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Preface

The International Mathematics Competition (IMC) for university students is an annual
mathematics competition open to all undergraduate students of mathematics. The IMC is
primarily a competition for individuals, although most participating universities select and
send one or more teams of students.

Another prestige international mathematical competition for university students is the
Vojtěch Jarńık International Mathematical Competition. It is a competition with varied
international participation, known as the oldest mathematics competition for university
students in the European Union. The Vojtěch Jarńık competition held each year since 1991
in Ostrava, Czech Republic.

In the last decade the students from University of Primorska took active participation
in both competitions. In the period 2013-2023, at IMC, our students won 1 golden, 5 silver,
8 bronze medals and 13 honorable mentions.

In front of you there is a collection of math competition problems, given on IMC and
Vojtěch Jarńık, which took place between 2013 and 2023. The solutions of the problems
can be found on the links https://www.imc-math.org.uk/ and https://vjimc.osu.cz/.
In cases when a larger number of students are interested to participate on the competitions,
the Faculty of Mathematics, Natural Sciences and Information Technologies organizes Team
Selection Test. The problems posed on TST are also included in this textbook.
This collection of competition problems is completed with original authored problems,
proposed by University of Primorska to the Problem Selection Committees of IMC and
Vojtěch Jarńık.

Slobodan Filipovski ; ; Koper, July, 2024
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1.1 Academic year 2012/2013

ACADEMIC YEAR 2012/2013
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INTERNATIONAL MATHEMATICS COMPETITION 2013

Between August 6 and 12, the twentieth anniversary edition of the International Math-
ematics Competition for University Students 2013 took place in Blagoevgrad, Bulgaria.
The colors of FAMNIT and the University of Primorska were represented by five students:
Ratko Darda, Edin Husić and Anastasiya Tanana took part in the competition from
the first year, and Radovan Krtolica and Bećo Merulić from the second year. Our
students excelled, as Anastasiya Tanana received the second prize, while Edin Husić and
Radovan Krtolica received praise. It should be noted that all students competed in the
same category, so our students were among the youngest.

IMC 2013

Day 1, August 8, 2013

Problem 1. Let A and B be real symmetric matrices with all eigenvalues strictly greater
than 1. Let λ be a real eigenvalue of matrix AB. Prove that |λ| > 1.

Problem 2. Let f : R → R be a twice differentiable function. Suppose f(0) = 0. Prove
that there exists ξ ∈ (−π/2, π/2) such that

f
′′
(ξ) = f(ξ)(1 + 2 tan2 ξ).

Problem 3. There are 2n students in a school (n ∈ N, n ≥ 2). Each week n students go
on a trip. After several trips the following condition was fulfilled: every two students were
together on at least one trip. What is the minimum number of trips needed for this to
happen?

Problem 4. Let n ≥ 3 and let x1, . . . , xn be nonnegative real numbers.
Define A =

∑n
i=1 xi, B =

∑n
i=1 x

2
i and C =

∑n
i=1 x

3
i . Prove that

(n+ 1)A2B + (n− 2)B2 ≥ A4 + (2n− 2)AC.

Problem 5. Does there exist a sequence (an) of complex numbers such that for every
positive integer p we have that

∑∞
n=1 a

p
n converges if and only if p is not a prime?
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IMC 2013

Day 2, August 9, 2013

Problem 6. Let z be a complex number with |z + 1| > 2. Prove that |z3 + 1| > 1.

Problem 7. Let p and q be relatively prime positive integers. Prove that

pq−1∑
k=0

(−1)⌊
k
p
⌋+⌊ k

q
⌋ =

{
0, if pq is even;
1, if pq is odd.

(Here ⌊x⌋ denotes the integer part of x.)

Problem 8. Suppose that v1, . . . , vd are unit vectors in Rd. Prove that there exists a unit
vector u such that

|u · vi| ≤ 1/
√
d

for i = 1, 2, . . . , d.
(Here · denotes the usual scalar product on Rd.)

Problem 9. Does there exist an infinite set M consisting of positive integers such that for
any a, b ∈ M , with a < b, the sum a+ b is square-free?
(A positive integer is called square-free if no perfect square greater than 1 divides it.)

Problem 10. Consider a circular necklace with 2013 beads. Each bead can be painted
either white or green. A painting of the necklace is called good, if among any 21 successive
beads there is at least one green bead. Prove that the number of good paintings of the
necklace is odd.
(Two paintings that differ on some beads, but can be obtained from each other by rotating
or flipping the necklace, are counted as different paintings.)

7



1.2 Academic year 2013/2014

ACADEMIC YEAR 2013/2014
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VOJTĚCH JARNÍK 2014

On April 4, 2014, the Vojtěch Jarńık International Mathematical Competition was held
in Ostrava, Czech Republic.

It is a competition with varied international participation and a long tradition. This year
was the 24th edition. In category I, the colors of FAMNIT and the University of Primorska
were successfully represented by Mathematics students, namely: Marko Palangetić,
Marko Rajković and Roman Solodukhin from the 1st year and Ratko Darda and
Anastasiya Tanana from the 2nd year. The team leader was our PhD student István
Estélyi.

They scored a total of 66 points and thus ranked 2nd according to the total number of
points scored. Ahead of them were only students from the University of Dolgoprudny.

The most successful among our students was Anastasiya Tanana, who collected as much
as half of all points in this extremely demanding competition. At this year’s competition,
86 students from 31 universities from 16 countries competed in the mentioned category.

VOJTĚCH JARNÍK 2014

April 4, 2014

Category I

Problem 1. Find all complex numbers z such that |z3 + 2− 2i|+ zz|z| = 2
√
2.

(z is the conjugate of z.)

Problem 2. We have a desc of 2n cards. Each shuffling changes the order from
a1, a2, . . . , an, b1, b2, . . . , bn to a1, b1, a2, b2, . . . , an, bn. Determine all even numbers 2n such
that after shuffling the desk 8 times the original order is restored.

Problem 3. Let n ≥ 2 be an integer and let x > 0 be a real number. Prove that(
1−

√
tanh(x)

)n
+
√
tanh(nx) < 1.

Recall that tanh t = e2t−1
e2t+1

.

Problem 4. Let P1, P2, P3, P4 be the graphs of four quadratic polynomials drawn in the
coordinate plane. Suppose that P1 is tangent to P2 at the point q2, P2 is tangent to P3 at
the point q3, P3 is tangent to P4 at the point q4, and P4 is tangent to P1 at the point q1.
Assume that all the points q1, q2, q3, q4 have distinct x-coordinates. Prove that q1, q2, q3, q4
lie on a graph of an at most quadratic polynomial.
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VOJTĚCH JARNÍK 2014

April 4, 2014

Category II

Problem 1. Let f : (0,∞) → R be a differentiable function. Assume that

lim
x→∞

(
f(x) +

f
′
(x)

x

)
= 0.

Prove that
lim
x→∞

f(x) = 0.

Problem 2. Let p be a prime number and let A be a subgroup of the multiplicative group
F⋆
p of the finite field Fp with p elements. Prove that if the order of A is a multiple of 6, then

there exist x, y, z ∈ A satisfying x+ y = z.

Problem 3. Let k be a positive even integer. Show that

k/2∑
n=0

(−1)n
(
k + 2

n

)(
2(k − n) + 1

k + 1

)
=

(k + 1)(k + 2)

2
.

Problem 4. Let 0 < a < b and let f : [a, b] → R be a continuous function with
∫ b

a
f(t)dt =

0. Show that ∫ b

a

∫ b

a

f(x)f(y) ln(x+ y)dxdy ≤ 0.
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INTERNATIONAL MATHEMATICS COMPETITION 2014

Between July 29 and August 4, 2014, the 21st edition of the International Mathematics
Competition for University Students 2014 took place in Blagoevgrad, Bulgaria. The colors
of FAMNIT and the University of Primorska were represented by three undergraduate
students. Marko Rajković and Marko Palangetić took part in the competition from
the first year, and Anastasiya Tanana from the second year. A leader of our team was
István Estélyi.

All three students return with a prize: Anastasiya Tanana won the first prize, and
Marko Rajković and Marko Palangetić won the third prize.

IMC 2014

Day 1, July 31, 2014

Problem 1. Determine all pairs (a, b) of real numbers for which there exists a unique
symmetric 2× 2 matrix M with real entries satisfying trace(M) = a and det(M) = b.

Problem 2. Consider the following sequence

(an)
∞
n=1 = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, . . .).

Find all pairs (α, β) of positive real numbers such that limn→∞

∑n
k=1 αk

nα = β.

Problem 3. Let n be a positive integer. Show that there are positive real numbers
a0, a1, . . . , an such that for each choice of signs the polynomial

±anx
n ± an−1x

n−1 ± . . .± a1x+ a0

has n distinct real roots.

Problem 4. Let n > 6 be a perfect number, and let n = pe11 · · · pekk be its prime factorization
with 1 < p1 < . . . < pk. Prove that e1 is an even number.
A number n is perfect if s(n) = 2n, where s(n) is the sum of the divisors of n.

Problem 5. Let A1A2 . . . A3n be a closed broken line consisting of 3n line segments in the
Euclidean plane. Suppose that no three of its vertices are collinear, and for each index i =
1, 2, . . . , 3n, the triangle AiAi+1Ai+2 has counterclockwise orientation and ∠AiAi+1Ai+2 =
60◦, using the notation A3n+1 = A1 and A3n+2 = A2. Prove that the number of self-
intersections of the broken line is at most 3

2
n2 − 2n+ 1.
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IMC 2014

Day 2, August 1, 2014

Problem 6. For a positive integer x, denote its nth decimal digit by dn(x), i.e. dn(x) ∈
{0, 1, . . . , 9} and x =

∑∞
n=1 dn(x)10

n−1. Suppose that for some sequence (an)
∞
n=1 there are

only finitely many zeros in the sequence (dn(an))
∞
n=1. Prove that there are infinitely many

positive integers that do not occur in the sequence (an)
∞
n=1.

Problem 7. Let A = (aij)
n
i,j=1 be a symmetric n × n matrix with real entries, and let

λ1, λ2, . . . , λn denote its eigenvalues. Show that∑
1≤i<j≤n

aiiajj ≥
∑

1≤i<j≤n

λiλj,

and determine all matrices for which equality holds.

Problem 8. Let f(x) = sin(x)
x

, for x > 0, and let n be a positive integer. Prove that
|f (n)(x)| < 1

n+1
, where f (n) denotes the nth derivative of f .

Problem 9. We say that a subset of Rn is k-almost contained by a hyperplane if there are
less than k points in that set which do not belong to the hyperplane. We call a finite set of
points k-generic if there is no hyperplane that k-almost contains the set. For each pair of
positive integers k and n, find the minimal number d(k, n) such that every finite k-generic
set in Rn contains a k-generic subset with at most d(k, n) elements.

Problem 10. For every positive integer n, denote by Dn the number of permutations
(x1, . . . , xn) of (1, 2, . . . , n) such that xj ̸= j for every 1 ≤ j ≤ n. For 1 ≤ k ≤ n

2
, denote

by ∆(n, k) the number of permutations (x1, . . . , xn) of (1, 2, . . . , n) such that xi = k+ i for
every 1 ≤ i ≤ k and xj ̸= j for every 1 ≤ j ≤ n. Prove that

∆(n, k) =
k−1∑
i=0

(
k − 1

i

)
D(n+1)−(k+i)

n− (k + i)
.

12



1.3 Academic year 2014/2015

ACADEMIC YEAR 2014/2015
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VOJTĚCH JARNÍK 2015

On March 27, 2015, the Vojtěch Jarńık International Mathematical Competition was
held in Ostrava, Czech Republic.

It is a competition with varied international participation and a long tradition. This year
was the 25th edition. In category I, the colors of FAMNIT and the University of Primorska
were successfully represented by Mathematics students, namely: Anes Valentić from the
1st year and Marko Palangetić, Marko Rajković and Roman Solodukhin from the
2nd year. A leader of the team was István Estélyi.

They scored a total of 70 points and thus ranked in 7th place. The most successful
among our students were Marko Palangetić and Roman Solodukhin, who scored 24 points
each in this extremely demanding competition. At this year’s competition, 74 students
from 31 universities competed in the mentioned category. Students from the University of
Maribor also performed from Slovenia.

In the picture, from left to right: Marko Rajković, István Estélyi, Roman Solodukhin, Marko
Palangetić and Anes Valentić.
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VOJTĚCH JARNÍK 2015

March 27, 2015

Category I

Problem 1. Let f : R → R be differentiable on R. Prove that there exists x ∈ [0, 1] such
that

4

π
(f(1)− f(0)) = (1 + x2)f

′
(x).

Problem 2. Consider the infinite chessboard whose rows and columns are indexed by
positive integers. Is it possible to put a single positive rational number into each cell of
the chessboard so that each positive rational number appears exactly once and the sum of
every row and of every column is finite?

Problem 3. Let P (x) = x2015 − 2x2014 + 1 and Q(x) = x2015 − 2x2014 − 1. Determine
for each of the polynomials P and Q whether it is a divisor of some nonzero polynomial
c0 + c1x+ . . .+ cnx

n whose coefficients ci are all in the set {1,−1}.

