit = rate∗reward∗cost
as the gross profit and loss = rate ∗ error ∗ fee ∗ cost as the loss due to death. The

expected net profit is calculated by subtracting the loss from the profit. To calculate the

expected net profit of minor contracts, we calculate profit = 3.3∗1∗52, 000 = 171, 600

and loss = 3.3 ∗ 0.09 ∗ 3 ∗ 52, 000 = 46, 332. The net profit thus amounts to 125, 268.

Similar calculations are done for the two other contracts. A comparison of profits for

each contract can be seen in Table 3.

Table 3: Expected profit calculations per hour for each contract

Contract Gross profit Losses Net profit

Minor 171,600 46,332 125,268

Medium 343,200 108,108 235,092

Major 514,800 231,660 283,140

We observe that in our example, it is most profitable to run major trade missions.

The profitability of minor and medium trade missions varies depending on the losses we

incur due to death, which means it may make sense to alternate between these contracts

depending on how likely we are to fail the trade mission. We have not analyzed the

variables that may affect this probability, but our assumption is that, among other

variables, the time of day has a high correlation with the rate of death. We presume

that during peak hours, when the player count is high in Albion Online, we can expect

our bot to fail more often. This assumption may be further researched in our future

work. Our analysis is very limited due to the fact that we had sampled data for just

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 26

a single route. Our prediction is that cheaters record their own custom routes, each

of which could have varying success rates. A lower rate of error could result in much

larger net profits and vice versa.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 27

6 Conclusion

This thesis has put forward a novel approach to developing undetectable cheats for

games protected by modern anti-cheat systems. We have compared our approach to

others in the industry and have successfully upheld the consideration of safety for cheat-

ing. Pulling apart the concepts of detectability and preventability, we have reached a

formidable standard by promising complete undetectability and thus safety from sanc-

tions. More importantly, we have proposed a viable solution for anti-cheat companies

to adapt their systems to prevent the use of our technique. Our thesis proves there are

many imaginative ways to get around anti-cheat systems.

Based on the numerous protective techniques employed by anti-cheats described in

this thesis, it is clear our technique is a great choice for novice developers that lack the

knowledge required to bypass anti-cheat systems in more traditional ways. Little to

no understanding of the inner workings of these systems is required to implement our

bypass. Due to the apparent limitations, applications could rarely be adapted to fit

our technique and it would most often make more sense to rebuild the cheat software

from scratch.

Our technique could be further researched to determine the viability of individual

cheating methods. In our thesis, we presented the limitations that arise due to the

increased latency and in-access to the game’s memory — issues that may very well be

surmountable. We have merely presented a practical application of our technique as

a game bot, but there are various different cheating options players could exploit to

be given an unfair advantage. Our thesis opens the door for developers to attempt to

incorporate our technique in their cheats.

There is noticeable room for improvement within our implementation. Our bot

works well so long as it does not encounter hostile players. To provide full autonomy

we would need to implement several additional features to better react to certain

incidences. To protect against heuristics detection, it would also be beneficial to adjust

the bot’s movement patterns by adding a degree of randomness to its behavior. The

results from our data suggest that our bot has the potential to be very profitable,

especially if we reduce the losses incurred due to quest failure.

As anti-cheat companies adapt their systems to prevent our technique, it must be

further researched how to adapt our approach to once again bypass their inhibitory

solutions. As has always been the case in this industry, our technique still falls within

the cat-and-mouse depiction, with the need for consistent patching.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 28

7 Povzetek v slovenskem jeziku

V današnjih časih je za industrijo računalnǐskih iger vedno bolj pomemben razvoj sis-

temov proti goljufanju. V zadnjem desetletju je prǐslo do bogatega razcveta industrije

kar je odrplo več novih kariernih poti. V tovrstnih službah je znaten problem golju-

fanja, saj lahko prevaranti lažno pridejo do zaslužka. Poleg tega je goljufanje preceǰsnja

težava za podjetja, ki prodajajo računalnǐske igre. Študije so pokazale, da se igralci

ob preveč pogostem srečavanju z goljufi igre hitreje naveličajo in prenehajo z igranjem,

kar negativno vpliva na dobičkonosnost. Zaradi tega je podjetjem v interesu, da se

prepreči goljufanje. Da bi to dosegli, se v delovanje igre integrira sistem proti golj-

ufanju. Dandanes je teh sistemov kar nekaj na razpolago, kot so Punkbuster, Valve

Anti-Cheat, nProtect Gameguard in Easy Anti-Cheat. Preden so bile te rešitve ob-

javljene, so morali razvijalci iger sami poskrbeti za razvoj tovrstnega sistema.

