
UNIVERZA NA PRIMORSKEM

FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN

INFORMACIJSKE TEHNOLOGIJE

Master’s thesis

(Magistrsko delo)

A Complexity Study of Distance Variants of Covering and

Domination Problems in H-Free Graphs
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množica, k-razdaljno točkovno pokritje, k-razdaljno povezavno pokritje, H-prost graph,

polinomski algoritem, NP-poln problem, dihotomija

Math. Subj. Class. (2020): 05C12, 05C69, 05C70, 05C76, 05C85, 68Q25

Izvleček:

Različne teoretične in praktične motivacije so privedle do posplošitve številnih klasičnih

optimizacijskih problemov na grafih na njihove razdaljne variante. Grobo rečeno to

pomeni, da se lastnost sosednosti, ki je osnova za definicijo dopustne rešitve problema,

nadomesti s splošneǰso lastnostjo, ki temelji na razdaljah v grafih.

V magistrskem delu obravnavamo razdaljne različice naslednjih štirih optimizacijskih

problemov na grafih: problem dominantne množice, problem povezavno dominantne

množice, problem točkovnega pokritja in problem povezavnega pokritja. Preučimo

razmerja med optimalnimi vrednostmi vseh štirih problemov in algoritmično zahtevnost

izračuna optimalnih rešitev pod določenimi omejitvami.

Natančneje, v magistrskem delu obravnavamo probleme izračuna namanǰse ve-

likosti k-razdaljne dominantne množice, k-razdaljne povezavno dominantne množice,

k-razdaljnega točkovnega pokritja in k-razdaljnega povezavnega pokritja. Za vsak k ≥ 1

in za vsakega od ustreznih štirih problemov popolnoma karakteriziramo družino grafov

H, za katere je problem rešljiv v polinomskem času v razredu H-prostih grafov (pod

predpostavko, da je P 6= NP).
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Abstract:

Various theoretical and practical motivations have led to generalizations of many classical

graph optimization problems to their distance-based variants. Informally, this means

that the adjacency property used to define a feasible solution to the problem is replaced

with a relaxed property based on distances in graphs.

In this thesis, we focus on distance-based variants of the following four problems: the

dominating set, edge dominating set, vertex cover, and edge cover problems. We consider

the relationships between the optimal solution values of the corresponding problems

and the algorithmic complexity of their computation under certain restrictions.

More specifically, we study the distance-k dominating set, distance-k edge dominating

set, distance-k vertex cover, and distance-k edge cover problems. For every k ≥ 1 and

for each of the four problems, we completely characterize the family of graphs H such

that the problem is solvable in polynomial time in the class of H-free graphs (under

the assumption that P 6= NP).
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1 Introduction

Various theoretical and practical motivations have led to generalizations of many classical

graph optimization problems to their distance-based variants. Informally, this means

that the adjacency property used to defined a feasible solution to a problem is replaced

with a relaxed property based on distances in the graph.

In this thesis we consider four optimization problems on graphs and their distance-

based variants. The problems are related to the following four types of vertex and

edge subsets in a graph. A dominating set in a graph G is a set of vertices such that

every vertex is either in the set or adjacent to a vertex in the set. An edge dominating

set in a graph G is a set of edges such that every edge is either in the set or shares

a common endpoint with an edge in the set. A vertex cover in a graph G is a set of

vertices intersecting all edges. An edge cover in a graph G is a set of edges such that

each vertex is incident with at least one edge in the set. Note that a graph G has an

edge cover if and only if it does not have any isolated vertices.

The distance-based variants of the above concepts, along with the corresponding

optimization problems—which we present in their decision form—are defined as follows.

For a positive integer k, a distance-k dominating set in a graph G is a set D of vertices

such that every vertex is at distance at most k from a vertex in D. Note that a distance-1

dominating set is the same thing as a dominating set. The Distance-k Dominating

Set problem is the problem of deciding, given a graph G and an integer `, whether G

contains a distance-k dominating set of size at most `.

For a non-negative integer k, a distance-k edge dominating set in a graph G is a set

F of edges such that every edge has an endpoint that is at distance at most k from an

endpoint of an edge in F . Note that a distance-0 edge dominating set is the same thing

as an edge dominating set. The Distance-k Edge Dominating Set problem is the

problem of deciding, given a graph G and an integer `, whether G contains a distance-k

edge dominating set of size at most `.

For a non-negative integer k, a distance-k edge cover in a graph G is a set F of

edges such that every vertex is at distance at most k from an endpoint of an edge in F .

Note that a distance-0 edge cover is the same thing as an edge cover. The Distance-k

Edge Cover problem is the problem of deciding, given a graph G and an integer `,

whether G contains a distance-k edge cover of size at most `.

Finally, for a non-negative integer k, a distance-k vertex cover in a graph G is a set

C of vertices such that every edge has an endpoint which is at distance at most k from
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a vertex in C. Note that a distance-0 vertex cover is the same thing as a vertex cover.

The Distance-k Vertex Cover problem is the problem of deciding, given a graph

G and an integer `, whether G contains a distance-k vertex cover of size at most `.

Observe that, informally speaking, for the Distance-k Dominating Set and

Distance-k Vertex Cover problems the requirement is to “dominate” (or “cover”)

at distance all the vertices or edges, respectively, with vertices. On the other hand, for

the Distance-k Edge Cover and Distance-k Edge Dominating Set problems

the vertices or edges, respectively, are dominated at distance with edges. Similarly, the

Distance-k Dominating Set and Distance-k Edge Cover problems share the

property that the objects being dominated are vertices, while in the Distance-k Dom-

inating Set and Distance-k Edge Cover problems the objects being dominated

are vertices.

The smallest interesting choices for k in the definitions of the above problems (that

is, k = 1 for the Distance-k Dominating Set problem and k = 0 for all the other

three problems) lead to the well-known Dominating Set, Edge Dominating Set,

Edge Cover, and Vertex Cover problems. While the Edge Cover problem is

known to be solvable in polynomial time for all graphs by matching techniques (see,

e.g., [66]), the Dominating Set, Edge Dominating Set, and Vertex Cover

problems are NP-complete for graphs in general (see, e.g., [31]). Moreover, the problems

stay NP-complete on some specific graph classes as well (see Chapter 3). Then, a

natural question that one can ask is: for which graph classes do the problems remain

NP-complete and for which do they become polynomial-time solvable? The same goes

for the distance-based variants of the four problems. Those distance-based variants are

the focus of this thesis. We look specifically for classes of graphs where we prohibit a

specific graph as an induced subgraph.

As an example of a known result of this form, consider the Dominating Set

problem. For integers k ≥ 1, s ≥ 0, and t ≥ 1, we denote by Pk + sPt the disjoint union

of a k-vertex path and s copies of the t-vertex path. In 1992, Korobitsin showed that

the Dominating Set problem is NP-complete in the class of H-free graphs, unless

H is an induced subgraph of some P4 + sP1, in which case it is solvable in polynomial

time (see [47]). That is, he gave a complexity dichotomy in classes of H-free graphs for

the Dominating Set problem. We do the same thing for the distance-based variants

of the four problems.

We develop the following computational complexity dichotomies. For the distance

problems where vertices need to be dominated we show the following dichotomy for any

k ≥ 1 and arbitrary graph H:

• The Distance-k Dominating Set and Distance-k Edge Cover problems

are solvable in polynomial time in the class of H-free graphs if H is an induced
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subgraph of P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

For the distance problems where edges need to be dominated we show the following

dichotomies for an arbitrary graph H:

• A dichotomy for k = 1: the Distance-1 Edge Dominating Set and Dis-

tance-1 Vertex Cover problems are solvable in polynomial time in the class

of H-free graphs if H is an induced subgraph of P4 + sP2 for some s ≥ 0, and

NP-complete otherwise.

• A dichotomy for any k ≥ 2: the Distance-k Edge Dominating Set and

Distance-k Vertex Cover problems are solvable in polynomial time in the

class of H-free graphs if H is an induced subgraph of P2k+2 + sPk for some s ≥ 0,

and NP-complete otherwise.

The thesis is organized as follows. In Chapter 2 we give the necessary definitions

and basic graph concepts as well as the problem definitions. In Chapter 3 we survey

some of the most important known results about the NP-complete and polynomial-time

solvable special cases for the four classical problems and their distance-based variants,

discuss what is known regarding their approximability, and see how the problems differ

with respect to their parameterized complexity. Chapter 4 presents relations between

the optimal solution values of the minimization variants of the four distance-based

problems, for each fixed k. In Chapter 5 we consider a number of graph transformation

and study their effect on the optimal solution values of these problems, as well as

of some other newly defined problems. Then, in Chapter 6 we use the results from

Chapter 5 to establish the NP-completeness results for the four main distance-based

problems. In Chapter 7, we identify families of graph classes in which the problems are

polynomial-time solvable, relying, among others, on the result from Chapter 4. Finally,

in Chapter 8 we give a complexity dichotomy for every one of the four distance-based

problems. We conclude the thesis in Chapter 9 with a brief summary of the thesis and

a statement of some of the key related open problems.

Some of the results presented in this thesis were published in [25].
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2 Preliminaries

2.1 Basic concepts about graphs

Before we start with the main topics, let us first overview some basic terminology,

notations, and definitions about graphs. We only consider finite, simple, and undirected

graphs. A graph will be denoted by G = (V,E) where V is the vertex set and E the

edge set of G. Sometimes we will denote the vertex and edge set of a graph G by V (G)

and E(G), respectively. The order of G is the number of vertices in it. A graph is

nontrivial if it is of order more than one, that is, a graph with at least two vertices. We

denote by N(v) (or NG(v) if the graph is not clear from the context) the set of neighbors

of vertex v in G, that is, the (open) neighborhood of v, and by N [v] := N(v) ∪ {v} (or

NG[v]), the closed neighborhood of v. The degree of a vertex v is the cardinality of

N(v). An isolated vertex in a graph G is a vertex of degree 0. An isolated edge in a

graph G is an edge whose endpoints have degree one. A graph is said to cubic if every

if every vertex has degree three, and subcubic if every vertex has degree at most three.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

An induced subgraph of a graph G is any graph H such that V (H) ⊆ V (G) and

E(H) = {{u, v} ∈ E(G) : u, v ∈ V (H)}. Given a graph G and a set S ⊆ V (G), we

denote by G[S] the subgraph of G induced by S, that is, the unique induced subgraph of

G with vertex set S. Given two graphs G and H, we say that G is H-free if no induced

subgraph of G is isomorphic to H. More generally, for graphs H1, . . . , Hp, we say that

G is {H1, . . . , Hp}-free if G is Hi-free for all i ∈ {1, . . . , p}. Given two graphs G and H,

we denote by G+H their disjoint union. For a non-negative integer s, we denote by

sG the disjoint union of s copies of G.

A path in a graph G is a sequence v1, {v1, v2}, v2, . . . , {vp−1, vp}, vp of distinct vertices

vi (1 ≤ i ≤ p) of G and edges {vj−1, vj} (2 ≤ j ≤ p). Such a path is said to be a

v1, vp-path, the vertices v1 and vp are the endpoints of the path, while the vertices

v2, . . . , vp−1 are its internal vertices. We will sometimes identify a path in a graph G

with the corresponding subgraph in G. For a positive integer k, we denote by Pk the

path graph of order k, that is, the graph with vertex set {v1, . . . , vk}, in which two

vertices vi and vj with i < j are adjacent if and only if j = i+ 1. A cycle in a graph

G is a sequence v1, {v1, v2}, v2, . . . , {vp, v1}, v1 such that p ≥ 3, v1, . . . , vp are pairwise

distinct vertices of G, and {vj−1, vj} for all 2 ≤ j ≤ p and {vp, v1} are edges of G. For
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an integer k ≥ 3, we denote by Ck the cycle graph of order k, that is, the graph with

vertex set {v1, . . . , vk}, in which two vertices vi and vj with i < j are adjacent if and

only if j = i + 1 or (i, j) = (1, k). The length of a path or a cycle is the number of

edges in it. A graph G is complete if every two distinct vertices of G are adjacent;

a complete graph of order n is denoted by Kn. A graph G is connected if for every two

u, v ∈ V (G), there is a path in G with endpoints u and v. A graph G′ is a connected

component of a graph G if G′ is an induced subgraph of G and for every u′ ∈ V (G′)

and u ∈ V (G) \ V (G′) there is no path in G with endpoints u′ and u.

The girth of a graph G is the minimum length of a cycle in G (or ∞ is G is acyclic).

The distance between two vertices u and v in G is defined as the length of a shortest

path between u and v (or∞ if there is no u, v-path in G). Given two sets A,B ⊆ V (G),

we denote by distG(A,B) the minimum over all distances in G between a vertex in A and

a vertex in B. When clear from context, we may simply write dist(A,B). For simplicity,

if A contains a unique element a, then we may simply write dist(a,B), and similarly for

B. For an edge e and a set of edges F , we denote by dist(e, F ) the minimum over all

distances between an endpoint of e and an endpoint of an edge in F . For A ⊆ V (G)

and a set of edges F , we denote by dist(A,F ) the minimum over all distances between

a vertex in A and an endpoint of an edge in F . For simplicity, if A contains a unique

element a, then we may simply write dist(a, F ), and similarly for F .

An independent set in a graph G is a set of pairwise non-adjacent vertices; a clique

is a set of pairwise adjacent vertices. A clique is maximal if it is not contained in any

larger clique. A matching in a graph G is a set M of edges of G such that no two of

them share an endpoint. A matching is maximal if it is not contained in any larger

matching. An induced matching in a graph G is a matching M such that G contains

no edge whose endpoints belong to different edges of M .

The operation of subdividing en edge {u, v} in a graph G means deleting the edge

and introducing a new vertex w adjacent precisely to u and v.

The claw is the graph with four vertices and three edges, all having an endpoint in

common. A fork is a graph with vertex set {v1, v2, . . . , v5} and edge set {{v1, v2}, {v2, v3},
{v3, v4}, {v2, v5}}, that is, a graph obtained from the claw by subdividing one of its

edges. The line graph of a graph G is the graph, denoted by L(G), with vertex set E(G)

in which two distinct vertices are adjacent if and only if the corresponding edges of G

have an endpoint in common. It is well known, and easily observed, that line graphs

are claw-free.

A chord in a cycle is an edge that does not belong to the cycle but connects two

vertices of the cycle. A graph is chordal if it does not contain an induced cycle of length

at least four, strongly chordal if it is chordal and every cycle of even length greater

than six has an odd chord, that is, an edge that connects two vertices that are an odd

distance, greater than one, apart from each other in the cycle, bipartite if its vertex
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set can be partitioned into two independent sets, and planar if it can be drawn on

the plane with no two edges crossing. The clique graph of G has the maximal cliques

of G as vertices, two of them being adjacent if and only if their intersection is not

empty. A graph is said to be dually chordal if it is the clique graph of some chordal

graph. Given a finite family of sets S1, . . . , Sn, its intersection graph is the graph G

obtained by creating one vertex vi for each set Si, and connecting two vertices vi and

vj by an edge whenever the corresponding two sets have a nonempty intersection, that

is, E(G) = {{vi, vj} | i 6= j, Si ∩ Sj 6= ∅}. A graph is an interval graph if it is the

intersection graph of a family of closed intervals on the real line. A circle graph is the

intersection graph of a family of chords of a circle. The chromatic number of a graph is

the smallest number of colors needed to color the vertices of a graph so that no two

adjacent vertices have the same color. A graph in which the chromatic number of every

induced subgraph equals the maximum size of a clique in that subgraph is called perfect.

A cut-vertex in a graph G is a vertex v such that the graph G[V (G) \ {v}] has more

connected components than G. A block of a graph G is a maximal connected subgraph

of G that does not contain any cut-vertex of G. A graph G is a block graph if every

block of G is complete. A undirected path graph is the intersection graph of the vertex

sets of a family of paths in a tree. The class of undirected path graphs is a superclass

of interval graphs, which are exactly the intersection graphs of subpaths of a path, and

a subclass of chordal graphs, which are exactly the intersection graphs of subtrees of a

tree. If σ = (σ1, σ2, ..., σn) is any permutation of the numbers from 1 to n, then one

may define a permutation graph from σ, in which there are n vertices v1, v2, . . . , vn, and

in which there is an edge vivj for any two indices i and j for which i < j and σi > σj.

A linear forest is a disjoint union of path graphs.

Three vertices of a graph form an asteroidal triple if every two of them are connected

by a path avoiding the closed neighbourhood of the third. A graph is AT -free if it does

not contain any asteroidal triple.

A vertex cover of a graph G is a subset C ⊆ V (G) such that every edge e ∈ E(G)

has an endpoint in C. We denote by τ(G) the minimum size of a vertex cover of

G. A minimum vertex cover of a graph G is a vertex cover with size τ(G). Given a

non-negative integer k and a graph G, a distance-k vertex cover in G is a set C of

vertices such that for all edges e ∈ E(G), it holds dist(e, C) ≤ k. We denote by τk(G)

the minimum size of a distance-k vertex cover of G. A minimum distance-k vertex cover

of a graph G is a distance-k vertex cover with size τk(G). Note that τ(G) = τ0(G).

An edge cover of a graph G is a subset F ⊆ E(G) such that every vertex u ∈ V (G)

is incident with an edge in F . Given a graph G without isolated vertices, we denote by

ρ(G) the minimum size of an edge cover of G. A minimum edge cover of G is an edge

cover with size ρ(G). Given a non-negative integer k and a graph G, a distance-k edge

cover in G is a set F of edges such that for all vertices u ∈ V (G), it holds dist(u, F ) ≤ k.
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Given a graph G without isolated vertices and an integer k ≥ 0, we denote by ρk(G)

the minimum size of a distance-k edge cover of G and refer to a distance-k edge cover of

G with size ρk(G) as a minimum distance-k edge cover of G. Note that ρ(G) = ρ0(G).

A dominating set of a graph G is a subset D ⊆ V (G) such that every vertex

u ∈ V (G) is either in D or adjacent to a vertex in D. We denote by γ(G) the minimum

size of a dominating set in G. A minimum dominating set of a graph G is a dominating

set of with size γ(G). A connected dominating set in a (connected) graph G is a

dominating set D such that G[D] is a connected graph. Given a positive integer k and

a graph G, a distance-k dominating set in G is a set D of vertices such that for all

vertices u ∈ V (G), it holds dist(u,D) ≤ k. We denote by γk(G) the minimum size of a

distance-k dominating set of G. A minimum distance-k dominating set of a graph G is

a distance-k dominating set of G with size γk(G). Note that γ(G) = γ1(G).

An edge dominating set of a graph G is a subset F ⊆ E(G) such that every edge

e ∈ E(G) is either in F or shares an endpoint with an edge in F . We denote by γ′(G)

the minimum size of an edge dominating set in G. A minimum edge dominating set of

a graph G is an edge dominating set with size γ′(G). Given a non-negative integer k

and a graph G, a distance-k edge dominating set in G is a set F of edges such that for

all edge e ∈ E(G), it holds dist(e, F ) ≤ k. We denote by γ′k(G) the minimum size of a

distance-k edge dominating set of G. A minimum distance-k edge dominating set of a

graph G is a distance-k edge dominating set with size γ′k(G). Note that γ′(G) = γ0(G).

Let G be a graph. A P3 factor of G is a spanning subgraph of G whose components

are isomorphic to P3. A P3 cover of G is a set of 3-vertex paths in G such that each

vertex of the graph is a vertex of at least one of these paths. We denote by Λ(G) the

minimum size of a P3 cover in G. Note that a P3 factor is a special case of the P3 cover.

For an integer k ≥ 0, we say that a distance-k P3 dominating set P of G is a set of

3-vertex paths in G such that the vertex set of every 3-vertex path of G is at distance

at most k from the vertex set of some 3-vertex path in P. For a graph G in which

every vertex is contained in some 3-vertex path (that is, G does not have any isolated

vertices and isolated edges), we denote by Λk(G) the minimum size of a distance-k P3

dominating set in G. A distance-k P3 edge dominating set P of G is a set of 3-vertex

paths in G such that every edge of G is at distance at most k from the vertex set of some

3-vertex path in P. For a graph G in which every edge is contained in some 3-vertex

path (that is, G does not have any isolated edges), we denote by Λe
k(G) the minimum

size of a distance-k P3 edge dominating set in G. A distance-k edge P3 dominating set

F of G is a set of edges in G such that the vertex set of every 3-vertex path of G is

at distance at most k from an edge in F . We denote by εΛ
k (G) the minimum size of a

distance-k edge P3 dominating set in G.