Problem 4. Let m be a positive integer and let p be a prime divisor of m. Suppose that
the complex polynomial a0 + a1x+ . . .+ anx

n with n < p
p−1

ϕ(m) and an ̸= 0 is divisible by

the cyclotomic polynomial Φm(x). Prove that there are at least p nonzero coefficients ai.
The cyclotomic polynomial Φm(x) is the monic polynomial whose roots are the m-th

primitive complex roots of unity. Euler’s totient function ϕ(m) denotes the number of
positive integers less than or equal to m which are coprime to m.

15



VOJTĚCH JARNÍK 2015

March 27, 2015

Category II

Problem 1. Let A and B be two 3× 3 matrices with real entries. Prove that

A− (A−1 + (B−1 − A)−1)−1 = ABA,

provided all the inverses appearing on the left-hand side of the equality exist.

Problem 2. Determine all pairs (n,m) of positive integers satisfying the equation

5n = 6m2 + 1.

Problem 3. Determine the set of real values of x for which the following series converges,
and find its sum:

∞∑
n=1

 ∑
k1,...,kn≥0

1·k1+2·k2+···+n·kn=n

(k1 + . . .+ kn)!

k1! · . . . · kn!
xk1+...+kn

 .

Problem 4. Find all continuously differentiable functions f : R → R, such that for every
a ≥ 0 the following relation holds:∫∫∫

D(a)

xf

(
ay√

x2 + y2

)
dxdydz =

πa3

8
(f(a) + sin a− 1),

where D(a) = {(x, y, z) : x2 + y2 + z2 ≤ a2, |y| ≤ x√
3
}.
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INTERNATIONAL MATHEMATICS COMPETITION 2015

Between July 27 and August 2, 2015, the 22nd International Mathematics Competition for
University Students 2015 took place in Blagoevgrad, Bulgaria . The colors of FAMNIT and
the University of Primorska were represented by four second-year undergraduate students
Marko Palangetić, Ivan Bartulović, Roman Solodukhin andVladan Jovičić. Team
leader was Slobodan Filipovski.

Marko Palangetić received the second prize, Ivan Bartulović the third prize, and Roman
Solodokhin and Vladan Jovičić were commended.

In the picture, from left to right: Roman Solodukhin, Ivan Bartulović, Slobodan Filipovski
(team leader), Vladan Jovičić and Marko Palangetić.
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IMC 2015

Day 1, July 29, 2015

Problem 1. For any integer n ≥ 2 and two n × n matrices with real entries A,B that
satisfy the equation

A−1 +B−1 = (A+B)−1

prove that det(A) = det(B).
Does the same conclusion follow for matrices with complex entries?

Problem 2. For a positive integer n, let f(n) be the number obtained by writing n in
binary and replacing every 0 with 1 and vice versa. For example, n = 23 is 10111 in binary,
so f(n) is 1000 in binary, therefore f(23) = 8. Prove that

n∑
k=1

f(k) ≤ n2

4
.

When does equality hold?

Problem 3. Let F (0) = 0, F (1) = 3
2
, and F (n) = 5

2
F (n − 1) − F (n − 2) for n ≥ 2.

Determine whether or not
∑∞

n=0
1

F (2n)
is a rational number.

Problem 4. Determine whether or not there exist 15 integers m1, . . . ,m15 such that

15∑
k=1

mk · arctan(k) = arctan(16).

Problem 5. Let n ≥ 2, let A1, A2, . . . , An+1 be n+1 points in the n-dimensional Euclidean
space, not lying on the same hyperplane, and let B be a point strictly inside the convex
hull of A1, A2, . . . , An+1. Prove that ∠AiBAj > 90◦ holds for at least n pairs (i, j) with
1 ≤ i < j ≤ n+ 1.

18



IMC 2015

Day 2, July 30, 2015

Problem 6. Prove that
∞∑
n=1

1√
n(n+ 1)

< 2.

Problem 7. Compute

lim
A→+∞

1

A

∫ A

1

A
1
xdx.

Problem 8. Consider all 2626 words of length 26 in the Latin alphabet. Define the weight
of a word as 1/(k + 1), where k is the number of letters not used in this word. Prove that
the sum of the weights of all words is 375.

Problem 9. An n× n complex matrix A is called t-normal if AAt = AtA where At is the
transpose of A. For each n, determine the maximum dimension of a linear space of complex
n× n matrices consisting of t-normal matrices.

Problem 10. Let n be a positive integer, and let p(x) be a polynomial of degree n with
integer coefficients. Prove that

max
0≤x≤1

|p(x)| > 1

en
.
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1.4 Academic year 2015/2016

ACADEMIC YEAR 2015/2016
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VOJTĚCH JARNÍK 2016

On April 4, the 26th Vojtěch Jarńık International Mathematical Competition took place
in Ostrava, Czech Republic - the oldest mathematics competition for students in the Eu-
ropean Union.

This year’s performance was attended by 154 students from 35 universities. In the
first category (for 1st and 2nd year students or under 22 years old), Famnit’s colors were
represented by Anes Valentić and Marija Tepegjozova (2nd year MA), while in the
second category Marko Palangetić and Roman Solodukhin (3rd year MA ).

Marko Palangetić received a certificate of successful participant for his 13 points (the
winner in this category collected 29 points out of a possible 40). At the same time, we
point out that the task of Famit’s doctoral student and assistant Slobodan Filipovski,
who was a delegate of Famnit’s team in the Czech Republic, was also included among the
competing tasks for the second category (problem 1).

In the picture, from left to right: Anes Valentić, Marija Tepegjozova, Slobodan Filipovski
(team leader), Marko Palangetić and Roman Solodukhin.
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VOJTĚCH JARNÍK 2016

April 8, 2016

Category I

Problem 1. Let f : R → (0,∞) be a continuously differentiable function. Prove that
there exists ξ ∈ (0, 1) such that

ef
′
(ξ)f(0)f(ξ) = f(1)f(ξ).

Problem 2. Find all positive integers n such that ϕ(n) divides n2 + 3.
(ϕ(n) denotes Euler’s totient function, i.e. the number of positive integers k ≤ n coprime
to n.)

Problem 3. Let d ≥ 3 and let A1 . . . Ad+1 be a simplex in Rd. (A simplex is the con-
vex hull of d + 1 points not lying in a common hyperline.) For every i = 1, . . . , d + 1 let
Oi be the circumcentre of the face A1 . . . Ai−1Ai+1 . . . Ad+1, i.e. Oi lies in the hyperplane
A1 . . . Ai−1Ai+1 . . . Ad+1 and it has the same distance from all pointsA1, . . . , Ai−1, Ai+1, . . . , Ad+1.
For each i draw a line through Ai perpendicular to the hyperplane O1 . . . Oi−1Oi+1 . . . Od+1.
Prove that either these lines are parallel or they have a common point.

Problem 4. Find the value of the sum
∑∞

n=1An, where

An =
∞∑

k1=1

. . .
∞∑

kn=1

1

k2
1

1

k2
1 + k2

2

· · · 1

k2
1 + · · ·+ k2

n

.
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VOJTĚCH JARNÍK 2016

April 8, 2016

Category II

Problem 1. Let a, b and c be positive real numbers such that a+ b+ c = 1. Show that(
1

a
+

1

bc

)(
1

b
+

1

ca

)(
1

c
+

1

ab

)
≥ 1728.

Problem 2. Let X be a set and let P(X) be the set of all subsets of X. Let µ : P(X) →
P(X) be a map with the property that µ(A ∪ B) = µ(A) ∪ µ(B) whenever A and B are
disjoint subsets of X. Prove that there exists a set F ⊂ X such that µ(F ) = F.

Problem 3. For n ≥ 3 find the eigenvalues (with their multiplicities) of the n× n matrix

1 0 1 0 0 0 . . . . . . 0 0
0 2 0 1 0 0 . . . . . . 0 0
1 0 2 0 1 0 . . . . . . 0 0
0 1 0 2 0 1 . . . . . . 0 0
0 0 1 0 2 0 . . . . . . 0 0
0 0 0 1 0 2 . . . . . . 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . . . . 2 0
0 0 0 0 0 0 . . . . . . 0 1



Problem 4. Let f : [0,∞) → R be a continuously differentiable function satisfying

f(x) =

∫ x

x−1

f(t)dt

for all x ≥ 1. Show that f has bounded variation on [1,∞), i.e.∫ ∞

1

|f ′
(x)|dx < ∞.
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Proposed problems for Vojtěch Jarńık 2016

by University of Primorska

Problem 1. Let a, b and c be positive real numbers such that a+ b+ c = 1. Show that(
1

a
+

1

bc

)(
1

b
+

1

ca

)(
1

c
+

1

ab

)
≥ 1728.

Solution 1. By using the inequality between arithmetic and geometric means we get:
1

a
+

1

bc
=

1

a
+

1

3bc
+

1

3bc
+

1

3bc
≥ 4

1
4
√
27ab3c3

and
1

27
=

(
a+ b+ c

3

)3

≥ abc. Thus

(
1

a
+

1

bc

)(
1

b
+

1

ca

)(
1

c
+

1

ab

)
≥ 64 · 1

4
√
27ab3c3

1
4
√
27a3bc3

1
4
√
27a3b3c

=
64

4
√
39(abc)7

≥ 64
4
√

39(3−3)7
= 64

4
√
312 = 64 · 27 = 1728.

Solution 2. If we replace 1 with a+ b+ c and k =
1

a
+

1

b
+

1

c
we get(

1

a
+

a+ b+ c

bc

)(
1

b
+

a+ b+ c

ca

)(
1

c
+

a+ b+ c

ab

)
=

(
1

a
+

1

b
+

1

c
+

a

bc

)
·

·
(
1

a
+

1

b
+

1

c
+

b

ca

)(
1

a
+

1

b
+

1

c
+

c

ab

)
=
(
k +

a

bc

)(
k +

b

ca

)(
k +

c

ab

)
=

k3 + k2

(
c

ab
+

b

ca
+

a

bc

)
+ k

(
1

a2
+

1

b2
+

1

c2

)
+

1

abc
.

From the inequality between arithmetic and harmonic means for the positive numbers a, b
and c follows that

1

3
=

a+ b+ c

3
≥ 3

1

a
+

1

b
+

1

c

=
3

k
⇔ k ≥ 9.

From Solution 1 we already know that
1

abc
≥ 27. In the end we have

L.H.S ≥ 93 + 92 · 3
3
√
abc

+
27

3
√

(abc)2
+

1

abc
≥ 93 + 93 + 27 · 9 + 27 = 1728.
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TEAM SELECTION TEST FOR THE IMC 2016

June 2016

FAMNIT

Problem 1. Let f : R → R be a function continuous on [0, 1] and differentiable on (0, 1).
Let also f(0) = 0 and f(1) = 0. Prove that there exists a point c in (0, 1) such that
f

′
(c) = f(c).

Problem 2. Show that if A and B are real n× n matrices that commute, i.e., AB = BA,
then

det(A2 +B2) ≥ 0.

Problem 3. Find the value of the following summation

n∑
j=0

(
2n

2j

)
(−3)j.

Problem 4. Let A1, . . . , An be n points on a given ellipsoid 𭟋 = {x ∈ Rn :
∑n

i=1
x2
i

a2i
=

1}, such that the vectors OAi are pairwise perpendicular. Show that the distance of the
hyperplane A1A2 . . . An from the origin O is independent of the choice of points.
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INTERNATIONAL MATHEMATICS COMPETITION 2016

The 23rd International Mathematics Competition IMC (International Mathematics Compe-
tition for University Students 2016), which takes place every year in Blagoevgrad, Bulgaria,
took place between July 25 and 31. The colors of FAMNIT and the University of Primorska
were represented by three of our undergraduate students: Marko Palangetić, Roman
Solodukhin and Mirza Krbezlija. A team leader was Slobodan Filipovski.

Marko Palangetić won the second prize, and Roman Solodukhin the third.

In the picture, from left to right: Roman Solodukhin, Slobodan Filipovski (team leader),
Marko Palangetić and Mirza Krbezlija.
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IMC 2016

Day 1, July 27, 2016

Problem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Suppose
that f has infinitely many zeros, but there is no x ∈ (a, b) with f(x) = f

′
(x) = 0.

(a) Prove that f(a)f(b) = 0.

(b) Give an example of such a function on [0, 1].

Problem 2. Let k and n be positive integers. A sequence (A1, . . . , Ak) of n × n real
matrices is preferred by Ivan the Confessor if A2

i ̸= 0 for 1 ≤ i ≤ k, but AiAj = 0 for
1 ≤ i, j ≤ k with i ̸= j. Show that k ≤ n in all preferred sequences, and give an example of
a preferred sequence with k = n for each n.

Problem 3. Let n be a positive integer. Also let a1, a2, . . . , an and b1, b2, . . . , bn be real
numbers such that ai + bi > 0 for i = 1, 2, . . . , n. Prove that

n∑
i=1

aibi − b2i
ai + bi

≤
∑n

i=1 ai ·
∑n

i=1 bi − (
∑n

i=1 bi)
2∑n

i=1(ai + bi)
.

Problem 4. Let n ≥ k be positive integers, and let F be a family of finite sets with the
following properties:

(i) F contains at least
(
n
k

)
+ 1 distinct sets containing exactly k elements;

(ii) for any two sets A,B ∈ F , their union A ∪B also belongs to F .
Prove that F contains at least three sets with at least n elements.