Večino današnjih obstoječih sistemov proti goljufanju so sestavljeni iz standardne

arhitekture. Vsebujejo štiri komponente: strežnik v oblaku, gonilnik, zunanji program

in notranji program v obliki dinamične povezovalne knjižnice. Komponente so med

seboj povezane in delujejo kot enoten sistem.

Za preslepitev sistema proti goljufanju je treba premagati vse njihove zaščitne

funkcije. S tradicionalnim pristopom je pogosto treba premagati vsako funkcijo pose-

bej, kar je zamudno in zahtevno opravilo. Naš pristop predlaga ločitev programa za

goljufanje od samega računalnika, kjer deluje sistem proti goljufanju. Sistem nenehno

skenira računalnik za zlonamerno obnašanje, kar pa pomeni, da postane ob ločitvi pro-

gram za goljufanje izven dosega sistema za preprečitev goljufanja. S tem premagamo

vse zaščitne funkcije.

S tem, ko ločimo program za goljufanje od računalnika, kjer deluje igra, se pojavita

dva nova problema: kako pridobiti informacije in kako pošiljati ukaze igrici. Tu ob-

staja več rešitev, vsaka s svojimi prednostmi in slabostmi. Uporaba našega pristopa

nam onemogoča direktni dostop do spomina in manipulacije programske kode igrice.

Zaradi tega je po našem mnenju integracija našega pristopa bolj primerna za golju-

fanje na način oponašanja vedenja navadnih igralcev. Zaradi omejenosti morda ne bo

mogoče pridobiti vseh informacij o igri, kot bi jih lahko sicer z uporabo tradicionalnih

pristopov. Kljub temu je velika prednost uporabe naše metode v varnosti, saj zago-

tavlja nezaznanljivost in s tem zaščito pred sankcijam. To je zaradi tega, ker sistem

proti goljufanju ne more ločiti med poštenimi igralci in goljufi. Podjetja, ki izdelujejo

sisteme proti goljufanju, lahko sicer prilagodijo svojo rešitev na način, da preprečijo

uporabo naše metode, smo pa mnenja, da je bolj malo verjetno, da bi lahko zaznali in

sankcionirali goljufive uporabnike.

Za zaključno nalogo smo implementirali program za goljufanje v igri Albion Online.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 29

Program izvaja trgovske misije in s tem oponaša poštenega uporabnika. Kot nagrado

za uspešno opravljeno trgovsko misijo je igralec nagrajen z izdelkom, ki ga lahko proda

na tržnici za dobiček. V implementaciji smo uporabili metodo vohanja paketov za

pridobitev informacij iz igre. Za pošiljanje ukazov smo se odločili za zlorabo aplikacije

TightVNC, s katero pošiljamo vhodne ukaze, ki oponašajo tipkovnico in mǐsko. Rešitev

smo objavili na virtualni računalnik v oblaku, kjer se izvaja program za goljufanje in

aplikacija TightVNC. Na lokalnem računalniku se izvaja igrica, sistem proti goljufanju

in strežnik TightVNC, na katero se poveže virtualni računalnik v oblaku. Ves promet

iz lokalnega računalnika je preusmerjen na računalnik v oblaku z uporabo povezave

VPN, kar omogoča prestrezanje paketov in odkrivanje informacij o delovanju igrice.