An (integer) graph invariant is a mapping from the class of all graphs to the set

N of non-negative integers that is constant on any set of pairwise isomorphic graphs.



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 8

Some “invariants” corresponding to minimization problems are not defined on the class

of all graphs. For example, the value of ρk(G), the minimum size of a distance-k edge

cover of G, is not defined if G has an isolated vertex. In such cases, it is convenient

to extend the co-domain N of the mapping to the set N ∪ {∞} and assign value ∞ to

each graph on which the value of the invariant would otherwise not be defined.

For graph theoretic notions not defined here, we refer to West [66].

2.2 Problem definitions

Before we give formal definitions of our problems let us first recall the definitions of

certain classes of problems defined with respect to the computational complexity of a

problem. A problem that for a given input asks whether the answer to some question is

yes or no is called a decision problem. On the other hand, an optimization problem is

the problem of finding an optimal solution from all feasible solutions. More precisely,

an instance of an optimization problem is an ordered triple (S, f, opt), where S is an

(implicitly given) set of feasible solutions, f : S → R is the objective function and

opt ∈ {min,max} is the type of the problem (minimization or maximization). We are

looking for the value of OPT := opt{f(x) | x ∈ S}. For example, for a given graph G,

the problem of computing its vertex cover number τ(G) is an optimization problem in

which each instance is an ordered triple (SG, fG, opt), where SG is the set of all vertex

covers of the graph G, the function fG assigns to each vertex cover of G its cardinality,

and opt = min.

Given a decision or optimization problem Π, we say that Π is solvable in polynomial

time if there exists an algorithm that solves Π in time that is bounded by a polynomial

function of the input size.

The complexity class P consists of decision problems solvable in polynomial time.

A decision problem Π is said to be solvable in non-deterministic polynomial time if

for any input I such that Π(I) gives answer yes there exists a certificate C such that

using C, the fact that Π(I) gives answer yes can be verified in time polynomial in the

size of input I. We denote by NP the complexity class of all such problems. Note that

for a problem Π in NP it may not be known whether there exists a polynomial-time

algorithm that solves it.

A problem Π is said to be NP-hard if the existence of a polynomial time algorithm

that solves Π implies the existence of a polynomial time algorithm for any problem in

the class NP. A problem that is both in NP and NP-hard is said to be NP-complete.

Note that not all problems that are NP-hard are decision problems.

A decision problem Π1 can be polynomially reduced to a decision problem Π2 if there

exists a function f that, given any input I1 for Π1, constructs an input I2 = f(I1) for
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Π2 and has the following properties: f(I1) can be computed in time that is polynomial

in the size of I1 and problem Π1 has answer yes for input I1 if and only if problem Π2

has answer yes for input f(I1).

We can show that a problem Π is NP-complete by showing that it is in NP and that

there exists an NP-complete problem Π′ that can be polynomially reduced to Π.

Let Π be an optimization problem such that for every instance (S, f, opt) of the

problem and every feasible solution x ∈ S, the objective function value is strictly positive

(that is, f(x) > 0). A ρ-approximation algorithm for Π is an algorithm A that runs in

polynomial time and for every instance of Π, outputs a feasible solution with objective

function value within a factor of ρ of true optimum for the instance. More specifically, if

Π is a minimization problem, then for every instance I of Π we have fA(I) ≤ ρOPT(I),

where fA(I) is the value of the solution returned by the algorithm and OPT(I) is the

optimal solution value. Similarly, for maximization problems, fA(I) ≥ OPT(I)
ρ

.

Let us now formally define our four decision problems.

Distance-k Dominating Set

Instance: A graph G and an integer `.

Question: Is there a distance-k dominating set in G with size at most `?

Distance-k Edge Dominating Set

Instance: A graph G and an integer `.

Question: Is there a distance-k edge dominating set in G with size at most `?

Distance-k Vertex Cover

Instance: A graph G and an integer `.

Question: Is there a distance-k vertex cover in G with size at most `?

Distance-k Edge Cover

Instance: A graph G and an integer `.

Question: Is there a distance-k edge cover in G with size at most `?

The Distance-k Dominating Set problem was introduced by Slater [63] and

Henning et al. [35]. For surveys on distance k-domination, we refer to [36, 37].

We will also need the following problem, which was shown to be NP-complete by

Kirkpatrick and Hell [45].

P3 Factor

Instance: A graph G.

Question: Is there a P3 factor in G?
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3 A survey of known algorithmic results

on covering and domination problems and

their distance variants

As already mentioned in the introduction, the basic variants of the four problems were

studied before and even though Edge Cover is known to be polynomial-time solvable,

the other three problems are known to be NP-complete. Moreover, the problems are

known to remain NP-complete on some specific graph classes as well. A natural question

that one can ask is: for which graph classes do the problems remain NP-complete and

for which do they become polynomial-time solvable? The same goes for the distance

variants of the four problems. This chapter gives a brief overview of some known

hardness and polynomial results for all the four mentioned problems and their distance

variants. We mainly present the most general available polynomial-time results and

NP-completeness results for as restricted graph classes as possible.

We also summarize the known approximation results for the problems and have a

look at what is known about the parameterized complexity of the classical variants of

the domination and covering problems we considered.

3.1 NP-complete and polynomial-time solvable special cases

We start of with the two domination problems and their distance-based variants and

summarize the main graph classes for which the problems are known to be NP-complete

or polynomial-time solvable.

The Distance-k Dominating Set problem is NP-complete for graphs in general,

and remains NP-complete for bipartite graphs and for chordal graphs (see [16]). On the

other hand, it is polynomial-time solvable for permutation graphs (see [60]), strongly

chordal graphs (see [15]), dually chordal graphs (which generalize strongly chordal

graphs, see [10]), AT-free graphs (see [17]) and graphs of bounded mim-width if a

decomposition tree is given (see [40]).

In the case when k = 1, that is, for the Dominating Set problem, it was additionally

shown that the problem is NP-complete on split graphs (see [6] and [22]), undirected

path graphs (see [9]), as well as for planar graphs of maximum degree 3 (see [31]) and

unit disk graphs (see [20]). Moreover, there is a dichotomy by Korobitsyn [47] showing
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that the Dominating Set problem is NP-complete if the class of H-free graphs unless

H is an induced subgraph of some P4 + sP1, in which case it is solvable in polynomial

time.

Contrary to the Dominating Set problem, in the case of the Edge Dominating

Set problem much more is known about the basic variant of the problem than about its

distance-based generalizations. In particular, it is known that the Edge Dominating

Set problem is NP-complete on subcubic bipartite graphs and subcubic planar graphs

(see [67]) as well as on planar bipartite graphs, planar cubic graphs, and line graphs of

planar bipartite graphs (see [38]).

The problem is polynomial-time solvable for bipartite permutation graphs (see [64]

and [50]), graphs of bounded clique-width (see [29], [46], and [55]), complements of

chordal graphs (which generalize the class of split graphs, see [64]), and, more generally,

sP2-free graphs, for any positive integer s. This latter result follows from the fact that

each sP2-free graph has at most polynomially many maximal independent sets (see [2]

or [5]) and the fact that the Edge Dominating Set problem is solvable in polynomial

time in any class of graphs with at most polynomially many independent sets, which

in turn follows from a result from [64] and the fact that in a graph with polynomially

many maximal independent sets, all maximal independent sets can be computed in

polynomial time (see [21, 51, 65]).

On the other hand, to the best of our knowledge, it is not known for which graph

classes the Distance-k Edge Dominating Set problem is NP-hard for any k ≥ 1.

However, for all k ≥ 1 the problem is polynomial-time solvable for graphs of bounded

treewidth. This follows from a meta-theorem of [4] and a result showing that given a

graph with treewidth k, a tree decomposition of width at most k can be computed in

linear time [7].

Now we will have a look at the covering problems and their distance-based variants

and give an overview of the graph classes for which the problems are known to be

NP-complete or polynomial-time solvable.

First, the Vertex Cover problem is NP-complete on cubic planar graphs (see [54])

and dually chordal graphs (see [13]), as well as on the class of H-free graphs whenever

H has a component that is not a path or a subdivision of the claw (see [1]). For the

polynomial-time solvable cases, we first observe that the Vertex Cover problem is

equivalent to the Independent Set problem, which takes as input a graph G and an

integer ` and asks if G contains an independent set with size at least `. In any graph

class in which the Independent Set problem is solvable in polynomial time, so is the

Vertex Cover. Hence, we obtain the following list of graph classes for which Vertex

Cover is polynomial-time solvable: perfect graphs (see [33]) and their subclasses

(see [32]), AT-free graphs (see [12]), and graphs of bounded clique-width, which follows
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from a meta-theorem of Courcelle et al. [23] and a result of Oum [55] showing that an

f(k)-expression of a graph with clique-width at most k can be computed in polynomial

time.

For graph classes defined by forbidding a fixed graph as an induced subgraph the

Vertex Cover problem is polynomial-time solvable on claw-free graphs (see two

independent works [53] and [62]) and more generally fork-free graphs (see [3]), for H-free

graphs where each component of H is a claw (see [11]), as well as for P6-free graphs

(see [34]).

The Distance-k Vertex Cover problem is NP-complete on graphs in general for

k = 1 (see [39]), as well as for all k ≥ 2 (see [61]). In the case when k = 1, that is, for the

Distance-1 Vertex Cover problem, we also have that the problem is NP-complete

for bipartite and chordal graphs (see [52]), planar and circle graphs (see [48]), undirected

path graphs (see [58]), subcubic bipartite planar and cubic planar graphs (see [68]) and

unit disk graphs (see [41]).

Regarding polynomial-time solvability, it is known that, in contrast to the case

k = 0, for k ≥ 1 the Distance-k Vertex Cover problem is polynomial-time

solvable on dually chordal graphs (which include strongly chordal graphs and interval

graphs (see [13]). Let us also note that unless P = NP, the polynomial-time solvability

of Distance-k Vertex Cover for strongly chordal graphs for k ≥ 1 cannot be

generalized to the class of perfect graphs, in fact, not even to the class of chordal

graphs, for which NP-completeness of the problem is established in this thesis, see

Theorem 6.20 on p. 43. Also, the problem is polynomial-time solvable on graphs of

bounded clique-width (see [23, 55]). In the case when k = 1, the Distance-1 Vertex

Cover is polynomial-time solvable for for bipartite permutation graphs (see [57]).

The Edge Cover problem, on the other hand, is known to be polynomial-time

solvable for graphs in general. However, for the Distance-k Edge Cover problem,

to the best of our knowledge, the only known result is in the case when k = 1, where

Lewis [48] showed that the problem is NP-complete for bipartite graphs. It follows

from [4] and [7] that for all k ≥ 1 the Distance-k Edge Cover is polynomial-time

solvable on graphs of bounded treewidth.

3.2 Approximation algorithms

To discuss the approximability aspects of the considered problems, we need to restrict

ourselves to the optimization variants of the problems. For example, the Minimum

Dominating Set problem is defined as the optimization problem that takes as input

a graph G and the task is to compute γ(G), the minimum size of a dominating set in G.

The other optimization problems relevant for the discussion in this section are derived
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analogously from the corresponding decision problems.

Again, we first start with the known results for the domination problems. Given a

graph G = (V,E), a natural greedy algorithm provides a factor 1+ ln |V | approximation

of a minimum dominating set. This follows from the fact that the Minimum Dominat-

ing Set problem is a special case of the Set Cover problem: given a collection of

subsets of a finite set V , find a smallest subcollection whose union equals V . The greedy

algorithm provides a factor 1 + ln |V | approximation of the Set Cover problem [19].

Using the analogous result for the Set Cover, proved by Dinur and Steurer [26],

one can show that for any ε > 0 there is no ((1− ε) ln |V |)-approximation algorithm for

the Minimum Dominating Set problem, unless P = NP, see [8, Theorem 6.5].

On the other hand, to the best of our knowledge, the distance version of the

dominating set problem, that is, the Minimum Distance-k Dominating Set problem

for k ≥ 2, has not been studied in the literature from the approximation point of view.

However, it can be observed that the Minimum Distance-k Dominating Set problem

is also a special case of the Set Cover problem (where the ground set is the vertex

of the input graph), and hence the greedy algorithm provides a factor (1 + ln |V |)
approximation of the Minimum Distance-k Dominating Set problem.

For the Minimum Edge Dominating Set problem, let us first remark that

this problem is known to have the same optimal value as the Minimum Maximal

Matching problem, the problem of computing the minimum cardinality of a maximal

matching [67]. As a consequence, any maximal matching M gives a 2-approximation to

the Minimum Edge Dominating Set problem. Indeed, M is an edge dominating set;

furthermore, M can be at most twice as large as a smallest maximal matching, and, as

mentioned above, a smallest maximal matching has the same size as a smallest edge

dominating set.

For any ε > 0 there is no (7
6
− ε)-approximation algorithm for the Minimum Edge

Dominating Set problem, unless P = NP ([18]). A stronger bound is also known, as

follows. Escoffier et. al showed that for any ρ ≥ 1, if there is a ρ-approximation algorithm

for Minimum Edge Dominating Set, then there exists a (2ρ − 1)-approximation

algorithm for Minimum Vertex Cover ([28]). This result, combined with a (
√

2− ε)-
inapproximability result on Minimum Vertex Cover due to Khot, Minzer, and

Safra [44] (see below) implies that for any ε > 0 there is no (
√

2+1
2
− ε)-approximation

algorithm for the Edge Dominating Set problem, unless P = NP.

Again, to the best of our knowledge, the Distance-k Edge Dominating Set

problem and its optimization version have not yet been studied in the literature for

any k ≥ 1. Since the Minimum Distance-k Edge Dominating Set problem is a

special case of the Set Cover problem (where the ground set is the edge set of the

input graph), the greedy algorithm provides a factor 1 + ln |E| approximation of the
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Minimum Distance-k Edge Dominating Set problem.

As for the covering problems we have the following.

It is known that computing any inclusion maximal matching and returning the

set of vertices saturated by the matching gives a 2-approximation algorithm for the

Minimum Vertex Cover problem (see [56]). On the other hand, for any ε > 0 there

is no (
√

2− ε)-approximation algorithm for the Minimum Vertex Cover problem,

unless P = NP (see [44]).

Regarding the Minimum Distance-k Vertex Cover problem for k ≥ 1, we are

only aware of a result by Lewis [48] showing that there is a constant c > 0 such that

there is no (c ln |V |)-approximation algorithm for the Minimum Distance-1 Vertex

Cover problem on bipartite graphs, unless P = NP. Since the problem is a special case

of the Set Cover problem (where the ground set is the edge set of the input graph),

the greedy algorithm provides a factor (1 + ln |E|) approximation of the Minimum

Distance-k Vertex Cover problem.

The Minimum Edge Cover problem can be optimally solved in polynomial time,

that is, a 1-approximation algorithm exists for all graphs. Regarding the Minimum

Distance-k Edge Cover for k ≥ 1, we are again only aware of a result of Lewis [48]

showing that there is a constant c > 0 such that there is no (c ln |V |)-approximation

algorithm for the Minimum Distance-1 Edge Cover problem on bipartite graphs,

unless P = NP. Since the Minimum Distance-k Edge Cover problem is a special

case of Set Cover (where the ground set is the vertex set of the input graph),

the greedy algorithm provides a factor 1 + ln |V | approximation of the Minimum

Distance-k Edge Cover problem.

3.3 Parameterized complexity

NP-complete problems can differ also with respect to their parameterized complexity [24].

A parameterized problem is a decision problem in which each input instance comes

equipped with a so-called parameter, which is (typically) a positive integer associated

to the instance. Given a parameterized problem Π, an algorithm that correctly solves

Π is said to be fixed-parameter tractable (FPT) if it runs in time O(f(`) · p(n)), where

` is the parameter of the input instance, n is the input size, f is any function, and p is

any polynomial function. Thus, a running time of O(2`n3) would be acceptable in this

definition, but a running time of O(n`) would not be. A parameterized problem is said

to be fixed-parameter tractable (FPT) if it admits an FPT algorithm.

Most of the decision problems considered in this thesis are obtained from optimization

problems and have the following form: given a graph G and an integer `, is the value

of a certain invariant on G at most `? All these problems can be easily turned into
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parameterized problems, using the so-called natural parameterization, which simply

chooses ` as the parameter. Let us summarize what is known about the parameterized

complexity of the classical variants of the domination and covering problems considered

in the thesis. It follows immediately from the definition that for every decision problem

that is solvable in polynomial time, its natural parameterization is FPT. In particular,

the natural parameterization of the Edge Cover problem is FPT. The natural

parameterizations of Vertex Cover and Edge Dominating Set are also fixed-

parameter tractable (see [27] and [30], respectively). On the other hand, the existence of

an FPT algorithm for the natural parameterization of the Dominating Set problem is

considered unlikely (see [24]), and this is also the case for the natural parameterization

of Distance-k Dominating Set for all k ≥ 1 [42, 49]. To the best of our knowledge,

the natural parameterizations of Distance-k Edge Cover, Distance-k Vertex

Cover and Distance-k Edge Dominating Set have not yet been studied in the

literature for any k ≥ 1.
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4 Bounds

Considering the distance-based variants of all the problems, we now establish several

inequalities relating the sizes of the optimal solutions of all four problems.

Theorem 4.1. Let G be a graph without isolated vertices and k ≥ 1 an integer. Then,

the following inequalities hold:

γ′k(G) ≤ τk(G) ≤ γk(G) ≤ 2ρk(G) ≤ 2γk(G) .

Proof. First we show that γ′k(G) ≤ τk(G). Let C be a distance-k vertex cover in G with

size τk(G). Note that every vertex u in C is incident with an edge of G as G has no

isolated vertices. We construct a set F ⊆ E(G) in the following way: for every vertex

u ∈ C we add one edge {u, v} ∈ E(G) to F .

We claim that F is a distance-k edge dominating set in G with size γ′k(G). Let

{u, v} ∈ E(G) be arbitrary. Since C is a distance-k vertex cover in G, we have that

dist({u, v}, C) ≤ k. However, that implies that dist({u, v}, F ) ≤ dist({u, v}, C) ≤ k.

Hence, F is a distance-k edge dominating set in G with size |F | ≤ |C| = τk(G), implying

that γ′k(G) ≤ τk(G).

Next, we show that τk(G) ≤ γk(G). Let D be a distance-k dominating set in G with

size γk(G). We claim that D is also a distance-k vertex cover in G. Let {u, v} ∈ E(G)

be arbitrary. Since D is a distance-k dominating set in G, we have that dist(u,D) ≤ k,

hence, dist({u, v}, D) ≤ k, implying that D is a distance-k vertex cover in G. Thus,

τk(G) ≤ |D| = γk(G).

Next, we show that γk(G) ≤ 2ρk(G). Let F be a distance-k edge cover in G with

size ρk(G). Define D to be the set of vertices u ∈ V (G) such that u is incident with an

edge in F . Note that |D| ≤ 2|F |. We claim that D is a distance-k dominating set in

G. Let v ∈ V (G) be arbitrary. Since F is a distance-k edge cover in G, we have that

dist(v, F ) ≤ k, that is, dist(v, u) ≤ k for some vertex u ∈ V (G) such that u is incident

with an edge in F . Observe that u ∈ D. Therefore, dist(v,D) ≤ dist(v, u) ≤ k, implying

that D is a distance-k dominating set in G. Thus, γk(G) ≤ |D| ≤ 2|F | = 2ρk(G).

Finally, we show that 2ρk(G) ≤ 2γk(G), or equivalently, that ρk(G) ≤ γk(G). Let

D be a distance-k dominating set in G with size γk(G). We construct a set F ⊆ E(G)

in the following way: for every vertex u ∈ D we add one edge {u, v} ∈ E(G) to F .