Problem 5. Let Sn denote the set of permutations of the sequence (1, 2, . . . , n). For every
permutation π = (π1, . . . , πn) ∈ Sn, let inv(π) be the number of pairs 1 ≤ i < j ≤ n with
πi > πj; i.e. the number of inversions in π. Denote by f(n) the number of permutations
π ∈ Sn for which inv(π) is divisible by n+ 1.

Prove that there exist infinitely many primes p such that f(p − 1) > (p−1)!
p

, and infinitely

many primes p such that f(p− 1) < (p−1)!
p

.
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IMC 2016

Day 2, July 28, 2016

Problem 6. Let (x1, x2, . . .) be a sequence of positive real numbers satisfying∑∞
n=1

xn

2n−1
= 1. Prove that

∞∑
k=1

k∑
n=1

xn

k2
≤ 2.

Problem 7. Today, Ivan the Confessor prefers continuous functions f : [0, 1] → R satis-

fying f(x) + f(y) ≥ |x − y| for all pairs x, y ∈ [0, 1]. Find the minimum of
∫ 1

0
f over all

preferred functions.

Problem 8. Let n be a positive integer, and denote by Zn the ring of integers modulo n.
Suppose that there exists a function f : Zn → Zn satisfying the following three properties:

(i) f(x) ̸= x,

(ii) f(f(x)) = x,

(iii) f(f(f(x+ 1) + 1) + 1) = x for all x ∈ Zn.

Prove that n ≡ 2 (mod 4).

Problem 9. Let k be a positive integer. For each nonnegative integer n, let f(n) be the
number of solutions (x1, . . . , xk) ∈ Zk of the inequality |x1|+ . . .+ |xk| ≤ n. Prove that for
every n ≥ 1, we have f(n− 1)f(n+ 1) ≤ f(n)2.

Problem 10. Let A be a n× n complex matrix whose eigenvalues have absolute value at
most 1. Prove that

∥An∥ ≤ n

ln 2
∥A∥n−1.

(Here ∥B∥ = sup∥x∥≤1 ∥Bx∥ for every n × n matrix B and ∥x∥ =
√∑n

i=1 |xi|2 for every
complex vector x ∈ Cn.)
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Proposed problems for the IMC 2016

by University of Primorska

Problem 1. Let a, b, c be positive real numbers greater than 1 such that (a− 1)(b− 1)(c−
1) = 1. Prove that

5

√
a+ b

4
+

5

√
b+ c

4
+ 5

√
c+ a

4
≥ 3.

Solution. Let x, y, z be real numbers such that x = 5
√
a− 1, y = 5

√
b− 1 and z = 5

√
c− 1.

From the conditions, it follows that x, y, z are positive real numbers for which xyz = 1. It
suffices to prove the equivalent inequality

5

√
x5 + y5 + 2

4
+

5

√
y5 + z5 + 2

4
+

5

√
z5 + x5 + 2

4
≥ 3.

By using the inequality between power means of order 5 and 1 for the positive numbers x, y, 1

and 1 we get 5

√
x5+y5+2

4
= 5

√
x5+y5+15+15

4
≥ x+y+2

4
. Analogously we get 5

√
y5+z5+2

4
≥ y+z+2

4

and 5

√
z5+x5+2

4
≥ z+x+2

4
. Summing the last three inequalities we obtain

L.H.S ≥ x+ y + z

2
+

3

2
≥

3 3
√
xyz

2
+

3

2
= 3.

Problem 2. Let A and B be 3× 3 matrices over the field of complex numbers. Prove that

∥(AB −BA)3∥2 ≥ |det(AB −BA)|.

Solution. By using Cayley-Hamilton theorem for the matrix AB −BA we have

(AB −BA)3 − a(AB −BA)2 + b(AB −BA)− cI3 = O3 (1)

where a = trace(AB − BA) = 0 and c = det(AB − BA). Computing the trace of the
matrices in both hand sides of (1), we get trace((AB −BA)3) = 3 · det(AB −BA).
Now, from ∥A∥2 ≥ |λmax(A)| we obtain

∥(AB −BA)3∥2 ≥ |λmax((AB −BA)3)| ≥
∣∣∣∣trace((AB −BA)3)

3

∣∣∣∣ = |det(AB −BA)|.
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1.5 Academic year 2016/2017

ACADEMIC YEAR 2016/2017
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TEAM SELECTION TEST FOR VOJTĚCH JARNÍK 2017

March 2017

FAMNIT

Problem 1. Let n, p > 1 be positive integers and p be prime. Given that n | p − 1 and
p | n3 − 1, prove that 4p− 3 is a perfect square.

Solution. Since n | p− 1, let p− 1 = kn for some positive integer k, therefore p = kn+ 1.
This satisfies the first condition of the requirement. We now look at the second condition,
which is p | n3 − 1 = (n − 1)(n2 + n + 1). Note since p = kn + 1, we have p ≥ n − 1, and
because p is a prime, gcd(p, n− 1) = 1:

p | (n− 1)(n2 + n+ 1) ⇒ p = kn+ 1 | n2 + n+ 1.

In order for this to be true, kn+1 ≤ n2+n+1 ⇒ k ≤ n+1. Since n2+n+1 | k(n2+n+1),
we also have

p = kn+ 1 | kn2 + kn+ k

⇒ kn+ 1 | kn2 + kn+ k − n(kn+ 1) = kn+ k − n.

Similarly, to have this divisibility, kn + k − n ≥ kn + 1 ⇒ k ≥ n + 1. However, above we
found that k ≤ n+1, therefore, k = n+1. Substituting this in for p gives p = (n+1)n+1 =
n2 + n+ 1, giving

4p− 3 = 4n2 + 4n+ 4− 3 = 4n2 + 4n+ 1 = (2n+ 1)2.

Problem 2. Let n ≥ 2 be an integer. Let A be an n× n matrix with coefficients in a field
F.
1. Assume that A is a strictly upper triangular matrix, that is, its entries satisfy aij = 0

for all i ≥ j. If I is the identity matrix of size n, show that I − A is an invertible
matrix with

I + A+ A2 + · · ·+ An−1 (2)

as its inverse (I − A)−1.

2. Does there exist a matrix A with zero diagonal such that neither A nor A⊤ is strictly
upper triangular and I −A is invertible with (2) as its inverse? Provide an answer for
all integers n ≥ 2 and all fields F.

Solution. (i) Matrix I − A is invertible with (2) as its inverse if and only if

(I − A)(I + A+ A2 + · · ·+ An−1) = I = (I + A+ A2 + · · ·+ An−1)(I − A),

which holds if and only if
An = 0. (3)
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To prove (3) it suffices to show that for each k ≥ 1,

[Ak]ij = 0 whenever i ≥ j − k + 1. (4)

Here, [Ak]ij denotes the (i, j)-th entry of Ak. We prove (4) by an induction on k.
For k = 1 we have [A1]ij = aij = 0 whenever i ≥ j = j − 1 + 1. Assume now that (4)

holds for some k ≥ 1. Let i ≥ j − (k + 1) + 1 = j − k. Then

[Ak+1]ij =
n∑

t=1

[Ak]itatj

=
n∑

t=i+k

[Ak]itatj = 0,

which end the induction step. Here, we applied facts that [Ak]it = 0 for t ≤ i + k − 1 (i.e.
i ≥ t− k + 1) and atj = 0 for t ≥ i+ k ≥ j − k + k = j.

(ii) Let Eij be the matrix with 1 as the (i, j)-th entry. If n ≥ 3, then A = E12+E32 has
zero diagonal, and both A, A⊤ are not strictly upper triangular, while 0 = A2 = An, so (2)
is the inverse (I − A)−1. If n = 2, then any such A is of the form(

0 a
b 0

)
for some nonzero a, b ∈ F. Consequently, A is invertible and the same hold for An. In
particular, An ̸= 0 for all n, so I − A cannot have the inverse given by (2).

Problem 3. Let a, b, c be non-negative real numbers. Prove that

a√
4b2 + bc+ 4c2

+
b√

4c2 + ca+ 4a2
+

c√
4a2 + ab+ 4b2

≥ 1.

Solution. We may assume that a + b + c = 1. Since f(x) = 1√
x
is a convex function,

according to Jansen inequality, we obtain

a · f(4b2 + bc+ 4c2) + b · f(4c2 + ca+ 4a2) + c · f(4a2 + ab+ 4b2) ≥ f(K),

where

K = a(4b2 + bc+ 4c2) + b(4c2 + ca+ 4a2) + c(4a2 + ab+ 4b2) = 4
∑
cyc

ab(a+ b) + 3abc.

Now, it is enough to prove that f(K) ≥ 1 or K ≤ 1. It is certainly true because

1−K =

(∑
cyc

a

)3

− 4
∑
cyc

ab(a+ b)− 3abc =
∑
cyc

a3 −
∑
cyc

ab(a+ b) + 3abc =

=
∏
cyc

abc−
∏
cyc

(a+ b− c) ≥ 0.
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Equality holds for a = b = c and a = 0, b = c up to permutation.

Problem 4. Let a < b be real numbers. Suppose that a real function f is smooth on
some open neighborhood of the interval [a, b]. That is, there exists a1, b1 ∈ R such that
[a, b] ⊆ (a1, b1) and the derivative f (n) of arbitrary order n exists on (a1, b1). If there exists
r ∈ R such that the set

{x ∈ [a, b] : f(x) = r}

is infinite, show that for every integer n ≥ 1 there exists y ∈ (a, b) such that f (n)(y) = 0.
Is function f necessarily constant on some nonempty subinterval (a2, b2) ⊆ [a, b]? Ex-

plain your answer in details.
Solution. Let g(x) := f(x)− r. Then f and g have the same derivatives, and

S := {x ∈ [a, b] : g(x) = 0}

is an infinite set. Choose a sequence (xk)k in S such that a ≤ x1 < x2 < · · · ≤ b. By Rolle’s
Theorem there exist a sequence (yk)k in (a, b) such that xk < yk < xk+1 and g′(yk) = 0
for all k. We may now repeat the process for functions g′, g′′, . . . instead of g. By an
induction we show that for every n ≥ 1 there exists a sequence (zk)k in (a, b) such that
f (n)(zk) = g(n)(zk) = 0 for all k, so we have an infinite number of candidates for y.

The function f is not necessarily constant on any subinterval. For example, let a′ = −2,
b′ = 2, a = −1, b = 1, r = 0 and let f : (−2, 2) → R be defined by f(x) = e−1/x sin(1/x)
for x ̸= 0 and f(0) = 0. Then f(1/(kπ)) = 0 for all k ∈ {1, 2, . . .}, so the set {x ∈
[a, b] : f(x) = r} is infinite. Clearly, f is nonconstant on any nonempty open subinterval
(a2, b2) ⊆ [−1, 1]. It now suffices to show that f is smooth on (−2, 2). Clearly, it is smooth
on (−2, 2)\{0}. By an induction we see that any derivative f (n) on (−2, 2)\{0} is of the
form ∑

i∈I

cos(1/x)

e1/xpi(x)
+

sin(1/x)

e1/xqi(x)
,

where the set I is finite and pi(x), qi(x) are some polynomials of the form axt for some
a ∈ R and integer t ≥ 0. Consequently, we can use the induction, with the induction step
given by

lim
x→0

f (n−1)(x)− f (n−1)(0)

x− 0
= 0,

to see that f (n)(0) exists and equals 0 for all n. Hence, f is smooth on whole (−2, 2).
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VOJTĚCH JARNÍK 2017

On Friday, March 31, the 27th Vojtěch Jarńık International Mathematical Competition
took place in Ostrava, Czech Republic - the oldest mathematics competition for students
in the European Union, in which UP FAMNIT students traditionally participate.

132 students from 36 universities applied for this year’s event. In the first category
(for 1st and 2nd year students, respectively under the age of 22), Famnit’s colors were
represented by Arbër Avdullahu and Daniil Baldouski (both 1st year Mathematics),
while in the second category Roman Solodukhin and Anes Valentić (graduate and
3. year of Mathematics). Avdullahu, Baldouski and Solodukhin received a certificate of
successful participant, and Solodukhin with 20 points achieved the best ranking of Famnit
students in the second category so far. Alejandra Ramos-Rivera was the leader of the
FAMNIT’s team.

In the picture, from left to right: Roman Solodukhin, Arbër Avdullahu, Alejandra Ramos-
Rivera (team leader), Daniil Baldouski and Anes Valentić.
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VOJTĚCH JARNÍK 2017

March 31, 2017

Category I

Problem 1. Let f : R → R be a continuous function satisfying

f(x+ 2y) = 2f(x)f(y)

for every x, y ∈ R. Prove that f is constant.

Problem 2. We say that we extend a finite sequence of positive integers (a1, . . . , an) if we
replace it by

(1, 2, . . . , a1 − 1, a1, 1, 2, . . . , a2 − 1, a2, 1, 2, . . . , a3 − 1, a3, . . . , 1, 2, . . . , an − 1, an),

i.e., each element k of the original sequence is replaced by 1, 2, ..., k − 1, k. Géza takes the
sequence (1, 2, . . . , 9) and he extends it 2017 times. Then he chooses randomly one element
of the resulting sequence. What is the probability that the chosen element is 1?

Problem 3. Let P be a convex polyhedron. Jaroslav writes a non-negative real number to
every vertex of P in such a way that the sum of these numbers is 1. Afterwards, to every
edge he writes the product of the numbers at the two endpoints of that edge. Prove that
the sum of the numbers at the edges is at most 3

8
.

