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Izvleček: V magistrskem delu analiziramo izogeometrično kolokacijsko metodo in ap-

likacijo te na različnih kolokacijskih točkah pri reševanju Poissonove parcialne difer-

encialne enačbe v eni in dveh dimenzijah. Prvo poglavje obravnava definicije in

pomembne lastnosti izbranih baznih funkcij, ki so B-zlepki in NURBS-i (neenakomerni

racionalni bazni B-zlepki). V drugem poglavju definiramo geometrije B-zlepkov in

NURBS-ov z njihovimi lastnostmi, izogeometrični koncept ter L2 aproksimacijsko

metodo. Poissonovo parcialno diferencialno enačbo v obeh dimenzijah in obeh for-

mulacijah definiramo v tretjem poglavju, v katerem predstavimo tudi Galerkinovo izo-

geometrično metodo. Sledita glavni dve poglavji, v katerih opǐsemo izogeometrično

kolokacijsko metodo in kolokacijske točke. Najprej opredelimo najbolj uporabljene

Grevillove in Demkove kolokacijske točke in nato še najnoveǰse Superkonvergentne

kolokacijske točke. Sledi obravnava Alternirajočih (en. Alternating) in Združenih (en.

Clustered) superkonvergentnih kolokacijskih točk, ki smo jih izbrali iz množice vseh su-

perkonvergentnih točk. Nalogo zaključimo z nekaterimi numeričnimi poskusi, s katerimi

primerjamo red konvergence izogeometrične kolokacijske metode na Poissonovih par-

cialnih diferencialnih enačbah z omenjenimi kolokacijskimi točkami v različnih normi-

ranih prostorih. Primerjavo redov konvergenc z Galerkinovo izogeometrično metodo

povzamemo v ustrezni tabeli.
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Abstract: In this master thesis we look at the isogeometric collocation method and how

it can be used to solve Poisson’s PDE in one and two dimensions. The first chapter

defines and discusses the key properties of B-spline and NURBS basis functions. The

following chapter discusses isogeometric analysis. In this chapter we define the geome-

tries and properties of B-splines and NURBS, as well as the isogeometric concept and

the L2 approximation method. In the following chapter, we define the Poisson’s PDE

in both dimensions and both formulations, namely weak and strong.This chapter also

introduces the Galerkin isogeometric method. The following two chapters describe the

isogeometric collocation method and collocation points: the most commonly used are

the Greville and Demko collocation points, while the newest are the Superconvergent

collocation points. And at last, from the Superconvergent points, we obtain the Al-

ternating and Clustered superconvergent collocation points. Finally, we perform some

numerical tests to determine the rates of convergence of isogemetric collocation meth-

ods on Poisson’s PDEs with the aforementioned collocation points on different normed

spaces. Furthermore, we compare convergence rates with the Galerkin isogeometric

method and summarize the results in a table.



Orlich T. Isogeometric Collocation.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 IV

List of Contents

1 INTRODUCTION 1

2 B-SPLINES AND NURBS 4

2.1 DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 ISOGEOMETRIC ANALYSIS 10

3.1 GEOMETRIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 ISOGEOMETRIC SPACES . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 REFINEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 L2 APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 POISSON’S PARTIAL DIFFERENTIAL EQUATION 20

4.1 WEAK FORM APPROXIMATION BASED ON ISOGEOMETRIC ANAL-

YSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 THE GALERKIN ISOGEOMETRIC METHOD . . . . . . . . . . . . . 23

5 ISOGEOMETRIC COLLOCATION METHOD 27

5.1 SOLVING POISSON’S PDE . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 GREVILLE COLLOCATION POINTS AND DEMKO COLLOCATION

POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 SUPERCONVERGENT COLLOCATION POINTS 32

6.1 METHOD FOR FINDING SUPERCONVERGENT

POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Points for even p . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.2 Points for odd p . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 LEAST-SQUARES AT SUPERCONVERGENT COLLOCATION POINTS

(LS-SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 ALTERNATING SUPERCONERGENT COLLOCATION POINTS . . 39

6.4 CLUSTERED SUPERCONVERGENT COLLOCATION POINTS . . . 41

7 NUMERICAL TESTS 44



Orlich T. Isogeometric Collocation.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 V

8 CONCLUSION 56
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1 INTRODUCTION

Partial differential equations (PDEs) [17, 19, 20] are the most commonly used tool in

scientific fields. Because we do not yet know how to solve them analytically, com-

putational mathematics and numerical approximation have been developed. The im-

portance of computers has grown in recent decades, paralleled by the development of

more powerful computing machines. This has aided in the development of effective

computational and numerical methods.

The Finite element method (FEM) (see [14]) is currently the most widely used nu-

merical method for solving PDEs. With this method, we must approximate the physical

domain, which also requires a significant amount of computational time. Another nu-

merical method has been developed in recent years to overcome this difficulty. This

method is known as Isogeometric analysis (IgA), and it is a computational mechanics

technology based on functions used to represent geometry that was first introduced by

Hughes, Cottrell, and Bazilevs in [4,5] with the goal of reducing the gap between Finite

element analysis (FEA) and Computer-aided design (CAD). In FEM we approximate

the geometry, as previously stated, whereas in IgA we use the functions describing the

geometry directly. IgA is similar to FEM in many ways, but instead of piecewise poly-

nomial functions, the basis functions of IgA are B-splines or NURBS (Non-Uniform

Rational B-splines) (see [6,7,16,18]), which are the same functions used to build CAD

geometries. As a result, the basis functions used in IgA are highly dependent on the

geometrical domain representation; this is known as the isogeometric concept.

The Galerkin isogeometric method (GIM) is the most commonly used method for

solving a PDE. Firstly, the PDE is written in a weak formulation, which necessitates

lower smoothness of functions than using the strong form directly. The integrals are

then evaluated, and a linear system is constructed. Finally, the linear system is solved

to obtain the coefficients in the approximate solution that correspond to the basis B-

spline or NURBS functions. This technique, however, necessitates the evaluation of

integrals using specific quadrature rules, and the accuracy of the solution is dependent

on the quality of the numerical integration. The other option is to work directly on

the strong formulation. Solving the strong form of the PDE via collocation eliminates

integration but requires more regular spaces.

Isogeometric collocation methods (ICMs) have been first introduced by Auricchio,

Da Veiga, Hughes, Reali and Sangalli in [2]. However, in terms of rate of convergence,

ICM proposed thus far does not perform as well as GIM (see [1, 13, 15]). Collocating
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the equation at Greville or Demko points is a common choice because they are classi-

cal interpolation points for arbitrary degree and regularity of splines, but both choices

exhibit suboptimal convergence behavior. However, there is a fascinating alternative.

Gomez and de Lorenzis in [11] have demonstrated that there must exist a set of collo-

cation points that exactly reproduces the Galerkin solution, and thus the error of the

ICM built from those points has the same rate of convergence as GIM. These are the

zeros of the Galerkin residual and are known as Cauchy-Galerkin points (see [1, 11]).

Unfortunately, these points are not available a priori; thereby [1] selects as a surrogate

the points where, under suitable hypothesis, superconvergence of the second deriva-

tives of the Galerkin solution occurs, motivated by the fact that for Poisson PDE the

Galerkin residual is actually equivalent to the error of the approximation of the second

derivatives (see [15]). These are known as Superconvergent points.

However, because there are more Superconvergent points than degrees of free-

dom, [1] proposes using a least-squares approximation to solve the overdetermined

linear system. This concept is further developed in [11, 15] by using different specific

subsets of the Superconvergent collocation points (SCP) to ensure that the number of

collocation points corresponds to the number of degrees of freedom. These are known as

Alternating superconvergent collocation points (ASCP) and Clustered superconvergent

collocation points (CSCP).

The structure of the thesis is the following.

� In Chapter 2, we introduce the preliminary theory, which includes the necessary

definitions of the B-splines and NURBS basis functions mentioned in this work,

as well as stating and proving a number of useful properties about them.

� The third chapter is divided into four sections: the first section introduces B-

splines and NURBS geometries, as well as their properties; the second section

explains the isoparametric concept; the third section describes three different

procedures for obtaining more precise isogeometric solutions; and the final section

introduces the L2 approximation, as well as some other definitions of functional

analysis.

� The Poisson’s partial differential equation is discussed in Chapter 4 in both one

and two dimensions, as well as the technique for obtaining the weak formulation

from the strong one. The Galerkin isogeometric method is also presented, as

well as its application to Poisson’s partial differential equation with Dirichlet

boundary conditions.

� The main section is in Chapter 5, where we describe the isogeometric collocation

method in both observed dimensions. We also provide a selection of the most

widely used collocation points, namely the Greville and Demko collocation points.



Orlich T. Isogeometric Collocation.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 3

� We compute Superconvergent points and introduce the Least-squares method at

them in Chapter 6. The Alternating and Clustered superconvergent collocation

points are then obtained using Superconvergent points.

� In Chapter 7, we perform some numerical tests in one and two-dimensional spaces,

computing the isogeometric collocation for all mentioned collocation points and

various Poisson’s partial differential equations. We compare the relative errors

obtained in the L2, H1, andH2 norms. Wolfram Mathematica is the programming

language we use to run our algorithms and visualize the results with graphs.

� Finally, in Chapter 8, we make our conclusions.
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2 B-SPLINES AND NURBS

In this chapter, we aim at introducing definitions of B-splines and NURBS basis func-

tions and their properties. For the definitions and properties in this chapter, we refer

to [5, 7, 9, 16].

2.1 DEFINITIONS

B-splines are piecewise polynomial curves composed of linear combinations of B-spline

basis functions. The B-spline basis is defined through the concept of knot vectors.

Definition 2.1. Let Ω̂ be the one-dimensional parametric space. A finite subset of

Ω̂ made of non-decreasing set of coordinates in this parametric space Ω̂ is called knot

vector. It is written as Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the i− th knot, i is the

knot index, i = 1, 2, ..., n + p + 1, p is the polynomial degree and n is the number of

B-spline basis functions.

Definition 2.2. Each interval [ξi, ξi+1] for i = 1, 2, ..., n+p is called a knot span. Each

internal knot span, that is each interval [ξi, ξi+1] for i = 1, 2, ..., n+p, such that ξi+1 6= ξ1

and ξi 6= ξn+p+1, i = 1, 2, ..., n+ p, is called element.

Definition 2.3. A knot vector is said to be uniform if the knots are equally spaced

in the parametric space. If they are unequally spaced, then the knot vector is non-

uniform.

Knots may be repeated, that is, more than one knot is located at the same coordi-

nate in the parametric space. Note that this implies that a knot span can have zero

length.

Definition 2.4. A knot vector is said to be open if its first and last knots repeat p+ 1

times.

We now have all that we need to define B-spline and NURBS basis functions.

Firstly, we will define the univariate B-spline basis functions, which are B-spline basis

functions that are defined from a one-dimensional parametric space Ω̂.

Definition 2.5. Let Ξ = {ξ1, ξ2, ..., ξn+p+1} be defined as in Def. 2.1. For i ∈
{1, 2, ..., n}, the univariate B-spline basis functions Ni,p, are defined with a recursive

formula called Cox-de Boor recursion formula as:
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� For p = 0 they are defined by

Ni,0(ξ) =

1, if ξi ≤ ξ < ξi+1,

0, otherwise,
(2.1)

where i = 1, 2, ..., n.

� For p = 1, 2, 3, ... they are defined by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (2.2)

where i = 1, 2, ..., n.

Figure 1: B-spline basis functions of order p = 5 defined by the uniform and open knot

vector which has 4 elements.

Remark 2.6. By convention, we consider that Nn+1,p = 0 for all p > 0 and that 0
0

= 0

(which happens whenever ξi+p = ξi or if ξi+p+1 = ξi+1). Also, note that, Ni,0(ξ) is a

step function, equal to zero everywhere except on the half open interval ξ ∈ [ξi, ξi+1),

while for p > 0, Ni,p(ξ) is a linear combination of two (p − 1)-degree basis functions.

In the following, h will represent the size of the elements.

Lemma 2.7. Let Ξ = {ξ1, ξ2, ..., ξn+p+1} be an open knot vector, as in Def. 2.1. Let

nel be the number of elements of Ξ. Then n = nel + p.

Proof. Since Ξ is open, by definition, we know that we have p + 1 knots equal to ξ1

and p+ 1 knots equal to ξn+p+1. Consequently, the number of internal knots is on one

hand equal to (n + p + 1) − 2(p + 1), on the other hand it is equal to nel − 1. So,

n− p− 1 = nel − 1 and therefore n = nel + p.