We claim that F is a distance-k edge cover in G. Let u ∈ V (G) be arbitrary. Since

D is a distance-k dominating set in G, we have dist(u,D) ≤ k. However, that implies
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that dist(u, F ) ≤ dist(u,D) ≤ k. Therefore, F is a distance-k edge cover in G. Hence,

ρk(G) ≤ |F | = |D| = γk(G) or equivalently 2ρk(G) ≤ 2γk(G).

As the theorem shows, in any graph G without isolated vertices, the existence of

a distance-k dominating set of size at most ` guarantees the existence of a distance-k

edge dominating set, distance-k vertex cover, as well as distance-k edge cover of size at

most `. This result will be used in Chapter 7 to develop polynomial-time algorithms

for Distance-k Edge Dominating Set, Distance-k Vertex Cover, as well

as Distance-k Edge Cover problems in particular graph classes, by combining

the theorem with a result establishing the existence of a distance-k dominating set of

bounded size.
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5 Graph transformations

In this chapter we consider a number of graph transformations and see how the optimal

solution value to one of the problems on the transformed graph can be expressed in

terms of an invariant of the the original graph, typically in terms of the optimal solution

value of the same or a different problem. The choice of transformations and invariants

considered is motivated by the applications of the obtained results in Chapter 6 on

NP-completeness; nevertheless, we believe that some of these purely graph theoretic

results may be of interest on their own.

We first look at the relations when the transformed instance is a line graph, then

when we append paths to vertices, then when we subdivide edges, and finally, when the

resulting graph is chordal.

5.1 The line graph transformation

The following lemma is used in the proofs of all theorems in this section.

Lemma 5.1. Let G be a graph and H its line graph, that is, H = L(G). Then, for any

two distinct edges e, f ∈ E(G), we have distH(e, f) = distG(e, f) + 1.

Proof. Let PG be a shortest path in G from an endpoint of e to an endpoint of f . In

particular, PG contains exactly one vertex in e and one vertex in f . Let PH be the path

in H with endpoints e and f , and whose internal vertices correspond to the edges of

PG. By the definition of PG, distG(e, f) = |E(PG)|. On the other hand, we have that

distH(e, f) ≤ |E(PH)| = |V (PH)| − 1 = (|E(PG)|+ 2)− 1 = distG(e, f) + 1.

For the converse direction, let PH be a shortest path in H between e and f . Note

that PH does not contain any vertices corresponding to edges in E(G′) \ E(G). Let

PG the path in G whose edges correspond to the internal vertices of PH . Then, PG

contains exactly one vertex incident with e and exactly one vertex incident with f .

Thus, distG(e, f) ≤ |E(PG)| = |V (PH)| − 2 = (|E(PH)|+ 1)− 2 = distH(e, f)− 1.

Given a graph G, the next four theorems express the values of γk, γ
′
k, τk, and ρk of

the line graph of G in terms of invariants of G, respectively. We start with distance-k

domination.

Theorem 5.2. Let G be a graph, k ≥ 1 an integer and H = L(G). Then γk(H) =

γ′k−1(G).
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Proof. Let F be a distance-(k − 1) edge dominating set in G with size γ′k−1(G). We

claim that F is a distance-k dominating set in H. Let e ∈ V (H) be arbitrary. Since F

is a distance-(k − 1) edge dominating set in G, we have distG(e, f) ≤ k − 1 for some

f ∈ F . By Lemma 5.1, we get distH(e, f) = distG(e, f) + 1 ≤ k − 1 + 1 = k, therefore,

distH(e, F ) ≤ distH(e, f) ≤ k. Hence, F is a distance-k dominating set in H with size

|F | = γ′k−1(G), implying that γk(H) ≤ γ′k−1(H).

Now, let F be a distance-k dominating set in H with size γk(H). We claim

that F is a distance-(k − 1) edge dominating set in G. Let e ∈ E(G) be arbitrary.

Since F is a distance-k dominating set in H, we have that distH(e, f) ≤ k for some

f ∈ F . By Lemma 5.1, we get that distG(e, f) = distH(e, f) − 1 ≤ k − 1, therefore,

distG(e, F ) ≤ distG(e, f) ≤ k−1. Hence, F is in fact a distance-(k−1) edge dominating

set in G with size |F | = γk(H), implying that γ′k−1(G) ≤ γk(H).

Next, we establish a relation between the minimum size of a distance-(k − 1) P3

dominating set in a graph G (that is, Λk−1(G)) and the minimum size of a distance-k

edge dominating set in the line graph of G (that is, γ′k(L(G))), for every k ≥ 1.

Theorem 5.3. Let G be a graph, k ≥ 1 an integer and H = L(G). Then, γ′k(H) =

Λk−1(G).

Proof. Let P be a distance-(k− 1) P3 dominating set in G with size Λk−1(G). Let F be

the set of edges in H that correspond to the 3-vertex paths in P . We claim that F is a

distance-k edge dominating set in H. Let ê ∈ E(H) be arbitrary. Let P be the 3-vertex

path in G whose edges correspond to the vertices of ê. Since P is a distance-(k − 1)

P3 dominating set in G, there is a Q ∈ P such that distG(V (P ), V (Q)) ≤ k − 1. In

particular, for some e ∈ E(P ) and f ∈ E(Q) we have distG(e, f) ≤ k−1. By Lemma 5.1,

we have that distH(e, f) = distG(e, f) + 1 ≤ k − 1 + 1 = k. Let f̂ be the edge in H that

corresponds to Q in G. Then, distH(ê, F ) ≤ distH(ê, f̂) ≤ distH(e, f) ≤ k. Hence, F is

a distance-k edge dominating set of H with size |F | = |P| = Λk−1(G), implying that

γ′k(H) ≤ Λk−1(G).

Suppose now that F is a distance-k edge dominating set in H. Let P be the set of

3-vertex paths in G that correspond to edges in F . We claim that P is a distance-(k−1)

P3 dominating set in G. Let P be an arbitrary 3-vertex path in G. Let ê be the edge

of H that corresponds to P . Since F is a distance-k edge dominating set in H we

have that distH(ê, F ) ≤ k, which means that distH(ê, f̂) ≤ k for some f̂ ∈ F . Then,

distH(e, f) ≤ k for some endpoint e of ê and f of f̂ in H. By Lemma 5.1 we have that

distG(e, f) = distH(e, f) − 1 ≤ k − 1. But e is an edge of P , while f is an edge of Q

where Q is the 3-vertex path in G that corresponds to the edge f̂ ∈ E(H). Notice that

Q ∈ P . Since distG(V (P ), V (Q)) ≤ distG(e, f) we have that distG(V (P ), V (Q)) ≤ k− 1.

Hence, P is a distance-(k − 1) P3 dominating set of G with size |P| = |F | = γ′k(H),

implying that Λk−1(G) ≤ γ′k(H).
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Our next goal is to show a relation between the minimum size of a distance-(k − 1)

edge P3 dominating set in a graph G (that is, εΛk−1(G)) and the minimum size of a

distance-k vertex cover in the line graph of G (that is, τk(L(G))), for every k ≥ 1.

Theorem 5.4. Let G be a graph, k ≥ 1 an integer and H = L(G). Then, τk(H) =

εΛ
k−1(G).

Proof. Let F be a distance-(k − 1) edge P3 dominating set in G with size εΛ
k−1(G). By

definition, F is a set of vertices in H. We claim that F is a distance-k vertex cover in

H. Let ê ∈ E(H) be arbitrary. Let P be the 3-vertex path in G that corresponds to

the edge ê of H. Since F is a distance-(k− 1) edge P3 dominating set in G, there exists

an edge f ∈ F such that distG(V (P ), f) ≤ k − 1, that is, distG(e, f) ≤ k − 1 for some

e ∈ E(P ). By Lemma 5.1, we have that distH(e, f) = distG(e, f) + 1 ≤ (k − 1) + 1 = k.

However, distH(ê, F ) ≤ distH(e, F ) ≤ distH(e, f) ≤ k. Hence, F is a distance-k vertex

cover of H with size |F | = εΛ
k−1(G), implying that τk(H) ≤ εΛ

k−1(G).

Assume now that F is a distance-k vertex cover of H with size τk(H). Note that F

is a set of edges in G. We claim that F is a distance-(k − 1) edge P3 dominating set

in G. Let P be a 3-vertex path in G such that distG(V (P ), F ) > k − 1. Let ê be the

edge in H that corresponds to P . Since F is a distance-k vertex cover in H, we have

that distH(ê, F ) ≤ k which means that distH(e, f) ≤ k for some e ∈ ê and f ∈ F . By

Lemma 5.1, we have that distG(e, f) = distH(e, f)−1 ≤ k−1. Observe that e is an edge

of P . Since distG(V (P ), f) ≤ distG(e, f) ≤ k − 1, we get that distG(V (P ), F ) ≤ k − 1.

Hence, F is a distance-(k − 1) P3 edge dominating set of G with size |F | = τk(G),

implying that εΛ
k−1(G) ≤ τk(H).

Finally, we establish a relation between the minimum size of a distance-(k − 1)

P3 edge dominating set in a graph G (that is, Λe
k−1(G)) and the minimum size of a

distance-k edge cover in the line graph of G (that is, ρk(L(G))) for every integer k ≥ 1.

Theorem 5.5. Let G be a graph without isolated edges and H = L(G). Then, ρk(H) =

Λe
k−1(G) for all k ≥ 1.

Proof. Let P be a distance-(k− 1) P3 edge dominating set in G with size Λe
k−1(G). Let

F be the set of edges in H that correspond to the 3-vertex paths in P . We claim that

F is a distance-k edge cover in H. Let e ∈ V (H) be arbitrary. Since e is an edge in

G and P is a distance-(k − 1) P3 edge dominating set in G, there is a P ∈ P such

that distG(e, V (P )) ≤ k − 1. That is, for some f ∈ E(P ) we have distG(e, f) ≤ k − 1.

By Lemma 5.1, we have that distH(e, f) = distG(e, f) + 1 ≤ k − 1 + 1 = k. However,

distH(e, F ) ≤ distH(e, E(P )) ≤ distH(e, f) ≤ k. Hence, F is a distance-k edge cover of

H with size |F | = |P| = Λe
k−1(G), implying that ρk(H) ≤ Λe

k−1(G).

Suppose now that F is a distance-k edge cover of H. Let P be the set of 3-vertex

paths in G that correspond to edges in F . We claim that P is a distance-(k − 1) P3
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edge dominating set in H. Let e ∈ E(G) be arbitrary. Since F is a distance-k edge

cover in H we have that distH(e, F ) ≤ k, which means that distH(e, f̂) ≤ k for some

f̂ ∈ F . Then, distH(e, f) ≤ k for some endpoint f of f̂ in H. By Lemma 5.1 we have

that distG(e, f) = distH(e, f) − 1 ≤ k − 1. Observe that f is an edge of P where P

is a 3-vertex path in G that corresponds to the edge f̂ . Note that P ∈ P, therefore,

distG(e, V (P )) ≤ distG(e, f) ≤ k− 1. Hence, P is a distance-(k− 1) P3 edge dominating

set of G with size |P| = |F | = ρk(H), implying that Λe
k−1(G) ≤ ρk(H).

5.2 Path growing transformations

Construction 1. Let G be a graph and t a positive integer. We define G+t to be the

graph obtained from G by appending to every vertex v ∈ V (G) a path of length t. See

Figure 1 for an example.

vu

w

G G+t
u

... w

...

v

path with

t vertices
...

Figure 1: A graph G (left) and the graph G′ obtained from it (right), for some positive

integer t.

Theorem 5.6. Let G be a graph and k ≥ 0 an integer. Let G′ be the graph obtained

from Construction 1 given G and t = 1, that is G′ = G+1. Then, εΛ
k (G′) = γ′k(G).

Proof. Let F be a distance-k edge dominating set in G with size γ′k(G). We claim

that F is a distance-k edge P3 dominating set in G′. Note that F ⊆ E(G′). Let P be

an arbitrary 3-vertex path in G′. Observe that P contains at least one edge, call it

e ∈ E(G′), that is also an edge of G. Since F is a distance-k edge dominating set in G,

we have that distG(e, F ) ≤ k. However, distG′(V (P ), F ) ≤ distG′(e, F ), which readily

implies that distG′(V (P ), F ) ≤ k, hence F is a distance-k edge P3 dominating set in G′

with size |F | = γ′k(G). This gives εΛ
k (G′) ≤ γ′k(G).

Now, let F be a distance-k edge P3 dominating set in G′ with size εΛ
k (G′). Let us

first show that G′ contains a distance-k edge P3 dominating set F ′ of size at most |F |
that contains only the edges that are also in G. If e′ ∈ F is an edge that is in G′ but

not in G then e′ = {u, u′} for some u ∈ V (G). Notice that NG(u) 6= ∅ since otherwise

F \{e′} would be a distance-k edge P3 dominating set in G′ with size εΛ
k (G′)−1, which is
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impossible. Hence, we can define a new set F ′ = (F \{e′})∪{{u, v}} for some arbitrary

v ∈ NG(u), and this set does not contain e′. So we may assume, without loss of generality,

that F is a distance-k edge P3 dominating set in G′ with size εΛk (G′) that consists only of

edges of G. We claim that F is a distance-k edge dominating set in G. Let e = {u, v} be

an arbitrary edge in G. Let u′ ∈ V (G′) \V (G) be such that {u, u′} ∈ E(G′) and denote

by P the path on the 3 vertices v, u and u′. Since F is a distance-k edge P3 dominating

set in G′, we have that distG′(V (P ), F ) ≤ k, that is, distG′(V (P ), f) ≤ k for some f ∈ F .

Observe that distG′(e, f) ≤ distG′(u, f) = distG′({u, u′}, f) and distG(e, f) = distG′(e, f).

Hence, distG(e, f) = distG′(e, f) = distG′(V (P ), f) ≤ k and since f ∈ F ⊆ E(G) we also

have distG(e, F ) ≤ distG(e, f) ≤ k. Therefore, F is a distance-k edge dominating set in

G with size |F | = εΛ
k (G′), implying that γ′k(G) ≤ εΛ

k (G′).

Theorem 5.7. Let G be a graph without isolated vertices and edges and k ≥ 0 an

integer. Let G′ be the graph obtained from Construction 1 given G and t = k + 2, that

is G′ = G+(k+2). Then, Λk(G
′) = Λ(G).

Proof. Let P be a P3 cover of G with size Λ(G). Note that every path in P is

also a path in G′. We claim that P is a distance-k P3 dominating set in G′. Let

P be an arbitrary 3-vertex path in G′. Then P contains a vertex u ∈ V (G) or is

an induced subgraph of the path appended to some u ∈ V (G). If P contains a

vertex u ∈ V (G), then distG′(V (P ), V (P ′)) = 0 for some P ′ ∈ P. If P is an induced

subgraph of the path appended to some u ∈ V (G), then distG′(V (P ), u) ≤ k. Since

u ∈ V (G), distG′(u, V (P ′)) = 0 for some P ′ ∈ P, therefore, distG′(V (P ), V (P ′)) ≤
distG′(V (P ), u) + distG′(u, V (P ′)) ≤ k for some P ′ ∈ P. Hence, P is a distance-k P3

dominating set in G′ with size |P| = Λ(G), implying that Λk(G
′) ≤ Λ(G).

Now, let P be a distance-k P3 dominating set in G′ with size Λk(G). We assume,

without loss of generality, that P consists only of 3-vertex paths that are also paths in

G. Otherwise, if P ∈ P is a 3-vertex path that is a path in G′ but not in G, then P

contains a vertex w′ that belongs to a path appended to some u ∈ V (G) and then we

could replace P with any path P ′ that contains vertex u and satisfies V (P ′) ⊆ V (G).

We claim that P is a P3 cover of G. Consider a vertex u ∈ V (G). The path with

k + 2 vertices that is appended to it, in G′, contains a 3-vertex path, that is at distance

exactly k from u. Hence, u has to be contained in some P ∈ P and therefore P is a P3

cover of G with size |P| = Λk(G). Hence, Λ(G) ≤ Λk(G).

Theorem 5.8. Let G be a graph without isolated vertices and edges and k ≥ 0 an

integer. Let G′ be the graph obtained from Construction 1 given G and t = k + 1, that

is, G′ = G+(k+1). Then, Λe
k(G

′) = Λ(G).

Proof. Let P be a P3 cover of G with size Λ(G). We claim that P is also a distance-k

P3 edge dominating set of G′. Let e be an arbitrary edge of G′. Then e has an endpoint
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u ∈ V (G), or is an edge of the path appended to some u ∈ V (G). If e has an endpoint u ∈
V (G), then distG′(e, V (P )) = 0 for some P ∈ P . If e is an edge of the path appended to

some u ∈ V (G), then distG′(e, u) ≤ k. Since u ∈ V (G), we have that distG′(u, V (P )) = 0

for some P ∈ P , therefore, distG′(e, V (P )) ≤ distG′(e, u) + distG′(u, V (P )) ≤ k for some

P ∈ P. Hence, P is a distance-k P3 edge dominating set of G′ with size |P| = Λ(G),

implying that Λe
k(G) ≤ Λ(G).

Now, let P be a distance-k P3 edge dominating set in G′ with size Λe
k(G). We

assume, without loss of generality, that P consists only of the 3-vertex paths that are

fully contained in G. Otherwise, if P ∈ P is a 3-vertex path that is a path in G′ but not

in G, then P contains a vertex w′ that belongs to a path appended to some u ∈ V (G)

and then we could replace P with any path P ′ that contains the vertex u and satisfies

V (P ′) ⊆ V (G). We claim that P is a P3 cover in G. Consider a vertex in u ∈ V (G).

The path with k + 1 vertices that is appended to it, in G′, contains an edge that is at

distance exactly k from u. Hence, u has to be contained in some P ∈ P . Therefore, P
is a P3 cover of G with size |P| = Λe

k(G
′), implying that Λ(G) ≤ Λe

k(G
′).

5.3 Poljak-type transformations

In this section we generalize the well-known fact, observed first by Poljak in [59], that a

double subdivision of an edge increases the minimum size of a vertex cover by exactly

one.

We generalize this result to all four distance-based problems. More precisely, we show

that subdividing an edge exactly 2k+ 1 times results in a unit increase of the minimum

size of a distance-k dominating set (see Lemma 5.9), subdividing an edge 2k + 3 times

results in a unit increase of the minimum size of a distance-k edge dominating set (see

Lemma 5.11), while subdividing an edge 2k + 2 times results in a unit increase of the

minimum sizes of a distance-k vertex cover and distance-k edge cover (see Lemmas 5.13

and 5.15).

Distance-k domination

Lemma 5.9. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained from G by

subdividing edge e exactly 2k+1 times, for some integer k ≥ 1. Then γk(G
′) = γk(G)+1.

Proof. Let us denote the endpoints of e by u and v and let X be the set of internal

vertices of the path between u and v in G′ obtained from the subdivision of the edge

e = {u, v} in G. Label the elements of X as X = {x1, . . . , x2k+1} so that u is adjacent

to x1, vertex xi is adjacent to xi+1 for every i ∈ {1, ..., 2k}, and x2k+1 is adjacent to v.

Let D be a distance-k dominating set in G with size γk(G). We assume that

distG(u,D) ≥ distG(v,D), or else we can relabel u, v, and the vertices xi, for i ∈



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 24

{1, . . . , 2k + 1}, accordingly. Let d = distG(v,D) ≤ k and D′ = D ∪ {xd+1}. We

claim that D′ is a distance-k dominating set in G′. Suppose that there exists a vertex

w ∈ V (G′) such that dist′G(w,D′) > k. We consider two cases depending on whether

w ∈ V (G) or not. Consider first the case where w ∈ V (G). Let P be a shortest path

in G from w to D. Then P has length at most k and the assumption that w ∈ V (G)

implies that P contains the edge {u, v}, for otherwise we would have distG′(w,D′) ≤
distG(w,D) ≤ k. Thus, distG(u,D) = distG(v,D) + 1 (recall that we assumed that

distG(u,D) ≥ distG(v,D)), which in turn implies that distG(w, v) = distG(w, u) + 1.