Problem 4. Let f : (1,∞) → R be a continuously differentiable function satisfying
f(x) ≤ x2 log(x) and f

′
(x) > 0 for every x ∈ (1,∞). Prove that∫ ∞

1

1

f ′(x)
dx = ∞.
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VOJTĚCH JARNÍK 2017

March 31, 2017

Category II

Problem 1. Let (an)
∞
n=1 be a sequence with an ∈ {0, 1} for every n. Let F : (−1, 1) → R

be defined by

F (x) =
∞∑
n=1

anx
n

and assume that F
(
1
2

)
is rational. Show that F is the quotient of two polynomials with

integer coefficients.

Problem 2. Prove or disprove the following statement. If g : (0, 1) → (0, 1) is an increasing
function and satisfies g(x) > x for all x ∈ (0, 1), then there exists a continuous function
f : (0, 1) → R satisfying f(x) < f(g(x)) for all x ∈ (0, 1), but f is not an increasing
function.

Problem 3. Let n ≥ 2 be an integer. Consider the system of equations

x1 +
2

x2

= x2 +
2

x3

= . . . = xn +
2

x1

.

1. Prove that (1) has infinitely many real solutions (x1, . . . , xn) such that the numbers
x1, . . . , xn are distinct.

2. Prove that every solution (x1, . . . , xn) of (1), such that the numbers x1, . . . , xn are not
all equal, satisfies |x1x2 · · ·xn| = 2n/2.

Problem 4. A positive integer is called a Jane’s integer if t = x3 + y2 for some positive
integers x and y. Prove that for every integer n ≥ 2 there exist infinitely many positive
integers m such that the set of n2 consecutive integers {m+1,m+2, . . . ,m+n2} contains
exactly n+ 1 Jane’s integers.
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Proposed problems for Vojtěch Jarńık 2017

by University of Primorska

Problem 1. Let p and q be odd prime numbers such that p2 > 2q and q | p2 + 1. Prove
that at least one of the numbers 4p2 − 4q and 8p2 − 16q is a sum of three or fewer squares.

Solution. Note that 4p2 − 4q and 8p2 − 16q are positive integers. Since the odd prime
divisors of x2 + 1 are of the form 4k + 1, we have q ≡ 1(mod 4). Moreover, since p is an
odd number holds p2 ≡ 1(mod 4). Let us suppose that 4p2 − 4q is not a sum of three or
fewer squares. Using Legendre’s theorem on sums of three squares we have that 4p2 − 4q is
of form 4a(8b + 7), for some non-negative integers a and b. Since 4p2 − 4q is not a sum of
three or fewer squares, it follows that p2 − q is not a sum of three or fewer squares. Thus
p2 − q = 4α(8β + 7), for some non-negative integers α and β. Since 4 | p2 − q we have
that α ≥ 1. Now, if we suppose that 8p2 − 16q is not a sum of three or fewer squares,
then there exist non-negative integers α1 and β1 such that 8p2 − 16q = 4α1(8β1 + 7). From
p2 − q = 4α(8β + 7) we obtain

4α1(8β1 + 7) = 8(p2 − q)− 8q = 8(4α(8β + 7)− q).

Since α ≥ 1, it follows that 4α(8β + 7)− q is odd, which implies that α1 = 1. Considering
the last equation modulo 4 we have 2q ≡ 1(mod 4), which is not possible because q ≡ 1
(mod 4).
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INTERNATIONAL MATHEMATICS COMPETITION 2017

The 24th International mathematical competition for University Students – IMC 2017,
which takes place every year in Blagoevgrad in Bulgaria, was held between 31 July and 6
August.

FAMNIT and the University of Primorska were represented by three of our first year
Mathematics students: Filip Božić, Daniil Baldouski and Arbër Avdulahu, who re-
ceived a honourable mention. Their team leader was Slobodan Filipovski.

In the picture, from left to right: Filip Božić, Daniil Baldouski and Arbër Avdulahu.
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IMC 2017

Day 1, August 2, 2017

Problem 1. Determine all complex numbers λ for which there exist a positive integer n
and a real n× n matrix A such that A2 = AT and λ is an eigenvalue of A.

Problem 2. Let f : R → (0,∞) be a differentiable function, and suppose that there exists
a constant L > 0 such that

|f ′
(x)− f

′
(y)| ≤ L|x− y|

for all x, y. Prove that
(f

′
(x))2 < 2Lf(x)

holds for all x.

Problem 3. For any positive integer m, denote by P (m) the product of positive divisors
of m (e.g. P (6) = 36). For every positive integer n define the sequence

a1(n) = n, ak+1(n) = P (ak(n)) (k = 1, 2, . . . , 2016).

Determine whether for every set S ⊆ {1, 2, . . . , 2017}, there exists a positive integer n such
that the following condition is satisfied:

For every k with 1 ≤ k ≤ 2017, the number ak(n) is a perfect square if and only if k ∈ S.

Problem 4. There are n people in a city, and each of them has exactly 1000 friends
(friendship is always symmetric). Prove that it is possible to select a group S of people
such that at least n/2017 persons in S have exactly two friends in S.

Problem 5. Let k and n be positive integers with n ≥ k2 − 3k + 4, and let

f(z) = zn−1 + cn−2z
n−2 + . . .+ c0

be a polynomial with complex coefficients such that

c0cn−2 = c1cn−3 = . . . = cn−2c0 = 0.

Prove that f(z) and zn − 1 have at most n− k common roots.
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IMC 2017

Day 2, August 3, 2017

Problem 6. Let f : [0; +∞) → R be a continuous function such that limx→+∞ f(x) = L
exists (it may be finite or infinite). Prove that

lim
n→∞

∫ 1

0

f(nx)dx = L.

Problem 7. Let p(x) be a nonconstant polynomial with real coefficients. For every positive
integer n, let

qn(x) = (x+ 1)np(x) + xnp(x+ 1).

Prove that there are only finitely many numbers n such that all roots of qn(x) are real.

Problem 8. Define the sequence A1, A2, . . . of matrices by the following recurrence:

A1 =

(
0 1
1 0

)
, An+1 =

(
An I2n
I2n An

)
(n = 1, 2, . . .)

where Im is the m×m identity matrix.
Prove that An has n+ 1 distinct integer eigenvalues λ0 < λ1 < . . . < λn with multiplicities(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, respectively.

Problem 9. Define the sequence f1, f2, . . . : [0, 1) → R of continuously differentiable
functions by the following recurrence:

f1 = 1; f
′

n+1 = fnfn+1 on (0, 1), and fn+1(0) = 1.

Show that limn→∞ fn(x) exists for every x ∈ [0, 1) and determine the limit function.

Problem 10. Let K be an equilateral triangle in the plane. Prove that for every p > 0
there exists an ϵ > 0 with the following property: If n is a positive integer, and T1, . . . , Tn

are non-overlapping triangles inside K such that each of them is homothetic to K with a
negative ratio, and

n∑
l=1

area(Tl) > area(K)− ϵ,

then
n∑

l=1

perimeter(Tl) > p.
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Proposed problems for the IMC 2017

by University of Primorska

Problem 1. Let A be a symmetric matrix of size n and let k(≥ 3) be an odd number.
The set of the eigenvalues of A consists of ±k (with multiplicity 1) and the roots of the
polynomial Hm(x)− 2, (3 ≤ m ≤ n− 2). Prove that m | n− 2.

(HereHm(x) is the Dickson polynomial defined as follows: H0(x) = 1, H1(x) = x,Hi+2(x) =
xHi+1(x)− (k − 1)Hi(x), with i ≥ 0.)

Solution. We will use the following lemma.

Lemma 1. Let A be a rational symmetric matrix, q(x) ∈ Q[x] be its characteristic poly-
nomial and p(x) ∈ Q[x] an irreducible polynomial with p(x) | q(x). If λ, µ ∈ R are roots
of p(x), then the multiplicities mA(λ) and mA(µ) of λ and µ as eigenvalues of A fulfill
mA(λ) = mA(µ).

According to the above lemma, it is enough to prove that the polynomial Hm(x)− 2 is
irreducible. Then, mA(λ) = mA, for every root λ of Hm(x)−2. It will leads to 2+mmA = n,
that is, m | n− 2.

We prove, using induction on m ≥ 3, that Hm(x) = xm+(k−1)Pm−2(x), where Pm−2(x)
is an integer polynomial of degree m − 2. We calculate H3(x) = x3 − 2(k − 1)x. Let us
suppose that the above formula holds for Hm−1(x) and Hm−2(x). That yields

Hm(x) = x(xm−1+(k−1)Pm−3(x))−(k−1)(xm−2+(k−1)Pm−4(x)) = xm+(k−1)Pm−2(x).

Therefore, Hm(x) − 2 = xm + (k − 1)Pm−2(x) − 2. By the induction hypothesis, it follows
that Hm(0) = (−1)

m
2 (k − 1)

m
2 for an even m, and Hm(0) = 0 for an odd m. Hence, for an

even m(≥ 4) |(−1)
m
2 (k − 1)

m
2 − 2| is not divisible by 22, and clearly for an odd m(≥ 3),

−2 is not divisible by 22. Since k− 1 is even, it follows that every coefficient on Hm(x)− 2
except for the coefficient 1 of xm is divisible by 2. Thus, the conditions of the Eisenstein’s
criterion are satisfied, and Hm(x)− 2 is irreducible.
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1.6 Academic year 2017/2018

ACADEMIC YEAR 2017/2018
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TEAM SELECTION TEST FOR VOJTĚCH JARNÍK 2018

March 2018,

FAMNIT

Problem 1. The definite integrals between 0 and 1 of the squares of the continuous real
functions f(x) and g(x) are both equal to 1. Prove that there is a real number c such that

f(c) + g(c) ≤ 2.

Problem 2. Find all functions f : (0,∞) → (0,∞) such that

f(f(f(x))) + 4f(f(x)) + f(x) = 6x.

Problem 3. Prove that given two matrices A ∈ Mm(R) and B ∈ Mn(R) have a common
eigenvalue if and only if there exists a non-zero matrix C ∈ Mm×n(R) such that AC = CB.

Problem 4. In R2018, a ball B0 centered at P0(1, 1, . . . , 1) touches all the axis (of R2018).
For how many points P from R2018 does there exist a ball centered at P which touches all
the axis, and moreover touches the ball B0?
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VOJTĚCH JARNÍK 2018

Also in 2018, our math students participated at the oldest mathematics competition for
students within EU: the 28th Vojtěch Jarńık International Mathematical Competition,
which was held in Ostrava (Czech Republic) on Friday, April 13th. At this year’s event,
150 students from 33 European universities competed. In the first category (for 1st and
2nd year students or under 22 years of age), Famnit was represented by Dorde Mitrović
(1st year of Mathematics), Arbër Avdullahu and Daniil Baldouski (both 2nd year of
Mathematics), in the second category our Faculty was represented by Mirza Krbezlija
(3rd year of Mathematics). Slobodan Filipovski was a team leader.

Mitrović, Avdullah, and Baldouski received the certificate of a successful participant.

In this picture, from left to right: Mirza Krbezlija, Dorde Mitrović, Arbër Avdullahu
and Daniil Baldouski.
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VOJTĚCH JARNÍK 2018

April 13, 2018

Category I

Problem 1. Every point of the rectangle R = [0, 4]× [0, 40] is coloured using one of four
colours. Show that there exist four points in R with the same colour that form a rectangle
having integer side lengths.

Problem 2. Find all prime numbers p such that p3 divides the determinant∣∣∣∣∣∣∣∣∣
22 1 1 . . . 1
1 32 1 . . . 1
...

...
. . .

1 1 1 (p+ 7)2

∣∣∣∣∣∣∣∣∣
Problem 3. Let n be a positive integer and let x1, . . . , xn be positive real numbers satisfying
|xi − xj| ≤ 1 for all pairs (i, j) with 1 ≤ i ≤ j ≤ n. Prove that

x1

x2

+
x2

x3

+ . . .+
xn−1

xn

+
xn

x1

≥ x2 + 1

x1 + 1
+

x3 + 1

x2 + 1
+ . . .+

xn + 1

xn−1 + 1
+

x1 + 1

xn + 1
.

Problem 4. Determine all possible (finite or infinite) values of

lim
x→−∞

f(x)− lim
x→+∞

f(x),

if f : R → R is a strictly decreasing continuous function satisfying

f(f(x))4 − f(f(x)) + f(x) = 1

for all x ∈ R.
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VOJTĚCH JARNÍK 2018

April 13, 2018

Category II

Problem 1. Find all real solutions of the equation

17x + 2x = 11x + 23x.

Problem 2. Let n be positive integer and let a1 ≤ a2 ≤ . . . ≤ an be real numbers such
that

a1 + 2a2 + · · ·+ nan = 0.

Prove that
a1[x] + a2[2x] + · · ·+ an[nx] ≥ 0

for every real number x. (Here [t] denotes the integer satisfying [t] ≤ t < [t] + 1.)

Problem 3. In R3 some n points are coloured. In every step, if four coloured points lie
on the same line, Vojtěch can colour any other point on this line. He observes that he can
colour any point P ∈ R3 in a finite number of steps (possibly depending on P ). Find the
minimal value of n for which this could happen.