Orlich T. Isogeometric Collocation.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 6

Multivariate B-spline basis functions are built in a similar way, by means of tensor

product rules, from the univariate B-spline basis functions. More precisely, a k-variate

B-spline basis, k ∈ N \ {0}, is defined from a parametric space Ω̂ of dimension k,

that can be decomposed thanks to a cartesian product as
∏k

i=1 Ω̂i, where each Ω̂i is

a one-dimensional parametric space. In this work, we will consider just the 2-variate

B-spline basis and we give the following formal definition:

Definition 2.8. Let Ξi ⊂ Ω̂i, i = 1, 2, be 2 knot vectors that define ni univariate B-

spline basis functions with polynomial degree equal to pi, i = 1, 2, respectively. Then

the corresponding 2-variate B-spline basis is

{Nj,p : j = (j1, j2), 0 ≤ j1 ≤ n1, 0 ≤ j2 ≤ n2;p = (p1, p2)}

such that for all ξ = (ξ1, ξ2) ∈ Ω̂, Nj,p(ξ) =
∏2

i=1Nji,pi(ξi). The set of 2-dimensional

elements used to define B-spline basis functions is called mesh.

Remark 2.9. The basis functions formed from open knot vectors are interpolatory at

the ends of the parametric space interval in one dimension and at the corners of patches

in multiple dimensions but they are not, in general, interpolatory at interior knots.

Finally, non-uniform rational B-splines (NURBS) are built from B-splines and the

NURBS basis functions are an extension of the B-spline basis functions, that is, they

define a larger function space. The motivation of the introduction of NURBS is that

in general, conic sections cannot be parameterized by polynomials, but can be param-

eterized with rational functions.

Definition 2.10. Let Ω̂ be a one-dimensional parametric space, and let Ξ be a knot

vector on Ω̂ that generates the n univariate B-spline basis functions of order p, as

in Def. 2.5. Then given n weights wi ∈ R, i = 1, 2, ..., n, we can define the set of

univariate NURBS basis functions as

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

,

for all i ∈ {1, 2, ..., n} and for all ξ ∈ Ω̂.

The order of NURBS basis functions is the order of the underlying B-spline basis

functions. In general, we define NURBS basis functions using positive weights.

As in the B-spline case, the definition of multivariate NURBS basis functions follows

naturally from a tensor product rule from the definition of a univariate NURBS basis,

so we will omit it, but we refer the readers to see [16].
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2.2 PROPERTIES

We now list a number of important properties of the B-spline basis functions, which

determine many desirable geometric characteristics of B-spline curves and surfaces. Let

us use the same notation as in Def. 2.1 and 2.5.

1. Local support property. Ni,p(ξ) = 0 if ξ /∈ [ξi, ξi+p+1).

Proof. Since Cox de Boor formula used to calculate B-spline basis functions is

a recursion relation, a basis function of a given polynomial degree p depends on

lower order and therefore this dependence forms a triangular pattern shown in

Table 1. From the pattern it is clear that the basis function Ni,p is non-negative

Table 1: Triangular pattern of B-spline basis functions needed to prove the Local

support property of B-spline basis functions.

[ξi, ξi+1) Ni,0

↘
· · ·

↗ ↘
[ξi+1, ξi+2) Ni+1,0 Ni,p−2

↘
Ni,p−1

↗ ↘
...

... · · · Ni+1,p−2 Ni,p

↘ ↗
Ni+1,p−1

↗
Ni+2,p−2

↗
...

... · · ·
↗

[ξi+p, ξi+p+1) Ni+p,0

on the interval [ξi, ξi+p+1).

2. In any given knot span, [ξj, ξj+1), at most p+ 1 of the Ni,p are non-zero, namely

the functions Nj−p,p, ..., Nj,p.

Proof. Using Cox de Boor recursion we get the triangular pattern shown in Ta-

ble 2. From it, we can clearly conclude that the basis functions Nj−p,p, ..., Nj,p
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Table 2: Triangular pattern of B-spline basis functions needed to prove the second

property of B-spline basis functions.

Nj−p,p

↗
· · ·

Nj−2,2

↗
Nj−1,1

↗ ↘

[ξj, ξj+1)→ Nj,0 Nj−1,2 · · · ...

↘ ↗
Nj,1

↘
Nj,2

· · ·
↘

Nj,p

are non zero for ξ ∈ [ξj, ξj+1).

3. Non-negativity property. Ni,p(ξ) ≥ 0 for all i, p and ξ.

Proof. We can prove this by induction on p. It is clearly true for p = 0. Assume

it is true for p− 1, p ≥ 0, with i and ξ arbitrary. By definition

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ)

By the local support property, Ni,p−1(ξ) = 0 if ξ /∈ [ξi, ξi+p). But ξ ∈ [ξi, ξi+p)

implies ξ−ξi
ξi+p−ξi is non-negative. By assumption, Ni,p−1(ξ) is non-negative, and

thus the first term is non-negative. The same is true for the second term, and

hence Ni,p(ξ) is non-negative.

4. Partition of unity property. For an arbitrary knot span, [ξi, ξi+1),

i∑
j=i−p

Nj,p(ξ) = 1

for all ξ ∈ [ξi, ξi+1).
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Proof. To prove this, consider interval [ξi, ξi+1). Here only Ni−p,p, ..., Ni,p are

non-zero. Then

i∑
j=i−p

Nj,p(ξ) =
i∑

j=i−p

ξ − ξj
ξj+p − ξj

Nj,p−1(ξ) +
i∑

j=i−p

ξj+p+1 − ξ
ξj+p+1 − ξj+1

Nj+1,p−1(ξ).

Changing the summation index in the second sum from j to j+1, and considering

that Ni−p,p−1(ξ) = Ni+1,p−1(ξ) = 0, we have

i∑
j=i−p

Nj,p(ξ) =
i∑

j=i−p+1

[
ξ − ξj
ξj+p − ξj

+
ξj+p − ξ
ξj+p − ξj

]
Nj,p−1(ξ) =

i∑
j=i−p+1

Nj,p−1(ξ).

Applying the same concept recursively yields

i∑
j=i−p

Nj,p(ξ) =
i∑

j=i−p+1

Nj,p−1(ξ) =
i∑

j=i−p+2

Nj,p−2(ξ) = ... =
i∑
j=i

Nj,0(ξ) = 1.

5. All derivatives of Ni,p(ξ) exist in the interior of a knot span. At a knot Ni,p(ξ)

is p− k times continuously differentiable, where k is the multiplicity of the knot.

Hence, increasing degree increases continuity, and increasing knot multiplicity

decreases continuity. Proof can be found in [16].

6. Extrema property: Except for the case p = 0, Ni,p(ξ) attains exactly one

maximum value. Proof can be found in [16].

The NURBS Ri,p(ξ) have similar properties as B-spline basis functions Ni,p(ξ):

- non-negativity property,

- partition of unity property,

- extrema property and

- local support property.

Remark 2.11. Whenever the weights are constants, we get that ∀ξ ∈ Ω̂ : Ri,p(ξ) =

Ni,p(ξ) thanks to the partition of unity property of B-spline basis functions. This

shows that polynomial B-splines are particular cases of NURBS.
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3 ISOGEOMETRIC ANALYSIS

Following [5, 9], the root idea behind IgA is that the basis used to exactly model the

geometry will also serve as the basis for the solution space of the numerical method.

This concept of using the same basis for geometry and analysis is called the isopara-

metric concept. In IgA we select a basis capable of exactly representing the known

geometry and uses it as a basis for the domain we wish to approximate. A graphical

repesentation of it is shown in Figure 3.

The above concepts are taken from [5,9].

3.1 GEOMETRIES

As already mentioned, in order to define B-spline or NURBS, we need a parametric

space. The B-spline parametric space is local to “patches”, which play the role of sub-

domains within which element types and material models are assumed to be uniform.

Element boundaries in the physical space are simply the images of knot lines under the

B-spline mapping. The next definitions and properties are strictly following [5, 16].

B-splines curves in Rd are constructed by taking a linear combination of B-spline

basis functions. The coefficients of the basis functions are referred to as control points.

Piecewise linear interpolation of the control points gives the so-called control polygon.

Definition 3.1. Given n B-spline basis functions Ni,p, i = 1, 2, ..., n, and corresponding

control points Bi ∈ Rd, i = 1, 2, ..., n, a piecewise-polynomial B-spline curve is given

by

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi.

Let C(ξ) be a B-spline curve and p its polynomial degree. We now list important

properties of B-spline curves:

1. C(ξ) is a piecewise polynomial curve (since the Ni,p(ξ) are piecewise polynomials)

that interpolates endpoints, that is, if Ω̂ = [a, b], a, b ∈ R, then C(a) = B1 and

C(b) = Bn; the number of control points is equal to the number of B-spline basis

functions, i.e. n.

2. Affine invariance. Let us recall first the definition of an affine transformation.
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Definition 3.2. Let x be a point in R3. An affine transformation, denoted by

Φ, maps R3 into R3×1 and has the form Φ(x) = Ax + v, where A ∈ R3×3 is

some matrix and v ∈ R3 is a vector. Affine transformations include translations,

rotations, scalings and uniform stretching and shearings.

An affine transformation is applied to the B-spline curve by applying it to the

control points. Proof can be found in [16].

3. Strong convex hull property For a B-spline curve of degree p, we define the

convex hull as the union of all of the convex hulls formed by p + 1 successive

control points. The curve is contained in the convex hull of its control polygon;

in fact, if ξ ∈ [ξi, ξi+1), then C(ξ) is in the convex hull of the control points

Bi−p, ...,Bi.

Proof. Since ξ ∈ [ξi, ξi+1) we know by the second property of B-spline basis

functions that only p + 1 B-spline basis functions are non-negative, namely

Ni−p,p, ..., Ni,p. Therefore

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi =
i∑

j=i−p

Nj,p(ξ)Bj.

By the non-negativity and partition of unity properties of B-spline basis functions

Ni,p the proof is concluded.

4. Local control property. ChangingBi affectsC(ξ) only on the interval [ξi, ξi+p+1).

See Figure 2.

5. The continuity and differentiability of C(ξ) follow from that of the Ni,p(ξ) (since

C(ξ) is just a linear combination of the Ni,p(ξ)). Thus, C(ξ) is infinitely differen-

tiable in the interior of knot intervals, and it is at least p− k times continuously

differentiable at a knot of multiplicity k.

Remark 3.3. In general, control points are not interpolated by B-spline curves. The

curve is interpolatory at the first and last points, due to the fact that the knot vector

is open and also at the control points that have multiplicity equal to the polynomial

degree p. The curve is tangent to the control polygon at these points.

B-spline geometries of dimension greater than one are defined by means of tensor

product rules from the B-spline curves.

Definition 3.4. Given a control net {Bi,j}, i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial

degrees p and q and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}, and H = {η1, η2, ..., ηm+q+1},
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Figure 2: A cubic curve on Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}. Moving B5 (to B′5)

changes the curve on the interval [1/4, 1).

a tensor product B-spline surface is defined by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Nj,q(η)Bi,j,

where Ni,p(ξ) and Nj,q(η) are univariate B-spline basis functions of order p and q,

corresponding to knot vectors Ξ and H, respectively.

The properties of the tensor product basis functions follow from the corresponding

properties of the univariate B-spline basis functions (see [16]). Let S(ξ, η) be a B-spline

surface, where Ξ has n + p + 1 knots and H has m + q + 1 knots as in the Def. 3.4.

B-spline surfaces have the following properties:

1. The surface interpolates the four corner control points: S(0, 0) = B0,0, S(1, 0) =

Bn,0, S(0, 1) = B0,m and S(1, 1) = Bn,m, for ˆOmega = [0, 1] × [0, 1]. This

follows from the partition of unity property of the tensor product basis functions

(
∑n

i=1

∑m
j=1Ni,p(ξ)Nj,q(η) = 1 for all (ξ, η) ∈ [0, 1]× [0, 1]) and the identities

N1,p(0)N1,q(0) = Nn,p(1)N1,q(0) = N1,p(0)Nm,q(1) = Nn,p(1)Nm,q(1) = 1.

2. Affine invariance: an affine transformation is applied to the surface by applying

it to the control points. This follows from the partition of unity property of the

tensor product B-spline basis functions.

3. Strong convex hull property. If (ξ, η) ∈ [ξi, ξi+1) × [ηj, ηj+1), then S(ξ, η) is

in the convex hull of the control points Bh,k, i − p ≤ h ≤ i and j − q ≤ k ≤ j.
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This follows from the non-negativity property of the tensor product B-spline basis

functions (Ni,p(ξ)Nj,q(η) ≥ 0 for all i, j, p, q, ξ, η), partition of unity property of

the tensor product basis functions and from the property that says: in any given

rectangle [ξi, ξi+1)× [ηj, ηj+1) at most (p+ 1)(q+ 1) basis functions are non-zero.

4. Local control property. If Bi,j is changed, this affects the surface only

in the rectangle [ξi, ξi+p+1) × [ηj, ηj+p+1). This follows from the property that

Ni,p(ξ)Nj,q(η) = 0 if (ξ, η) is outside the rectangle [ξi, ξi+p+1)× [ηj, ηj+p+1).