Thus, distG(w, v) ≤ k− d and distG(w, u) ≤ k− d− 1. However, distG′(u, xd+1) = d+ 1,

which implies that

distG′(w,D′) ≤ distG′(w, xd+1) ≤ distG′(w, u) + distG′(u, xd+1) ≤
≤ (k − d− 1) + (d+ 1) = k,

a contradiction. Now, suppose that w 6∈ V (G). Then, w is a vertex xi ∈ X. Observe

that for j such that k + d+ 2 ≤ j ≤ 2k + 1, we have distG′(xj, v) ≤ k − d, and hence

distG′(xj, D
′) ≤ distG′(xj, D) ≤ distG′(xj, v) + distG′(v,D) ≤ (k − d) + d = k. Since

d ≤ k, every vertex xj such that j ∈ {1, . . . , k + d+ 1} is such that distG′(xj, xd+1) ≤ k.

Thus, every vertex in X is at distance at most k from D′, and hence distG′(w,D′) ≤ k, a

contradiction. We conclude that D′ is a distance-k dominating set in G′, and therefore

γk(G
′) ≤ |D′| = |D|+ 1 = γk(G) + 1.

For the converse inequality, let D′ be a distance-k dominating set in G′ with size

γk(G
′) minimizing |D′∩X|. First, we claim that D′ contains exactly one vertex in X. It

is clear that D′ must contain at least one vertex from X, since distG′(xk+1, V (G′)\X) > k.

Suppose that |D′ ∩X| ≥ 2 and let D∗ = (D′ \X) ∪ {v, x1}. Observe that D∗ ⊆ V (G′),

|D∗| ≤ |D|, and every vertex in X is at distance at most k from v or x1. Furthermore,

for every vertex w of G′ which is also a vertex of G, we have that distG′(w,D∗) ≤
distG′(w,D′) ≤ k, and thus D∗ is a distance-k dominating set in G′ with size at most

|D′|. However, |D∗ ∩X| = 1 < 2 ≤ |D′ ∩X|, a contradiction with the definition of D′.

So we have that |D′ ∩ X| = 1. Thus, there exists a unique i ∈ {1, . . . , 2k + 1} such

that D′ ∩X = {xi}. We assume without loss of generality that i ≤ k + 1 (the other

case is symmetric). Let D = D′ \ {xi} and note that D ⊆ V (G). We claim that D

is a distance-k dominating set in G. Suppose for a contradiction that this is not the

case. Then there exists a vertex w ∈ V (G) such that distG(w,D) > k. This implies that

distG′(w,D′ \ {xi}) > k, and since D′ is a distance-k dominating set in G′, we must

have distG′(w, xi) ≤ k. Let P be a shortest path between w and xi, and notice that P

contains u or v. Since we assumed that i ≤ k + 1, we have that distG′(v, xi) ≥ k + 1,

and hence path P must contain u. This implies that distG′(w, xi) = distG′(w, u) + i ≤ k.

We claim that distG(v,D) ≤ i− 1. Note that distG′(xi+k+1, xi) > k (where x2k+2 = v).

So there exists a vertex ŵ ∈ D′ \ {xi} = D such that distG′(xi+k+1, w) ≤ k. As we
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have distG′(xi+k+1, v) = 2k + 2 − (i + k + 1) = k + 1 − i and v belongs to every

shortest xi+k+1, ŵ-path in G′, we obtain that distG′(v, ŵ) ≤ k − (k + 1 − i) = i − 1.

Since ŵ ∈ D, we get that distG(v,D) ≤ distG′(v, ŵ) ≤ i − 1, as claimed. Note that

distG(w, u) ≤ distG′(w, u), and since distG′(w, u) ≤ k− i, we get that distG(w, u) ≤ k− i.
Hence, distG(w,D) ≤ distG(w, u) + distG(u, v) + distG(v,D) ≤ (k − i) + 1 + (i− 1) = k,

a contradiction with the assumption that distG(w,D) > k. Thus, D is a distance-k

dominating set in G, and we obtain that γk(G) ≤ |D| = |D′| − 1 = γk(G
′)− 1.

Corollary 5.10. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained from

G by subdividing the edge e exactly p(2k + 1) times, for some two integers k ≥ 1 and

p ≥ 0. Then γk(G
′) = γk(G) + p.

Proof. Fix k ≥ 1. We use induction on p. For p = 0 the statement is trivial, and for

p = 1 this is just Lemma 5.9. Now let p > 1, let G′ be as in the claim, and let G′′

be the graph obtained from G by subdividing the edge {u, v} exactly (p− 1)(2k + 1)

times. Denoting by P the path replacing {u, v} in G′′, observe that G′ can be obtained

from G′′ by subdividing one of the edges of P exactly 2k + 1 times. By the induction

hypothesis, we have γk(G
′′) = γk(G) + p− 1. Since we also have γk(G

′) = γk(G
′′) + 1

by 5.9, we infer that γk(G
′) = γk(G) + p, as claimed.

Distance-k edge domination

Lemma 5.11. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained

from G by subdividing the edge e exactly 2k + 3 times, for some integer k ≥ 0. Then

γ′k(G
′) = γ′k(G) + 1.

Proof. Let us denote the endpoints of e by u and v and let X be the set of internal

vertices of the path between u and v in G′ obtained from the subdivision of the edge

{u, v} in G. We label the elements of X as X = {x1, . . . , x2k+3} so that u is adjacent

to x1, vertex xi is adjacent to xi+1 for every i ∈ {1, . . . , 2k + 2}, and x2k+3 is adjacent

to v.

Let F be a distance-k edge dominating set in G with size γ′k(G). We assume that

distG(u, F ) ≥ distG(v, F ), since otherwise we can relabel u, v, and the vertices xi, for

i ∈ {1, . . . , 2k + 3}, accordingly. We consider two cases based on whether the edge e

is in F or not. Suppose first that e ∈ F . Define F ′ = (F \ {e}) ∪ {{u, x1}, {v, x2k+3}}.
Then F ′ ⊆ E(G′). Observe that for every edge f ∈ E(G), we have distG(f, F \ {e}) ≤ k

or distG(f, e) ≤ k. We claim that F ′ is a distance-k edge dominating set in G′.

Suppose there exists an edge e′ ∈ E(G′) such that distG′(e′, F ′) > k. Then either

e′ ∈ E(G) or e′ ∈ E(G′) \ E(G). Consider first the case when e′ ∈ E(G). Let

P be a shortest path in G from e′ to F . Then P has length at most k and the

assumption that e′ ∈ E(G) implies that P contains the edge {u, v}, for otherwise
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we would have distG′(e′, F ′) ≤ distG(e′, F ) ≤ k. In particular, distG(e′, e) ≤ k. Note

that distG(e′, e) = min{distG′(e′, {u, x1}), distG′(e′, {v, x2k+3})} since e ∈ E(P ). We

thus get distG′(e′, F ) ≤ min{distG′(e′, {u, x1}), distG′(e′, {v, x2k+3})} = distG(e′, e) ≤ k,

contradicting the assumption that distG′(e′, F ) > k. Now consider the case when

e′ ∈ E(G′) \E(G). Since distG′({u, x1}, {xj, xj+1}) ≤ k for all j such that 1 ≤ j ≤ k+ 1

and distG′({v, x2k+3}, {xj, xj+1}) ≤ k for all j such that k+2 ≤ j ≤ 2k+2, we have that

e′ is at distance at most k from {u, x1}, {x2k+3, v} thus from F ′ as well, contradicting

the assumption. So, whenever e ∈ F we have that F ′ is a distance-k edge dominating

set of G′ with size |F ′| = |F |+ 1 = γ′k(G) + 1. Thus, γ′k(G
′) ≤ γ′k(G) + 1 in this case.

Now suppose that e /∈ F . Let d = distG(v, F ). Then d ≤ k, which in turn implies

that distG′(v, F ) = distG(v, F ). Let also F ′ = F ∪{{xd+1, xd+2}}. Note that F ′ ⊆ E(G′).

We claim that F ′ is a distance-k edge dominating set in G′. Suppose that there exists

an edge e′ ∈ E(G′) such that distG′(e′, F ′) > k. We consider two cases depending

on whether e′ ∈ E(G) or not. Consider first the case when e′ ∈ E(G). Let P be a

shortest path in G from e′ to F . Then P has length at most k and the assumption

that e′ ∈ E(G) implies that P contains the edge {u, v}, for otherwise we would have

distG′(e′, F ′) ≤ |E(P )| ≤ k. Thus, distG(u, F ) = distG(v, F ) + 1 (recall that we assumed

that distG(u, F ) ≥ distG(v, F )), which in turn implies that distG(e′, v) = distG(e′, u) + 1.

Thus, distG(e′, v) ≤ k− d and distG(e′, u) ≤ k− d− 1. However, distG′(u, xd+1) = d+ 1,

which implies that

distG′(e′, F ′) ≤ distG′(e′, {xd+1, xd+2}) = distG′(e′, u) + distG′(u, {xd+1, xd+2})
≤ (k − d− 1) + (d+ 1) = k ,

a contradiction.

Now, suppose that e′ /∈ E(G). Then, e′ contains a vertex xi ∈ X. Observe that

for all j such that k + d + 4 ≤ j ≤ 2k + 3, we have distG′(xj, v) ≤ k − d, and hence

distG′(xj, F
′) ≤ distG′(xj, F ) ≤ distG′(xj, v) + distG′(v, F ) = distG′(xj, v) + distG(v, F ) ≤

(k−d)+d = k. If j ≤ d+1, then distG′(xj, xd+1) ≤ d ≤ k. If d+2 ≤ j ≤ k+d+2, then

distG′(xj, xd+2) ≤ k. Thus, xk+d+3 is the unique vertex in X that is at distance more

than k from F ′. But then every edge containing an endpoint in X is at distance at most

k from F ′, implying that distG′(e′, F ′) ≤ k, a contradiction. We conclude that F ′ is a

distance-k edge dominating set in G′, and therefore γ′k(G
′) ≤ |F ′| = |F |+ 1 = γ′k(G) + 1.

For the converse inequality, let F ′ be a distance-k edge dominating set in G′

with size γ′k(G
′). Note that F ′ must contain at least one edge from E(G′) \ E(G),

since distG′({xk+2, xk+3}, V (G′) \ X) > k. We consider separately the cases when

|F ′ ∩ (E(G′) \ E(G))| = 1 and when |F ′ ∩ (E(G′) \ E(G))| ≥ 2. Assume first that

|F ′ ∩ (E(G′) \ E(G))| = 1. Then F ′ ∩ (E(G′) \ E(G)) = {{xi, xi+1}} for some xi ∈ X.

Without loss of generality, we assume that i ≤ k + 1 (the other case is symmetric).

Let F = F ′ \ {{xi, xi+1}}. Then F ⊆ E(G). We claim that F is a distance-k edge
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dominating set in G. Suppose for a contradiction that there exists an edge e′ ∈ E(G)

such that distG(e′, F ) > k. Observe that e′ 6= e as distG(e, F ) ≤ distG′({v, x2k+3}, F ′ \
{{xi, xi+1}}) = distG′({v, x2k+3}, F ′) ≤ k. Since e′ 6= e, we have e′ ∈ E(G′). Therefore,

since F ′ is a distance-k edge dominating set in G′, there exists an edge f ′ ∈ F ′ such that

distG′(e′, f ′) ≤ k. If f ′ 6= {xi, xi+1}, then f ′ ∈ E(G), hence, distG(e′, F ) ≤ distG(e′, f ′) ≤
distG′(e′, f ′) ≤ k, which contradicts the assumption that distG(e′, F ) > k. Therefore,

f ′ = {xi, xi+1}. Notice that distG′({xi+k+2, xi+k+3}, f ′) > k (where x2k+4 = v) so there

exists an edge f ′′ ∈ F ′ \ {xi, xi+1} = F such that distG′({xi+k+2, xi+k+3}, f ′′) ≤ k. As

distG′({xi+k+2, xi+k+3}, v) = k − (i− 1), we have that distG′(f ′′, v) ≤ i− 1. Moreover,

since f ′′ ∈ E(G) we have that distG(f ′′, v) ≤ i− 1. Then,

distG(e′, F ) ≤ distG(e′, u) + distG(u, v) + distG(v, f ′′)

≤ (distG′(e′, f ′)− distG′(f ′, u)) + 1 + (i− 1)

≤ (k − i) + 1 + (i− 1) = k ,

which contradicts the assumption that distG(e′, F ) > k. Hence, F is a distance-k edge

dominating set of G with size |F | = |F ′|−1 = γ′k(G
′)−1 when |F ′∩ (E(G′)\E(G)) = 1,

implying that γ′k(G) ≤ γ′k(G
′)− 1.

Suppose now that |F ′ ∩ (E(G′) \ E(G))| ≥ 2. In this case we define F = (F ′ \
E(G′)) ∪ {e}. Note that F ⊆ E(G) and |F | ≤ |F ′| − 1. We claim that F is a

distance-k edge dominating set in G. Suppose for a contradiction that there exists

an edge e′ ∈ E(G) such that distG(e′, F ) > k. As distG(e′, F ) > 0 and e ∈ F , we

have that e′ 6= e, hence, e′ ∈ E(G′) and because F ′ is a distance-k edge dominating

set in G′, we have that distG′(e′, f ′) ≤ k for some f ′ ∈ F ′. If f ′ ∈ E(G), then

distG(e′, f ′) ≤ distG′(e′, f ′) ≤ k, which is not possible since distG(e′, F ) ≤ distG(e′, f ′)

and we assumed that distG(e′, F ) > k. If f ′ ∈ E(G′) \ E(G), then

min{distG(e′, u), distG(e′, v)} = min{distG′(e′, u), distG′(e′, v)} ≤ distG′(e′, f ′) ≤ k .

However, we obtain that distG(e′, e) ≤ k, which contradicts the assumption that

distG(e′, F ) > k since distG(e′, F ) ≤ distG(e′, e). Therefore, F is a distance-k edge

dominating set in G with size |F | = |F ′| − 1 = γ′k(G
′) − 1, implying that γ′k(G) ≤

γ′k(G
′)− 1.

An iterative application of Lemma 5.11 leads to the following result.

Corollary 5.12. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained from

G by subdividing the edge e exactly p(2k + 3) times, for some two integers k ≥ 0 and

p ≥ 0. Then γ′k(G
′) = γ′k(G) + p.

Proof. Fix k ≥ 0. We use induction on p. For p = 0 the statement is trivial, and for

p = 1 this is just Lemma 5.11. Now let p > 1, let G′ be as in the claim, and let G′′
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be the graph obtained from G by subdividing the edge {u, v} exactly (p− 1)(2k + 3)

times. Denoting by P the path replacing {u, v} in G′′, observe that G′ can be obtained

from G′′ by subdividing one of the edges of P exactly 2k + 3 times. By the induction

hypothesis, we have γ′k(G
′′) = γ′k(G) + p− 1. Since we also have γ′k(G

′) = γ′k(G
′′) + 1

by Lemma 5.11, we infer that γ′k(G
′) = γ′k(G) + p, as claimed.

Distance-k vertex cover

Lemma 5.13. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained

from G by subdividing the edge e exactly 2k + 2 times, for some integer k ≥ 0. Then

τk(G
′) = τk(G) + 1.

Proof. Let us denote the endpoints of e by u and v and let X be the set of internal

vertices of the path between u and v in G′ obtained from the subdivision of the edge

{u, v} in G. We label the elements of X as X = {x1, . . . , x2k+2} so that u is adjacent

to x1, vertex xi is adjacent to xi+1 for every i ∈ {1, . . . , 2k + 1}, and x2k+2 is adjacent

to v.

Let C be a distance-k vertex cover inG with size τk(G). We assume that distG(u,C) ≥
distG(v, C), or else we can relabel u, v, and the vertices xi, for i ∈ {1, . . . , 2k + 2},
accordingly. Let d = distG(v, C) ≤ k and C ′ = C ∪ {xd+1}. Suppose that there exists

an edge e′ ∈ E(G′) such that distG′(e′, C ′) > k. We consider two cases depending on

whether e′ ∈ E(G) or not. Consider first the case where e′ ∈ E(G). Let P be a shortest

path in G from e′ to C. Then P has length at most k and the assumption that e′ ∈ E(G)

implies that P contains the edge {u, v}, for otherwise we would have distG′(e′, C ′) ≤
distG(e′, C) ≤ k. Thus, distG(u,C) = distG(v, C) + 1 (recall that we assumed that

distG(u,C) ≥ distG(v, C)), which in turn implies that distG(e′, v) = distG(e′, u) + 1.

Thus, distG(e′, v) ≤ k− d and distG(e′, u) ≤ k− d− 1. However, distG′(u, xd+1) = d+ 1,

which implies that distG′(e′, C ′) ≤ distG′(e′, xd+1) = distG′(e′, u) + distG′(u, xd+1) ≤ k −
d−1+d+1 = k, a contradiction. Now, suppose that e′ /∈ E(G). Then, e′ contains a ver-

tex xi ∈ X. Observe that for j ∈ {k+d+3, . . . , 2k+2}, we have distG′(xj, v) ≤ k−d, and

hence distG′(xj, C
′) ≤ distG′(xj, C) ≤ distG′(xj, v)+distG′(v, C) ≤ (k−d)+d = k. Since

d ≤ k, every vertex xj such that j ∈ {1, . . . , k + d+ 1} is such that distG′(xj, xd+1) ≤ k.

This implies that xk+d+2 is the unique vertex in X at distance more than k from C ′

in G′. Thus, every edge with an endpoint in X is at distance at most k from C ′, and

hence distG′(e′, C ′) ≤ k, a contradiction. We conclude that C ′ is a distance-k vertex

cover in G′, and therefore τk(G
′) ≤ |C ′| = |C|+ 1 = τk(G) + 1.

Let C ′ be a distance-k vertex cover in G′ with size τk(G
′) minimizing |C ′∩X|. First,

we claim that C ′ contains exactly one vertex in X. It is clear that C ′ must contain

at least one vertex from X, since distG′({xk+1, xk+2}, V (G′) \ X) > k. Suppose that

|C ′ ∩X| ≥ 2 and let C∗ = (C ′ \X) ∪ {v, x1}. Observe that |C∗| ≤ |C ′| and that every
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edge with an endpoint in X is at distance at most k from v or x1. Furthermore, for every

edge f of G′ which is also an edge of G, we have that distG′(f, C∗) ≤ distG′(f, C ′) ≤ k,

and thus C∗ is a distance-k vertex cover in G′ with size at most |C ′|. However,

|C∗ ∩ X| = 1 < 2 ≤ |C ′ ∩ X|, a contradiction with the definition of C ′. So we can

assume that |C ′ ∩X| = 1. Thus, there exists a unique i ∈ {1, . . . , 2k + 2} such that

C ′ ∩X = {xi}. We assume without loss of generality that i ≤ k + 1 (the other case is

symmetric). Let C = C ′\{xi} and note that C ⊆ V (G). We claim that C is a distance-k

vertex cover in G. Suppose for a contradiction that this is not the case. Then there exists

an edge e ∈ E(G) such that distG(e, C) > k. This implies that distG′(e, C ′ \ {xi}) > k,

and since C ′ is a distance-k vertex cover in G′, we must have distG′(e, xi) ≤ k. Let

P be a shortest path between e and xi, and notice that P contains u or v. Since we

assumed that i ≤ k+ 1, we have distG′(v, xi) ≥ k+ 1, and hence path P must contain u.

This implies that distG′(e, xi) = distG′(e, u) + i ≤ k. We claim that distG(v, C) ≤ i− 1.

Since i ≤ k + 1, we get that distG′({xi+k+1, xi+k+2}, xi) > k, where x2k+3 = v. So there

exists a vertex w ∈ C ′ \ {xi} = C such that distG′({xi+k+1, xi+k+2}, w) ≤ k. As we have

distG′({xi+k+1, xi+k+2}, v) = 2k+3−(i+k+2) = k+1− i, we obtain that distG′(v, w) ≤
k−(k+1−i) = i−1. Since w ∈ C, we get that distG(v, C) ≤ i−1, as claimed. Note that

distG(e, u) ≤ distG′(e, u), and since distG′(e, u) ≤ k − i, we get that distG(e, u) ≤ k − i.
Hence, distG(e, C) ≤ distG(e, u) + distG(u, v) + distG(v, C) ≤ (k− i) + 1 + (i− 1) = k, a

contradiction with the assumption that distG(e, C) > k. Thus, C is a distance-k vertex

cover in G, and we obtain that τk(G) ≤ |C| = |C ′| − 1 = τk(G
′)− 1.