Problem 4. Compute the integral∫∫
R2

(
1− e−xy

xy

)2

e−x2−y2dxdy.
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Proposed problems for Vojtech Jarnik 2018

by University of Primorska

Problem 1. Let k ≥ 3 and δ ≥ 1 be positive integers. Prove that the roots of the
polynomial p(x) = xk + xk−1 + . . . + x + 1 − δ are simple. Moreover, if δ > k + 1, prove
that there exists at least one complex root with negative real part.

Solution. In the proof we use Descartes’ rule of signs: the number of positive roots of a
single-variable polynomial with real coefficients is equal to the number of sign differences
between consecutive nonzero coefficients, or is less than it by an even number; similarly, the
number of negative roots is the number of sign changes after multiplying the coefficients
of odd-power terms by −1, or fewer than it by an even number. According to Descartes’
rule of signs, the polynomial p(x) has exactly one positive real root. If θ is a positive
real root of p(x) with multiplicity greater than 1, then θ also is a root of its derivative
kxk−1 + (k− 1)xk−2 + . . .+2x+1, which is impossible. Thus, the unique positive real root
of the polynomial p(x) is simple. If δ ̸= k+1, then the polynomial p(x) has the same roots
as the equation

xk+1 − δx+ δ − 1 = 0, (5)

except for the extra root of (5) x = 1; if δ = k + 1, then x = 1 is a root of p(x) with
multiplicity 1 and a root of (5) with multiplicity 2. Using Descartes’ rule of signs we
have that the equation xk+1 − δx + δ − 1 = 0 has at most two positive real roots (one
of them is x = 1) and at most one negative real root. If we suppose that θ is a root of
(5) with multiplicity greater than 1, we deduce that θ also satisfies the first derivative of
(5), that is, (k + 1)xk − δ. Combining (5) and the identity (k + 1)xk − δ = 0 we obtain

θ = (δ−1)(k+1)
δk

≥ 0, which yields that there exist no negative real root nor complex roots of
p(x) with multiplicity greater than 1.

Now, let δ > k+1 ≥ 4. Clearly p(1) = k+1− δ < 0, and therefore, the unique positive
root of p(x) belongs to the interval (1,∞), and we denote it by θ1. Descartes’ rule asserts
that the polynomial p(x) has no negative real root when k is an odd number. We will prove
the existence of a complex root of p(x) with negative real part when p(x) has a negative
real root θ2; in such case k must be an even number. The case when p(x) has no negative
root can be handled similarly.
Let θj = pj + qji, with 3 ≤ j ≤ k, be the complex roots of p(x). By way of contradiction
we assume that pj ≥ 0, for all 3 ≤ j ≤ k. Using the fact that the complex roots come in
conjugate pairs and applying Vieta’s formulas to the polynomial p(x), we obtain

−1 = θ1 + θ2 + . . .+ θk = θ1 + θ2 + (p3 + . . .+ pk) ≥ θ1 + θ2.

On the other hand, since k is an even number and θ1 is a positive, using the inequality
(1 + θ1)

t > (1 + θ1)
t−1 + θt1 + θt−1

1 , for 2 ≤ t ≤ k, we can deduce

p(−1− θ1) = (−1− θ1)
k + (−1− θ1)

k−1 + . . .+ (−1− θ1) + 1− δ =
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= (1 + θ1)
k − (1 + θ1)

k−1 + . . .+ (1 + θ1)
2 − (1 + θ1) + 1− δ > θk1 + θk−1

1 + . . .+ 1− δ = 0.

Since p(0) < 0 and p(−1− θ1) > 0, it follows that the negative root of p(x) belongs to the
interval (−1−θ1, 0), that is, −1−θ1 < θ2 < 0. Thus θ1+θ2 > −1, which is in contradiction
to θ1 + θ2 ≤ −1.

48



INTERNATIONAL MATHEMATICAL COMPETITION 2018

From July 22 to 28, the 25th International Mathematics Competition IMC (International
Mathematics Competition for University Students 2018) took place in Blagoevgrad, Bul-
garia, in which Famnit’s students traditionally participate. The colors of the faculty and
the University of Primorska were represented this year by: Dorde Mitrović, Daniil Bal-
douski and Arbër Avdulahu. They returned home with two bronze medals (Avdullahu
– 28 points, Baldouski 23 – points), while Mitrović received the honorable mention of the
competition. Team leader of our team was Slobodan Filipovski.

In this picture, from left to right: Daniil Baldouski, Dorde Mitrović, Arbër Avdulahu and
Slobodan Filipovski (team leader).
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IMC 2018

Day 1, July 24, 2018

Problem 1. Let (an)
∞
n=1 and (bn)

∞
n=1 be two sequences of positive numbers. Show that the

following statements are equivalent:

(1) There is sequence (cn)
∞
n=1 of positive numbers such that

∑∞
n=1

an
cn

and
∑∞

n=1
cn
bn

both
converge;

(2)
∑∞

n=1

√
an
bn

converges.

Problem 2. Does there exist a field such that its multiplicative group is isomorphic to its
additive group?

Problem 3. Determine all rational numbers a for which the matrix
a −a −1 0
a −a 0 −1
1 0 a −a
0 1 a −a


is the square of a matrix with all rational entries.

Problem 4. Find all differentiable functions f : (0,∞) → R such that

f(b)− f(a) = (b− a)f
′
(
√
ab) for all a, b > 0

.

Problem 5. Let p and q be prime numbers with p < q. Suppose that in a convex polygon
P1P2 . . . Ppq all angles are equal and the side lengths are distinct positive integers. Prove
that

P1P2 + P2P3 + · · ·+ PkPk+1 ≥
k3 + k

2

holds for every integer k with 1 ≤ k ≤ p.
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IMC 2018

Day 2, July 25, 2018

Problem 6. Let k be a positive integer. Find the smallest positive integer n for which
there exist k nonzero vectors v1, . . . , vk in Rn such that for every pair i, j of indices with
|i− j| > 1 the vectors vi and vj are orthogonal.

Problem 7. Let (an)
∞
n=0 be a sequence of real numbers such that a0 = 0 and

a3n+1 = a2n − 8 for n = 0, 1, 2, . . .

Prove that the following series is convergent:

∞∑
n=0

|an+1 − an|.

Problem 8. Let Ω = {(x, y, z) ∈ Z3 : y + 1 ≥ x ≥ y ≥ z ≥ 0}. A frog moves along the
points of Ω by jumps of length 1. For every positive integer n, determine the number of
paths the frog can take to reach (n, n, n) starting from (0, 0, 0) in exactly 3n jumps.

Problem 9. Determine all pairs P (x), Q(x) of complex polynomials with leading coefficient
1 such that P (x) divides Q(x)2 + 1 and Q(x) divides P (x)2 + 1.

Problem 10. For R > 1 let DR = {(a, b) ∈ Z2 : 0 < a2 + b2 < R}. Compute

lim
R→∞

∑
(a,b)∈DR

(−1)a+b

a2 + b2
.
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1.7 Academic year 2018/2019

ACADEMIC YEAR 2018/2019

52



VOJTĚCH JARNÍK 2019

Also in 2019, our math students participated at the oldest mathematics competition
for students within EU: the 29th Vojtěch Jarńık International Mathematical Competition,
which was held in Ostrava (Czech Republic) on March 29th. At this year’s event, 145
students from 35 European universities competed. In the first category (for 1st and 2nd
year students or under 22 years of age), Famnit was represented by Dorde Mitrović (2nd
year of Mathematics), Eva Siladji and Besfort Shala (both 1st year of Mathematics),
in the second category our Faculty was represented by Roman Solodukhin (2nd year of
Mathematical Sciences). Team leader of FAMNIT’ team was Slobodan Filipovski.

Mitrović, Shala and Solodukhin received the certificate of a successful participant.

In this picture, from left to right: Roman Solodukhin, Eva Siladji, Besfort Shala and Dorde
Mitrović.
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VOJTĚCH JARNÍK 2019

March 29, 2019

Category I

Problem 1. Let {an}∞n=0 be a sequence given recursively by a0 = 1 and

an+1 =
7an +

√
45a2n − 36

2
, n = 0, 1, . . .

Show that the following statements hold for all positive integers n:

a) an is a positive integer.

b) anan+1 − 1 is the square of an integer.

Problem 2. A triplet of polynomials u, v, w ∈ R[x, y, z] is called smart if there exist
polynomials P,Q,R ∈ R[x, y, z] such that the following polynomial identity holds:

u2019P + v2019Q+ w2019R = 2019.

a) Is the triplet of polynomials

u = x+ 2y + 3, v = y + z + 2, w = x+ y + z

smart?

b) Is the triplet of polynomials

u = x+ 2y + 3, v = y + z + 2, w = x+ y − z

smart?

Problem 3. For an invertible n × n matrix M with integer entries we define a sequence
SM = {Mi}∞i=0 by the recurrence

M0 = M

Mi+1 = (MT
i )

−1Mi, i = 0, 1, . . .

Find the smallest integer n ≥ 2 for which there exists a normal n×n matrix M with integer
entries such that its sequence SM is non-constant and has period P = 7, i.e., Mi+7 = Mi

for all i = 0, 1, . . .
(MT means the transpose of a matrix M . A square matrix M is called normal if MTM =
MMT holds.)

Problem 4. Determine the largest constant K ≥ 0 such that

aa(b2 + c2)

(aa − 1)2
+

bb(c2 + a2)

(bb − 1)2
+

cc(a2 + b2)

(cc − 1)2
≥ K

(
a+ b+ c

abc− 1

)2

holds for all positive real numbers a, b, c such that ab+ bc+ ca = abc.
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VOJTECH JARNIK 2019

March 29, 2019

Category II

Problem 1.

a) Is it true that for every non-empty set A and every associative operation ∗ : A×A → A
the conditions

x ∗ x ∗ y = y and y ∗ x ∗ x = y for every x, y ∈ A

imply commutativity of ∗?
b) Is it true that for every non-empty set A and every associative operation ∗ : A×A → A

the condition
x ∗ x ∗ y = y for every x, y ∈ A

imply commutativity of ∗?

Problem 2. Find all twice differentiable functions f : R → R such that

f
′′
(x) cos(f(x)) ≥ (f

′
(x))2 sin(f(x)); for every x ∈ R.

Problem 3. Let p be an even non-negative continuous function with
∫
R p(x)dx = 1 and

let n be a positive integer. Let ξ1, ξ2, . . . , ξn be independent identically distributed random
variables with density function p. Define

X0 = 0,

X1 = X0 + ξ1,

X2 = X1 + ξ2,
...

Xn = Xn−1 + ξn.

Prove that the probability that all the random variables X1, X2, . . . , Xn−1 lie between X0

and Xn equals 1
n
.

Problem 4. Let D = {z ∈ C : Imz > 0,Rez > 0}. Let n ≥ 1 and let a1, . . . , an ∈ D be
distinct complex numbers. Define

f(z) = z ·
n∏

j=1

z − aj
z − aj

.

Prove that f
′
has at least one root in D.
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INTERNATIONAL MATHEMATICS COMPETITION 2019

The 26th International mathematical competition for University Students – IMC 2019,
which takes place every year in Blagoevgrad in Bulgaria, was held between 28 July and 3
August.

FAMNIT and the University of Primorska were represented by Besfort Shala, Dorde
Mitrović and Roman Solodukhin. All three were very successfull and brought home
three medals: two silvers (Shala in Solodukhin, both 37 points) and one bronze (Mitrović
– 27 points).

In the picture, from left to right: Dorde Mitrović, Besfort Shala and Roman Solodukhin.
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IMC 2019

Day 1, July 30, 2019

Problem 1. Evaluate the product

∞∏
n=3

(n3 + 3n)2

n6 − 64
.

Problem 2. A four-digit number YEAR is called very good if the system

Y x+ Ey + Az +Rw = Y

Rx+ Y y + Ez + Aw = E

Ax+Ry + Y z + Ew = A

Ex+ Ay +Rz + Y w = R

of linear equations in the variables x, y, z and w has at least two solutions. Find all very
good YEARs in the 21st century.
(The 21st century starts in 2001 and ends in 2100.)

Problem 3. Let f : (−1, 1) → R be a twice differentiable function such that

2f
′
(x) + xf

′′
(x) ≥ 1 for x ∈ (−1, 1).

Prove that ∫ 1

−1

xf(x)dx ≥ 1

3
.

Problem 4. Define the sequence a0, a1, . . . of numbers by the following recurrence:

a0 = 1, a1 = 2, (n+ 3)an+2 = (6n+ 9)an+1 − nan for n ≥ 0.

Prove that all terms of this sequence are integers.

Problem 5. Determine whether there exist an odd positive integer n and n× n matrices
A and B with integer entries, that satisfy the following conditions:

1. det(B) = 1;

2. AB = BA;

3. A4 + 4A2B2 + 16B4 = 2019I.
( Here I denotes the n× n identity matrix.)
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IMC 2019

Day 2, July 31, 2019

Problem 6. Let f, g : R → R be continuous functions such that g is differentiable. Assume
that (f(0) − g

′
(0))(g

′
(1) − f(1)) > 0. Show that there exists a point c ∈ (0, 1) such that

f(c) = g
′
(c).

Problem 7. Let C = {4, 6, 8, 9, 10, . . .} be the set of composite positive integers. For each
n ∈ C let an be the smallest positive integer k such that k! is divisible by n. Determine
whether the following series converges: ∑

n∈C

(an
n

)n
.