Za uspešno opravljanje trgovske misije smo sprogramirali premikanje igralca po

virtualnem svetu in interakcijo z osebami NPC. Postopki misije so sledeči: teci do

banke, naredi polog nagrajenih izdelkov in vzemi potrebne izdelke za začetek misije,

teci do lokacije za pričetek misije, prični misijo, teci do tihotapca, napreduj z misijo,

teci nazaj do mesta in končaj misijo. Če se vsi omenjeni postopki uspešno opravijo

je igralec nagrajen. Obstaja pa tveganje, da je naš igralec med opravljanjem misije

napaden s strani drugih igralcev, kar lahko privede do smrti našega igralca in neuspešno

opravljeno misijo. V trenutnem stanju se takšne situacije ne obravnava in program se

zaključi z izvajanjem. Implementirali smo funkcijo snemanja poti, kar pomeni, da lahko

uporabniki sami določijo, po kakšni poti program izvaja postopek teci do tihotapca in

teci nazaj do mesta.

Program smo zagnali na 303 poskusih, med katerim je prǐslo do napake v 8.6 %

primerih. Povprečni čas izvajanja misije je 17,8 minute, kar pomeni, da lahko pričakujemo

3,3 izvedene trgovske misije na uro. Z uporabo naštetih podatkov smo preračunali, da

lahko pridobivamo do 283.140 nagrajene valute na uro. V prihodnosti lahko izbolǰsamo

program na način, da znižamo možnost neuspešno opravljene misije, kot tudi da

zmanǰsamo povprečni čas za izvajanje misije. S tem lahko povečamo dobičkonosnost

uporabe našega programa.

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 30

8 References

[1] Matthew Bamberger and Nicholas Shaffner. Anti-cheat facility for use in a

networked game environment, October 30 2012. US Patent 8,302,199.

[2] Nick Cano, editor. Game Hacking: Developing Autonomous Bots for Online

Games. William Pollock, No Starch Press, 2016.

[3] changeofpace. Mouclassinputinjection.

https://github.com/changeofpace/MouClassInputInjection, July 2019.

Accessed: 2022-07-18.

[4] Mia Consalvo. Cheating: Gaining advantage in videogames. MIT press, 2009.

[5] Lorenzo Franceschi-Bicchierai. For 20 years, this man has survived entirely by

hacking online games. https://www.vice.com/en/article/59p7qd/this-man-

has-survived-by-hacking-mmo-online-games, July 2017. Accessed:

2022-07-18.

[6] Atish Ghoshal. Ethics in esports. Gaming Law Review, 2019.

[7] Exit Games GmbH. Photon Realtime.

https://www.photonengine.com/Realtime. Accessed: 2022-07-18.

[8] Sandbox Interactive GmbH. Albion Online. https://albiononline.com.

Accessed: 2022-07-18.

[9] Sandbox Interactive GmbH. Trade missions - Albion Online wiki.

https://wiki.albiononline.com/wiki/Trade Missions. Accessed: 2022-07-18.

[10] Samuel Horti. Elder scrolls blades hacks explained: what do cheats and mods do.

https://www.gamesradar.com/elder-scrolls-blades-hacks-cheats/, May

2019. Accessed: 2022-07-18.

[11] Epic Games Inc. Anti-cheat interfaces documentation.

https://dev.epicgames.com/docs/services/en-US/GameServices/

AntiCheat/index.html. Accessed: 2022-07-18.

[12] Epic Games Inc. Easy Anti-Cheat. https://www.easy.ac/. Accessed:

2022-07-18.

[13] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A

taxonomy of computer program security flaws, with examples. Technical report,

Naval Research Lab Washington D.C., 1993.

https://github.com/changeofpace/MouClassInputInjection
https://www.vice.com/en/article/59p7qd/this-man-has-survived-by-hacking-mmo-online-games
https://www.vice.com/en/article/59p7qd/this-man-has-survived-by-hacking-mmo-online-games
https://www.photonengine.com/Realtime
https://albiononline.com
https://wiki.albiononline.com/wiki/Trade_Missions
https://www.gamesradar.com/elder-scrolls-blades-hacks-cheats/
https://dev.epicgames.com/docs/services/en-US/GameServices/AntiCheat/index.html
https://dev.epicgames.com/docs/services/en-US/GameServices/AntiCheat/index.html
https://www.easy.ac/

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 31

[14] Peter Laurens, Richard F Paige, Phillip J Brooke, and Howard Chivers. A novel

approach to the detection of cheating in multiplayer online games. In 12th IEEE

International Conference on Engineering Complex Computer Systems (ICECCS

2007). IEEE, 2007.

[15] Samuli Lehtonen. Comparative study of anti-cheat methods in video games.