An iterative application of Lemma 5.13 leads to the following result.

Corollary 5.14. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained from

G by subdividing the edge e exactly p(2k + 2) times, for some two integers k ≥ 0 and

p ≥ 0. Then τk(G
′) = τk(G) + p.

Proof. Fix k ≥ 0. We use induction on p. For p = 0 the statement is trivial, and for

p = 1 this is just Lemma 5.13. Now let p > 1, let G′ be as in the claim, and let G′′

be the graph obtained from G by subdividing the edge {u, v} exactly (p− 1)(2k + 2)

times. Denoting by P the path replacing {u, v} in G′′, observe that G′ can be obtained

from G′′ by subdividing one of the edges of P exactly 2k + 2 times. By the induction

hypothesis, we have τk(G
′′) = τk(G) + p− 1. Since we also have τk(G

′) = τk(G
′′) + 1 by

Lemma 5.13, we infer that τk(G
′) = τk(G) + p, as claimed.

Distance-k edge cover

Lemma 5.15. Let G be a graph without isolated vertices, let e ∈ E(G), and let G′ be

the graph obtained from G by subdividing the edge e exactly 2k + 2 times, for some

integer k ≥ 0. Then ρk(G
′) = ρk(G) + 1.
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Proof. Let us denote the endpoints of e by u and v and let X be the set of internal

vertices of the path between u and v in G′ obtained from the subdivision of the edge

{u, v} in G. We label the elements of X as X = {x1, . . . , x2k+2} so that u is adjacent

to x1, vertex xi is adjacent to xi+1 for every i ∈ {1, . . . , 2k + 1}, and x2k+2 is adjacent

to v.

Let F be a distance-k edge cover in G with size ρk(G). We assume that distG(u, F ) ≥
distG(v, F ), since otherwise we can relabel u, v, and the vertices xi, for i ∈ {1, . . . , 2k+2},
accordingly. We consider two cases depending on whether the edge e is in F or not.

Suppose first that e ∈ F . Then we define F ′ = (F \ {e}) ∪ {{u, x1}, {v, x2k+2}}. Note

that F ′ ⊆ E(G′). Observe that for every vertex w ∈ V (G), we have distG(w,F \{e}) ≤ k

or distG(w, e) ≤ k. We claim that F ′ is a distance-k edge cover in G′. Suppose there

exists a vertex w ∈ V (G′) such that distG′(w,F ′) > k. Then either w ∈ V (G) or

w ∈ X. Consider the case when w ∈ V (G). Let P be a shortest path in G from w

to F . Then P has length at most k and the assumption that w ∈ V (G) implies that

P contains the edge {u, v}, for otherwise we would have distG′(w,F ′) ≤ distG(w,F ) ≤
k. However, distG′(w,F ′) ≤ min{distG′(w, {u, x1}), distG′(w, {u, x1})} = distG(w, e) ≤
distG(w,F ) ≤ k which contradicts the assumption that distG′(w,F ′) > k.

Now consider the case when w ∈ X. Since distG′({u, x1}, xj) ≤ k for all j such that

1 ≤ j ≤ k + 1 and distG′({v, x2k+2}, xj) ≤ k for all j such that k + 2 ≤ j ≤ 2k + 2, we

have that every vertex in X is at distance at most k from {u, x1}, {x2k+3, v}, hence,

from F ′ as well. In particular, w is at distance at most k from F ′ contradicting the

assumption. So, whenever e ∈ F we have that F ′ is a distance-k edge cover of G′ with

size |F ′| = |F |+ 1 = ρk(G) + 1, and thus ρk(G
′) ≤ ρk(G) + 1.

Now suppose that e /∈ F . Let d = distG(v, F ). Then d ≤ k, which in turn

implies that distG(v, F ) = distG′(v, F ). Let also F ′ = F ∪ {{xd+1, xd+2}}. Note that

F ⊆ E(G′). We claim that F ′ is a distance-k edge cover in G′. Suppose that there

exists a vertex w ∈ V (G′) such that distG′(w,F ′) > k. We consider two cases depending

on whether w ∈ V (G) or not. Consider first the case when w ∈ V (G). Let P be a

shortest path in G from w to F . Then P has length at most k and the assumption

that w ∈ E(G) implies that P contains the edge {u, v}, for otherwise we would have

distG′(w,F ′) ≤ |E(P )| ≤ k. Thus, distG(u, F ) = distG(v, F ) + 1 (recall that we assumed

that distG(u, F ) ≥ distG(v, F )), which in turn implies that distG(w, v) = distG(w, u) + 1.

Thus, distG(w, v) ≤ k− d and distG(w, u) ≤ k− d− 1. However, distG′(u, xd+1) = d+ 1,

which implies that

distG′(w,F ′) ≤ distG′(w, {xd+1, xd+2}) = distG′(w, u) + distG′(u, {xd+1, xd+2})
≤ (k − d− 1) + (d+ 1) = k,

a contradiction.

Now, suppose that w /∈ V (G). Then, w is a vertex xi ∈ X. Observe that for all j
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such that k + d+ 3 ≤ j ≤ 2k + 2, we have distG′(xj, v) ≤ k − d, and hence

distG′(xj, F
′) ≤ distG′(xj, F ) ≤ distG′(xj, v) + distG′(v, F )

= distG′(xj, v) + distG(v, F )

≤ (k − d) + d = k.

If j ≤ d+1, then distG′(xj, xd+1) ≤ d ≤ k. If d+2 ≤ j ≤ k+d+2 then distG′(xj, xd+2) ≤
k. Thus, every vertex in X is at distance at most k from F ′, implying that distG′(w,F ′) ≤
k, a contradiction. We conclude that F ′ is a distance-k edge cover in G′, and therefore

ρk(G
′) ≤ |F ′| = |F |+ 1 = ρk(G) + 1.

For the converse inequality, let F ′ be a distance-k edge cover in G′ with size

ρk(G
′). Note that F ′ must contain at least one edge from E(G′) \ E(G), since

distG′({xk+1, xk+2}, V (G′) \ X) > k. We look separately at the cases when |F ′ ∩
(E(G′) \ E(G))| = 1 and when |F ′ ∩ (E(G′) \ E(G))| ≥ 2.

Suppose that |F ′ ∩ (E(G′) \ E(G))| = 1. Then F ′ ∩ (E(G′) \ E(G)) = {{xi, xi+1}}
for some xi ∈ X. Without loss of generality, we assume that i ≤ k + 1 (the other

case is symmetric). Let F = F ′ \ {{xi, xi+1}}. Then F ⊆ E(G). We claim that F is

a distance-k edge cover in G. Suppose for a contradiction that there exists a vertex

w ∈ V (G) such that distG(w,F ) > k. Observe that w /∈ e as

distG(e, F ) ≤ distG′({v, x2k+2}, F ′ \ {{xi, xi+1}}) = distG′({v, x2k+2}, F ′) ≤ k .

Since w ∈ V (G′) and F ′ is a distance-k edge cover in G′, there exists an edge f ′ ∈ F ′

such that distG′(w, f ′) ≤ k. If f ′ 6= {xi, xi+1}, then f ′ ∈ E(G), hence, distG(w,F ) ≤
distG(w, f ′) ≤ distG′(w, f ′) ≤ k, which contradicts the assumption that distG(w,F ) > k.

Therefore, f ′ = {xi, xi+1}. Notice that distG′(xi+k+2, f
′) > k (where x2k+3 = v) so

there exists an edge f ′′ ∈ F ′ \ {xi, xi+1} = F such that distG′(xi+k+2, f
′′) ≤ k. As

distG′(xi+k+2, v) = k − (i − 1), we have that distG′(f ′′, v) ≤ i − 1. Moreover, since

f ′′ ∈ E(G) we have that distG(f ′′, v) ≤ i− 1. Then,

distG(w,F ) ≤ distG(w, u) + distG(u, v) + distG(v, f ′′)

≤ (distG′(w, f ′)− distG′(f ′, u)) + 1 + (i− 1)

≤ (k − i) + 1 + (i− 1) = k ,

which contradicts the assumption that distG(w,F ) > k. Hence, F is a distance-k edge

cover of G with size |F | = |F ′| − 1 = ρk(G
′) − 1 when |F ′ ∩ (E(G′) \ E(G))| = 1,

implying that ρk(G) ≤ ρk(G
′)− 1.

Suppose now that |F ′∩ (E(G′)\E(G))| ≥ 2. Then, we define F = (F ′ \E(G′))∪{e}.
Notice that F ⊆ E(G) and |F | ≤ |F ′| − 1. We claim that F is a distance-k edge

cover in G. Suppose for a contradiction that there exists a vertex w ∈ V (G) such that

distG(w,F ) > k. Since w ∈ V (G′) and F ′ is a distance-k edge cover in G′, we have that
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distG′(w, f ′) ≤ k for some f ′ ∈ F ′. If f ′ ∈ E(G) then distG(w, f ′) ≤ distG′(w, f ′) ≤ k,

which is not possible since distG(w,F ) ≤ distG(w, f ′) and we assumed that distG(w,F ) >

k. If f ′ ∈ E(G′) \ E(G) then

min{distG(w, u), distG′(w, v)} = min{distG′(w, u), distG′(w, v)} ≤ distG′(w, f ′) ≤ k.

But then distG(w, e) ≤ k contradicts the assumption that distG(w,F ) > k, since

distG(w,F ) ≤ distG(w, e). Therefore, F is a distance-k edge cover in G with size

|F | = |F ′| − 1 = ρk(G
′)− 1, implying that ρk(G) ≤ ρk(G

′)− 1.

An iterative application of Lemma 5.15 leads to the following result.

Corollary 5.16. Let G be a graph without isolated vertices, let e ∈ E(G), and let G′

be the graph obtained from G by subdividing the edge e exactly p(2k+ 2) times, for some

two integers k ≥ 0 and p ≥ 0. Then ρk(G
′) = ρk(G) + p.

Proof. Fix k ≥ 0. We use induction on p. For p = 0 the statement is trivial, and for

p = 1 this is just Lemma 5.15. Now let p > 1, let G′ be as in the claim, and let G′′

be the graph obtained from G by subdividing the edge {u, v} exactly (p− 1)(2k + 2)

times. Denoting by P the path replacing {u, v} in G′′, observe that G′ can be obtained

from G′′ by subdividing one of the edges of P exactly 2k + 2 times. By the induction

hypothesis, we have ρk(G
′′) = ρk(G) + p− 1. Since we also have ρk(G

′) = ρk(G
′′) + 1

by Lemma 5.15, we infer that ρk(G
′) = ρk(G) + p, as claimed.

5.4 Transformations resulting in chordal graphs

Construction 2. Given a graph G containing at least one edge and an integer k ≥ 1,

we construct a graph G′ as follows. First, we take a complete graph on a set Q of

|V (G)| new vertices such that for every vertex u ∈ V (G) there exists a unique vertex u′

in Q. Then, for each edge {u, v} ∈ E(G), we create a u,v-paw as follows. We create a

path of order k and connect one of its endpoints to both u′ and v′. Figure 2 shows the

the edge {u, v} in G and the corresponding u,v-paw in G′.

u v u′ v′

path of

length k − 1
...

Figure 2: An edge {u, v} (left) and its corresponding u,v-paw (right).
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Lemma 5.17. Let G be a graph and k a positive integer. Let G′ be a graph obtained

from Construction 2 given G and k. Then, G′ is chordal and 2Pk+1-free for every k ≥ 1.

Proof. Notice that any induced subgraph of G′ isomorphic to Pk+1 contains at least

one vertex in the clique Q, which implies that G′ cannot contain 2Pk+1 as an induced

subgraph, that is, G′ is 2Pk+1-free. Moreover, G′ is chordal by construction since it

does not contain an induced cycle of length more than 3.

Theorem 5.18. Let G be a graph containing at least one edge and k a positive integer.

Let G′ be the graph obtained from Construction 2 given G and k. Then, γk(G
′) = τ(G).

Proof. Let C be a vertex cover in G with size τ(G) and D = {u′ : u ∈ C}. Note that

D ⊆ Q ⊆ V (G′); we claim that D is a distance-k dominating set in G′. Suppose that

this is not the case. Then there exists a vertex w ∈ V (G′) at distance more than k from

D. Observe that D ⊆ Q, so every vertex in Q is at distance at most 1 from D in G′.

Therefore, as w is at distance more than k from D, w ∈ V (G′) \Q, and hence belongs

to the u,v-paw for some edge {u, v} ∈ E(G). Since C is a vertex cover in G, at least

one of u or v belongs to C. We assume without loss of generality that u belongs to C.

Since w belongs to the u,v-paw and u′ ∈ D, we have distG′(w,D) ≤ distG′(w, u′) ≤ k, a

contradiction. Thus, D is a distance-k dominating set in G′ with size |D| = |C| = τ(G),

implying that γk(G
′) ≤ τ(G).

Let D be a distance-k dominating set in G′ with size γk(G
′). Observe that if

w ∈ V (G′)\Q, then w is a vertex in a u,v-paw for some {u, v} ∈ E(G). Furthermore, by

construction ofG′, every vertex x ofG′ with distG′(x,w) ≤ k is such that distG′(x, u′) ≤ k.

Hence, if w ∈ D, then the set (D \ {w})∪{u′} is also a distance-k dominating set in G′

with size γk(G
′). Hence, we may assume thatD ⊆ Q. Let C = {u ∈ V (G) : u′ ∈ D}. We

claim that C is a vertex cover in G. Suppose not. Then there is an edge {u, v} ∈ V (G)

such that u, v 6∈ C. Therefore, u′, v′ 6∈ D, but then the vertex w in the u,v-paw that is

at maximum distance from {u′, v′} is such that distG′(w,D) > distG′(w, {u′, v′}) = k, a

contradiction. Hence, C is a vertex cover in G with size |C| = |D| = γk(G
′), implying

that τ(G) ≤ γk(G
′).

Theorem 5.19. Let G be a graph containing at least one edge and k a positive integer.

Let G′ be the graph obtained from Construction 2 given G and k. Then, ρk(G
′) = d τ(G)

2
e.

Proof. Let C be a vertex cover in G with size τ(G) and C ′ = {u′ : u ∈ C}. Let M

be a maximal matching in G′[C ′]. We now define a set F ⊆ E(G′) as follows. If |C ′|
is even, then we take F = M , and if |C ′| is odd, then we take F = M ∪ {{u′, w′}}
where u′ is the unique vertex in C ′ that is not incident with any edge in M and w′

is an arbitrary vertex in Q \ {u′}. Note that Q \ {u′} 6= ∅ as G contains at least one

edge. Furthermore, every vertex in C ′ is incident with an edge in F . We claim that



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 34

F is a distance-k edge cover in G′. Suppose that this is not the case. Then there

exists a vertex w ∈ V (G′) at distance more than k from F . Observe that F 6= ∅ as

G contains at least one edge. Moreover, F ⊆ E(G′[Q]), and thus, every vertex of G′

that is also in Q is at distance at most 1 from F . Therefore, as w is at distance more

than k from F , it must be a vertex in V (G′) \ Q, and hence belongs to the u,v-paw

for some edge {u, v} ∈ E(G). Since C is a vertex cover in G, at least one of u or v

belongs to C. We assume without loss of generality that u belongs to C and thus

u′ ∈ C ′. Since every vertex of C ′ is incident with an edge of F and w belongs to

the u,v-paw, we have distG′(w,F ) ≤ distG′(w,C ′) ≤ distG′(w, u′) ≤ k, a contradiction.

Thus, F is a distance-k edge cover in G′ with size |F | = d |C|
2
e = d τ(G)

2
e, implying that

ρk(G
′) ≤ d τ(G)

2
e.

Let F be a distance-k edge cover in G′ with size ρk(G
′). Observe that if f̂ ∈

E(G′) \ E(G′[Q]), then f̂ is an edge in the u,v-paw for some e = {u, v} ∈ E(G).

Observe also that, by construction of G′, every vertex w of G′ with distG′(w, f̂) ≤ k is

such that distG′(w, {u′, v′}) ≤ k. Hence, if f̂ ∈ F , then the set (F \ {f̂}) ∪ {{u′, v′}}
is also a distance-k edge cover in G′ with size at most ρk(G), and therefore with size

exactly ρk(G). We may thus assume that F ⊆ E(G′[Q]). Let C = {u ∈ V (G) : u′ ∈ f
for some f ∈ F}. We claim that C is a vertex cover in G. Suppose not. Then there

is an edge {u, v} ∈ E(G) such that u, v 6∈ C. Therefore, {u′, v′} 6∈ F . But then,

the vertex w of the u,v-paw that is at maximal distance from {u′, v′} is such that

distG′(w,F ) > distG′(w, {u′, v′}) = k, a contradiction. Hence, C is a vertex cover in

G with size |C| ≤ 2|F | = 2ρk(G
′), implying that τ(G) ≤ 2ρk(G

′), or equivalently,
τ(G)

2
≤ ρk(G

′). Since ρk(G
′) is an integer, we obtain d τ(G)

2
e ≤ ρk(G

′).

Construction 3. Given a graph G containing at least one edge and an integer k ≥ 1,

we construct a graph G′ as follows. First, we take a complete graph on a set Q of |V (G)|
new vertices such that for every vertex u ∈ V (G) there exists a unique vertex u′ in Q.

Then, for each edge {u, v} ∈ E(G), we create a u,v-ladder as follows. We create a path

Pu,v of order k and connect one of its endpoints to both u′ and v′; then for each such

vertex w of Pu,v we add a new vertex w′ and make it adjacent exactly to the vertices in

N [w] (in particular, this means that N [w′] = N [w] in the resulting graph). We call the

unique edge e of the u, v-ladder such that distG′(e, {u, v}) = k the opposite edge of the

edge {u′, v′}. Figure 3 shows the the edge {u, v} in G and the corresponding u,v-ladder

in G′.

Lemma 5.20. Let G be a graph and k a positive integer. Let G′ be the graph obtained

from Construction 3 given G and k. If k = 1 then G′ is 2P3-free and if k ≥ 2 then G′

is 2Pk+1-free. Moreover, G′ is chordal for every k ≥ 1.

Proof. Notice that any induced subgraph of G′ isomorphic to Pmax{k+1,3} contains at

least one vertex in the clique Q, which implies that G′ cannot contain 2Pmax{k+1,3} as
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u v u′ v′

opposite edge

path of

length k

...
...

Figure 3: An edge {u, v} (left) and its corresponding u,v-ladder (right).

an induced subgraph, that is, if k = 1, then G′ is 2P3-free, and if k ≥ 2, then G′ is

2Pk+1-free. Furthermore, if k = 1, then G′ is also P5-free. To see this, consider an

induced path P in G′ of order 4. Then P has both its endpoints in V (G) \Q and its

two internal vertices in Q, as otherwise P would not be induced. This readily implies

that P is a maximal path, and thus that G′ is P5-free.

Moreover, G′ is chordal by construction, since there is no induced cycle of length

more than 3.

Theorem 5.21. Let G be a graph containing at least one edge and k a positive integer.

Let G′ be the graph obtained from Construction 3 given G and k. Then, γ′k(G
′) = d τ(G)

2
e.

Proof. Let C be a vertex cover in G with size τ(G) and C ′ = {u′ : u ∈ C}. Let M be

a maximal matching in G′[C ′]. We define a set F ⊆ E(G′) as follows. If |C ′| is even,

then we take F = M , and if |C ′| is odd, then we take F = M ∪ {{u′, w′}} where u′

is the unique vertex in C ′ that is not incident with any edge in M and w′ ∈ Q \ {u′}.
Note that Q \ {u′} 6= ∅ as G contains at least one edge. Furthermore, every vertex in

C ′ is incident with an edge in F . We claim that F is a distance-k edge dominating

set in G′. Suppose that this is not the case. Then there exists an edge f ∈ E(G′)

at distance more than k from F . Observe that F 6= ∅ as G contains at least one

edge. Moreover, F ⊆ E(G′[Q]), and thus, every edge of G′ having an endpoint in

Q is at distance at most 1 from F . Therefore, as f is at distance more than k from

F , it must have both endpoints in V (G′) \ Q, and hence belongs to the u,v-ladder

for some edge {u, v} ∈ E(G). Since C is a vertex cover in G, at least one of u or

v belongs to C. We assume without loss of generality that u belongs to C. Since

f belongs to the u,v-ladder, u′ ∈ C ′, and u′ is incident with an edge of F , we have

distG′(f, F ) ≤ distG′(f, C ′) ≤ distG′(f, u′) ≤ k, a contradiction. Thus, F is a distance-k

edge dominating set in G′ with size |F | = d |C|
2
e = d τ(G)

2
e, implying that γ′k(G

′) ≤ d τ(G)
2
e.