Problem 8. Let x1, . . . , xn be real numbers. For any set I ⊂ {1, 2, . . . , n} let s(I) =∑
i∈I xi. Assume that the function I → s(I) takes on at least 1.8n values where I runs over

all 2n subsets of {1, 2, . . . , n}. Prove that the number of sets I ⊂ {1, 2, . . . , n} for which
s(I) = 2019 does not exceed 1.7n.

Problem 9. Determine all positive integers n for which there exist n × n real invertible
matrices A and B that satisfy AB −BA = B2A.

Problem 10. 2019 points are chosen at random, independently, and distributed uniformly
in the unit disc {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Let C be the convex hull of the chosen points.
Which probability is larger: that C is a polygon with three vertices, or a polygon with four
vertices?
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1.8 Academic year 2019/2020

ACADEMIC YEAR 2019/2020
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INTERNATIONAL MATHEMATICS COMPETITION 2020

The 27th IMC - International Mathematical Student Competition) took place this year from
25 to 30 July. The IMC is one of the most renowned competitions of its kind worldwide.

As the IMC was held online due to pandemic COVID -19, the participation was ex-
tremely high, with more than 560 students from all over the world taking part. The
University of Primorska is the only institution in Slovenia that organised the preparations
for its students well in advance and registered them for the competition.

The UP FAMNIT team was represented by Arbër Avdullahu (1st year, Mathematical
Sciences), Besfort Shala (2nd year, Mathematics),Ajla Šehović (1st year, Mathematics),
Milan Milivojčević (1st year, Computer Science), Jana Ristovska (1st year, Computer
Science) and team leader Assoc. Prof. Marko Orel.

The opening ceremony took place on Sunday 25 July, followed by two days of compe-
titions, during which the students had four hours a day to solve four problems. After the
second day, the team leaders evaluated the students’ tasks 24 hours a day, as the compe-
tition took place simultaneously all over the world. The results were announced on the
last day at the closing ceremony. Among the UP FAMNIT students, Arbër Avdullahu and
Besfort Shala were the best participants, both received an Honourable Mention certificate.
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IMC2020 Online

Day 1, July 26, 2020

Problem 1. Let n be a positive integer. Compute the number of words w (finite sequences
of letters) that satisfy all the following three properties:

(1) w consists of n letters, all of them are from the alphabet {a, b, c, d};
(2) w contains an even number of letters a;

(3) w contains an even number of letters b.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)

Problem 2. Let A and B be n× n real matrices such that

rk(AB −BA+ I) = 1

where I is the n× n identity matrix.
Prove that

trace(ABAB)− trace(A2B2) =
1

2
n(n− 1).

(rk(M) denotes the rank of matrix M , i.e., the maximum number of linearly independent
columns in M . trace(M) denotes the trace of M , that is the sum of diagonal elements in
M .)

Problem 3. Let d ≥ 2 be an integer. Prove that there exists a constant C(d) such that
the following holds: For any convex polytope K ⊂ Rd, which is symmetric about the origin,
and any ϵ ∈ (0, 1), there exists a convex polytope L ⊂ Rd with at most C(d)ϵ1−d vertices
such that

(1− ϵ)K ⊆ L ⊆ K.

(For a real α, a set T ⊂ Rd with nonempty interior is a convex polytope with at most α
vertices, if T is a convex hull of a set X ⊂ Rd of at most α points, i.e, T = {

∑
x∈X txx | tx ≥

0,
∑

x∈X tx = 1.} For a real λ put λK = {λx | x ∈ K}. A set T ⊂ Rd is symmetric about
the origin if (−1)T = T.)

Problem 4. A polynomial p with real coefficients satisfies the equation p(x+ 1)− p(x) =
x100 for all x ∈ R. Prove that p(1− t) ≥ p(t) for 0 ≤ t ≤ 1/2.
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IMC2020 Online

Day 2, July 27, 2020

Problem 5. Find all twice continuously differentiable functions f : R → (0,+∞) satisfying

f
′′
(x)f(x) ≥ 2(f

′
(x))2

for all x ∈ R.

Problem 6. Find all prime numbers p for which there exists a unique a ∈ {1, 2, . . . , p}
such that a3 − 3a+ 1 is divisible by p.

Problem 7. Let G be a group and n ≥ 2 be an integer. Let H1 and H2 be two subgroups
of G that satisfy

[G : H1] = [G : H2] = n and [G : (H1 ∩H2)] = n(n− 1).

Prove that H1 and H2 are conjugate in G.
(Here [G : H] denotes the index of the subgroup H, i.e. the number of distinct left cosets
xH of H in G. The subgroups H1 and H2 are conjugate if there exists an element g ∈ G
such that g−1H1g = H2.)

Problem 8. Compute

lim
n→∞

1

log log n

n∑
k=1

(−1)k
(
n

k

)
log k.

(Here log denotes the natural logarithm.)
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1.9 Academic year 2020/2021

ACADEMIC YEAR 2020/2021
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INTERNATIONAL MATHEMATICS COMPETITION 2021

This year, the 28th International Mathematics Competition for University Students took
place between 2 and 7 August. This year’s competition, where 590 students from all over
the world took part as 113 teams, was held online.

Exceptional result was achieved by Besfort Shala, winning second prize with 23 points.
Todor Antić (7 points) and Dorotea Redžepi (4 points) received an honorary mention.

The UP FAMNIT team were represented by Ajla Šehović (2nd year, Mathematics),
Besfort Shala (graduate, Mathematics), Dorotea Redžepi (1st year, Mathematics),
Lazar Marković (1st year Mathematics), Milan Milivojčević (2nd year, Computer
Science), Todor Antić (2nd year, Mathematics) and team leader, Assist. Prof. Slobodan
Filipovski.
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IMC2021 Online

Day 1, August 3, 2021

Problem 1. Let A be a real n× n matrix such that A3 = 0.
(a) Prove that there is a unique real n× n matrix X that satisfies the equation

X + AX +XA2 = A.

(b) Express X in terms of A.

Problem 2. Let n and k be fixed positive integers, and let a be an arbitrary non-negative
integer. Choose a random k-element subset X of {1, 2, . . . , k + a} uniformly (i.e., all k-
element subsets are chosen with the same probability) and, independently of X, choose a
random n-element subset Y of {1, . . . , k + n+ a} uniformly.

Prove that the probability

P
(
min(Y ) > max(X)

)
does not depend on a.

Problem 3. We say that a positive real number d is good if there exists an infinite sequence
a1, a2, a3, . . . ∈ (0, d) such that for each n, the points a1, . . . , an partition the interval [0, d]
into segments of length at most 1/n each. Find

sup
{
d
∣∣ d is good

}
.

Problem 4. Let f : R → R be a function. Suppose that for every ε > 0, there exists a
function g : R → (0,∞) such that for every pair (x, y) of real numbers,

if |x− y| < min
{
g(x), g(y)

}
, then

∣∣f(x)− f(y)
∣∣ < ε.

Prove that f is the pointwise limit of a sequence of continuous R → R functions, i.e., there
is a sequence h1, h2, . . . of continuous R → R functions such that lim

n→∞
hn(x) = f(x) for

every x ∈ R.
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IMC2021 Online

Day 2, August 4, 2021

Problem 5. Let A be a real n × n matrix and suppose that for every positive integer m
there exists a real symmetric matrix B such that

2021B = Am +B2.

Prove that | detA| ≤ 1.

Problem 6. For a prime number p, let GL2(Z/pZ) be the group of invertible 2×2 matrices
of residues modulo p, and let Sp be the symmetric group (the group of all permutations)
on p elements. Show that there is no injective group homomorphism φ : GL2(Z/pZ) → Sp.

Problem 7. Let D ⊆ C be an open set containing the closed unit disk {z : |z| ≤ 1}. Let
f : D → C be a holomorphic function, and let p(z) be a monic polynomial. Prove that∣∣f(0)∣∣ ≤ max

|z|=1

∣∣f(z)p(z)∣∣.
Problem 8. Let n be a positive integer. At most how many distinct unit vectors can be
selected in Rn such that from any three of them, at least two are orthogonal?
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1.10 Academic year 2021/2022

ACADEMIC YEAR 2021/2022
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TEAM SELECTION TEST FOR VOJTĚCH JARNÍK 2022

March 4, 2022

FAMNIT

Problem 1. Let A,B and X be n× n matrices over the same field, with X being nonsin-
gular. Prove that AB = AX +X−1B if and only if BA = XA+BX−1.

Problem 2. Let γ1 < γ2 < . . . < γ2022 be real numbers,

f(x) =
1

γ1 − x
+ · · ·+ 1

γ2022 − x
+ x,

and let α, β ∈ R, α < β. Compute the total length of the preimage f−1([α, β]). (The length
of the set consisting of intervals is the sum of their lengths.)

Problem 3. Let n, k be positive integers with n ≥ 3; let p(x) = xn + xn−1 + · · ·+ x− k.

(a) Prove that the roots of p(x) are simple.

(b) Prove that if k ≥ n + 1, then p(x) has at least one root with nonzero imaginary part
and negative real part.

Problem 4. Let

S(N) =
N∑

k1=1

k1∑
k2=1

k2∑
k3=1

. . .

kN−1∑
kN=1

1.

Find the limit limN→∞
N
√

S(N).
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VOJTĚCH JARNÍK 2022

Between 31 March and 3 April, the 30th traditional Vojtěch Jarńık International Math-
ematical Competition, the oldest mathematics competition for students in the European
Union, which UP FAMNIT students have traditionally participated in for many years, took
place in Ostrava (Czech Republic). This year’s competition was held after a two-year break,
and was again attended by UP FAMNIT students, who achieved outstanding results. In
the first category (for 1st and 2nd year students or under 22 years of age) Famnit was
represented by Dren Neziri, Diar Gashi (both 1st year of Mathematics) and Dorotea
Redžepi (2nd year of Mathematics). In the second category our faculty was represented
by Ajla Šehović (3rd year of Mathematics). Among the competitive problems was also
included the problem proposed by dr. Slobodan Filipovski (Problem 3, Category 2),
who was their team leader.

In the picture, from left to right: Dren Neziri, Diar Gashi, Dorotea Redžepi and Ajla
Šehović.

Student Dren Neziri reached the best results, finishing 10th with 15 points, for which
he also received a certificate.
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VOJTĚCH JARNÍK 2022

April 2, 2022

Category I

Problem 1. Assume that a real polynomial P (x) has no real roots. Prove that the
polynomial

Q(x) = P (x) +
P

′′
(x)

2!
+

P (4)(x)

4!
+ . . .

also has no real roots.

Problem 2. Let n ≥ 1. Assume that A is a real n× n matrix which satisfies the equality

A7 + A5 + A3 + A− I = 0.

Show that det(A) > 0.

Problem 3. Let f : [0, 1] → R be a given continuous function. Find the limit

lim
n→∞

(n+ 1)
n∑

k=0

∫ 1

0

xk(1− x)n−kf(x)dx.

Problem 4. In a box there are 31, 41 and 59 stones coloured, respectively, red, green and
blue. Three players, having t-shirts of these three colours, play the following game. They
sequentially make one of two moves:

(I) either remove three stones of one colour from the box,

(II) or replace two stones of different colours by two stones of the third colour.

The game ends when all the stones in the box have the same colour and the winner is the
player whose t-shirt has this colour. Assuming that the players play optimally, is it possible
to decide whether the game ends and who will win, depending on who the starting player
is?
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VOJTĚCH JARNÍK 2022

April 2, 2022

Category II

Problem 1. Determine whether there exists a differentiable function f : [0, 1] → R such
that

f(0) = f(1) = 1, |f ′
(x)| ≤ 2 for all x ∈ [0, 1] and |

∫ 1

0

f(x)dx| ≤ 1

2
.

Problem 2. For any given pair of positive integers m > n find all a ∈ R for which the
polynomial xm − axn + 1 can be expressed as a quotient of two nonzero polynomials with
real nonnegative coefficients.

Problem 3. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each
i ∈ {1, . . . , n}. Let X be the discrete random variable uniformly distributed on {x1, . . . , xn}.
The mean µ and the variance σ2 of X are defined as

µ(X) =
x1 + . . .+ xn

n
and σ2(X) =

(x1 − µ(X))2 + . . .+ (xn − µ(X))2

n
.

By X2 denote the discrete random variable uniformly distributed on {x2
1, . . . , x

2
n}. Prove

that

σ2(X) ≥
( m

2M2

)2
σ2(X2).

Problem 4. A function f : Z+ → R is called multiplicative if for every a, b ∈ Z+ with
gcd(a, b) = 1 we have f(ab) = f(a)f(b). Let g be the multiplicative function given by

g(pα) = αpα−1,

where α ∈ Z+ and p > 0 is a prime. Prove that there exist infinitely many positive integers
n such that

g(n) + 1 = g(n+ 1).
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Proposed problems for Vojtěch Jarńık 2022

by University of Primorska

Problem 1. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each
i ∈ {1, . . . , n}. Let X be the discrete random variable uniformly distributed on {x1, . . . , xn}.
The mean µ and the variance σ2 of X are defined as

µ(X) =
x1 + . . .+ xn

n
and σ2(X) =

(x1 − µ(X))2 + . . .+ (xn − µ(X))2

n
.

By X2 denote the discrete random variable uniformly distributed on {x2
1, . . . , x

2
n}. Prove

that

σ2(X) ≥
( m

2M2

)2
σ2(X2).