Master’s thesis, University of Helsinki, Helsinki, Finland, March 2020.

[16] GlavSoft LLC. TightVNC - VNC-compatible remote control / remote desktop

software. https://www.tightvnc.com/. Accessed: 2022-07-18.

[17] CBS News Matt Slagle. Cheats could ruin online gaming.

https://www.cbsnews.com/news/cheats-could-ruin-online-gaming/,

December 2002. Accessed: 2022-07-18.

[18] Alissa McAloon. South Korea cracks down on cheaters with law targeting illicit

game mods. https://www.gamedeveloper.com/console/south-korea-cracks-

down-on-cheaters-with-law-targeting-illicit-game-mods, December

2016. Accessed: 2022-07-18.

[19] Gabe Newell. Valve, VAC, and trust.

https://www.reddit.com/r/gaming/comments/1y70ej/valve vac and trust/,

February 2014. Accessed: 2022-07-18.

[20] BBC News. Valve challenged over anti-cheating tools.

https://www.bbc.com/news/technology-26240140, February 2014. Accessed:

2022-07-18.

[21] Joel Noguera. Unveiling the underground world of anti-cheats. In Black Hat

Europe 2019, London, United Kingdom, December 2019. UBM Tech.

[22] Morgan Park. Call of duty player tries to prove he isn’t cheating, accidentally

proves he’s cheating. https://www.pcgamer.com/call-of-duty-player-tries-

to-prove-he-isnt-cheating-accidentally-proves-hes-cheating/, March

2022. Accessed: 2022-07-18.

[23] Pedro Pina. Computer games and intellectual property law: Derivative works,

copyright and copyleft. In Business, Technological, and Social Dimensions of

Computer Games: Multidisciplinary Developments. IGI Global, 2011.

[24] MMO Populations. Top MMOs in 2021 - MMO populations & player counts.

https://mmo-population.com/top/2021, January 2022. Accessed: 2022-07-18.

https://www.tightvnc.com/
https://www.cbsnews.com/news/cheats-could-ruin-online-gaming/
https://www.gamedeveloper.com/console/south-korea-cracks-down-on-cheaters-with-law-targeting-illicit-game-mods
https://www.gamedeveloper.com/console/south-korea-cracks-down-on-cheaters-with-law-targeting-illicit-game-mods
https://www.reddit.com/r/gaming/comments/1y70ej/valve_vac_and_trust/
https://www.bbc.com/news/technology-26240140
https://www.pcgamer.com/call-of-duty-player-tries-to-prove-he-isnt-cheating-accidentally-proves-hes-cheating/
https://www.pcgamer.com/call-of-duty-player-tries-to-prove-he-isnt-cheating-accidentally-proves-hes-cheating/
https://mmo-population.com/top/2021

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 32

[25] Rake. Anticheat nProtect Gameguard bypass. https://guidedhacking.com/

threads/anticheat-nprotect-gameguard-bypass.8008/, January 2011.

Accessed: 2022-07-18.

[26] Rake. Internal vs. external hacks - what’s the difference?

https://guidedhacking.com/threads/internal-vs-external-hacks-whats-

the-difference.8808/, July 2013. Accessed: 2022-07-18.

[27] Eric Steven Raymond. The case of the quake cheats.

http://www.catb.org/~esr/writings/quake-cheats.html, December 1999.

Accessed: 2022-07-18.

[28] Waranyoo Ronkainen. Prevention vs detection in online game cheating.

Bachelor’s thesis, University of Oulu, Oulu, Finland, November 2021.

[29] Jagex Ltd. Runescape. Unbalanced trade reminder.

https://secure.runescape.com/m=news/unbalanced-trade-reminder,

December 2007. Accessed: 2022-07-18.

[30] Jagex Ltd. Runescape. Bot-busting and bonuses for all.

https://secure.runescape.com/m=news/bot-busting-and-bonuses-for-all,

October 2011. Accessed: 2022-07-18.

[31] Jordan Sissel. xdotool. https://github.com/jordansissel/xdotool. Accessed:

2022-07-18.

[32] Stephen E Siwek. Video games in the 21st century. Entertainment Software

Association, 2007.