For the converse inequality, let F be a distance-k edge dominating set in G′ with

size γ′k(G
′). Observe that if f̂ ∈ E(G′) \ E(G′[Q]), then f̂ is an edge in a u,v-ladder

for some e = {u, v} ∈ E(G). Observe also that, by construction of G′, every edge f

of G′ with distG′(f, f̂) ≤ k is such that distG′(f, {u′, v′}) ≤ k. Hence, if f̂ ∈ F , then
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the set (F \ {f̂}) ∪ {{u′, v′}} is also a distance-k edge dominating set in G′ with size

at most γ′k(G), therefore, with size γ′k(G). Thus, we may assume that F ⊆ E(G′[Q]).

Let C = {u ∈ V (G) : u′ ∈ f for some f ∈ F}. We claim that C is a vertex cover

in G. Suppose, for a contradiction, that C is not a vertex cover in G. Then there

is an edge {u, v} ∈ E(G) such that u, v 6∈ C. Therefore, {u′, v′} 6∈ F , but then the

opposite edge ê of the edge {u′, v′} is such that distG′(ê, F ) > distG′(e, {u′, v′}) = k, a

contradiction. Hence, C is a vertex cover in G with size |C| ≤ 2|F | = 2γ′k(G
′), implying

that τ(G) ≤ 2γ′k(G
′), or equivalently, τ(G)

2
≤ γ′k(G

′). Since γ′k(G
′) is an integer, we

obtain d τ(G)
2
e ≤ γ′k(G

′).

Theorem 5.22. Let G be a graph containing at least one edge and k ≥ 1 an integer.

Let G′ be the graph obtained from Construction 3 given G and k. Then, τk(G
′) = τ(G).

Proof. Let C be a vertex cover in G with size τ(G) and C ′ = {u′ : u ∈ C}. Note that

C ′ ⊆ Q ⊆ V (G′); we claim that C ′ is a distance-k vertex cover in G′. Suppose that

this is not the case. Then there exists an edge f ∈ E(G′) at distance more than k from

C ′. Observe that C ′ ⊆ Q, and thus, every edge of G′ having one endpoint in Q is at

distance at most 1 from C ′. Therefore, as f is at distance more than k from C ′, it must

have both endpoints in V (G′) \Q, and hence belongs to the u,v-ladder for some edge

{u, v} ∈ E(G). Since C is a vertex cover in G, at least one of u or v belongs to C. We

assume without loss of generality that u belongs to C. Since f belongs to the u,v-ladder

and u′ ∈ C ′, we have distG′(f, C ′) ≤ distG′(f, u′) ≤ k, a contradiction. Thus, C ′ is a

distance-k vertex cover in G′ with size |C ′| = |C| = τ(G), implying that τk(G
′) ≤ τ(G).

Let C ′ be a distance-k vertex cover in G′ with size τk(G
′). Observe that if w ∈

V (G′) \ Q, then w is a vertex in the u,v-ladder for some {u, v} ∈ E(G). Observe

also that, by construction of G′, every edge f of G′ with distG′(f, w) ≤ k is such

that distG′(f, u′) ≤ k. Hence, if w ∈ C ′, then the set (C ′ \ {w}) ∪ {u′} is also a

distance-k vertex cover in G′ with size τk(G
′). Hence, we may assume that C ′ ⊆ Q.

Let C = {u ∈ V (G) : u′ ∈ C ′}. Suppose that C is not a vertex cover in G. Then

there is an edge {u, v} ∈ E(G) such that u, v 6∈ C. Therefore, u′, v′ 6∈ C ′, but then the

opposite edge e of the edge {u, v} is such that distG′(e, C ′) > distG′(e, {u′, v′}) = k, a

contradiction. Hence, C is a vertex cover in G with size |C| = |C ′| = τk(G
′), implying

that τ(G) ≤ τk(G
′).
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6 NP-completeness results

In this chapter we build on results from Chapter 5 and develop NP-completeness results

for the distance-based variants of the four problems for H-free graphs where H has

some specific properties. More precisely, we show that the problems are NP-complete

for H-free graphs when H contains an induced claw or a cycle, as well as in some special

cases when H is a linear forest.

Observation 1. Let G be a graph and u, v ∈ V (G). Then determining the distance

between u and v can be done in linear time. Moreover, if we denote by n and m the

cardinalities of V (G) and E(G) respectively, then calculating the distance for all vertex

pairs u, v ∈ V (G) can be done in time at most O(n(n+m)) (using breadth-first search

from each vertex u), which is polynomial with respect to the size of the graph.

Corollary 6.1. Let k ∈ N and let Πk be one of the Distance-k Dominating Set,

Distance-k Edge Dominating Set, Distance-k Vertex Cover and Distance-k

Edge Cover problems. Then Πk is in NP.

Proof. Let I be an instance of Πk. Then I consists of a graph G and an integer `.

Suppose that Πk(I) gives answer yes. If we are given a certificate C, that is, a set of

vertices or edges satisfying the defining property of sets corresponding to problem Πk,

then we can check in polynomial time whether the set C has cardinality at most ` and

satisfies the desired property, due to Observation 1. Hence, Πk is in NP.

Lemma 6.2. Let µ and η be two graph invariants and let G and G′ be two graphs

satisfying η(G′) = f(µ(G)), where f : R→ R is a strictly increasing bijective function.

Then, for every integer `, we have µ(G) ≤ ` if and only if η(G′) ≤ f(`).

Proof. Assume first that µ(G) ≤ `. Since f is increasing, we get f(µ(G)) ≤ f(`),

which is is the same as η(G′) ≤ f(`). Assume now that η(G′) ≤ f(`). Since f is

bijective and strictly increasing, f−1 exists and is also strictly increasing. Hence we get

f−1(µ(G′)) ≤ f−1(f(`)), which is the same as µ(G) ≤ `.

6.1 Edge cover at distance

When H contains a claw

Theorem 6.3. For every fixed integer k ≥ 1, Distance-k Edge Cover is NP-

complete for line graphs.
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Proof. The problem is in NP by Corollary 6.1. To prove NP-hardness, we reduce from

the P3 factor problem, which is NP-complete (see [45]).

Consider an arbitrary input to the P3 factor problem, consisting of a graph G. Let

` = |V (G)|
3

. Note that G has a P3 factor if and only if G contains a P3 cover with size at

most `, that is, Λ(G) ≤ `. Let G′ be the graph obtained from Construction 1 (defined

on p. 21) given G and t = k, that is, G′ = G+k, and H = L(G′). By Theorems 5.5

and 5.8, we have ρk(H) = Λe
k−1(G

′) = Λ(G). By Lemma 6.2, G contains a P3 cover

with size at most ` if and only if H contains a distance-k edge cover with size at most

`. The claimed NP-hardness follows.

Since every line graph is claw-free, Theorem 6.3 implies the following result.

Corollary 6.4. Let H be a graph containing a claw as an induced subgraph. Then for

every fixed integer k ≥ 1, Distance-k Edge Cover is NP-complete on H-free graphs.

When H contains a cycle

Theorem 6.5. Let H be a graph containing a cycle. Then for every fixed integer k ≥ 1,

Distance-k Edge Cover is NP-complete on H-free graphs.

Proof. Let G be any graph and k ≥ 1 an integer. Denote by g the girth of H and let G′ be

the graph obtained from G by subdividing every edge of G exactly g(2k+2) times. Note

that G′ is obtained in polynomial time and by Corollary 5.16, ρk(G
′) = ρk(G)+g|E(G)|.

Moreover, notice that G′ has no cycle of length g, and thus is H-free. By Theorem 6.3,

Distance-k Edge Cover is NP-complete on line graphs, therefore NP-complete on

graphs in general. Since for any integer `, graph G contains a distance-k edge cover

with size at most ` if and only if G′ contains a distance-k edge cover with size at most

` + g|E(G)|, we conclude that Distance-k Edge Cover remains NP-complete on

H-free graphs when H contains a cycle.

Corollary 6.4 and Theorem 6.5 imply NP-completeness for the case when H is not a

linear forest. Indeed, in this case H either contains a cycle, in which case Theorem 6.5

applies, or H is acyclic but contains an induced claw, in which case Corollary 6.4

applies.

Corollary 6.6. Let H be a graph that is not a linear forest. Then for any fixed integer

k ≥ 1, Distance-k Edge Cover is NP-complete on H-free graphs.
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When H is a linear forest

Theorem 6.7. Distance-k Edge Cover is NP-complete on 2Pk+1-free chordal graphs

for every fixed integer k ≥ 1.

Proof. The problem is in NP. To prove NP-hardness, we reduce from Vertex Cover,

which is NP-complete (see [43]).

Consider an input to the Vertex Cover problem consisting of a graph G containing

at least one edge and an integer `. Let 2G be the graph consisting of two disjoint copies

of G and let G′ be the graph obtained from Construction 2 (defined on p. 32) given 2G

and k. Note that τ(2G) = 2τ(G) and hence ρk(G
′) = d τ(2G)

2
e = τ(G). By Theorem 5.19

and Lemma 6.2, G contains a vertex cover with size at most ` if and only if G′ contains

a distance-k edge cover with size at most `. The claimed NP-hardness follows.

6.2 Edge domination at distance

The Edge Dominating Set problem, which in our context is equivalent to the

Distance-0 Edge Dominating Set problem, is known to be NP-complete.

Theorem 6.8 (Yannakakis and Gavril [67]). Edge Dominating Set is NP-complete,

even for cubic bipartite graphs and cubic planar graphs.

Construction 4. Given a graph G and an integer k ≥ 1, we define a graph G′ obtained

from G as follows: for each edge {u, v} ∈ E(G), create a path Pu,v made of 2k new

vertices and connect the endpoints of Pu,v to u and v, respectively. The path Pu,v

together with the edge {u, v} is called the u,v-gadget. Note that the u,v-gadget is an

induced cycle in G′ of length 2k+ 2. In particular, there exists a unique edge e′ ∈ E(G′)

of the u,v-gadget such that distG′(e′, u) = distG′(e′, v) = k. We call the edge e′ the

opposite edge of the edge {u, v}. See Figure 4 for an example.

u v u v

opposite
edge

path of

length k

Figure 4: An edge {u, v} (left) and its corresponding u,v-gagdet (right).

Lemma 6.9. Let G be a graph, k a positive integer, and G′ the graph obtained from

Construction 4 given G and k. Let F ⊆ E(G) and {u, v} ∈ E(G). Then the following

conditions are equivalent:
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1. For every edge f ′ of the u,v-gadget it holds distG′(f ′, F ) ≤ k.

2. The opposite edge e′ of {u, v} satisfies distG′(e′, F ) ≤ k.

3. distG′({u, v}, F ) = 0.

Proof. The implication from the first condition to the second one is trivial. To show

that the second condition implies the third one, suppose that distG′(e′, F ) ≤ k. Observe

that distG′(e′, {u, v}) = k. Suppose that distG′({u, v}, F ) > 0. Then, no edge in F has

u or v as endpoints. However, this implies that distG′(e′, F ) > k, a contradiction.

Finally, assume that distG′({u, v}, F ) = 0. This implies that at least one of u or v

belongs to some edge in f ∈ F ; we assume without loss of generality that u ∈ f . Thus,

there exists a unique vertex w in the u,v-gadget such that distG′(w, u) ≥ k + 1 (note

that w is an endpoint of the opposite edge of {u, v}). This implies that every edge of

the u,v-gadget has at least one endpoint w′ such that distG′(w′, u) ≤ k. We conclude

that for every edge f ′ of the u,v-gadget it holds distG′(f ′, F ) ≤ k.

Theorem 6.10. For every integer k ≥ 1, Distance-k Edge Dominating Set is

NP-complete, even for bipartite graphs with maximum degree 6 and for planar graphs

with maximum degree 6.

Proof. Fix an integer k ≥ 1. The problem is in NP by Corollary 6.1. To prove NP-

hardness, we reduce from the Edge Dominating Set problem to the Distance-k

Edge Dominating Set problem. Let G′ be the graph obtained from Construction 4

given G and k. Note that G′ can be obtained in polynomial time. We claim that G

contains an edge dominating set F with size at most ` if and only if G′ contains a

distance-k edge dominating set F ′ with size at most `.

For the forward implication, let F be an edge dominating set in G with size at

most `. Let {u, v} ∈ E(G) and e′ be its opposite edge. Following the fact that G is a

subgraph of G′ and that F is an edge dominating set in G, we have distG′({u, v}, F ) ≤
distG({u, v}, F ) = 0. By Lemma 6.9, we have that every edge f ′ of the u,v-gadget

satisfies distG′(f ′, F ) ≤ k. Since this holds for every edge {u, v} ∈ E(G), we obtain that

F is a distance-k edge dominating set with size at most ` in G′.

For the converse implication, let F ′ be a distance-k edge dominating set in G′ with

size at most ` minimizing the number of edges in E(G′)\E(G). Suppose that F ′ contains

an edge f ∈ E(G′) \E(G) from the u,v-gadget of some edge e = {u, v} ∈ E(G) and let

F ∗ = (F ′ \ {f}) ∪ {e}. Note that the opposite edge e′ of e is such that distG′(e′, e) = k,

and thus by Lemma 6.9 every edge from the gadget of e is at distance at most k

from F ∗. Besides, every other edge in G′ remains at distance at most k from F ∗.

Hence, we conclude that F ∗ is also a distance-k edge dominating set in G′ with size at

most `. However, F ∗ contains one less edge in E(G′) \ E(G) than F ′, a contradiction
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with the definition of F ′. So we may assume that F ′ ⊆ E(G). Since for any edge

{u, v} ∈ E(G), its opposite edge is at distance at most k from F ′, we get by Lemma 6.9

that distG′({u, v}, F ′) = 0. Thus, F ′ is an edge dominating set with size at most ` in G.

Note that the maximum degree of G′ is exactly twice the maximum degree of G.

Furthermore, it is easily observed that G′ is bipartite, resp. planar, if and only G

is bipartite, resp. planar. Since Edge Dominating Set is NP-complete on cubic

bipartite graphs and cubic planar graphs (see Theorem 6.8), we obtain that Distance-k

Edge Dominating Set is NP-complete on bipartite graphs with maximum degree 6

and planar graphs with maximum degree 6, as claimed.

When H contains a claw

Theorem 6.11. For every fixed integer k ≥ 1, Distance-k Edge Dominating Set

is NP-complete for line graphs.

Proof. The problem is in NP by Corollary 6.1. To prove NP-hardness, we reduce from

the P3 factor problem, which is NP-complete (see [45]). Consider an arbitrary input

to the P3 factor problem, consisting of a graph G. Let ` = |V (G)|
3

. Note that G has

a P3 factor if and only if G contains a P3 cover with size at most `, that is Λ(G) ≤ `.

Let G′ be the graph obtained from Construction 1 (defined on p. 21) given G and

t = k + 1, that is, G′ = G+(k+1), and H = L(G′). By Theorems 5.3 and 5.7, we have

γ′k(H) = Λk−1(G) = Λ(G). By Lemma 6.2, G contains a P3 cover with size at most `

if and only if H contains a distance-k edge dominating set with size at most `. The

claimed NP-hardness follows.

Since every line graph is claw-free, Theorem 6.11 implies the following result.

Corollary 6.12. Let H be a graph containing a claw as an induced subgraph. Then

for every fixed integer k ≥ 1, Distance-k Edge Dominating Set is NP-complete on

H-free graphs.

When H contains a cycle

Theorem 6.13. Let H be a graph containing a cycle. Then for every fixed integer

k ≥ 1, Distance-k Edge Dominating Set is NP-complete on H-free graphs.

Proof. Let G be any graph and k ≥ 1 an integer. Denote by g the girth of H and let G′ be

the graph obtained from G by subdividing every edge of G exactly g(2k+3) times. Note

that G′ is obtained in polynomial time and by Corollary 5.12, γ′k(G
′) = γ′k(G)+g|E(G)|.

Moreover, notice that G′ has no cycle of length g, and thus is H-free. By Theorem 6.11,

Distance-k Edge Dominating Set is NP-complete on line graphs, therefore NP-

complete on graphs in general. Since for any integer `, graph G continas a distance-k
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edge dominating set with size at most ` if and only if G′ contains a distance-k edge

dominating set with size at most ` + g|E(G)|, we conclude that Distance-k Edge

Dominating Set remains NP-complete on H-free graphs when H contains a cycle.

Corollary 6.12 and Theorem 6.13 imply the following result.

Corollary 6.14. Let H be a graph that is not a linear forest. Then for any fixed integer

k ≥ 1, Distance-k Edge Dominating Set is NP-complete on H-free graphs.

When H is a linear forest

Theorem 6.15. Distance-1 Edge Dominating Set is NP-complete on {P5, 2P3}-
free chordal graphs, and for all k ≥ 2, Distance-k Edge Dominating Set is

NP-complete on 2Pk+1-free chordal graphs.

Proof. The problem is in NP. To prove NP-hardness, we reduce from Vertex Cover,

which is NP-complete (see [43]). Consider an input to the Vertex Cover problem

consisting of a graph G containing at least an edge and an integer `. Let 2G be the

graphs consisting of two disjoint copies of G and let G′ be the graph obtained from

Construction 3 (defined on p. 34) given 2G and k. Note that τ(2G) = 2τ(G) and hence

γ′k(G
′) = d τ(2G)

2
e = τ(G). By Theorem 5.21 and Lemma 6.2, G contains a vertex cover

with size at most ` if and only if G′ contains a distance-k edge dominating set with size

at most `. The claimed NP-hardness follows.

6.3 Vertex cover at distance

When H contains a claw

Theorem 6.16. For every fixed integer k ≥ 1, Distance-k Vertex Cover is

NP-complete for line graphs.

Proof. The problem is in NP by Corollary 6.1. To prove NP-hardness, we reduce from

the Distance-(k − 1) Edge Dominating Set problem, which is NP-complete by

Theorem 6.10. Consider an arbitrary input to the Distance-(k−1) Edge Dominating

Set problem, consisting of a graph G and an integer `. Let G′ be the graph obtained

from Construction 1 (defined on p. 21) given G and t = 1, that is, G′ = G+1, and

H = L(G′). By Theorems 5.4 and 5.6, it holds that τk(H) = εΛ
k−1(G′) = γ′k−1(G). By

Lemma 6.2, G contains a distance-(k − 1) edge dominating set with size at most ` if

and only if H contains a distance-k vertex cover edge dominating set with size at most

`. The claimed NP-hardness follows.

Since every line graph is claw-free, Theorem 6.16 implies the following result.
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Corollary 6.17. Let H be a graph containing a claw as an induced subgraph. Then

for every fixed integer k ≥ 1, Distance-k Vertex Cover is NP-complete on H-free

graphs.

When H contains a cycle

Theorem 6.18. Let H be a graph containing a cycle. Then for every fixed integer

k ≥ 1, Distance-k Vertex Cover is NP-complete on H-free graphs.

Proof. Let G be any graph and k a positive integer. Denote by g the girth of H

and let G′ be the graph obtained from G by subdividing every edge of G exactly

g(2k + 2) times. Note that G′ is obtained in polynomial time and by Corollary 5.14,

τk(G) = τk(G) + g|E(G)|. Moreover, notice that G′ has no cycle of length g, and thus is

H-free. By Theorem 6.16, Distance-k Vertex Cover is NP-complete on line graphs,

therefore NP-complete on graphs in general. Since for any integer `, graph G contains a

distance-k vertex cover with size at most ` if and only if G′ contains a distance-k vertex

cover with size at most `+ g|E(G)|, we conclude that Distance-k Vertex Cover

remains NP-complete on H-free graphs when H contains a cycle.