Solution. First we prove the following lemma:

Lemma 2. If x and y are strictly positive real numbers, then√
x

y
+

√
y

x
≥ 2 +

(x− y)2

2(x2 + y2)
.

Proof. We prove the following equivalent inequality

√
x

y
+

√
y

x
≥ 2 +

(
x
y

)2
− 2

(
x
y

)
+ 1

2

((
x
y

)2
+ 1

) .

Let t2 = x
y
, t > 0. The required inequality is equivalent to the inequalities

t+
1

t
≥ 2 +

t4 − 2t2 + 1

2(t4 + 1)
⇔ 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 ≥ 0.

Now we easily show 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 = (t− 1)4(2t2 + 3t+ 2) ≥ 0. □

Let ai =
x2
i

x2
1+...+x2

n
and bi =

1
n
for i = 1, . . . , n. Applying the above lemma for x = ai and

y = bi we obtain

x2
i

x2
1 + . . .+ x2

n

+
1

n
≥
(
2 +

(x2
in− (x2

1 + . . .+ x2
n))

2

2(x4
in

2 + (x2
1 + . . .+ x2

n)
2)

)
xi√

(n(x2
1 + . . .+ x2

n)
. (6)

Now if we sum up the obtained n inequalities in (6) we get

2 ≥ 2√
n(x2

1 + . . .+ x2
n)

n∑
i=1

xi+
m√

n(x2
1 + . . .+ x2

n)
· 1

2(M4 + µ2(X2))
·

n∑
i=1

(x2
i−

x2
1 + . . .+ x2

n

n
)2 ⇔
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√
x2
1 + . . .+ x2

n

n
≥
∑n

i=1 xi

n
+

m · σ2(X2)

4(M4 + µ2(X2))
= µ(X) +

m · σ2(X2)

4(M4 + µ2(X2))
⇔

√
µ(X2) ≥ µ(X) +

m · σ2(X2)

4(M4 +M4)
= µ(X) +

m · σ2(X2)

8M4
.

In the end we get

σ2(X) = (
√

µ(X2)− µ(X))(
√

µ(X2) + µ(X)) ≥ mσ2(X2)

8M4
· 2m =

( m

2M2

)2
· σ2(X2).

Problem 2. Let p ≥ 3 be a prime number and let n ≥ 1 be a natural number. Prove that
for any k such that 2 ≤ k ≤ pn holds

gcd

((
pn + 2

k

)
,

(
pn + 1

2

))
> 1.

Solution. Let k = 2. Then

gcd

((
pn + 2

k

)
,

(
pn + 1

2

))
= gcd

(
(pn + 2) · (p

n + 1)

2
,
(pn + 1)

2
· pn
)

≥ pn + 1

2
> 1.

Now, without loss of generality let 3 ≤ k ≤ pn+2
2

. Let gcd(pn, k(k − 1)(k − 2)) = d. There
exists integers x and y such that pnx+ k(k − 1)(k − 2)y = d. We have

d

(
pn + 2

k

)
= (pnx+ k(k − 1)(k − 2)y)

(
pn + 2

k

)
=

= pnx

(
pn + 2

k

)
+ k(k − 1)(k − 2)y · p

n + 2

k
· p

n + 1

k − 1
· pn

k − 2
·
(
pn − 1

k − 3

)
=

= pn
(
x

(
pn + 2

k

)
+ (pn + 2)(pn + 1)y

(
pn − 1

k − 3

))
.

Thus pn

d
|
(
pn+2
k

)
. We consider two cases:

1. If d < pn, then pn

d
is a divisor of

(
pn+2
k

)
. On the other hand,

(
pn+1

2

)
= (pn+1)pn

2
= pn+1

2
·pn.

Thus pn|
(
pn+1

2

)
, that is, pn

d
is a divisor of

(
pn+1

2

)
. In this case the claim holds.

2. Let d = pn. Then from pn|k(k− 1)(k− 2) and gcd(k, k− 1, k− 2) = 1, gcd(k, k− 2) ≤ 2
we have pn|k or pn|k − 1 or pn|k − 2. Clearly, these three divisibilities are not possible
since k ≤ pn+2

2
.
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INTERNATIONAL MATHEMATICS COMPETITION 2022

The 29. International Mathematics Competition for University Students 2022 (IMC)
was held between 1st and 7th August 2022, where, now traditionally, FAMNIT students
competed among 667 participants from all over the world. This year, UP FAMNIT students
performed with exceptional results. Ranking best wasDiar Gashi (1st year, Mathematics),
who received a bronze medal with 21 points, while the honorary mention went to Dren
Neziri (1st year, Mathematics), Mirza Redzić (1st year, Mathematical Sciences) and
Todor Antić (3rd year, Mathematics).

The students Dorotea Redžepi (2nd year, Mathematics) and Ajla Šehović (3rd year,
Mathematics) who received a certificate of participation. Team leader of FAMNIT’s team
was Slobodan Filipovski.

After two years the IMC was finally held live. The competition was organized under the
auspices of University College London and hosted by the American University in Bulgaria.
Hybrid participation also allowed for online competition, where the final results are not
published yet.

In the picture, from left to right: Diar Gashi, Dren Neziri, Ajla Šehivić, Dorotea Redžepi,
Mirza Redzič and Todor Antić.
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IMC2022

Day 1, August 3, 2022

Problem 1. Let f : [0, 1] → (0,∞) be an integrable function such that f(x) · f(1− x) = 1
for all x ∈ [0, 1]. Prove that ∫ 1

0

f(x)dx ≥ 1.

Problem 2. Let n be a positive integer. Find all n × n real matrices A with only real
eigenvalues satisfying

A+ Ak = AT

for some integer k ≥ n.
(AT denotes the transpose of A.)

Problem 3. Let p be a prime number. A flea is staying at point 0 of the real line. At each
minute, the flea has three possibilities: to stay at its position, or to move by 1 to the left or
to the right. After p− 1 minutes, it wants to be at 0 again. Denote by f(p) the number of
its strategies to do this (for example, f(3) = 3: it may either stay at 0 for the entire time,
or go to the left and then to the right, or go to the right and then to the left). Find f(p)
modulo p.

Problem 4. Let n > 3 be an integer. Let Ω be the set of all triples of distinct elements of
{1, 2, . . . , n}. Let m denote the minimal number of colours which suffice to colour Ω so that
whenever 1 ≤ a < b < c < d ≤ n, the triples {a, b, c} and {b, c, d} have different colours.
Prove that

1

100
log log n ≤ m ≤ 100 log log n

.
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IMC2022

Day 2, August 4, 2022

Problem 5. We colour all the sides and diagonals of a regular polygon P with 43 vertices
either red or blue in such a way that every vertex is an endpoint of 20 red segments and 22
blue segments. A triangle formed by vertices of P is called monochromatic if all of its sides
have the same colour. Suppose that there are 2022 blue monochromatic triangles. How
many red monochromatic triangles are there?

Problem 6. Let p > 2 be a prime number. Prove that there is a permutation (x1, x2, . . . , xp−1)
of the numbers (1, 2, . . . , p− 1) such that

x1x2 + x2x3 + . . .+ xp−2xp−1 ≡ 2 (mod p).

Problem 7. Let A1, A2, . . . , Ak be n× n idempotent complex matrices such that

AiAj = −AjAi for all i ̸= j.

Prove that at least one of the given matrices has rank ≤ n
k
.

(A matrix A is called idempotent if A2 = A.)

Problem 8. Letn, k ≥ 3 be integers, and let S be a circle. Let n blue points and k red
points be chosen uniformly and independently at random on the circle S. Denote by F
the intersection of the convex hull of the red points and the convex hull of the blue points.
Let m be the number of vertices of the convex polygon F (in particular, m = 0 when F is
empty). Find the expected value of m.
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Proposed problems for IMC 2022

by University of Primorska

Problem 1. Find the eigenvalues of the matrix

A =



3 0 1 1 0 0 1 1 1 1
0 3 0 1 1 1 0 1 1 1
1 0 3 0 1 1 1 0 1 1
1 1 0 3 0 1 1 1 0 1
0 1 1 0 3 1 1 1 1 0
0 1 1 1 1 3 1 0 0 1
1 0 1 1 1 1 3 1 0 0
1 1 0 1 1 0 1 3 1 0
1 1 1 0 1 0 0 1 3 1
1 1 1 1 0 1 0 0 1 3


.

Solution. Note that

A =



0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0



2

=

(
A1 I5
I5 A2

)2

= B2,

where A1 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , A2 =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 and I5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Lemma 3. If λ is an eigenvalue of B, then λ2 is an eigenvalue of B2.

Based on the above lemma, it suffices to calculate the eigenvalues of the block matrix
B. Since the matrices I5 and A2 − λI5 commute, we have

det(B − λI10) = det

(
A1 − λI5 I5

I5 A2 − λI5

)
= det((A1 − λI5) · (A2 − λI5)− I5 · I5) =

= det(A1 · A2 − λ(A1 + A2) + (λ2 − 1)I5).
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It is easy to verify that A1 · A2 = A1 + A2 = J5 − I5, where J5 is all-ones matrix. Thus

det(B − λI10) = 0 ⇔ det((1− λ)J5 + (λ2 + λ− 2)I5) = 0.

Now, it remains to find all values for λ such that

det


λ2 − 1 1− λ 1− λ 1− λ 1− λ
1− λ λ2 − 1 1− λ 1− λ 1− λ
1− λ 1− λ λ2 − 1 1− λ 1− λ
1− λ 1− λ 1− λ λ2 − 1 1− λ
1− λ 1− λ 1− λ 1− λ λ2 − 1

 = 0. (7)

We reduce the matrix in (7) to an upper triangular matrix.

det


λ2 − 1 1− λ 1− λ 1− λ 1− λ
1− λ λ2 − 1 1− λ 1− λ 1− λ
1− λ 1− λ λ2 − 1 1− λ 1− λ
1− λ 1− λ 1− λ λ2 − 1 1− λ
1− λ 1− λ 1− λ 1− λ λ2 − 1

 =

= det


−1− λ 1 1 1 1

1 −1− λ 1 1 1
1 1 −1− λ 1 1
1 1 1 −1− λ 1
1 1 1 1 −1− λ

 · (1− λ)5 =

= (1−λ)5·det


−1− λ 1 1 1 1

0 λ+2
λ+1

λ+2
λ+1

λ+2
λ+1

−λ2+2λ
λ+1

0 0 λ+ 2 λ+ 2 (λ+ 2)(1− λ)
0 0 0 λ+ 2 −λ2 + 4
0 0 0 0 −λ2 + λ+ 6

 = (1−λ)5(λ+2)3(λ2−λ−6).

Solving the equation (1 − λ)5(λ + 2)3(λ2 − λ − 6) = 0 we get that −2, 1 and 3 are the
eigenvalues of B (with multiplicity 4, 5 and 1, respectively).
From the lemma we conclude that 1, 4 and 9 are eigenvalues of A, with multiplicity 5, 4 and
1, respectively.

Problem 2. Let p > 3 be a prime number. Prove that, if p is a primitive root of 4p + 1,
then 2p+ 1 is a composite number.

Solution. Since p is a primitive root of 4p + 1 we have 4p + 1 = qk, where q is odd
prime and k ≥ 1. Let k > 1. We get 4p = qk−1 = (q−1)(qk−1+ . . .+ q+1). Thus q = 3 or
q = 5. If q = 3 we get 4p+ 1 = 3k. From 3k ≡ 1 (mod 4) we get that k is an even number,

k = 2k1. Thus p = (3k1−1)(3k1+1)
4

. Since both of the numbers 3k1 − 1 and 3k1 + 1 are even,
and exactly one of them is divisible by 4 we get that p is an even number.
Let q = 5 and 4p+ 1 = 5k. From ϕ(5k) = 4 · 5k−1 we get:

4p ≡ −1 (mod 5k) ⇔ (4p)
ϕ(5k)

2 ≡ (−1)
ϕ(5k)

2 ≡ 1 (mod 5k).
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By induction we can prove that 42·5
k−1 ≡ 1 (mod 5k). Thus we get p

ϕ(5k)
2 ≡ 1 (mod 5k),

which implies that p is not a primitive root of 4p+ 1. Hence 4p+ 1 is a prime number.
Since 4p + 1 is prime we have p ≡ 1 (mod 3). In this case 2p + 1 is divisible by 3, that is,
2p+ 1 is a composite number.
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1.11 Academic year 2022/2023

ACADEMIC YEAR 2022/2023
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INTERNATIONAL MATHEMATICS COMPETITION 2023

At the end of July 2023, the 30th International Mathematics Competition for University
Students (IMC) took place in Blagoevgrad, Bulgaria. The competition brought together
more than 400 students from numerous universities worldwide to showcase their mathemat-
ical knowledge and problem-solving skills.

Traditionally were part of the competition also UP FAMNIT students, who together
with their team leader Blas Fernández from the Department of Mathematics, faced all
the challenges presented by the competition.

This time, the University of Primorska (UP FAMNIT) was represented by Dren Neziri
(a 2nd-year student of the Mathematics) and Diar Gashi (a 3rd-year student of the Math-
ematics), who received an honorable mention, and Yllkë Jashari (a 1st-year student of
the Mathematics) and Dmytro Tupkalenko (a 1st-year student of the Mathematics), who
received a certificate of achievement.