5. The continuity and differentiability of S(ξ, η) follows from that of the basis func-

tions. In particular, if a knot ξi has multiplicity k, S(ξ, η) is p − k times differ-

entiable in the ξ and it is q− k times differentiable in the η direction if a knot ηj

has multiplicity k.

We will now proceed to the definitions and properties of NURBS geometries. Before

that, let us consider the formal definition of the control points for a NURBS curve.

Definition 3.5. Let {Bw
i } be the set of control points for a B-spline curve in Rd+1

with knot vector Ξ. The set of control points for a NURBS curve in Rd is defined as

(Bi)j =
(Bw

i )j
wi

, j = 1, 2, ..., d, wi = (Bw
i )d+1,

where (Bi)j is the j-th component of the vector Bi and wi is the i-th weight.

Similarly, as for B-spline curves and surfaces, we can define the NURBS curves and

surfaces.

Definition 3.6. Given n NURBS basis functions Ri,p, i = 1, 2, ..., n and corresponding

control points Bi (as in Def. 3.5), i = 1, 2, ..., n, a NURBS curve is given by

C(ξ) =
n∑
i=1

Ri,p(ξ)Bi.

Definition 3.7. Given a control net {Bi,j}, i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial

degrees p and q and knot vectors Ξ and H, a NURBS surface is given by

S(ξ, η) =
n∑
i=n

m∑
j=1

Ri,p(ξ)Rj,q(η)Bi,j,

where Ri,p(ξ) and Rj,q(η) are univariate NURBS basis functions of order p and q cor-

responding to knot vectors Ξ and H, respectively.

Similarly, also NURBS curves/surfaces have the same properties as B-spline curves/surfaces:

- they are interpolatory at endpoints,
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- they have affine invariance property,

- they have strong convex hull property,

- they have differentiability property and

- they have local control property.

3.2 ISOGEOMETRIC SPACES

This section is about isogeometric spaces and the definitions are taken from [2,9].

Let us denote the domain in the physical space by Ω. Similarly, let us denote

the domain in the parametric space by Ω̂. In our work, Ω̂ = [0, 1]d depending on

the dimension d = 1, 2 that we are observing. Thus, G : Ω̂ → Ω is the geometry

mapping, taking points in the parametric space, ξ = (ξ1, ..., ξd), and returning the

corresponding points in the physical space, x = (x1, ..., xd). Also we assume that this

map is invertible, so G−1 : Ω → Ω̂ takes points in the physical domain and identifies

their corresponding parameter values.

We define also the functions ϕ : Ω̂→ R and ψ : Ω→ R as it can be seen in Figure 3.

The characteristic of isogeometry is: to go from Ω to R we don’t use the ψ function,

but we go around using ϕ ◦G−1. So for x = (x1, x2) ∈ Ω and ξ = (ξ1, ξ2) ∈ Ω̂ it holds

that:

ψ(x1, x2) = ϕ ◦G−1(x1, x2) = ϕ(G−1(x1, x2)) = ϕ(ξ1, ξ2).

Figure 3: Graphical representation of the isoparametric concept in 2D.

B-splines or NURBS-based isogeometric analysis uses the B-splines or the NURBS

basis functions in order to approximate the solution of a PDE.
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More precisely, in one dimension, the geometry mapping G couldn’t be other than

the linear mapping since Ω̂ = [0, 1] and Ω are intervals. Therefore the finite approxi-

mation space in which the numerical solution lies is

Bp = span{ϕ : ϕ is a linearly reparametrized B-spline or NURBS basis function of degree p }.

In two dimensions, let G : [0, 1]2 → Ω be the parametrization of the physical domain

of the form G(ξ) = (G1(ξ1, ξ2), G2(ξ1, ξ2)). Recall that the Jacobian is defined as:

JG(ξ1, ξ2) =

[
∂G1(ξ1,ξ2)

∂ξ1

∂G2(ξ1,ξ2)
∂ξ1

∂G1(ξ1,ξ2)
∂ξ2

∂G2(ξ1,ξ2)
∂ξ2

]
.

We assume that the Jacobian of G and its inverse are non-singular. The space of

B-spline or NURBS basis functions on Ω is defined as:

Bp,q = span{ϕ ◦G−1: ϕ is a tensor product of two B-spline or NURBS basis

functions of degree p and q}.

3.3 REFINEMENTS

In order to have more precise isogeometric solutions to the PDE using B-splines or

NURBS basis functions, we use three different procedures called refinements. With

refinements we enrich the basis, but the underlying geometry and its parametrization

remain intact. By doing refinements we have control over the element size, the degree

of the basis and we can control the continuity of the basis. We will present three

refinements: knot insertion, degree elevation and k-refinement.

The first mechanism by which one can enrich the basis is knot insertion. Knots

may be inserted without changing a curve geometrically or parametrically. Given a

knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, we introduce the notion of an extended knot vector

Ξ = {ξ1 = ξ1, ξ2, ..., ξn+m+p+1 = ξn+p+1} such that Ξ ⊂ Ξ, which has m new knots.

Moreover, let B be the original set of control points of cardinality n. Then the new

set of control points, say B that one has to take in order to obtain the exact same

geometry is defined by the transformation: B = T pB, where T p is defined recursively

as:

� for q = 0:

T 0
i,j =

1, if ξj ≤ ξ̄i < ξj+1

0, otherwise
(3.1)

� for q = 1, 2, ..., p:

T qi,j =
ξi+q − ξj
ξj+q − ξj

T q−1
i,j +

ξj+q+1 − ξi+q
ξj+q+1 − ξj+1

T q−1
i,j+1 (3.2)
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for all i = 1, 2, ..., n+m and for all j = 1, 2, ..., n.

Knot values already present in the knot vector may be repeated in this way, thereby

increasing their multiplicity, the continuity of the basis will be reduced. However,

continuity of the curve is preserved by choosing the control points in this way. Each

unique internal knot value may appear no more than p times or the curve becomes

discontinuous. Each time that we do knot insertion, we increase the number of control

points, elements and basis function, but the curve remains unchanged.

The second mechanism by which one can enrich the basis is degree elevation. The

process involves raising the polynomial degree of the basis functions used to represent

the geometry. Recall that the continuity of the basis at each knot is p−k, where k is the

multiplicity of the knot. Consequently, when p is increased, k must also be increased if

we want to preserve the discontinuities in the various derivatives already existing in the

original curve. During degree elevation, the multiplicity of each knot value is increased

by one, but no new knot values are added. The locations of the control points change,

but the elevated curve is geometrically and parametrically identical to the original

curve. The process for doing this involves subdividing the curve into many B-spline

curves by knot insertion, degree elevating each of these individual segments, and then

removing the unnecessary knots to combine the segments into one, degree-elevated,

B-spline curve.

Finally, k-refinement is a combination of degree elevation and knot insertion and

it stems from the fact that the processes of degree elevation and knot insertion do not

commute. More precisely, it consists first of elevating the degree from some p to some

q > p, and then of adding a knot ξ into the knot vector so that the basis functions at

ξ are Cq−1 continuous. While, if a knot ξ is inserted before elevating the degree from

p to q > p, then the basis functions at ξ would only be Cp−1 continuous.

These definitions were taken from [4, 9]. For more details about refinements, we

refer the interested reader to [5].

3.4 L2 APPROXIMATION

In this sub-chapter, we present the theory needed to construct the best approximant

using L2 approximation. We also present the normed spaces which we will use in the

next chapters. The next definitions and theorems are taken from [5,17,20].

Definition 3.8. The space of square-integrable functions on Ω ⊂ Rd is defined as

L2(Ω) =

{
u : Ω 7→ R such that

∫
Ω

u2 dΩ < +∞
}
.
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The corresponding norm is defined as

‖u‖L2(Ω) =
√
〈u, u〉L2(Ω) =

√∫
Ω

u2 dΩ.

The aim of the L2 approximation is: given a function f ∈ X we want to approximate

it with another function f̃ ∈ S ⊆ X. Let X = L2(Ω) be equipped with the norm as

in Def. 3.8 and let S ⊆ X. For any functions f, g ∈ X we define the continuous inner

product as

〈f, g〉L2(Ω) =

∫
Ω

f · g dΩ.

In the subset S we have ensured the existence and uniqueness of the best approxi-

mant (see [20], Chapter 9).

Theorem 3.9. Let X = L2(Ω) and S ⊆ X. The element f̃ ∈ S is the best approximant

by the L2 approximation method for f ∈ X if and only if 〈f − f̃ , s〉L2(Ω) = 0 for all

s ∈ S.

Proof. For brevity we will write ‖ · ‖ and 〈·, ·〉 instead of ‖ · ‖L2(Ω) and 〈·, ·〉L2(Ω),

respectively.

Suppose 〈f − f̃ , s〉 = 0 for each s ∈ S. Then

‖f − s‖2 = ‖f − f̃ + f̃ − s‖2 =

∫
Ω

(f − f̃ + f̃ − s)2 dΩ =

= 〈f − f̃ , f − f̃〉+ 2〈f − f̃ , f̃ − s〉+ 〈f̃ − s, f̃ − s〉 =

= ‖f − f̃‖2 + 2〈f − f̃ , f̃ − s〉︸ ︷︷ ︸
=0, since f̃−s∈S

+‖f̃ − s‖2 =

= ‖f − f̃‖2 + ‖f̃ − s‖2︸ ︷︷ ︸
≥0

≥ ‖f − f̃‖2.

For the other direction, let s ∈ S, let λ > 0 be an arbitrary real number and let f̃ be

the best approximant. We need to prove that 〈f − f̃ , s〉 = 0 for all s ∈ S. Since f̃ +λs

is worse than f̃ , we have:

0 ≤ ‖f − f̃ + λs‖2 − ‖f − f̃‖2 =

= ‖f − f̃‖2 + 2λ〈f − f̃ , s〉+ λ2‖s‖2 − ‖f − f̃‖2 =

= 2λ〈f − f̃ , s〉+ λ2‖s‖2.

When λ converges to 0, also λ2 converges even faster to zero. Thus, λ2‖s‖2 can be

neglected and we have that 〈f − f̃ , s〉 ≥ 0. Since s has been chosen arbitrarily and we

know that −s ∈ S we have also that 〈f − f̃ ,−s〉 ≥ 0, which multiplied by -1 becomes

〈f − f̃ , s〉 ≤ 0. So, 〈f − f̃ , s〉 = 0 as desired.
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Let {Ni,p}, i = 1, 2, ..., n be the basis of the space S. It follows that we can write

f̃ ∈ S as f̃ =
∑n

i=1 αiNi,p for αi ∈ R. By Thm. 3.9, it must hold that f−
∑n

i=1 αiNi,p ⊥
S, which we can write as

n∑
i=1

αi〈Ni,p, Nj,p〉 = 〈f,Nj,p〉 for j = 1, 2, ..., n. (3.3)

Now, let us denote by Sij = 〈Ni,p, Nj,p〉 and Fj = 〈f,Nj,p〉, where the inner product

is defined as in Def 3.8. Moreover, let S = [Sij], F = [Fj] and a = [αi]. For i, j =

1, 2, ..., n we can then write Eq. (3.3) in the matrix form as

Sa = F

where S is a symmetric positive definite Gram matrix.

Remark 3.10. Note that if Ω ⊆ R2, the geometry mapping G is not a linear map and

therefore we need to be careful, when we reparametrize the domain Ω̂ = [0, 1]2 into Ω.

So the inner products in Eq. (3.3) become:

Sij = 〈Ni,p, Nj,p〉 =

∫
Ω

Ni,p(x1, x2) ·Nj,p(x1, x2) dx =

=

∫
[0,1]2

Ni,p(ξ1, ξ2) ·Nj,p(ξ1, ξ2) · |detJG(ξ1, ξ2)| dξ,

Fi = 〈f,Nj,p〉 =

∫
Ω

f(x1, x2) ·Nj,p(x1, x2) dx =

=

∫
[0,1]2

f(ξ1, ξ2) ·Nj,p(ξ1, ξ2) · |detJG(ξ1, ξ2)| dξ.

Our aim in this work is to estimate the error between the exact solution and the

approximated solution obtained using the isogeometric collocation method. Mathe-

matically, the notion of the measure of the error implies a particular choice of norm

and therefore of the inner product. Next, we will define other normed spaces that we

will observe in the next chapters, specially in Chapter 7, where we will use this norms

to calculate the relative errors of the approximated functions. But firstly, let us define

the derivative operator.

Definition 3.11. Let α = (α1, α2, ..., αd) ∈ Nd, where d is the spatial dimension, be a

multi-index (that is: d-tuple of non-negative integers) such that the order |α| =
∑d

i=1 αi

is at most k ∈ N. The derivative operator is denoted as

Dαu =
∂|α|u

∂xα1
1 · ∂xα2

2 · · · ∂x
αd
d

=
∂α1

∂xα1
1

· ∂
α2

∂xα2
2

· · · ∂
αd

∂xαd
d

u.