Corollary 6.17 and Theorem 6.18 imply the following result.

Corollary 6.19. Let H be a graph that is not a linear forest. Then for any fixed integer

k ≥ 1, Distance-k Vertex Cover is NP-complete on H-free graphs.

When H is a linear forest

Theorem 6.20. Distance-1 Vertex Cover is NP-complete on {P5, 2P3}-free chordal

graphs, and for all k ≥ 2, Distance-k Vertex Cover is NP-complete on 2Pk+1-free

chordal graphs.

Proof. The problem is in NP. To prove NP-hardness, we reduce from Vertex Cover,

which is NP-complete (see [43]). Consider an input to the Vertex Cover problem

consisting of a graph G containing at least an edge and an integer `. Let G′ be the

graph obtained from Construction 3 (defined on p. 34) given G and k. By Theorem 5.22

and Lemma 6.2, G contains a vertex cover with size at most ` if and only if G′ contains

a distance-k vertex cover with size at most `. The claimed NP-hardness follows.

6.4 Domination at distance

When H contains a claw

Theorem 6.21. For every fixed integer k ≥ 1, Distance-k Dominating Set is

NP-complete for line graphs.
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Proof. The problem is in NP by Corollary 6.1. To prove NP-hardness, we reduce from

Distance-(k−1) Edge Dominating Set, which is NP-complete by Theorems 6.8 (for

k = 1) and 6.10 (for k ≥ 2). Consider an arbitrary input to the Distance-(k−1) Edge

Dominating Set problem, consisting of a graph G and an integer `. Let H = L(G).

By Theorem 5.2 and Lemma 6.2, G contains a distance-(k − 1) edge dominating set

with size at most ` if and only if H contains a distance-k dominating set with size at

most `. The claimed NP-hardness follows.

Since every line graph is claw-free, Theorem 6.21 implies the following result.

Corollary 6.22. Let H be a graph containing a claw as an induced subgraph. Then for

every fixed integer k ≥ 1, Distance-k Dominating Set is NP-complete on H-free

graphs.

When H contains a cycle

Theorem 6.23. Let H be a graph containing a cycle. Then for every fixed integer

k ≥ 1, Distance-k Dominating Set is NP-complete on H-free graphs.

Proof. Let G be any graph and k a non-negative integer. Denote by g the girth of

H and let G′ be the graph obtained from G by subdividing every edge of G exactly

g(2k + 1) times. Note that G′ is obtained in polynomial time and by Corollary 5.10,

γk(G) = γk(G) + g|E(G)|. Moreover, notice that G′ has no cycle of length g, and thus

is H-free. By Theorem 6.21, Distance-k Dominating Set is NP-complete on line

graphs, therefore NP-complete on graphs in general. Since for any integer `, graph

G contains a distance-k dominating set with size at most ` + g|E(G)|, we conclude

that Distance-k Dominating Set remains NP-complete on H-free graphs when H

contains a cycle.

Corollary 6.22 and Theorem 6.23 imply the following result.

Corollary 6.24. Let H be a graph that is not a linear forest. Then for any fixed integer

k ≥ 1, Distance-k Dominating Set is NP-complete on H-free graphs.

When H is a linear forest

Theorem 6.25. Distance-k Dominating Set is NP-complete on 2Pk+1-free chordal

graphs.

Proof. The problem is in NP. To prove NP-hardness, we reduce from Vertex Cover,

which is NP-complete (see [43]). Consider an input to the Vertex Cover problem

consisting of a G graph containing at least one edge and an integer `. Let G′ be the

graph obtained from Construction 2 (defined on p. 32) given G and k. By Theorem
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5.22 and Lemma 6.2, G contains a vertex cover with size at most ` if and only if G′

contains a distance-k dominating set with size at most `. The claimed NP-hardness

follows.



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 46

7 Polynomial algorithms

In this section we identify, for each integer k ≥ 1, an infinite family of graph classes in

which Distance-k Dominating Set, Distance-k Edge Dominating Set, Dis-

tance-k Vertex Cover and Distance-k Edge Cover can be solved in polynomial

time.

7.1 Domination at distance in H-free graphs

Our first result is based on the following structural property of Pt-free graphs.

Theorem 7.1 (Camby and Schaudt [14]). Let t ≥ 4 be an integer, let G be a connected

Pt-free graph, and let S be any minimum connected dominating set in G. Then the

subgraph induced by S in G is either Pt−2-free or isomorphic to Pt−2.

Theorem 7.1 has the following consequence for distance-k dominating set in P2k+2-free

graphs.

Lemma 7.2. For every integer k ≥ 0, every connected P2k+2-free graph G has a

distance-k dominating set that induces a path of order at most two.

Proof. The proof is by induction on k. Suppose first that k = 0. In this case, the

statement says that every connected P2-free graph G has a distance-0 dominating set

that induces a path of order at most two. This follows directly since G is edgeless

and connected, hence, G is a one-vertex graph. Suppose now that k ≥ 1 and consider

a connected P2k+2-free graph G. Let S be a minimum connected dominating set in

G and let G′ be the subgraph of G induced by S. Following Theorem 7.1, we obtain

that G′ is either P2k-free or isomorphic to P2k. If G′ is P2k-free, then the induction

hypothesis implies that G′ has a distance-(k − 1) dominating set that induces a path of

order at most two. If G′ is isomorphic to P2k, with vertices v1, . . . , v2k in order, then

the edge {vk, vk+1} is a distance-(k − 1) dominating set in G′. In either case, G′ has

a distance-(k − 1) dominating set S ′ that induces a path of order at most two. Since

every vertex in G is either in S or has a neighbor in S, we infer that S ′ is a distance-k

dominating set in G that induces a path of order at most two.

In the following theorem, the running time of the algorithm is independent of k,

that is, the O notation does not hide any constants depending on k.
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Theorem 7.3. For every integer k ≥ 1, there is an algorithm with running time

O(|V (G)|+ |E(G)|2) that takes as input a P2k+2-free graph G and computes a minimum

distance-k dominating set of G.

Proof. Fix a positive integer k and let G be a P2k+2-free graph. To compute a minimum

distance-k dominating set of G, we first compute the connected components G1, . . . , Gs

of G, solve the problem in each connected component Gi, and combine the obtained

solutions. By Lemma 7.2, each connected component Gi of G has a distance-k dom-

inating set that induces a path of order at most two. Thus, we immediately obtain

a polynomial-time algorithm for computing a minimum distance-k dominating set of

a component Gi. We first check if there exists a vertex u ∈ V (Gi) such that {u} is a

distance-k dominating set in Gi. If this is the case, then we have an optimal solution;

otherwise we check for each edge {u, v} ∈ E(Gi) if {u, v} is a distance-k dominating

set in Gi. Once we find one, we return it.

It remains to analyze the running time. Let us write, as usual, n = |V (G)|,
m = |E(G)|, and, ni = |V (Gi)| and mi = |E(Gi)| for all i ∈ {1, . . . , s}. Computing the

connected components of G can be done in time O(n+m) and, given a component Gi

and a set S ⊆ V (Gi), testing if S is a distance-k dominating set of Gi can be done in

time O(ni +mi) = O(mi)
1, by using breadth-first search in Gi up to distance k from S

and verifying if all the vertices have been reached. We need to test O(ni +mi) = O(mi)

sets S, hence the overall time complexity of the algorithm on Gi is O(m2
i ). Since∑

im
2
i ≤ (

∑
imi)

2 = m2, summing up the complexities over all components yields the

overall running time of O(n+m2).

Lemma 7.4. For every two integers k ≥ 1 and s ≥ 0, every connected (P2k+2+sPk)-free

graph G has a distance-k dominating set that induces a linear forest of order at most

fk(s) where

fk(s) =

{
2 if s = 0 ,

(s+ 1)k + 2 if s ≥ 1 .

Proof. Fix an integer k ≥ 1. We use induction on s. For s = 0, the statement follows

from Lemma 7.2.

Suppose now that s ≥ 1 and that every connected (P2k+2 + (s− 1)Pk)-free graph

has a distance-k dominating set that induces a linear forest of order at most fk(s− 1).

Let G be a connected (P2k+2 + sPk)-free graph. If G is (P2k+2 + (s − 1)Pk)-free,

then G has a distance-k dominating set that induces a linear forest of order at most

fk(s− 1) ≤ fk(s). On the other hand, if G is not (P2k+2 + (s− 1)Pk)-free, then there

exists a set S ⊆ V (G) inducing a P2k+2 + (s− 1)Pk. Note that S induces a linear forest

1Since Gi is a connected graph, it holds that mi ≥ ni − 1 and consequently ni = O(mi) as soon

as Gi has at least one edge – which can assumed, since otherwise the unique vertex of Gi has to be

selected into the optimal solution.
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of order (s+ 1)k + 2 = fk(s). It thus suffices to show that S is a distance-k dominating

set in G. Let X = N(S) be the set of vertices not in S and with a neighbor in S and

Y = V (G) \ (S ∪X) be the set of vertices not in S and without a neighbor in S. Let w

be a vertex of G. If w belongs to S ∪X, then distG(w, S) ≤ 1 ≤ k. So let w ∈ Y . Since

G is connected, there exists a shortest path P between w and a vertex in S. Since G

is (P2k+2 + sPk)-free, the part of P entirely contained in Y has at most k − 1 vertices.

Other than that, P has exactly one vertex in X and exactly one in S. Thus, the length

of P is at most k, which implies distG(w, S) ≤ k. This shows that S is a distance-k

dominating set in G and completes the proof.

Lemma 7.4 implies that for all integers k ≥ 1 and s ≥ 0 the minimum size of a

distance-k dominating set in a connected (P2k+2 + sPk)-free graph G is bounded from

above by a function depending only on k and s but independent of G. Thus, we can

do a complete enumeration of small subsets of vertices to find a minimum distance-k

dominating set in such a graph, and essentially the same approach as the one used

in Theorem 7.3 using Lemma 7.2 can be used to prove the following theorem using

Lemma 7.4.

Theorem 7.5. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-time

algorithm that takes as input a (P2k+2 + sPk)-free graph G and computes a minimum

distance-k dominating set in G.

7.2 Vertex cover at distance in H-free graphs

Lemma 7.6. For every integer k ≥ 0 every connected P2k+2-free graph G has a

distance-k vertex cover that induces a path of order at most two.

Proof. Lemma 7.2 implies that G has a distance-k dominating set D that induces a

path of order at most two. Theorem 4.1 and its proof imply that D is also a distance-k

vertex cover in G proving the statement.

Theorem 7.7. For every integer k ≥ 1, there is an algorithm with running time

O(|V (G)|+ |E(G)|2) that takes as input a P2k+2-free graph G and computes a minimum

distance-k vertex cover of G.

Proof. Fix a positive integer k and let G be a P2k+2-free graph. To compute a minimum

distance-k vertex cover of G, we first compute the connected components of G, solve

the problem in each component, and then combine the obtained solutions. Given a

connected component Gi, we check whether a set S ⊆ V (Gi) is a distance-k vertex

cover in Gi in time O(|E(Gi)|) using breadth-first search up to distance k from S and

verifying if all the edges have been reached. The rest of the proof is similar to the proof

of Theorem 7.3, except that Lemma 7.6 is used instead of Lemma 7.2.
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Lemma 7.8. For every integer s ≥ 0, every connected (P4 + sP2)-free graph G has a

distance-1 vertex cover that induces a linear forest of order at most 2s+ 2.

Proof. We use induction on s. For s = 0, the statement follows from Lemma 7.6.

Suppose now that s ≥ 1 and that every connected P4 + (s − 1)P2-free graph has

a distance-1 vertex cover that induces a linear forest of order at most 2s. Let G be a

connected (P4 + sP2)-free graph. If G is P4 + (s− 1)P2-free, then G has a distance-1

vertex cover that induces a linear forest of order at most 2s. On the other hand, if G is

not P4 + (s − 1)P2-free, then there exists a set S ⊆ V (G) inducing a P4 + (s − 1)P2.

Since G is (P4 + sP2)-free, every edge e of G either has an endpoint in S or there is an

edge connecting an endpoint of e with a vertex of S. In other words, every edge of G is

at distance at most 1 from S. Thus, S is a distance-1 vertex cover in G that induces a

linear forest of order 2(s− 1) + 4 = 2s+ 2.

Lemma 7.9. For every two integers k ≥ 2 and s ≥ 0, every connected (P2k+2+sPk)-free

graph G has a distance-k vertex cover that induces a linear forest of order at most fk(s)

where

fk(s) =

{
2 if s = 0 ,

(s+ 1)k + 2 if s ≥ 1 .

Proof. By Lemma 7.4 we have that G contains a distance-k dominating set D that

induces a linear forest of order at most fk(s). Then Theorem 4.1 and its proof imply

that D is also a distance-k vertex cover. Hence G contains a distance-k vertex cover

that induces a linear forest of order at most fk(s).

Lemmas 7.8 and 7.9 imply that for all integers k ≥ 1 and s ≥ 0 the minimum size of

a distance-k vertex cover in a connected (P2k+2 + sPmax{k,2})-free graph is bounded from

above by a function depending only on k and s but independent of G. Thus, we can do

a complete enumeration of small subsets of vertices to find a minimum distance-k vertex

cover in such a graph, and essentially the same approach as the one used in Theorem 7.7

using Lemma 7.6 can be used to prove the following theorem using Lemmas 7.8 and 7.9.

Theorem 7.10. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-

time algorithm that takes as input a (P2k+2 + sPmax{k,2})-free graph G and computes a

minimum distance-k vertex cover in G.

7.3 Edge domination at distance in H-free graphs

Lemma 7.11. For every integer k ≥ 0 every connected P2k+2-free graph G has a

distance-k edge dominating set of size at most one.
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Proof. If G is isomorphic to K1, then the empty set is the only distance-k edge

dominating set of G. Suppose that G is not isomorphic to K1. Lemma 7.2 shows

that G has a distance-k dominating set D that induces a path of order at most 2.

If |D| = 1, then we take F = {{u, v}} where u ∈ D and v is any neighbor of u

in G. Note that such a vertex v exists, since G is connected and not isomorphic

to K1. If |D| = 2, then we have D = {u, v} for a pair u, v of adjacent vertices in

G, and we take F = {{u, v}}. In both cases, F consists of a single edge of G. As

D is a distance-k dominating set in G we get that for every w ∈ V (G) we have

distG(w,F ) ≤ distG(w,D) ≤ k, implying that F is a distance-k edge dominating set in

G of size one.

Note that Lemma 7.11 could be equivalently stated as follows: For every integer

k ≥ 0, every nontrivial connected P2k+2-free graph G satisfies γ′k(G) = 1.

Theorem 7.12. For every integer k ≥ 1, there is an algorithm with running time

O(|V (G)|+ |E(G)|2) that takes as input a P2k+2-free graph G and computes a minimum

distance-k edge dominating set of G.

Proof. Fix a positive integer k and let G be a P2k+2-free graph. To compute a minimum

distance-k edge dominating set of G, we first compute the connected components

G1, . . . , Gs of G, solve the problem in each connected component Gi, and combine

the obtained solutions. If Gi has at least two vertices, Lemma 7.11 guarantees that

there exists an edge e ∈ E(Gi) such that {e} is a distance-k edge dominating set in Gi.

Thus, we immediately obtain a polynomial-time algorithm for computing a minimum

distance-k edge dominating set of a component Gi. Testing if for some edge e ∈ E(Gi)

the set {e} is a distance-k dominating set of Gi can be done in time O(|E(Gi)|), by

using breadth-first search in Gi up to distance k from {e} and verifying if all the edges

have been reached. The rest of the time complexity analysis is done similarly as the

proof of Theorem 7.3.

Lemma 7.13. For every integer s ≥ 0, every connected (P4 + sP2)-free graph G has a

distance-1 edge dominating set of size at most 2s+ 2.

Proof. By Lemma 7.8, G contains a distance-1 vertex cover of size at most 2s+ 2, hence

τ1(G) ≤ 2s + s. Then we conclude, by Theorem 4.1, that γ′1(G) ≤ τ1(G) ≤ 2s + 2,

implying that G contains a distance-1 edge dominating set of size at most 2s+ 2.

Lemma 7.14. For every two integers k ≥ 2 and s ≥ 0, every connected (P2k+2 + sPk)-

free graph G has a distance-k edge dominating set of size at most fk(s) where

fk(s) =

{
2 if s = 0 ,

(s+ 1)k + 2 if s ≥ 1 .
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Proof. By Lemma 7.4, G contains a distance-k dominating set of size at most fk(s),

hence, γk(G) ≤ fk(s). We conclude, by Theorem 4.1, that γ′k(G) ≤ γk(G) ≤ fk(s),

implying that G contains a distance-k edge dominating set of size at most fk(s).

Similarly as for Theorem 7.10, Lemmas 7.13 and 7.14 imply that for all integers

k ≥ 1 and s ≥ 0 and for any connected (P2k+2 + sPmax{2,k})-free graph G, the value of

γ′k(G) is bounded from above by a function depending only on k and s but independent

of G. Thus, we get the following theorem also in a similar way.

Theorem 7.15. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-

time algorithm that takes as input a (P2k+2 + sPmax{k,2})-free graph G and computes a

minimum distance-k edge dominating set in G.

7.4 Edge cover at distance in H-free graphs

Lemma 7.16. For every integer k ≥ 0 every nontrivial connected P2k+2-free graph G

has a distance-k edge cover of size one.

Proof. Lemma 7.2 shows that G has a distance-k dominating set D that induces a

path of order at most 2. If |D| = 1, then we take F = {{u, v}} where u ∈ D and v

is any neighbor of u in G. Note that such a vertex v exists, since G is connected and

nontrivial. If |D| = 2, then we have D = {u, v} for a pair u, v of adjacent vertices

in G, and we take F = {{u, v}}. In both cases, F consists of a single edge of G.

As D is a distance-k dominating set in G we get that for every w ∈ V (G) we have

distG(w,F ) ≤ distG(w,D) ≤ k, implying that F is a distance-k edge cover of G of size

one.

Note that Lemma 7.16 could be equivalently stated as follows: For every integer

k ≥ 0, every nontrivial connected P2k+2-free graph G satisfies ρ′k(G) = 1.

Theorem 7.17. For every integer k ≥ 1, there is an algorithm with running time

O(|V (G)|+ |E(G)|2) that takes as input a P2k+2-free graph G without isolated vertices

and computes a minimum distance-k edge cover of G.

Proof. Fix a positive integer k and let G be a P2k+2-free graph. To compute a minimum

distance-k edge cover of G, we first compute the connected components G1, . . . , Gs of

G. We solve the problem in each connected component Gi, and combine the obtained

solutions. By Lemma 7.16, each connected component Gi of G has a distance-k

edge cover of size one. Thus, we immediately obtain a polynomial-time algorithm for

computing a minimum distance-k edge cover of Gi. We check for every edge e ∈ E(Gi)

if {e} is a distance-k edge cover in Gi. This can be done in time O(|E(Gi)|) using

breadth-first search in Gi up to distance k from {e} and verifying if all the vertices
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have been reached. The rest of the time complexity analysis is done similarly as the

proof of Theorem 7.3.

Lemma 7.18. For every two integers k ≥ 1 and s ≥ 0, every nontrivial connected

(P2k+2 + sPk)-free graph G has a distance-k edge cover of size at most fk(s) where

fk(s) =

{
2 if s = 0 ,

(s+ 1)k + 2 if s ≥ 1 .

Proof. By Lemma 7.4 G contains a distance-k dominating set of size at most fk(s),

hence, γk(G) ≤ fk(s). Then we conclude, by Theorem 4.1, that ρk(G) ≤ γk(G) ≤ fk(s),

implying that G contains a distance-k edge cover of size at most fk(s).

Similarly as for Theorem 7.5, Lemma 7.18 implies that for all integers k ≥ 1 and

s ≥ 0 and any nontrivial connected (P2k+2 + sPk)-free graph G, the value of ρk(G) is

bounded from above by a function depending only on k and s but independent of G.

Thus, get the following theorem also in a similar way.

Theorem 7.19. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-time

algorithm that takes as input a (P2k+2 + sPk)-free graph G without isolated vertices and

computes a minimum distance-k edge cover in G.