The IMC spanned two days of intense mathematical examinations. Each day, partici-
pants were tasked with solving five exercises, with each exercise proposed by different team
leaders. On the second day of the competition, a particular problem proposed by Slobodan
Filipovski from the University of Primorska, was selected for the participants to tackle.

In the picture, from left to right: Yllkë Jashari, Dmytro Tupkalenko, Blas Fernández (team
leader), Dren Neziri and Diar Gashi.
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IMC2023

Day 1 , August 2, 2023

Problem 1. Find all functions f : R → R that have a continuous second derivative and
for which the equality f(7x+ 1) = 49f(x) holds for all x ∈ R.

Problem 2. Let A,B and C be n× n matrices with complex entries satisfying

A2 = B2 = C2 and B3 = ABC + 2I.

Prove that A6 = I.

Problem 3. Find all polynomials P in two variables with real coefficients satisfying the
identity

P (x, y)P (z, t) = P (xz − yt, xt+ yz).

Problem 4. Let p be a prime number and let k be a positive integer. Suppose that the
numbers ai = ik + i for i = 0, 1, . . . , p− 1 form a complete residue system modulo p. What
is the set of possible remainders of a2 upon division by p?

Problem 5. Fix positive integers n and k such that 2 ≤ k ≤ n and a set M consisting
of n fruits. A permutation is a sequence x = (x1, x2, . . . , xn) such that {x1, . . . , xn} = M.
Ivan prefers some (at least one) of these permutations. He realized that for every preferred
permutation x, there exist k indices i1 < i2 < . . . < ik with the following property: for
every 1 ≤ j < k, if he swaps xij and xij+1

, he obtains another preferred permutation.
Prove that he prefers at least k! permutations.
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Problem 6. Ivan writes the matrix

(
2 3
2 4

)
on the board. Then he performs the following

operation on the matrix several times:

1. he chooses a row or a column of the matrix, and

2. he multiplies or divides the chosen row or column entry-wise by the other row or column,
respectively.

Can Ivan end up with the matrix

(
2 4
2 3

)
after finitely many steps?

Problem 7. Let V be the set of all continuous functions f : [0, 1] → R, differentiable on
(0, 1), with the property that f(0) = 0 and f(1) = 1. Determine all α ∈ R such that for
every f ∈ V, there exists some ξ ∈ (0, 1) such that

f(ξ) + α = f
′
(ξ).

Problem 8. Let T be a tree with n vertices; that is, a connected simple graph on n vertices
that contains no cycle. For every pair u, v of vertices, let d(u, v) denote the distance between
u and v, that is, the number of edges in the shortest path in T that connects u and v.
Consider the sums

W (T ) =
∑

{u,v}⊆V (T )
u̸=v

d(u, v) and H(T ) =
∑

{u,v}⊆V (T )
u̸=v

1

d(u, v)
.

Prove that

W (T ) ·H(T ) ≥ (n− 1)3(n+ 2)

4
.

Problem 9. We say that a real number V is good if there exist two closed convex subsets
X, Y of the unit cube in R3, with volume V each, such that for each of the three coordinate
planes (that is, the planes spanned by any two of the three coordinate axes), the projections
of X and Y onto that plane are disjoint. Find sup{V | V is good}.

Problem 10. For every positive integer n, let f(n), g(n) be the minimal positive integers
such that

1 +
1

1!
+

1

2!
+ . . .+

1

n!
=

f(n)

g(n)
.

Determine whether there exists a positive integer n for which g(n) > n0.999n.
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Problem 1. Let T be a tree with n vertices; that is, a connected simple graph on n vertices
that contains no cycle. For every pair u, v of vertices, let d(u, v) denote the distance between
u and v, that is, the number of edges in the shortest path in T that connects u and v.
Consider the sums

W (T ) =
∑

{u,v}⊆V (T )
u̸=v

d(u, v) and H(T ) =
∑

{u,v}⊆V (T )
u̸=v

1

d(u, v)
.

Prove that

W (T ) ·H(T ) ≥ (n− 1)3(n+ 2)

4
.

Solution: Let k =
(
n
2

)
and let x1 ≤ x2 ≤ . . . ≤ xk be the distances between the pairs of

vertices in the tree Tn. Thus

W (Tn) ·H(Tn) = (x1 + x2 + . . .+ xk) ·
(

1

x1

+
1

x2

+ . . .+
1

xk

)
.

Since the tree has exactly n− 1 edges, there are exactly n− 1 pairs of vertices at distance
one, that is, x1 = x2 = . . . = xn−1 = 1. Thus

W (Tn) ·H(Tn) = (n− 1 + xn + xn+1 + . . .+ xk) ·
(
n− 1 +

1

xn

+
1

xn+1

+ . . .+
1

xk

)
=

= (n− 1)2 + (n− 1)

((
xn +

1

xn

)
+ . . .+

(
xk +

1

xk

))
+

+(xn + . . .+ xk)

(
1

xn

+ . . .+
1

xk

)
.

From Cauchy inequality we have

(xn + . . .+ xk)

(
1

xn

+ . . .+
1

xk

)
≥ (1 + 1 + . . .+ 1)2 = (k − n+ 1)2 =

(n− 1)2(n− 2)2

4
.

The equality holds if and only if xn = xn+1 = . . . = xk.

Now we minimize the expression
(
xn +

1
xn

)
+ . . .+

(
xk +

1
xk

)
, where xi ∈ [2, n− 1].

It is clear that the minimal value is achieved for xn = xn+1 = . . . = xk = 2. Therefore we
get

W (Tn)·H(Tn) ≥ (n−1)2+(n−1)

((
2 +

1

2

)
(k − n+ 1)

)
+
(n− 1)2(n− 2)2

4
=

(n− 1)3(n+ 2)

4
.
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The equality holds for x1 = . . . = xn−1 = 1 and xn = xn+1 = . . . = xk = 2, that is,
the smallest value is achieved for the tree where n − 1 pairs are at distance one, and the
remaining k− (n−1) = (n−1)(n−2)

2
pairs are at distance two. The unique tree which satisfies

these conditions is the star graph Sn. In this case it holds

W (Sn) ·H(Sn) = (n− 1)2 · (n− 1)(n+ 2)

4
=

(n− 1)3(n+ 2)

4
.

Problem 2. Let A be a real square matrix such that the sum of each row is equal to d > 1,
d ∈ N, and tr(Ai) = 0, for each i = 1, . . . , 2023. Prove that

A2023 + A2022 + . . .+ A+ I ̸= J,

where J is the all-ones matrix.

Solution 1. Let us suppose that there is a square matrix A of size n for which A2023 +
A2022 + . . . + A + I = J. Clearly, the spectrum of A consists of d and some of the roots of
the equation x2023 + x2022 + . . . + x + 1 = 0. Since tr(Ak) = 0 for each k = 1, . . . , 2023 we
get

dk +
n−1∑
i=1

xk
i = 0. (8)

From xi =
1
xi

= 1
x2023
i

and (8) we get

−d =
n−1∑
i=1

xi =
n−1∑
i=1

1

xi

=
n−1∑
i=1

x2023
i = −d2023.

Thus we get d = 0 or d = 1.
Solution 2. Let us suppose that there is a matrix A for which A2023+A2022+. . .+A+I =

J. Clearly, d is an eigenvalue of A and d2023 + d2022 + . . . + d + 1 = n is an eigenvalue of
J . Thus, the eigenvalues of J are n (with multiplicity 1) and 0 (with multiplicity n − 1).
Moreover, the eigenvalues of A are d and the roots of the polynomial p(x) = x2023+. . .+x+1.
The roots of p(x) are the 2024-th roots of unity, (except x = 1), so they are simple roots.
We use the following lemma derived by Feit and Higman.

Lemma 4. Let θ be a simple root of the polynomial f(x) and let fθ(x) =
f(x)
x−θ

. If M is a

matrix satisfying f(M) = O, then tr(fθ(M))
fθ(θ)

is the multiplicity of θ as a characteristic root
of M .

Since f(x) = (x − d)(x2023 + . . . + x + 1) is the minimal polynomial of A we have
f(A) = On.
Let θ be an eigenvalue of A different than d and 1. We use the above lemma to compute
the multiplicity of θ, m(θ). Let g(x) = x2024 − 1. We have

fθ(x) =
f(x)

x− θ
=

x− d

x− θ
· g(x)

x− 1
(9)

85



fθ(θ) =
θ − d

θ − 1
·D(g(θ)) =

θ − d

θ − 1
· 2024θ2023. (10)

From (9) we have fθ(0) = d
θ
. Since tr(Ai) = 0 for i = 1, . . . , 2023 we get tr(fθ(A)) =

fθ(0)tr(I) =
d
θ
· n. By using the above lemma we get

m(θ) =
nd

2024
· θ − 1

θ − d
. (11)

Since θ is a root of p(x), we pick θ to be a complex number. From d > 1, we get that θ−1
θ−d

is a
complex number as well, thus m(θ) is a complex number, which is not possible. Therefore,
for each matrix A which satisfies the given conditions holds A2023+A2022+ . . .+A+ I ̸= J.

Problem 3. Let {ai}∞i=1 be a geometric progression of natural numbers which quotient has
exactly k prime divisors. Prove that the (k− 1)-th differences of the sequence {τ(ai)}∞i=1 is
an arithmetic progression.

Solution. In the solution we will use the following two well-known identities:

Lemma 5. 1.
∑k+1

i=0 (−1)i
(
k+1
i

)
= 0.

2. For each 1 ≤ m ≤ k it holds
∑k+1

i=1 (−1)iim
(
k+1
i

)
= 0.

Let q = pα1
1 pα2

2 · . . . · pαk
k be the canonical form of the quotient of the progression and let

a1 = pβ1

1 pβ2

2 · . . . · pβk

k · b, where βi ≥ 0 and gcd(pi, b) = 1 for i = 1, 2, . . . , k. Then for any

i ≥ 1 we have ai = a1 · qi−1 = p
(i−1)α1+β1

1 · p(i−1)α2+β2

2 · . . . · p(i−1)αk+βk

k · b and

τ(ai) = ((i− 1)α1 + β1 + 1)((i− 1)α2 + β2 + 1) · . . . · ((i− 1)αk + βk + 1)τ(b). (12)

It is easy to prove that the (k − 1)th differences of {τ(ai)}∞i=1 is the sequence

{si}∞i=1 = {
k−1∑
j=0

(−1)j
(
k − 1

j

)
τ(ak+i−j−1)}∞i=1. (13)

We will prove that sn+1 − 2sn + sn−1 = 0 for any n ≥ 2, which is a sufficient condition to
assert that the sequence {si}∞i=1 is arithmetic. We have

sn+1 − 2sn + sn−1 = 0 ⇔
k−1∑
j=0

(−1)j
(
k − 1

j

)
τ(ak+n−j)−2

k−1∑
j=0

(−1)j
(
k − 1

j

)
τ(ak+n−j−1)+

k−1∑
j=0

(−1)j
(
k − 1

j

)
τ(ak+n−j−2) = 0.

(14)
The identity in (14) is equivalent to the identity(

k − 1

0

)
τ(ak+n)−

((
k − 1

1

)
+ 2

(
k − 1

0

))
τ(ak+n−1)+

+
k−1∑
j=2

(−1)j
((

k − 1

j

)
+ 2

(
k − 1

j − 1

)
+

(
k − 1

j − 2

))
τ(ak+n−j)+
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+(−1)k
(
2

(
k − 1

k − 1

)
+

(
k − 1

k − 2

))
τ(an) + (−1)k+1

(
k − 1

k − 1

)
τ(an−1) = 0.

Using
(
k−1
0

)
=
(
k+1
0

)
,
(
k−1
1

)
+2
(
k−1
0

)
=
(
k+1
1

)
,
(
k−1
j

)
+2
(
k−1
j−1

)
+
(
k−1
j−2

)
=
(
k+1
j

)
, for 2 ≤ j ≤ k−1,

2
(
k−1
k−1

)
+
(
k−1
k−2

)
=
(
k+1
k

)
and

(
k−1
k−1

)
=
(
k+1
k+1

)
, the above identity is equivalent to

k+1∑
j=0

(−1)j
(
k + 1

j

)
τ(ak+n−j) = 0. (15)

Let bt = αt(k + n − 1) + βt + 1 for 1 ≤ t ≤ k. From the formula (12) and since τ(b) ̸= 0,
the identity in (15) is equivalent to

k+1∑
j=0

(−1)j
(
k + 1

j

)
(b1 − jα1)(b2 − jα2) · . . . · (bk − jαk) = 0. (16)

Now we have (b1− jα1)(b2− jα2) · . . . · (bk− jαk) = C0− jC1+ j2C2+ ....+(−1)kjkCk where
Ci are constants which depends on α’s and b’s. Finally the identity in (16) is equivalent to

k+1∑
j=0

(−1)j
(
k + 1

j

)
(C0 +

k∑
i=1

(−1)iCij
i) = 0. (17)

We rearrange the last expression and we get

C0

(
k+1∑
i=0

(−1)i
(
k + 1

i

))
− C1

(
k+1∑
i=1

(−1)ii ·
(
k + 1

i

))
+

+C2

(
k+1∑
i=1

(−1)ii2 ·
(
k + 1

i

))
− . . .+ (−1)kCk

(
k+1∑
i=1

(−1)iik ·
(
k + 1

i

))
= 0.

Based on the above lemma we verify that the last identity is valid, which complete the
proof.
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