Definition 3.12. Let k = 1. The Sobolev space H1(Ω) is the space of functions that

have square integrable derivatives and it is defined as

H1(Ω) = {u : Dαu ∈ L2(Ω), |α| ≤ 1}.
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The associated norm is given by

‖u‖H1(Ω) =
√
〈u, u〉H1(Ω),

while the inner product is defined as:

〈u, v〉H1(Ω) =
∑
|α|≤1

∫
Ω

Dαu ·Dαv dΩ,

where u and v are two functions in Ω.

Definition 3.13. Let k = 2. The Sobolev space H2(Ω) is the space that have, not just

square integrable first derivatives, but also square integrable second derivatives, and it

is defined as

H2(Ω) = {u : Dαu ∈ L2(Ω), |α| ≤ 2}.

The norm associated with H2(Ω) is given by

‖u‖H2(Ω) =
√
〈u, u〉H2(Ω),

while the inner product is defined as:

〈u, v〉H2(Ω) =
∑
|α|≤2

∫
Ω

Dαu ·Dαv dΩ.
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4 POISSON’S PARTIAL

DIFFERENTIAL EQUATION

We will now define the strong form of Poisson’s PDE as boundary value problem, which

is an elliptic, linear, second-order PDE. The definitions are taken from [5,17,19].

Definition 4.1. Consider a domain Ω ⊂ Rd, i.e. an open, bounded and connected

set, and let ∂Ω be its boundary. Also let x = (x1, x2, ..., xd) be a d-tuple. The strong

formulation of the Poisson equation is

∆u(x) = f(x) for x ∈ Ω,

where f = f(x) is a given function and the symbol ∆ denotes the Laplacian operator,

which is defined as

∆u(x) =
d∑
i=1

∂2u

∂x2
i

.

To obtain a unique solution, we need to add suitable boundary conditions, which

means that we need information about the behaviour of the solution u = u(x) at the

domain boundary ∂Ω. For instance, we can assign different boundary conditions:

� Dirichlet boundary condition: the value of the solution u on the boundary is

u = g on ∂Ω,

where g : ∂Ω → R is a given function. If g = 0, the boundary condition is said

to be homogeneous.

� Neumann boundary condition: the value of the normal derivative of u can be

imposed as

∆u · n =
∂u

∂n
= h on ∂Ω,

where n is the outward unit normal vector on ∂Ω and h : ∂Ω → R is a given

function. If h = 0, the condition is said to be homogeneous.

� Mixed boundary conditions: different types of conditions can be assigned to

different portions of the boundary of the computational domain Ω. For instance,

if ∂Ω = ΓD ∪ ΓN such that Int(ΓD) ∩ Int(ΓN) = ∅, we can impose the mixed

boundary conditions: u = g on ΓD

∂u
∂n

= h on ΓN .
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From now on, we will only consider the Poisson’s PDE with Dirichlet boundary condi-

tion and we will focus specially on one and two dimensional cases.

4.1 WEAK FORM APPROXIMATION BASED ON ISOGE-

OMETRIC ANALYSIS

In this sub-chapter, we will derive the weak formulation of the Poisson’s equation with

Dirichlet boundary condition for the one and two dimensional cases, which we will need

for the Galerkin method. To get the weak formulation, we need to characterize two

classes of functions: the collection of trial solutions and the set of weighting functions.

Definition 4.2. The collection of trial solutions is the collection of functions defined

as:

S = {u|u ∈ H1(Ω), u |∂Ω= g}.

The collection of weighting functions is a collection of functions which is similar to the

trial solutions, but in this case we require the homogeneous counterpart of the Dirichlet

boundary condition. The collection of weighting functions is defined as:

V = {v|v ∈ H1(Ω), v |∂Ω= 0}.

Let us consider the next non-homogeneous one dimensional Poisson’s PDE:u′′(x) = f(x) for x ∈ Ω

u(x) = g(x) for x ∈ ∂Ω
(4.1)

where Ω ⊆ R is the physical space, u : Ω → R is the solution, while f : Ω → R and

g : ∂Ω→ R are given sufficiently regular functions.

Lemma 4.3. The weak formulation of the Poisson’s PDE in one dimension is:

−
∫

Ω

u′(x)v′(x) dx =

∫
Ω

f(x)v(x) dx

where f is a given function and u ∈ S is the solution that holds for all v ∈ V .

Proof. To obtain a weak formulation of the Poisson’s equation we need to first multiply

the equation with a test function v ∈ V and then we need to integrate it by parts:∫
Ω

u′′(x)v(x) dx =

∫
Ω

f(x)v(x) dx

[u′(x)v(x)]

∣∣∣∣
∂Ω

−
∫

Ω

u′(x)v′(x) dx =

∫
Ω

f(x)v(x) dx.

The boundary term vanishes because v |∂Ω= 0 for v ∈ V and so we get the desired.
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We can write the above equation in a more concise form as:

−a(u, v) = L(v)

where

a(u, v) =

∫
Ω

u′(x)v′(x) dx and L(v) =

∫
Ω

f(x)v(x) dx.

Let us now observe the two dimensional Poisson’s PDE:∆u(x) = f(x) for x ∈ Ω

u(x) = g(x) for x ∈ ∂Ω
(4.2)

where Ω ⊆ R2 is the physical domain, x = (x1, x2), u : Ω → R is the solution, while

f : Ω→ R and g : ∂Ω→ R are given sufficiently regular functions.

Lemma 4.4. The weak formulation of the Poisson’s PDE in two dimensions is:

−
∫

Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x)v(x) dx,

where f is a given function and u ∈ S is the solution that holds for all v ∈ V .

Proof. As in the one-dimensional case, to get the weak form of the PDE, we have to

multiply the equation with a test function v ∈ V and then integrate by parts:∫
Ω

∆u v dΩ =

∫
Ω

fv dΩ.

Note that for brevity we omit the variables, i.e. we write just the functions. Since

we are in two dimensions, we need an extension of the formula of partial integration.

Recall the divergence (Gauss) theorem that says:∫
Ω

∇ ◦ a dΩ =

∫
∂Ω

a · n dγ,

where a(x) = (a1(x), a2(x))T is a sufficiently regular vector-valued function, n(x) =

(n1(x), n2(x))T is the outward unit normal vector on ∂Ω and the symbol ∇ denotes

the divergence, which in 2 dimensions is defined as

∇ ◦ a(x) =
2∑
i=1

∂ai
∂xi

.

If we apply the Gauss theorem first to the function a = (uv, 0)T and then to a =

(0, uv)T and if we recall the product rule: ∂
∂xi

(fg) = g ∂f
∂xi

+ f ∂g
∂xi

, we get the relations:∫
Ω

u
∂v

∂xi
dΩ +

∫
Ω

v
∂u

∂xi
dΩ =

∫
∂Ω

uvni dγ, i = 1, 2.
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Using these last relations, the fact that ∆u = ∇ · ∇ ◦ u =
∑2

i=1
∂
∂xi

( ∂u
∂xi

) and that

v |∂Ω= 0, since v ∈ V , we can modify the first integral in the next way:∫
Ω

∆uv dΩ =

∫
Ω

2∑
i=1

∂

∂xi

(
∂u

∂xi

)
v dΩ =

= −
2∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dΩ +

2∑
i=1

∫
∂Ω

∂u

∂xi
vni dγ︸ ︷︷ ︸

=0

=

= −
∫

Ω

2∑
i=1

∂u

∂xi

∂v

∂xi
dΩ = −

∫
Ω

∇u · ∇v dΩ

Similarly as in the one dimensional case, we can write the weak formulation of the

Poisson’s PDE in two dimensions in a more concise form as:

−a(u, v) = L(v)

where in this case

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx and L(v) =

∫
Ω

f(x)v(x) dx.

Here we see that despite in the strong form solution u must have well defined second

derivatives, the weak form only requires that first derivatives are square-integrable.

Also it can be shown that the weak solution and the strong solution are equivalent

almost everywhere (see [14]).

4.2 THE GALERKIN ISOGEOMETRIC METHOD

Galerkin method consists of constructing finite-dimensional approximations of S and

V , denoted by Sh ⊂ S and V h ⊂ V , which will be associated with subsets of the

space spanned by the isoparametric basis. Let gh be the approximation function of g

obtained using the L2 approximation. We can characterize Sh by recognizing that if

we have the given function gh ∈ Sh such that gh = g on ∂Ω, then for every uh ∈ Sh

there exists a unique vh ∈ V h such that uh = vh + gh. We can now write a variational

equation of the weak form of the Poisson’s PDE. The Galerkin form of the problem is:

Given gh, find uh = vh + gh, where vh ∈ V h, such that for all wh ∈ V h:

−a(wh, uh) = L(wh).

Since the functions spaces used in the Galerkin method are finite-dimensional, we

are dealing with a coupled system of linear algebraic equations. Let Bp be the solution
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space defined in Chapter 3.2. Without loss of generality we can assume a numbering

for these functions such that there exists an integer neq < n such that ∀i = 1, 2, ..., neq,

Ni,p = 0 on ∂Ω. Thus, for all wh ∈ V h, there exist constants ci, i = 1, 2, ..., neq such

that

wh =

neq∑
i=1

ciNi,p.

Now, we can write that for any uh ∈ Sh there exist di, i = 1, 2, ..., neq such that

uh = vh + gh =

neq∑
i=1

diNi,p + gh. (4.3)

Now we need to recall some definitions of functional analysis (which are taken

from [17]).

Definition 4.5. Given a function space V , a functional F on V is an operator associ-

ating a real number to each element of V , that is:

F : V 7→ R.

A functional is said to be linear if

F (λv + µw) = λF (v) + µF (w) ∀λ, µ ∈ R, ∀v, w ∈ V,

and it is said to be bounded if there is a constant c > 0 such that

|F (v)| ≤ c ‖ v ‖V ∀v ∈ V.

Definition 4.6. Given a normed functional space V we call form an application which

associates to each pair of elements of V a real number, a : V × V 7→ R. A form is

called bilinear if it is linear with respect to both arguments, that is, if

a(λu+ µw, v) = λa(u, v) + µa(w, v) ∀λ, µ ∈ R,∀u, v, w ∈ V,

a(u, λw + µv) = λa(u,w) + µa(u, v) ∀λ, µ ∈ R, ∀u, v, w ∈ V.

A form is called symmetric if a(u, v) = a(v, u), ∀u, v ∈ V .

Now, since a(·, ·) is bilinear, we can derive from the Galerkin form that for all

wh ∈ V h:

a(wh, vh) = −L(wh)−a(wh, gh) −→
neq∑
i=1

ci

(
neq∑
j=1

a(Ni,p, Nj,p)dj + L(Ni,p) + a(Ni,p, g
h)

)
= 0.

As the ci’s are arbitrary, it follows that the term in parentheses must vanish; thus,

for i = 1, 2, ..., neq we have

neq∑
j=1

a(Ni,p, Nj,p)dj = −L(Ni,p)− a(Ni,p, g
h). (4.4)
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Now, define Kij = a(Ni,p, Nj,p), Fi = L(Ni,p) + a(Ni,p, g
h) and moreover K = [Kij],

F = [Fi] and d = [di]. For i, j = 1, 2, ..., neq we can rewrite the Eq. (4.4) as a linear

system

Kd = −F ,

where K is usually called the stiffness matrix, F force vector and d the displacement

vector. We can now get di for i = 1, 2, ..., neq as d = K−1(−F ) and inserting them in

Eq. (4.3) we can finally write the solution uh:

uh =

neq∑
i=1

diNi,p + gh.

If we are in a two dimensional space, we need to use the geometry mapping to

parametrize our domain, similarly as we showed in the L2 approximation.

Lemma 4.7. Let us use the same notation as in the Chapter 3.2. Let ψi : Ω → R
and ϕi : [0, 1]2 → R be elements in the finite dimensional space V h for i = 1, 2. Let

G : [0, 1]2 → Ω be the geometry mapping. Then the next equality holds:∫
Ω

∇ψi(x) · ∇ψj(x) dx =

∫
[0,1]2

(JG(ξ)−1∇ϕi(ξ)) · (JG(ξ)−1∇ϕj(ξ)) · |det JG(ξ)| dξ

where JG denotes the Jacobian of G.