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 53

8 Complexity dichotomies

Let us now combine the results obtained in the previous two sections to get the

complexity dichotomies for the four distance covering and domination problems in the

classes of H-free graphs.

Theorem 8.1. For every graph H and every integer k ≥ 1, Distance-k Dominating

Set is solvable in polynomial time in the class of H-free graphs if H is an induced

subgraph of P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear

forest, then for all k ≥ 1 Corollary 6.24 implies that Distance-k Dominating Set is

NP-complete on G.

Suppose that H is a linear forest and let k ≥ 1. If H contains 2Pk+1 as an

induced subgraph, then G contains the class of 2Pk+1-free chordal graphs, and hence

by Theorem 6.25 Distance-k Dominating Set is NP-complete on G. Otherwise, H

is 2Pk+1-free. Let t denote the maximum order of a component of H and let C be a

component of H of order t. If t ≤ k, then every component of H has order at most

k. If t ≥ k + 1, then, since H is 2Pk+1-free, every component of H other than C has

order at most k. Thus, in either case, every component of H other than C has order at

most k, and H is an induced subgraph of Pt + sPk for some s ≥ 0, which implies that

t ≤ 2k + 2, and thus H is an induced subraph of P2k+2 + sPk for some s ≥ 0. It follows

that every H-free graph is (P2k+2 + sPk)-free. Thus, by Theorem 7.5 the problem can

be solved in polynomial time for graphs in G.

Theorem 8.2. For every graph H, the following holds:

• Distance-1 Edge Dominating Set is solvable in polynomial time in the class

of H-free graphs if H is an induced subgraph of P4 + sP2, for some s ≥ 0, and

NP-complete otherwise.

• For every integer k ≥ 2, Distance-k Edge Dominating Set is solvable in

polynomial time in the class of H-free graphs if H is an induced subgraph of

P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear forest,

then for all k ≥ 1, Corollary 6.14 implies that Distance-k Edge Dominating Set is

NP-complete on G. Suppose that H is a linear forest.
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Consider first the case when k = 1. If H contains P5 or 2P3 as an induced subgraph,

then G contains the class of {P5, 2P3}-free chordal graphs, and hence by Theorem 6.15

Distance-1 Edge Dominating Set is NP-complete on G. Otherwise, we obtain

that H is {P5, 2P3}-free. Recall that H is a linear forest. Let us denote by t be the

maximum order of a component of H and let C be a component of H of order t. If

t ≤ 2, then every component of H has order at most two. If t ≥ 3, then, since H is

2P3-free, every component of H other than C has order at most two. In either case,

every component of H other than C has order at most two, which implies that H is an

induced subgraph of Pt + sP2 for some s ≥ 0. Since H is P5-free, we have t ≤ 4, and

hence every H-free graph is (P4 + sP2)-free. Thus, by Theorem 7.15 the problem can

be solved in polynomial time for graphs in G.

Suppose now that k ≥ 2. If H contains 2Pk+1 as an induced subgraph, then G
contains the class of 2Pk+1-free chordal graphs, and hence by Theorem 6.15 Distance-k

Edge Dominating Set is NP-complete on G. Otherwise, H is 2Pk+1-free. Again,

let t denote the maximum order of a component of H and let C be a component of

H of order t. If t ≤ k, then every component of H has order at most k. If t ≥ k + 1,

then, since H is 2Pk+1-free, every component of H other than C has order at most k.

In either case, every component of H other than C has order at most k, and H is an

induced subgraph of Pt + sPk for some s ≥ 0. Since H is 2Pk+1-free, it is also P2k+3-free,

which implies that t ≤ 2k + 2, and thus H is an induced subgraph of P2k+2 + sPk for

some s ≥ 0. It follows that every H-free graph is (P2k+2 + sPk)-free. Thus, by Theorem

7.15 the problem can be solved in polynomial time for graphs in G.

Theorem 8.3. For every graph H, the following holds:

• Distance-1 Vertex Cover is solvable in polynomial time in the class of H-free

graphs if H is an induced subgraph of P4 + sP2, for some s ≥ 0, and NP-complete

otherwise.

• For every integer k ≥ 2, Distance-k Vertex Cover is solvable in polynomial

time in the class of H-free graphs if H is an induced subgraph of P2k+2 + sPk for

some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear

forest, then for all k ≥ 1, Corollary 6.19 implies that Distance-k Vertex Cover is

NP-complete on G. Suppose that H is a linear forest.

Consider first the case when k = 1. If H contains P5 or 2P3 as an induced subgraph,

then G contains the class of {P5, 2P3}-free chordal graphs, and hence by Theorem 6.20

Distance-1 Vertex Cover is NP-complete on G. Otherwise, we obtain that H is

{P5, 2P3}-free. Recall that H is a linear forest. Using the same arguments as in the

proof of Theorem 8.2, we infer that H is an induced subgraph of P4 + sP2 for some
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s ≥ 0, and hence every H-free graph is (P4 + sP2)-free. Thus, by Theorem 7.10 the

problem can be solved in polynomial time for graphs in G.

Suppose now that k ≥ 2. If H contains 2Pk+1 as an induced subgraph, then G
contains the class of 2Pk+1-free chordal graphs, and hence by Theorem 6.20 Distance-k

Vertex Cover is NP-complete on G. Otherwise, H is 2Pk+1-free. Again, let t denote

the maximum order of a component of H and let C be a component of H of order t. If

t ≤ k, then every component of H has order at most k. If t ≥ k + 1, then, since H is

2Pk+1-free, every component of H other than C has order at most k. Thus, in either

case, every component of H other than C has order at most k, and H is an induced

subgraph of Pt + sPk for some s ≥ 0. Since H is 2Pk+1-free, it is also P2k+3-free, which

implies that t ≤ 2k + 2, and thus H is an induced subgraph of P2k+2 + sPk for some

s ≥ 0. It follows that every H-free graph is (P2k+2 + sPk)-free. Thus, by Theorem 7.10

the problem can be solved in polynomial time for graphs in G.

Theorem 8.4. For every graph H and every integer k ≥ 1, Distance-k Edge Cover

is solvable in polynomial time in the class of H-free graphs if H is an induced subgraph

of P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear forest,

then for all k ≥ 1 Corollary 6.6 implies that Distance-k Edge Cover is NP-complete

on G. Suppose that H is a linear forest.

Let k ≥ 1. If H contains 2Pk+1 as an induced subgraph, then G contains the class

of 2Pk+1-free chordal graphs, and hence by Theorem 6.7 Distance-k Edge Cover

is NP-complete on G. Otherwise, we obtain that H is 2Pk+1-free. Let t denote the

maximum order of a component of H and let C be a component of H of order t. If

t ≤ k, then every component of H has order at most k. If t ≥ k + 1, then, since

H is 2Pk+1-free, every component of H other than C has order at most k. In either

case, every component of H other than C has order at most k, and H is an induced

subgraph of Pt + sPk for some s ≥ 0, which implies that t ≤ 2k + 2, and thus H is an

induced subgraph of P2k+2 + sPk for some s ≥ 0. It follows that every H-free graph is

(P2k+2 + sPk)-free. Thus, by Theorem 7.19 the problem can be solved in polynomial

time for graphs in G.
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9 Conclusion

In this thesis, we considered four classical optimization problems on graphs, namely

the minimum dominating set, minimum edge dominating set, minimum vertex cover,

and minimum edge cover problems, and studied the complexity of their distance-based

variants in H-free graphs. After a summary of the known NP-hardness, polynomial-

time solvability, approximation algorithms, and parameterized complexity results, we

established several inequalities relating the optimal solution values of the four distance

problems. Further, for several graph transformations we saw how the optimal solution

values to some of these problems on a graph G are related to the optimal solution

values to other problems on the transformed graph G′. Those results were used to prove

the NP-completeness of the problems on H-free graphs when H contains a cycle as

well as when H contains a claw. Combined, these results showed that the problems

are NP-complete for H-free graphs whenever H is not a linear forest. Using a similar

approach we also developed NP-completeness results for certain cases when a linear

forest is excluded. Finally, using a structural property of Pt-free graphs proved by

Camby and Schaudt and the inequalities obtained before, we showed that in all other

cases, the problems become polynomial-time solvable.

Hence, we obtained complexity dichotomies of the four distance problems with

respect to the forbidden induced subgraph H. Namely, we have the following results:

• Dichotomies for any k ≥ 1 and arbitrary graph H: the Distance-k Dominating

Set and Distance-k Edge Cover problems are solvable in polynomial time in

the class of H-free graphs if H is an induced subgraph of P2k+2 + sPk for some

s ≥ 0, and NP-complete otherwise.

• Dichotomies for k = 1 and arbitrary graph H: the Distance-1 Edge Dominat-

ing Set and Distance-1 Vertex Cover problems are solvable in polynomial

time in the class of H-free graphs if H is an induced subgraph of P4 + sP2 for

some s ≥ 0, and NP-complete otherwise.

• Dichotomies for any k ≥ 2 and arbitrary graph H: the Distance-k Edge

Dominating Set and Distance-k Vertex Cover problems are solvable in

polynomial time in the class of H-free graphs if H is an induced subgraph of

P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Let us note that for every k ≥ 1, the dichotomies coincide for pairs of problems where
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the objects being dominated are of the same type (vertices, resp. edges). Furthermore,

for any graph H, if any of the two problems in which the edges need to be dominated is

solvable in polynomial time in the class of H-free graphs, then so are the two problems

in which the vertices need to be dominated.

In conclusion, let us remark that a dichotomy for H-free graphs is still an open

question for the classical Vertex Cover and Edge Dominating Set problems. In

particular, it is an open question whether the Vertex Cover problem (or, equivalently,

the Independent Set problem) is polynomial-time solvable in the class of H-free

graphs whenever every component of H is either a path or a subdivision of the claw.

An affirmative answer would provide a dichotomy (see [1]). For the much less studied

Edge Dominating Set problem, the NP-completeness of the problem in the class of

line graphs [38] and Corollary 5.12 imply that the problem is NP-complete in the class

of H-free graphs whenever H is not a linear forest. However, it is not known whether

the problem is polynomial-time solvable in the class of H-free graphs whenever H is a

linear forest.
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10 Povzetek v slovenskem jeziku

Različne teoretične in praktične motivacije so privedle do posplošitve številnih klasičnih

optimizacijskih problemov na grafih na njihove razdaljne variante. Grobo rečeno to

pomeni, da se lastnost sosednosti, ki je osnova za definicijo dopustne rešitve problema,

nadomesti s splošneǰso lastnostjo, ki temelji na razdaljah v grafih.

V magistrskem delu obravnavamo razdaljne različice naslednjih štirih optimizacijskih

problemov na grafih: problem dominantne množice, problem povezavno dominantne

množice, problem točkovnega pokritja in problem povezavnega pokritja.

Dominantna množica v grafu G je taka množica D ⊆ V (G), da je vsaka točka grafa

G, ki ni v množici D, sosednja z neko točko iz D. Za celo število k ≥ 1 definiramo

k-razdaljno dominantno množico v grafu G kot tako množico D ⊆ V (G), da je vsaka

točka v G na razdalji največ k od neke točke v D. Odločitveni problem k-Razdaljna

Dominantna Množica sprašuje, za dai graf G in celo število `, ali v grafu G obstaja

k-razdaljna dominantna množica velikosti največ `.

Povezavno dominantna množica v grafu G je taka množica F ⊆ E(G), da ima

vsaka povezava, ki ni v F , skupno krajǐsče z neko povezavo v F . Za celo število k ≥ 0

definiramo k-razdaljno povezavno dominantno množico v grafu G kot tako množico

F ⊆ E(G), da ima vsaka povezava v G vsaj eno krajǐsče na razdalji največ k od krajǐsča

neke povezave v F . Odločitveni problem k-Razdaljna Povezavno Dominantna

Množica sprašuje, za dan graf G in celo število `, ali v grafu G obstaja k-razdaljna

povezavno dominantna množica velikosti največ `.

Točkovno pokritje v grafu G je taka množica C ⊆ V (G), da ima vsaka povezava

vsaj eno krajǐsče v C. Za celo število k ≥ 0 definiramo k-razdaljno točkovno pokritje v

grafu G kot tako množico C ⊆ V (G), da je vsaka povezava v G na razdalji največ k od

neke točke v C. Odločitveni problem k-Razdaljno Točkovno Pokritje sprašuje,

za dan graf G in celo število `, ali v grafu G obstaja k-razdaljno točkovno pokritje

velikosti največ `.

Povezavno pokritje v grafu G je taka množica F ⊆ E(G), da je vsaka točka

grafa krajǐsče neke povezave v F . Za celo število k ≥ 0 definiramo k-razdaljno

povezavno pokritje v grafu G kot tako množico F ⊆ E(G), da je vsaka točka grafa G

na razdalji največ k od krajǐsča neke povezave v F . Odločitveni problem k-Razdaljno

Povezavno Pokritje prašuje, za dan graf G in celo število `, ali v grafu G obstaja

k-razdaljno povezavno pokritje velikosti največ `.
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V magistrskemu delu so izpeljani naslednji izreki, ki podajajo dihotomije glede

na zahtevnost obravnavanih problemov v H-prostih grafih, tj. grafih, ki ne vsebujejo

nobenega induciranega podgrafa, izomorfnega nekemu fiksnemu grafu H. Za cela števila

k ≥ 1, s ≥ 0 in t ≥ 1 označimo s Pk + sPt disjunktno unijo poti na k točkah in s

kopij poti na t točkah. Za razdaljne probleme, pri katerih je cilj na določen razdalji

“dominirati” (ali “pokriti”) vse točke, smo pokazali naslednje dihotomije za vse k ≥ 1 in

poljuben graf H:

• Problema k-Razdaljna Dominantna Množica in k-Razdaljno Povezavno

Pokritje sta v razredu H-prostih grafov rešljiva v polinomskem času, če je H

induciran podgraf nekega grafa oblike P2k+2 + sPk za s ≥ 0, sicer pa sta NP-polna.

Za razdaljne probleme, pri katerih je cilj na določen razdalji dominirati (ali pokriti) vse

povezave, pa smo pokazali naslednje dihotomije za poljuben graf H:

• Dihotomija za k = 1: Problema 1-Razdaljna Povezavna Dominatna

Množica in 1-Razdaljno Točkovno Pokritje sta v razredu H-prostih

grafov rešljiva v polinomskem času, če je H induciran podgraf nekega grafa oblike

P4 + sP2 za s ≥ 0, sicer pa sta NP-polna.

• Dihotomija za k ≥ 2: Problema k-Razdaljna Povezavna Dominatna

Množica in k-Razdaljno Točkovno Pokritje sta v razredu H-prostih

grafov rešljiva v polinomskem času, če je H induciran podgraf nekega grafa oblike

P2k+2 + sPk za s ≥ 0, sicer pa sta NP-polna.
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[39] J. D. Horton and A. López-Ortiz. “On the number of distributed measurement

points for network tomography”. In: Proceedings of the 3rd ACM SIGCOMM

Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, October

27-29, 2003. ACM, 2003, pp. 204–209.

[40] L. Jaffke et al. “Mim-width III. Graph powers and generalized distance domination

problems”. In: Theoretical Computer Science 796 (2019), pp. 216–236.

[41] S. K. Jena and G. K. Das. “Vertex-edge domination in unit disk graphs”. In:

Discrete Applied Mathematics (2021).

[42] M. Jiang and Y. Zhang. “Parameterized complexity in multiple-interval graphs:

Domination, partition, separation, irredundancy”. In: Theoretical Computer Sci-

ence 461 (2012), pp. 27–44.

[43] R. M. Karp. “Reducibility among combinatorial problems”. In: Complexity of

computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,

Yorktown Heights, N.Y., 1972). 1972, pp. 85–103.

[44] S. Khot, D. Minzer, and M. Safra. “On independent sets, 2-to-2 games, and

Grassmann graphs”. In: Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing. 2017, pp. 576–589.

[45] D. G. Kirkpatrick and P. Hell. “On the complexity of general graph factor

problems”. In: SIAM J. Comput. 3 (1983), pp. 601–609.

[46] D. Kobler and U. Rotics. “Edge dominating set and colorings on graphs with fixed

clique-width”. In: Discrete Applied Mathematics 126.2-3 (2003), pp. 197–221.

[47] D. Korobitsin. “On the complexity of domination number determination in

monogenic classes of graphs”. In: Discrete Math. Appl. 2 (1992), pp. 191–199.

[48] J. R. Lewis. “Vertex-edge and edge-vertex parameters in graphs”. PhD thesis.

Clemson University, 2007.

[49] D. Lokshtanov et al. “Hardness of r-dominating set on graphs of diameter (r+1)”.

In: International Symposium on Parameterized and Exact Computation. Springer.

2013, pp. 255–267.

[50] C. L. Lu and C. Y. Tang. “Solving the weighted efficient edge domination problem

on bipartite permutation graphs”. In: Discrete Applied Mathematics 87.1-3 (1998),

pp. 203–211.

[51] K. Makino and T. Uno. “New algorithms for enumerating all maximal cliques”.

In: Algorithm theory—SWAT 2004. Vol. 3111. Lecture Notes in Comput. Sci.

Springer, Berlin, 2004, pp. 260–272.

[52] A. A. McRae. “Generalizing NP-completeness proofs for bipartite graphs and

chordal graphs”. PhD thesis. Clemson University, 1994.



Krbezlija M. Complexity of Distance Variants of Covering and Domination Problems in H-Free Graphs.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, 2021 64

[53] G. J. Minty. “On maximal independent sets of vertices in claw-free graphs”. In:

Journal of Combinatorial Theory, Series B 28.3 (1980), pp. 284–304.

[54] B. Mohar. “Face covers and the genus problem for apex graphs”. In: Journal of

Combinatorial Theory, Series B 82.1 (2001), pp. 102–117.

[55] S.-I. Oum. “Approximating rank-width and clique-width quickly”. In: ACM Trans.

Algorithms 5.1 (2009), Art. 10, 20.

[56] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms

and complexity. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982, pp. xvi+496.

[57] S. Paul, D. Pradhan, and S. Verma. “Vertex-Edge Domination in Interval and

Bipartite Permutation Graphs”. In: Discussiones Mathematicae Graph Theory

(2021). To appear. DOI: https://doi.org/10.7151/dmgt.2411.

[58] S. Paul and K. Ranjan. “On vertex-edge and independent vertex-edge domination”.

In: International Conference on Combinatorial Optimization and Applications.

Springer. 2019, pp. 437–448.

[59] S. Poljak. “A note on stable sets and colorings of graphs”. In: Comment. Math.

Univ. Carolinae 15 (1974), pp. 307–309.

[60] A. Rana, A. Pal, and M. Pal. “An efficient algorithm to solve the distance k-

domination problem on permutation graphs”. In: J. Discrete Math. Sci. Cryptogr.

19.2 (2016), pp. 241–255.

[61] M. Sasaki, L. Zhao, and H. Nagamochi. “Security-aware beacon based network

monitoring”. In: 2008 11th IEEE Singapore International Conference on Commu-

nication Systems. IEEE. 2008, pp. 527–531.

[62] N. Sbihi. “Algorithme de recherche d’un stable de cardinalité maximum dans un
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[68] R. Ziemann and P. Żyliński. “Vertex-edge domination in cubic graphs”. In: Discrete

Mathematics 343.11 (2020), p. 112075.


	Introduction
	Preliminaries
	Basic concepts about graphs
	Problem definitions

	A survey of known algorithmic results on covering and domination problems and their distance variants
	NP-complete and polynomial-time solvable special cases
	Approximation algorithms
	Parameterized complexity

	Bounds
	Graph transformations
	The line graph transformation
	Path growing transformations
	Poljak-type transformations
	Transformations resulting in chordal graphs

	NP-completeness results
	Edge cover at distance
	Edge domination at distance
	Vertex cover at distance
	Domination at distance

	Polynomial algorithms
	Domination at distance in H-free graphs
	Vertex cover at distance in H-free graphs
	Edge domination at distance in H-free graphs
	Edge cover at distance in H-free graphs

	Complexity dichotomies
	Conclusion
	Povzetek v slovenskem jeziku