[33] SnGmng. What internal/external hacks detection methods are known?

https://guidedhacking.com/threads/what-internal-external-hacks-

detection-methods-are-known.13021/, July 2019. Accessed: 2022-07-18.

[34] Irdeto Media Team. Widespread cheating in multiplayer online games drives

gamers in Asia Pacific. https://irdeto.com/news/widespread-cheating-in-

multiplayer-online-games-drives-gamers-in-asia-pacific-away/, June

2018. Accessed: 2022-07-18.

[35] The Tcpdump team. TCPDump. https://www.tcpdump.org/. Accessed:

2022-07-18.

[36] The Wireshark team. Wireshark. https://www.wireshark.org. Accessed:

2022-07-18.

https://guidedhacking.com/threads/anticheat-nprotect-gameguard-bypass.8008/
https://guidedhacking.com/threads/anticheat-nprotect-gameguard-bypass.8008/
https://guidedhacking.com/threads/internal-vs-external-hacks-whats-the-difference.8808/
https://guidedhacking.com/threads/internal-vs-external-hacks-whats-the-difference.8808/
http://www.catb.org/~esr/writings/quake-cheats.html
https://secure.runescape.com/m=news/unbalanced-trade-reminder
https://secure.runescape.com/m=news/bot-busting-and-bonuses-for-all
https://github.com/jordansissel/xdotool
https://guidedhacking.com/threads/what-internal-external-hacks-detection-methods-are-known.13021/
https://guidedhacking.com/threads/what-internal-external-hacks-detection-methods-are-known.13021/
https://irdeto.com/news/widespread-cheating-in-multiplayer-online-games-drives-gamers-in-asia-pacific-away/
https://irdeto.com/news/widespread-cheating-in-multiplayer-online-games-drives-gamers-in-asia-pacific-away/
https://www.tcpdump.org/
https://www.wireshark.org

Poličar K. Exploiting third-party software to bypass anti-cheat detection systems through network-driven

development.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 33

[37] Xfce Development Team. Xfce desktop environment. https://www.xfce.org/.

Accessed: 2022-07-18.

[38] Reddit theonlybond. VAC now reads all the domains you have visited and sends

it back to their servers hashed. https://www.reddit.com/r/GlobalOffensive/

comments/1y0kc1/vac now reads all the domains you have visited/,

February 2014. Accessed: 2022-07-18.

[39] Michael VanKuipers. Riot’s approach to anti-cheat.

https://technology.riotgames.com/news/riots-approach-anti-cheat, July

2018. Accessed: 2022-07-18.

[40] Jagex Ltd. Runescape Wiki. Botwatch.

https://runescape.fandom.com/wiki/Botwatch, May 2022. Accessed:

2022-07-18.

[41] Wikipedia. INCA Internet. https://en.wikipedia.org/wiki/INCA Internet.

Accessed: 2022-07-18.

[42] Wikipedia. Punkbuster. https://en.wikipedia.org/wiki/PunkBuster.

Accessed: 2022-07-18.

https://www.xfce.org/
https://www.reddit.com/r/GlobalOffensive/comments/1y0kc1/vac_now_reads_all_the_domains_you_have_visited/
https://www.reddit.com/r/GlobalOffensive/comments/1y0kc1/vac_now_reads_all_the_domains_you_have_visited/
https://technology.riotgames.com/news/riots-approach-anti-cheat
https://runescape.fandom.com/wiki/Botwatch
https://en.wikipedia.org/wiki/INCA_Internet
https://en.wikipedia.org/wiki/PunkBuster

	Introduction
	Anti-cheat systems
	History and motivation for development
	Existing solutions
	Architecture of a modern anti-cheat system
	Traditional approach for bypassing anti-cheat systems

	Methodology for bypassing anti-cheat systems
	Collecting information about the game
	Sending commands to the game
	Limitations
	Comparison with traditional approaches
	Potential solution for preventing our technique

	Implementation in Albion Online
	Automate currency generation
	Using packet sniffing to collect information about the game
	Sending input commands to the game through a VNC connection
	Deployment architecture
	Automating in-game actions
	Movement
	Interacting with NPCs
	Running trade missions
	Recording routes

	Results
	Conclusion
	Povzetek v slovenskem jeziku
	References