Proof. We need to show that ∇ϕ(ξ) = JG(ξ)∇ψ(x). Let us look at

∇ϕ(ξ) =

[
∂ϕ(ξ1,ξ2)

∂ξ1
∂ϕ(ξ1,ξ2)

∂ξ2

]
=

[
∂ψ(G(ξ1,ξ2))

∂ξ1
∂ψ(G(ξ1,ξ2))

∂ξ2

]

Using the chain rule ∂f(x(t),y(t))
∂t

= ∂f
∂x
· dx
dt

+ ∂f
∂y
· dy
dt

we get

∇ϕ(ξ) =

[
∂ψ(x1,x2)

∂x1
· ∂G1(ξ1,ξ2)

∂ξ1
+ ∂ψ(x1,x2)

∂x2
· ∂G2(ξ1,ξ2)

∂ξ1
∂ψ(x1,x2)

∂x1
· ∂G1(ξ1,ξ2)

∂ξ2
+ ∂ψ(x1,x2)

∂x2
· ∂G2(ξ1,ξ2)

∂ξ2

]
=

=

[
∂G1(ξ1,ξ2)

∂ξ1

∂G2(ξ1,ξ2)
∂ξ1

∂G1(ξ1,ξ2)
∂ξ2

∂G2(ξ1,ξ2)
∂ξ2

][
∂ψ(x1,x2)

∂x1
∂ψ(x1,x2)

∂x2

]
= JG(ξ1, ξ2)∇ψ(x1, x2).

In our case Ni,p ∈ V h so by using Lemma 4.7 on the two forms in Eq. (4.4), we get

a(Ni,p, Nj,p) =

∫
Ω

∇Ni,p(x) · ∇Nj,p(x) dx =

=

∫
[0,1]2

(JG(ξ)−1∇Ni,p(ξ)) · (JG(ξ)−1∇Nj,p(ξ)) · |det JG(ξ)| dξ

L(Ni,p) =

∫
Ω

f(x)Ni,p(x) dx =

∫
[0,1]2

f(G(ξ)) ·Ni,p(ξ) · |det JG(ξ)| dξ.

Clearly, if we will have NURBS instead of B-splines basis functions, the procedure

would be the same.
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Example 4.8. Let Ξ = {0, 0, 0, 0, 1

4
,
1

2
,
3

4
, 1, 1, 1, 1}. In Figure 4 we approximate the

one dimensional homogeneous Poisson’s PDE:u′′(x) = −9
2
π2 sin(3πx), x ∈ (0, 1)

u(0) = u(1) = 0,
,

with GIM, using Ξ as the uniform and open knot vector.

Figure 4: The exact solution u(x) = 1
2

sin(3πx) (in blue) and the approximated solution

(in red) obtained by using GIM.
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5 ISOGEOMETRIC COLLOCATION

METHOD

In contrast to the Galerkin isogeometric method, isogeometric collocation is based on

the evaluation of the strong formulation of the PDE at a set of discrete points called

collocation points. This method requires basis functions that are sufficiently smooth

to handle possibly high order differential operators. In this work we use B-spline (or

NURBS) basis functions as basis functions for the method. Let us consider now the

ICM for Poisson’s PDE.

5.1 SOLVING POISSON’S PDE

Let us consider the next Poisson’s PDE:∆u = f on Ω

u = g on ∂Ω

where Ω ⊆ Rd, d = 1, 2, is the physical domain, u : Ω → R is the solution, while

f : Ω → R and g : ∂Ω → R are a given sufficiently regular functions. We assume

that the problem has a unique solution u. The collocation method used to solve this

problem is based on the choice of a finite set of collocation points and the choice of them

directly influence the stability and convergence properties of the collocation scheme.

In general, collocation points are defined in the parametric space Ω̂ from which the

B-spline or NURBS geometry Ω has been built. So, let Ĉ := {τ̂i}i∈I ⊂ Ω̂ and let

τi := G(τ̂i) for all i ∈ I, where G is the geometry mapping Ω̂ → Ω. We then define

C := {τi}i∈I ⊂ Ω. Let us separate C into two distinct sets: CB corresponds to the set

of collocation points belonging to the boundary ∂Ω, and CI corresponds to the set of

collocation points belonging to the interior of Ω. This is equivalent to separating Ĉ

into the set of points belonging to the boundary ∂Ω̂ and the set of points belonging to

the interior of Ω̂, and then mapping the two sets to Ω through G. Then the collocation

problem becomes ∆u(τ) = f(τ), for each τ ∈ CI
u(τ) = g(τ), for each τ ∈ CB.
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Let Bp be the space in which the solution of the differential equation is sought, where

p ∈ N \ 0 is the degree of the underlying B-splines, and let n be the dimension of Bp.
Moreover, let Ni,p, i = 1, 2, ..., n be the B-spline basis functions of Bp. Then there exist

ci ∈ R, i = 1, 2, ..., n, such that u =
∑n

i=1 ciNi,p. Consequently, the collocation problem

is transformed into the following linear system whose unknowns are the coefficients ci:
∑n

i=1 ci∆Ni,p(τ) = f(τ), for each τ ∈ CI ,∑n
i=1 ciNi,p(τ) = g(τ), for each τ ∈ CB.

(5.1)

The linear system for the one dimensional case can be written in a matrix form as

Ac = f , where A ∈ Rn×n, c ∈ Rn, f ∈ Rn and

A =



N1,p(τ1) N2,p(τ1) · · · Nn,p(τ1)

N ′′1,p(τ2) N ′′2,p(τ2) · · · N ′′n,p(τ2)
...

...
. . .

...

N ′′1,p(τn−1) N ′′2,p(τn−1) · · · N ′′n,p(τn−1)

N1,p(τn) N2,p(τn) · · · Nn,p(τn)


, c =



c1

c2

...

cn−1

cn


and f =



g(τ1)

f(τ2)
...

f(τn−1)

g(τn)


.

This formulation gives rise in general to a non-symmetric (but diagonally dominant)

system matrix and if the choice of the collocation points leads to a well-posed problem,

it can be easily solved to find the solution u ∈ Bp.
If two dimensional case is considered, we need to use the geometry mapping G to

parametrize the domain.

Lemma 5.1. Let ϕi : Ω̂ → R and ψi : Ω → R for i = 1, 2 be two functions (as in

Figure 3). Moreover, let JG(ξ) be the Jacobian of the geometry mapping G : Ω̂ → Ω.

Then:

∆ψi(x) =
1√

det([JG(ξ)]TJG(ξ))
∇(M(ξ)∇ϕi(ξ)),

where

M(ξ) =
√

det([JG(ξ)]TJG(ξ)) · ([JG(ξ)]TJG(ξ))−1.

The proof of Lemma 5.1 can be found in [3]. By Lemma 5.1, the linear system (5.1)

in two dimensions becomes:


∑n

i=1

∑n
j=1

ci·j√
det([JG(τ )]T JG(τ ))

∇(M(τ )∇(Ni,p(τ )Nj,p(τ ))) = f(τ ), for each τ ∈ CI ,∑n
i=1

∑n
j=1 ci·jNi,p(τ )Nj,p(τ ) = g(τ ), for each τ ∈ CB,

where τ = (τ1, τ2). The solution u of a 2 dimensional Poisson’s PDE using ICM is

then sought in the space Bp,p. Note that, in two dimensions, collocation points are

first defined on each direction of the parametric space and then obtained on the whole
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space thanks to a tensor-product rule. Similarly as in the one dimensional case, the

linear system can be written in a matrix form, where the matrix on the left side has

dimensions n2 × n2, while the vector of unknowns, c, and the vector on the right side

have dimension n2.

5.2 GREVILLE COLLOCATION POINTS ANDDEMKOCOL-

LOCATION POINTS

The most widely used isogeometric collocation points are the Greville collocation

points.

Definition 5.2. Let Ξ = {ξ1, ξ2, ..., ξn+p+1} be a given knot vector as in the Def. 2.1

and let us consider univariate B-splines, then the Greville collocation points (GCP)

are defined as the mean of p consecutive knots, that is:

τ̂i :=
ξi+1 + ξi+2 + ...+ ξi+p

p
, τi = G(τ̂i), i = 1, 2, ..., n.

If we use open knots, ξ1 = ξ2 = ... = ξp+1 and ξn+1 = ξn+2 = ... = ξn+p+1, then it

is easy to see that in this case, τ̂1 = ξ1 and τ̂n = ξp+n+1. Figure 5 shows the Greville

collocation points for p = 3, ..., 7 on a knot vector with 8 elements. In the case of

bivariate B-splines, Greville points are defined by means of a tensor product rule.

Definition 5.3. Let Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1} be two knot

vectors, where p and q are polynomial degrees, n and m are the numbers of B-spline

basis functions for Ξ and H, respectively. Then, the Greville collocation points for a

two dimensional space are defined as τ̂ij := (ξ̂i, η̂j), where

ξ̂i :=
ξi+1 + ξi+2 + ...+ ξi+p

p
, η̂j :=

ηj+1 + ηj+2 + ...+ ηj+q
q

.

Further we can map these points with the geometry mapping G : Ω̂→ Ω to get

τij = G(τ̂ij), i = 1, 2, ..., n, j = 1, 2, ...,m.

The procedure is the same if instead of taking B-splines basis functions, we take

NURBS.

The other very widely used isogeometric collocation points are the Demko colloca-

tion points (DCP). Those points correspond to the extrema of the Chebyshev splines,

that are the splines whose extrema take the values ±1 and that have the maximum

number of oscillations. Demko points can be obtained thanks to Remez iterative algo-

rithm. The Remez iterative algorithm is an efficient algorithm that constructs a unique

minmax polynomial given an initial set of points. The minmax polynomial is such a
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Figure 5: Distribution of GCP for p = 3, ..., 7, on a knot vector with 8 elements.

polynomial that minimizes the maximum vertical distance between the polynomial and

the function in consideration. Unlike the Greville points, there is no explicit formula for

the Demko points, but it can be easily determined using the built in function chbpnt

in MATLAB (see [8]). This built in function uses as initial guess the spline that takes

alternatively the values 1 and −1 at the sequence, which is composed of averages of

successive p knots. Figure 6 shows the Demko collocation points for p = 3, ..., 7 on a

knot vector with 8 elements. We refer the interested readers to [6, 10].
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Figure 6: Distribution of DCP for p = 3, ..., 7, on a knot vector with 8 elements.
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6 SUPERCONVERGENT

COLLOCATION POINTS

In this chapter, we discuss a choice of collocation points for which the solution obtained

using isogeometric collocation method behaves similarly to the standard Galerkin iso-

geometric approximation. The main idea of this method is that we seek the collocation

points for which the error in the second derivatives of Galerkin approximation is small.

We will see that there are at least two superconvergent points per element, so if we take

all of them, we obtain an overdetermined system of equations. This is why, we will,

later on, consider the Alternating and Clustered superconvergent collocation points,

which are subsets of superconvergent collocation points with cardinality equal to the

number of B-spline basis functions (n).

Let uh be the approximated solution of a Poisson’s PDE with Dirichlet boundary

condition obtained by the Galerkin isogeometric method based on B-splines and let u

be its exact solution.

The superconvergent collocation points are the zeros of the Galerkin residual, that

is, the zeros of D2(u − uh). In [11] it is proven that there exist at least n distinct

superconvergent points for a space of dimension n and the collocation at those points

produces the Galerkin solution exactly. We also refer the readers to [1], where it is

investigated the use of the superconvergent points, in the second derivative, in collo-

cation.

Since in practice we don’t know the exact solution, and therefore neither the “exact”

superconvergent points, we will use a method to find the “surrogate” superconvergent

points (see [1, 11, 15]). We assume that the superconvergent points are element in-

variant, which means, that the points do not change their properties, if we map them

with an affine mapping from a reference domain to another one. Their locations are

presented in the Table 4 for the reference domain [−1, 1]. From now on, we will call

the “surrogate” superconvergent points just as superconvergent points for simplicity,

even if this is not really true.
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6.1 METHOD FOR FINDING SUPERCONVERGENT

POINTS

We will now see a general method (which is described in [11]) to find superconvergent

points for B-splines of degree p and maximum continuity µ = p − 1. In the next

sections, we will assume that the knot vector is open and uniform. As before, let u

be the exact solution of the Poisson’s PDE, uh the solution obtained using the GIM

and define r = p + 1. Firstly, we need to perform the Taylor expansion of the error

e = u − uh up to order r. The method is based on the a priori assumption that the

coefficients of the error expansion are the same in each knot span so that the expansion

reads

e = c0P0 + c1P1 + ...+ crPr +R in [−1, 1] (6.1)

with R = O(hr+1) as the remainder. Here Pm denotes the Legendre polynomial of

degree m on the normalized domain [−1, 1], and cm is the corresponding coefficient

in the Taylor expansion, for m = 0, 1, 2, ..., r. In this case h is a mesh length scale,

moreover, the knot span length. Our goal is to define a set of equations that allows

us to derive the coefficients of the Taylor expansion to eventually find the roots of e′′

on each knot span. So we need to find for a knot span the r + 1 coefficients in the

expansion up to a scaling factor. These conditions stem from

� the conditions on superconvergence of e (for even p) or of e′ (for odd p) at knots

and midpoints (see [21]) and

� the continuity conditions of e and its derivatives up to order µ at the knots.

As follows, we will see how to find the coefficients c0, c1, c2, ..., cr for the cases of even

and odd p.

For multi-dimensional problems on a B-spline or NURBS single-patch geometry,

the supeconvergent points can be obtained by further mapping the tensor product of

one-dimensional superconvergent points through the geometry map G in the physical

domain. Clearly, the same considerations of the one-dimensional case are valid.

6.1.1 Points for even p

For p = 2, it is known (see [21]) that superconvergent points for the second derivative

are located at the midpoints of each knot span. These points coincide with Greville

points. For p > 2, it is known (see [21]) that e is superconvergent at the knots and at

the midpoint of each knot span. This can be written as e(−1) = e(0) = e(1) = O(hr+1)

and leads to the first set of equations:

e(1)+e(−1) = c0P0(1)+c2P2(1)+...+cr−1Pr−1(x) = c0+c2+...+cr−1 = O(hr+1), (6.2)
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e(1)− e(−1) = c1P1(1) + c3P3(1) + ...+ crPr(x) = c1 + c3 + ...+ cr = O(hr+1), (6.3)

e(0) = c0P0(0) + c2P2(0) + ...+ cr−1Pr−1(0) = O(hr+1). (6.4)

The second set of conditions is about the continuity. The continuity of e is already

taken in consideration in Eq. (6.3), but we also need that the continuity holds for e′,

e′′ and all subsequent derivatives up to order µ. At this point it is important to recall

one of the identities regarding Legendre polynomials: Pm(−x) = (−1)mPm(x). Using

this identity we get the next continuity equations:

e′(1)− e′(−1) = c2P
′
2(1) + c4P

′
4(1) + ...+ cr−1P

′
r−1(1) = O(hr+1)

e′′(1)− e′′(−1) = c3P
′′
3 (1) + c5P

′′
5 (1) + ...+ crP

′′
r (1) = O(hr+1)

...

e(µ)(1)− e(µ)(−1) = P
(µ)
r−1cr−1 = O(hr+1)⇒ cr−1 = O(hr+1).

The last equation, in combination with continuity conditions of the odd derivatives e′,

e′′′,...,e(µ) and with the Eq. (6.4), gives

c0 = c2 = ... = cr−1 = O(hr+1),

which eliminates all terms with even index from the expansion Eq. (6.1) and the

Eq. (6.2) becomes useless. Therefore, we are left with Eq. (6.3), and all the conti-

nuity conditions of the even derivatives e′′, e(4),..., e(µ−1). This means that we have

1 + r−3
2

= r−1
2

equations and r+1
2

unknowns, and so the number of unknowns is one

less then the number of equations, as desired. The wanted coefficients can be then

computed by solving:


P1(1) P3(1) P5(1) · · · Pr−2(1) Pr(1)

0 P ′′3 (1) P ′′5 (1) · · · P ′′r−2(1) P ′′r (1)
...

...
...

. . .
...

...

0 0 0 · · · P
(µ−1)
r−2 (1) P

(µ−1)
r (1)



c1

c3

...

cr

 =


0

0
...

0

 (6.5)

from which we get the coefficients c3, c5, ..., cr as functions of c1. Moreover we obtain

that

e(x) = c1(P1(x) + k1P3(x) + ...+ k r−1
2
Pr(x)) +O(hr+1), (6.6)

where k1, ..., k r−1
2

are the coefficients of c1 obtained from the system (6.5). So now, we

found the coefficients of the error function of a knot span. To standardize the location

of superconvergent points, we need to map the Eq. (6.6) to the interval [−1, 1], which

we can do, since we assumed the element invariant property of superconvergent points.

The parameter c1 can be simply thought of as a scaling factor which does not alter the
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roots of e′′, so we can eliminate it. If we now call eR, the error function on the interval

[−1, 1] we conclude that

eR(η) ≈ P1(η) + k1P3(η) + ...+ k r−1
2
Pr(η), η ∈ [−1, 1]. (6.7)

The last step is to calculate e′′R(η) and to solve e′′R(η) = 0. In this case we get three

searching superconvergent points on the interval [−1, 1]. The pseudo-code of the algo-

rithm for finding superconvergent points for p even is presented in Algorithm 1.

Algorithm 1: Superconvergent points for even p on [−1, 1].

Input: Polynomial degree p.

Output: Vector s of superconvergent points on [−1, 1].

1 r := p+ 1;

2 µ := p− 1;

3 x := {xi|i = 1, 2, ..., p
2

+ 1};
4 for j = 0, 2, 4, . . . , µ− 1

5 for i = 1, 3, 5, . . . , r

// A = matrix on the right-hand side of dimension r+1
2
× r−1

2
.

6 A[i, j] := j-th derivative of Pi(x);

7 c← solution of A · x = 0;

8 e(x) =
∑ r−1

2
i=1 c[i] · P2i−1(x);

9 s← solution of e′′(x) = 0;

10 return s;

6.1.2 Points for odd p

For odd p, it is known (see [21]) that e′ is superconvergent at the knots and at the

midpoint of each knot span. This can be written as e′(−1) = e′(0) = e′(1) = O(hr)

and leads to the first set of equations:

e′(1) + e′(−1) = c1 + c3P
′
3(1) + ...+ cr−1P

′
r−1(1) = O(hr+1) (6.8)

e′(1)− e′(−1) = c2P
′
2(1) + c4P

′
4(1) + ...+ crP

′
r(1) = O(hr+1) (6.9)

e(0) = c1 + c3P
′
3(0) + ...+ cr−1P

′
r−1(0) = O(hr+1) (6.10)

Also in this case, the second set of conditions is about the continuity. The continuity

of e′ is already taken in consideration in Eq. (6.9), but we also need that the continuity

holds for e, e′′ and all subsequent derivatives up to order µ. Using the Legendre identity
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that we have mentioned before, we get the next continuity equations:

e(1)− e(−1) = c1 + c3 + ...+ cr−1 = O(hr+1)

e′′(1)− e′′(−1) = c3P
′′
3 (1) + c5P

′′
5 (1) + ...+ crP

′′
r (1) = O(hr+1)

...

e(µ)(1)− e(µ)(−1) = P
(µ)
r−1cr−1 = O(hr+1)⇒ cr−1 = O(hr+1).

The last equation, in combination with continuity conditions of e and of its even deriva-

tives e′′,...,e(µ−2), gives

c1 = c3 = ... = cr−1 = O(hr+1),

which eliminates all terms with odd index from the expansion Eq. (6.1) and the

Eqs. (6.8) and (6.10) become useless. Therefore, we are left with Eq. (6.9), and all

the continuity conditions of the odd derivatives e′′′, e(5),..., e(µ−1). This means that

we have 1 + r−4
2

= r−2
2

equations and r+2
2

unknowns. In this case we obtain that the

number of unknowns is two less then the number of equations. It can be shown that

c0 = 0. We omit the proof, because we are only interested in the derivatives of the

error, for which the coefficient c0 does not play any role. The desired coefficients can

be then computed, similarly as in the case for even p, by solving:


P ′2(1) P ′4(1) P ′6(1) · · · P ′r−2(1) P ′r(1)

0 P ′′′4 (1) P ′′′6 (1) · · · P ′′′r−2(1) P ′′′r (1)
...

...
...

. . .
...

...

0 0 0 · · · P
(µ−1)
r−2 (1) P

(µ−1)
r (1)



c2

c4

...

cr

 =


0

0
...

0

 , (6.11)

from which we get the coefficients c4, c6, ..., cr as functions of c2. Therefore we obtain

that

e(x) = c2(P2(x) + k1P4(x) + ...+ k r−2
2
Pr(x)) +O(hr+1), (6.12)

where k1, ..., k r−2
2

are the coefficients of c2 obtained from the system (6.11). So as before,

we found the coefficients of the error function of a knot span. Again, to standardize

the location of superconvergent points, we need to map the Eq. (6.12) to the interval

[−1, 1]. So, in this case, eR, the error function on the interval [−1, 1], rescaled to

eliminate the missing constant c2, can be approximated as

eR(η) ≈ P2(η) + k1P4(η) + ...+ k r−2
2
Pr(η), η ∈ [−1, 1]. (6.13)

The last step is identical as the one for even p: we calculate e′′R(η) and solve e′′R(η) = 0 so

we get the two searching superconvergent points on the interval [−1, 1]. The pseudo-

code of the algorithm for finding superconvergent points for p odd is presented in

Algorithm 2.

The error functions and their second derivatives for even and odd p are presented

in Table 3, while the zeros of e′′R are presented in Table 4.
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Algorithm 2: Superconvergent points for odd p on [−1, 1].

Input: Polynomial degree p.

Output: Vector s of superconvergent points on [−1, 1].

1 r := p+ 1;

2 µ := p− 1;

3 x := {xi|i = 1, 2, ..., p+1
2
};

4 for j = 1, 3, 5, . . . , µ− 1

5 for i = 2, 4, 6, . . . , r

// A = matrix on the right-hand side of dimension r
2
× r−2

2
.

6 A[i, j] := j-th derivative of Pi(1);

7 c← solution of A · x = 0;

8 e(x) =
∑ r−2

2
i=1 c[i] · P2i−2(x);

9 s← solution of e′′(x) = 0;

10 return s;

Table 3: Error functions and their second derivative for different degrees.

p eR(η) e′′R(η)

2 −5
2
η(η2 − 1) −15η

3 − 7
80

(15η4 − 30η2 + 7) 21
4

(1− 3η2)

4 7
16
η(3η4 − 10η2 + 7) 105

4
η(η2 − 1)

5 1
48

(21η6 − 105η4 + 147η2 − 31) 7
8
(15η4 − 30η2 + 7)

6 - 5
48
η(3η6 − 21η4 + 49η2 − 31) −35

8
η(3η4 − 10η2 + 1)

7 - 33
6400

(15η8 − 140η6 + 490η4 − 620η2 + 127) − 33
160

(21η6 − 105η4 + 147η2 − 31)

Table 4: Superconvergent points on interval [−1, 1] for different degrees.

p zeros of e′′

2 0

3 ± 1√
3

4 −1, 0, 1

5 ±0.51932962

6 −1, 0, 1

7 ±0.50491857
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6.2 LEAST-SQUARES AT SUPERCONVERGENT COLLO-

CATION POINTS (LS-SP)

As mentioned above, with the just described method, we get approximately twice as

many SCP points as needed to define a collocation scheme. Let the superconvergent

points be denoted as {ψi}i∈I . In details, let Ξ = {ξ1, ..., ξn+p+1} be a knot vector with

notation as in Def. 2.1, then we have found |I| = 2(n − p) SCP for odd polynomial

degree p and |I| = 3(n−p) SCP for even polynomial degree p. Note that we get enough

SCP only if |I| ≥ n, i.e. it must hold n ≥ 2p for p odd and 2n ≥ 3p for p even. Figure 7

shows the SCP for p = 3, 4, ..., 7 on a knot vector with 8 elements.

Figure 7: Distribution of SCP for p = 3, ..., 7, on a knot vector with 8 elements.

If we take all of them, we get an overdetermined system of equations, which we can

solve in a least squares sense, leading to a method which is not strictly a collocation

method, but we mention it as a sake of completeness. We refer the interested readers

to [12]. Recall from Chapter 5.1, that the isogeometric collocation problem in one
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dimension, can be written in a matrix form as Ac = f . In this case we will have a

non-square matrix A of dimensions m×n and a longer vector f of dimension m, where

m = 2(n− p) if p is odd and m = 3(n− p) if p is even. To obtain the solution by the

method of least squares, we firstly need to multiply both sides by AT and then solve

the system:

ATAc = ATf −→ c = (ATA)−1ATf

to get the desired coefficients ci for i = 1, 2, ..., n. Similarly we can do for the two

dimensional case.

6.3 ALTERNATING SUPERCONERGENT COLLOCATION

POINTS

In [11], it’s observed that any subset of SCP will produce the Galerkin solution, pro-

vided that there is at least one point on the support of each B-spline or NURBS basis

functions. Now we need to select as many collocation points as B-spline basis functions,

i.e. n.

The Alternating Superconvergent collocation points (ASCP) is a selected subset of

the superconvergent points, say {τi}ni=1. This set of points is selected in such a way that

every element [ξi, ξi+1) of the knot span contains at least one superconvergent point.

This roughly means to consider every second superconvergent point, hence the name of

the method. We want to impose Dirichlet boundary conditions strongly; therefore we

define τ1 = 0 and τn = 1. To find the internal points, {τi}n−1
i=2 , we consider separately

the case when p is odd and p is even. For p is odd we need to separate the cases

when n is odd and n is even. When n is odd, we delete every second SCP ψi starting

from i = 2 up to n − p and then, to get a symmetric stencil, we delete every second

point from 2(n − p) − 1 back, up to n − p + 3. While, when n is even, we delete

every second SCP ψi starting from i = 2 up to n− p, as before, and then every second

point from 2(n − p) + 1 back, up to n − p + 3. By deleting these points, we obtain
2(n−p)

2
+ 1 = n− p+ 1 points, which is less than n− 2 if p > 3. Therefore, for p > 3, we

need to add x points, where the number x is found by solving n− p + 1 + x = n− 2.

These p − 3 points are added close to the boundary of our domain. For p is even, as

in [11], we take the Greville points, since there is no subset that gives better order of

convergence. The algorithm for finding interior ASCP is presented in Algorithm 3.

The ASCP for odd p and different n are presented in Figures 8 and 9.
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Figure 8: Distribution of internal ASCP for odd p = 3, 5, 7 with a given knot vector

having 10 elements and n = 13: the ASCP are in orange, the remaining superconvergent

points are displayed with blue circles, while the black rounded orange points are the

“additional points”.

Figure 9: Distribution of internal ASCP for odd p = 3, 5, 7 with a given knot vector

having 9 elements and n = 12: the ASCP are in orange, the remaining superconvergent

points are displayed with blue circles, while the black rounded orange points are the

“additional points”.
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Algorithm 3: Alternating superconvergent collocation points.

Input: Vector of SCP (s), number of B-spline basis functions (n) and

polynomial degree (p).

Output: Vector of ASCP (a).

1 if p is odd then

2 if n is odd then

3 for i = 2, 4, 6, . . . , n− p
4 delete s[i] from s;

5 for i = 2(n− p)− 1, 2(n− p)− 3, . . . , n− p+ 3

6 delete s[i] from s;

7 else

8 for i = 2, 4, 6, . . . , n− p
9 delete s[i] from s;

10 for i = 2(n− p) + 1, 2(n− p)− 1, . . . , n− p+ 3

11 delete s[i] from s;

12 a← s;

13 for i = 2, 4, 6, . . . , p− 3

14 add s[q] and s[2(n− p)− q + 1] to a;

15 add 0 and 1 at the beginning and at the end of a, respectively ;

16 else

17 for i = 1, 2, . . . , n

18 a[i] =
∑i+p

j=i+1 ξj

p
;

19 return a;

6.4 CLUSTERED SUPERCONVERGENT COLLOCATION

POINTS

Another choice of collocation points among the superconvergent points, alternative to

ASCP, are the Clustered Superconvergent collocation points (CSCP).

In this case, the idea is to select two superconvergent points in an element and

then skip the following one. As for the ASCP, we want to impose Dirichlet boundary

conditions strongly, so again, we define τ1 = 0 and τn = 1. To find the internal points,

{τi}n−1
i=2 , we again consider separately the case when p is odd and p is even. For p is

odd (see Figure 10), we delete every fourth SCP {ψi, ψi+1} starting from i = 3 up to

2(n − p) − 1. By deleting these points, we obtain 2(n−p)
2

= n − p points, which is less
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than n − 2 for p > 2. Similarily as for ASCP, by solving n − p + x = n − 2, we get

that we need to add p−2 points close to the boundary of the chosen interval (which in

Figure 10, are referred as the “additional points”). Again, from [11] we know that there

is no subset that gives better order of convergence as that of Greville points. Therefore,

for p is even we choose the Greville points. The algorithm for finding interior CSCP is

presented in Algorithm 4.

Algorithm 4: Clustered superconvergent collocation points.

Input: Vector of SCP (s), number of B-spline basis functions (n) and

polynomial degree (p).

Output: Vector of CSCP (c).

1 q := 0;

2 if p is odd then

3 for i = 3, 7, . . . , 2(n− p)− 1

4 delete s[i] and s[i+ 1] from s;

5 c← s;

6 while length(c) 6= n− 2 do

7 add s[2(n− p)− q] and s[q + 1] to c;

8 q + +;

9 add 0 and 1 at the beginning and at the end of c, respectively ;

10 else

11 for i = 1, 2, . . . , n

12 c[i] =
∑i+p

j=i+1 ξj

p
;

13 return c;
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Figure 10: Distribution of internal CSCP for odd p = 3, 5, 7 with a given knot vector

having 10 elements: the CSCP are in green, the remaining superconvergent points are

displayed with blue circles, while the black rounded green points are the “additional

points”.
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7 NUMERICAL TESTS

This section is devoted to the numerical tests of the ICM for Poisson’s PDE with

Dirichlet boundary conditions in one and two dimensions for different collocation points

{τi}i∈I . With the numerical tests we observe the rate of convergence depicted with

graphs.

As till now, let u be the exact solution of the Poisson’s PDE and let u∗h be the

approximated solution obtained with the ICM. The relative error is then calculated as

ehX =
‖|u− u∗h|‖X
‖|u|‖X

,

where X represent the normed space and h is the length of the knot span of the

considered uniform and open knot vector Ξ. In the next, we calculate relative errors

considering L2, H1 and H2 norms. Each graph has on the y-axis log2(ehX)/ log2(10)

and on the x-axis the levels. The level represents the number of elements of Ξ and

each time we do knot insertion refinement (in particular, we double the elements), we

increase the level. More precisely, the set of levels is {2i · h0}3
i=0, where h0 = 1

h
and

in the graphs are presented with number 1, 2, 3 and 4, respectively. In the graphs we

draw also the reference lines which helps us to see the rate of convergence. To find the

rate of convergence, we have to compute the relative errors and they can be written as

ehX = Chr +O(hr+1), e
h
2
X = C

(
h

2

)r
+O

((
h

2

)r+1
)
, . . .

where C ∈ R is a constant and h represent the initial knot span, i.e. h = 1
h0

. The rate

of convergence for the initial h is then

rh = log2

(
ehX

e
h
2
X

)

and similarly we can compute also rh
2
, rh

4
, .... We expect that this sequence converges

to a number, which we denote by r. The reference line is then defined as l(h) = h−r,

where r is the rate of convergence.

Example 7.1. For the first example, let Ω = Ω̂ = [0, 1] and let us consider the one

dimensional Poissons’s PDE:u′′(x) = −9
2
π2 cos(3πx), for x ∈ (0, 1),

u(0) = 1
2
, u(1) = −1

2
,
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whose exact solution is u(x) = 1
2

cos(3πx). In this example we take h = 1
16

and so

h0 = 16.

In Figure 11 we observe the rate of convergence of ICM using GCP:

� the rate of convergence in L2 norm is p− 1 for odd polynomial degree and p for

even polynomial degree (see Figure 11a),

� the rate of convergence is the same in H1 norm as in L2 norm (see Figure 11b)

and

� the rate of convergence decreases in H2 norm for even polynomial degree, indeed,

regardless o parity, it is p− 1 (see Figure 11c).

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 11: 1D relative errors for GCP.
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In Figure 12 we can see the rate of convergence of ICM using DCP. In this case the

errors converge with the same orders as for the Greville points:

� in L2 and H1 norm the rate of convergence is p − 1 for p odd and p for p even

(see Figure 12a, 12b) and

� in H2 norm the rate of convergence is p− 1 (see Figure 12c).

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 12: 1D relative errors for DCP.



Orlich T. Isogeometric Collocation.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2022 47

The convergence orders of ASCP are shown in Figure 13:

� in L2 and H1 norm the rate of convergence is p (see Figures 13a and 13b),

regardless of the parity of p,

� in H2 norm the rate is p− 1, again regardless of the parity of p (see Figure 13c).

Therefore we can observe that with ASCP we get a better approximation for odd p

than using GCP or DCP.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 13: 1D relative errors for ASCP.
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In Figure 14 the rate of convergence for CSCP using ICM is illustrated:

� in L2 norm the rate of convergence is p+ 1 for odd polynomial degree and p for

even polynomial degree (see Figure 14a),

� in H1 norm the rate of convergence is p (see Figure 14b) and

� in H2 norm the rate of convergence is p− 1 (see Figure 14c).

With CSCP the rate of convergence for odd p is even better in comparison with the

ASCP, GCP and DCP.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 14: 1D relative errors for CSCP.
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In Figure 15 we can observe the comparison between different collocation points

and the Galerkin isogeometric method when p = 3. Clearly, our aim is to achieve the

rate of convergence of the Galerkin isogeometric method. Since DCP result in a very

slightly differences in accuracy compared to GCP, we omit them in the graphs. We

can summarize the results from another point of view:

� in L2 norm and p odd, the convergence rate is optimal for CSCP, for ASCP

is one-order suboptimal, and it is two-orders suboptimal for GCP (and DCP).

For even degree, in all types of collocation points we get one-order suboptimal

convergence;

� in H1 norm the convergence rate is optimal for all collocation points except for

GCP (and DCP), when the polynomial degree is odd;

� in H2 norm all mentioned collocation points gives the optimal rate of convergence.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 15: Comparison of relative errors for different methods and norms when p = 3.
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Example 7.2. For the second example, let Ω = Ω̂ = [0, 1]2 and let us consider the two

dimensional homogeneous Poissons’s PDE:∆u(x1, x2) = −π2 sin(πx1) · sin(πx2), (x1, x2) ∈ Ω

u(x1, x2) = 0, (x1, x2) ∈ ∂Ω,

whose exact solution is u(x1, x2) = 1
2

sin(πx1) sin(πx2). In this example we take h0 = 4

and so h = 1
4
. Also, the geometry mapping G remains for now the identity. Note that

to find the B-spline basis functions, we do the tensor product of the chosen knot vector,

i.e. Ξ×Ξ. Similarly, we do also for collocation points, that is to say, that we have the

same collocation points in both directions.

In this case we calculated the relative errors for p = 3, 4, 5, because the time com-

plexity of the algorithm is much bigger. In Figures 16, 17, 18 and 19 the rates of

convergence for GCP, DCP, ASCP and CSCP, are shown respectively. It is possible to

observe that the same orders of convergence in the L2, H1 and H2 norms expected in

1D case are attained also in 2D case.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 16: 2D relative errors for GCP.
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(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 17: 2D relative errors for DCP.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 18: 2D relative errors for ASCP.
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(a) Relative error in L2 norm. (b) Relative error in H1 norm.

(c) Relative error in H2 norm.

Figure 19: 2D relative errors for CSCP.

Example 7.3. Let Ω be a domain different from the parametric one and let the ge-

ometry mapping be the so called bilinear mapping. Moreover, let Ω be the rhombus

with vertices (0, 0), (1/3, 1), (1, 1/2) and (3/2, 3/2). The geometry mapping is defined

using Bernstein basis polynomials. Recall that the Bernstein basis polynomials are of

the form:

Bn
i (x) =

(
n

i

)
xi(1− x)n−i,

and so the tensor product of two Bernstein basis polynomials having the same degree

n, is defined as:

Bn
i,j(x1, x2) =

(
n

i

)
xi1(1− x1)n−i ·

(
n

j

)
xj2(1− x2)n−j.

The geometry map, G : [0, 1]2 → Ω, used in this example is then defined as:

G(ξ1, ξ2) =
1∑

i,j=0

Bi,j ·B1
i,j(ξ1, ξ2),

where Bi,j are the control points, i.e. the vertices of the rhombus: B0,0 = (0, 0),

B0,1 = (1/3, 1), B1,0 = (1, 1/2) and B1,1 = (3/2, 3/2). Let us analyse the next two-
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dimensional Poisson’s PDE:

∆u(x1, x2) = −π2 sin(πx1) · cos(πx2), (x1, x2) ∈ Ω

u(x1, x2) =



1
2

cos(3πx1) sin(πx1) for x2 = 3x1, x1 ∈ [0, 1
3
]

1
2

cos(3
7
π(2 + x1)) sin(πx1) for x2 = 3

7
x1 + 6

7
, x1 ∈ [1

3
, 3

2
]

−1
2

cos(2πx1) sin(πx1) for x2 = 2x1 − 3, x1 ∈ [1, 3
2
]

1
2

cos(πx1
2

) sin(πx1) for x2 = 1
2
x1, x1 ∈ [0, 1]

, (x1, x2) ∈ ∂Ω,

whose exact solution is u(x1, x2) = 1
2
· cos(πx2) · sin(πx1). The physical domain with

the exact solution can be seen in Figure 20.

Figure 20: The physical domain Ω and the exact solution of the Poisson’s PDE.

Since we obtain the same rates of convergence as in the one dimensional case, in

this work, we present the relative errors for the ICM using just GCP. In Figure 21 are

shown the GCP on the physical domain Ω, using B-spline basis functions of degree

p = 3 and knot vector with 8 elements. GCP are τij = G(τ̂ij), where τ̂ij := (ξ̂i, ξ̂j) for

i, j = 1, 2, ..., 11, as defined in Def. 5.3.

In Figure 22 are presented the relative errors in the L2 and H1 norm for p = 3, 4, 5

using GCP. Also in this example, as in the previous one, we take h0 = 4 and so h = 1
4
.
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Figure 21: Distribution of GCP on Ω.

(a) Relative error in L2 norm. (b) Relative error in H1 norm.

Figure 22: 2D relative errors for GCP.

Example 7.4. Finally, in the last example, we consider as a computational domain

Ω the quarter of an annulus. Again we need the geometry mapping G that maps the

points from the domain [0, 1]2 to the domain Ω and we define it using Bernstein basis

polynomials. Firstly, we define two sets K1 and K2 in the next way:

K1 = {(cos(
π

18
i), sin(

π

18
i)) for i = 0, 1, ..., 9}

K2 = {(2 cos(
π

18
i), 2 sin(

π

18
i)) for i = 0, 1, ..., 9}

Then the control points are defined as

Bi,j =

[
cos( π

18
i) + jk1

i

sin( π
18
i) + jk2

i

]
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Figure 23: The physical domain Ω and the exact solution of the Poisson’s PDE.

for i, j = 0, 1, 2, ..., 9 and k1
i , k

2
i ∈ R are such that cos( π

18
i) + 9k1

i = 2 cos( π
18
i) and

sin( π
18
i) + 9k2

i = 2 sin( π
18
i). The geometry mapping G(u, v) is defined as:

G(u, v) =
9∑

i,j=0

Bi,jB
9
i,j(u, v).

We observe the two dimensional Poisson’s PDE with the same exact solution as

in the previous example; note that the boundary conditions are clearly different. The

physical domain Ω and the exact solution of the Poisson’s PDE are shown in Figure 23;

while in Figure 24 we can see the distribution of GCP on Ω, using B-spline basis

functions with polynomial degree p = 3 and knot vector with 16 elements. Since the

rate of convergence remains unchanged and the time complexity is big, we omit the

graphs.

Figure 24: Distribution of GCP on Ω.
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8 CONCLUSION

In this thesis we investigated the rate of convergence of various collocation points on

ICM on Poisson’s PDE in one and two dimensions. We began by reviewing the most

significant properties of B-spline and NURBS basis functions, curves, and surfaces.

Then we introduced a recent method for solving PDE, namely the IgA, as well as

refinements, i.e. techniques for obtaining better isogeometric solutions. Then we de-

scribed the first method, L2 approximation, in which we saw the geometry mapping

in action for the first time. Then we moved on to PDEs, specifically to the Poisson’s

PDE with various boundary conditions, in both dimensions and both formulations. In

this thesis we focused exclusively on the Poisson’s PDE with Dirichlet boundary con-

ditions. We observed the second approach, the GIM, thanks to these definitions. After

that, we got to the heart of the issue: the ICM, which, unlike the GIM, employs the

strong PDE formulation. Then we started to notice some collocation point families.

GCP and DCP are the most widely utilized. The SCP are the most recent collocation

points, with which we attempt to reach the same solution as the GIM by requiring

the collocation residual to be zero at superconvergent points. Yet, because we do not

have access to the actual location of the superconvergent points, we must approximate

them; however, these “surrogate” points do not accurately approximate the Galerkin

residual zeros throughout the domain. Then we select two subsets of superconvergent

points with orders equal to degrees of freedom, these are the ASCP and CSCP. Finally,

we ran several numerical tests of ICM of Poisson’s PDE in one and two dimensions,

examining the rate of convergence on L2, H1 and H2 normed spaces. The following

table summarizes our findings:

GIM
GCP and DCP LS-SP and CSCP

ASCP
p odd p even p odd p even

L2 p+ 1 p− 1 p p+ 1 p p

H1 p p− 1 p p p p

H2 p− 1 p− 1 p− 1 p− 1 p− 1 p− 1

Table 5: Comparisons of rate of convergence: GIM, GCP, DCP, LS-SP, CSCP, ASCP.

According to the Table 5, CSCP are the best choice for collocation points because

the rate of convergence is optimal for all norms except the L2 norm when p is even. In
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fact, finding a set of collocation points for even p such that the rate of convergence in

the L2 norm is optimal, is still an open problem.
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9 DALJŠI POVZETEK V

SLOVENSKEM JEZIKU

V magistrski nalogi obravnavamo izogeometrično kolokacijsko metodo pri reševanju

Poissonove parcialne diferencialne enačbe.

Parcialne diferencialne enačbe (v nadaljevanju PDE, glej [17, 19, 20]) se pojavljajo

na več znanstvenih področjih. Ker so lahko tudi zelo kompleksne in jih zato ne znamo

rešiti analitično, so v zadnjih letih razvili računske in numerične metode.

Najbolj uporabljena numerična metoda za reševanje PDE je metoda končnih el-

ementov (FEM, glej [14]), katere slabost je, da moramo fizično domeno aproksimi-

rat, njen izračun pa potrebuje veliko računskega časa. Da bi premostili to težavo,

se je v zadnjih letih razvila nova numerična metoda, ki jo imenujemo Izogeometrična

analiza (IgA) in so jo prvič obravnavali Hughes, Cottrell in Bazilevs v [4, 5]. Njihov

cilj je bil zmanǰsati razkorak med analizo končnih elementov (FEA) in računalnǐsko

podprtim oblikovanjem (CAD). Medtem ko s FEM domeno aproksimiramo z mrežo,

v IgA uporabimo funkcije, ki direktno opǐsejo geometrijo. Značilnost IgA je ta, da

uporabimo za bazne funkcije B-zlepke ali NURBS (neenakomerni racionalni B-zlepki)

(glej [6,7,16,18]). Te bazne funkcije oziroma B-zlepke in NURBS-e definiramo v drugem

poglavju, kjer dokažemo tudi njihove najpomembneǰse lastnosti kot so nenegativnost,

particija enote in lokalna nosilnost. Ker so te funkcije enake tistim, ki jih uporabljamo

pri grajenju CAD geometrij, so te zelo odvisne od prikaza geometrijske domene. Ta kon-

cept imenujemo izogemetrični koncept in ga definiramo na začetku tretjega poglavja.

Magistrsko delo nadaljujemo z definicijami geometrij B-zlepkov in NURBS-ov, ki so

krivulje in ploskve. Kot pomembne lastnosti krivulj in ploskev B-zlepkov navajamo:

afina invariantnost, lastnost konveksne ovojnice in lokalna kontrola. Podobne lastnosti

imajo tudi krivulje in ploskve NURBS-ov. V nadaljevanju opǐsemo teorijo IgA in spoz-

namo geometrijsko preslikavo. Sledi prikaz treh različnih tehnik izbolǰsav za bolǰso

izogeometrično rešitev PDE, ki so: vstavljanje vozlov, vǐsanje stopnje in k-zgoščevanje.

Nadalje predstavimo prvo obravnavano metodo in sicer L2 aproksimacijo, s katero

definiramo tudi L2 normiran prostor in kasneje tudi H1 in H2 normirane prostore, ki

jih uporabljamo pri izračunu relativne napake v sedmem poglavju. V tem poglavju

je izogeometrija omenjena v opombi 3.10, v kateri upoštevamo geometrijsko preslikavo

pri parametrizaciji dvo-dimenzionalne domene.

V četrtem poglavju se osredotočimo na Poissonovo PDE in definiramo različne robne
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pogoje in sicer Dirichletov robni pogoj, Neumannov robni pogoj in mešani robni pogoj.

V magistrski nalogi se osredinimo na Poissonovo PDE z Dirichletovimi robnimi pogoji.

Nato opǐsemo Galerkinovo izogeometrično metodo (GIM), ki je najbolj uporabljena

izogeometrična metoda za reševanje PDE. Postopek te metode predvideva, da najprej

pretvorimo PDE v šibko obliko (glej Lema 4.3 in Lema 4.4), ki potrebuje manj gladke

funkcije kot krepka oblika. Nato izračunamo integrale in dobimo linearen sistem. Za-

ključimo tako, da rešimo linearen sistem, iz katerega dobimo koeficiente aproksimirane

rešitve, ki pripadajo baznim funkcijam (to so B-zlepki ali NURBS funkcije). Ko obrav-

navamo Poissonovo PDE v dveh dimenzijah, moramo še upoštevati reparametrizacijo

domene (glej Lema 4.7). Vendar ta metoda potrebuje pri izračunu integralov specifična

integracijska pravila in natančnost rešitve je odvisna od kvalitete metode numerične

integracije.

Glavna tema magistrske naloge je alternativna izogeometrična metoda za reševanje

PDE. Ta metoda uporablja krepko formulacijo PDE na množici diskretnih točk, ki jih

imenujemo kolokacijske točke. S kolokacijsko metodo rešujemo krepko obliko PDE, kar

odpravi integracijo, potrebuje pa bolj regularen prostor. Izogeometrično kolokacijsko

metodo (ICM) so prvič predstavili Auricchio, Da Veiga, Hughes, Reali in Sangalli v [2].

V petem poglavju predstavimo ICM za Poissonovo PDE v eni in dveh dimenzijah

in obravnavamo dve različni vrsti kolokacijskih točk. Najbolj uporabljene kolokaci-

jske točke so Grevillove in Demkove točke, ker so to klasične interpolacijske točke za

poljubno stopnjo in regularnost zlepkov. Porazdelitev Grevillovih in Demkovih kolkaci-

jskih točk je prikazana na slikah 5 in 6. Poznamo pa tudi noveǰso navdušujočo alterna-

tivo. Gomez in de Lorenzis v [11] sta dokazala, da mora obstajati množica kolokacijskih

točk, ki eksaktno reproducira Galerkinovo rešitev, kar posledično pomeni, da ima na-

paka ICM isti red konvergence kot GIM. Množico kolokacijskih točk sestavljajo ničle

Galerkinovega residuala in jih imenujemo Cauchy-Galerkinove točke (glej [1, 11]). Žal

te točke niso znane a priori, zato [1] izbere za nadomestne točke take, pri katerih se

pod ustreznimi pogoji pojavi superkonvergenca drugega odvoda Galerkinove rešitve.

Do tega prihaja, ker je Galerkinov reidual z uporabo Poissonove PDE ekvivalenten na-

paki aproksimacije drugega odvoda (glej [15]). Te točke imenujemo superkonvergentne

točke in jih predstavimo v šestem poglavju. V tem sta navedena dva algoritma, s ka-

terima izračunamo superkonvergentne točke v primeru, da je stopnja baznih funkcij

soda (glej Algoritem 1) oziroma liha (glej Algoritem 2).

Ker je število superkonvergentnih točk večje od prostostne stopnje, [1] predlaga

uporabo aproksimacije najmanǰsih kvadratov za reševanje predoločenega linearnega

sistema. Ta sistem rešimo z metodo najmanǰsih kvadratov, ki je predstavljena v pod-

poglavju 6.2. Ta metoda pa ni ravno prava kolokacijska metoda. V [11,15] se predlaga

izbiro dveh različnih podmnožic superkonvergentnih točk, ki imajo kardinalnost enako

prostostni stopnji. Te dve podmnožici sta sestavljeni iz Alternirajočih (en. Alternat-
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ing) in Združenih (en. Clustered) kolokacijskih točk. Alternirajoče superkonvergentne

kolokacijske točke tvorimo tako, da izberemo vsako drugo superkonvergentno kolokaci-

jsko točko (glej Algoritem 3), Združene superkonvergentne kolokacijske točke pa tako,

da izberemo vsako drugo dvojico točk (glej Algoritem 4).

Magistrsko nalogo zaključimo z analizo konvergenčnega reda ICM za Poissonovo

PDE na omenjenih kolokacijskih točkah. V prvem primeru si ogledamo nehomogeno

Poissonovo PDE v eni dimenziji, v drugem primeru pa homogenovo Poissonovo PDE

v dveh dimenzijah. V obeh primerih je fizična domena enaka parametrični domeni, ki

je [0, 1]2. V zadnjih dveh primerih pa fizično domeno spremenimo: fizična domena v

enem primeru je bilinearna preslikava enotskega kvadrata (glej Sliko 21), v drugem pa

je četrt kolobarja (glej Sliko 24). Kot je opisano v [1,13,15], tudi mi opazimo, da so redi

konvergence do sedaj predstavljenih ICM vsaj za sode stopnje nekoliko slabši od redov

konvergence GIM. Redi konvergenc za L2, H1 in H2 normirane prostore so prikazani v

tabeli 5, iz katere je razvidno, da imajo, na primer, Alternirajoče superkonvergentne

točke sub-optimalen red v L2 normi, medtem ko imajo vse obravnavane kolokacijske

točke optimalen red v H2 normi. Prav tako pa imajo Združene superkonvergentne

točke vsaj za lihe stopnje optimalne rede konvergenc, kar jih dela uporabne v praksi.

Za sode stopnje ostaja odprt problem, kako poiskati družino kolokacijskih točk, ki bi

tudi v L2 normi imela optimalen red.
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