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Abstract
On Certain Problems in Vertex-transitive Graphs

In this PhD Thesis four related topics from algebraic graph theory are considered.
The first one considers non-Cayley vertex-transitive graphs. In 1983, Marušič [Ars
Combinatorial 16B (1983), 297–302] asked for which positive integers n there exists
a non-Cayley vertex-transitive graph on n vertices. (The term non-Cayley numbers
has later been given to such integers.) Motivated by this problem, Feng [Discrete
Math. 248 (2002), 265–269] asked to determine the smallest valency ϑ(n) among
valencies of non-Cayley vertex-transitive graphs of order n. As cycles are clearly
Cayley graphs, ϑ(n) ≥ 3 for any non-Cayley number n. In this PhD Thesis a goal
is set to determine those non-Cayley numbers n for which ϑ(n) = 3, and among
the latter to determine those for which the generalized Petersen graphs are the only
non-Cayley vertex-transitive graphs of order n. It is known that for a prime p every
vertex-transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the
exception of the Coxeter graph, every cubic non-Cayley vertex-transitive graph of
order 2p, 4p or 2p2 is a generalized Petersen graph. In this PhD Thesis the next
natural step is taken by proving that every cubic non-Cayley vertex-transitive graph
of order 4p2, p > 7 a prime, is a generalized Petersen graph. In addition, cubic
non-Cayley vertex-transitive graphs of order 2pk, where p > 7 is a prime and k ≤ p,
are characterized.

The second topic considers automorphism groups of certain vertex-transitive
graphs. In particular, in this PhD Thesis it is proved that connected cubic non-
symmetric Cayley graphs on ten particular finite non-abelian simple groups are nor-
mal, where these ten groups are M11, M22, M23, J2, Suz, PSL(2, 11), and An,
n ∈ {5, 11, 23, 47}. This result solves an open problem posed in [Discrete Math. 244
(2002), 67–75].

The third topic considers one-regular graphs, a special class of vertex-transitive
graphs that have received particular attention over the last decade. The main con-
tribution of this PhD Thesis is a complete classification of tetravalent one-regular
graphs of order 4p2, where p is a prime.

The last topic of this PhD Thesis considers the famous open problem in algebraic
graph theory, asking about existence of Hamilton paths in vertex-transitive graphs.
This problem is considered for graphs of order 10p, p 6= 7 a prime. In particu-
lar, it is proved that every connected vertex-transitive graph of order 10p, p 6= 7 a
prime, which is not isomorphic to a quasiprimitive graph arising from the action of
PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10, contains a Hamilton path.

Math. Subj. Class (2000): 05C25, 05C45, 20B25, 20F05.

Key words: graph, vertex-transitive, Cayley graph, non-Cayley graph, simple
group, one-regular graph, Hamilton path, regular action, regular cover, automor-
phism group.
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Izvleček
O nekaterih odprtih problemih iz točkovno tranzitivnih grafov

Disertacija obravnava štiri med seboj povezane teme s področja algebraične teorije
grafov. Prva od štirih tem so ne-Cayleyjevi točkovno tranzitivni grafi. Leta 1983
je Marušič [Ars Combinatorial 16B (1983), 297–302] postavil vprašanje, za katera
pozitivna števila n obstaja ne-Cayleyjev točkovno tranzitiven graf reda n. (Takim
številom pravimo ne-Cayleyjeva števila.) To vprašanje je bilo kasneje motivacija za
Fengovo vprašanje [Discrete Math. 248 (2002), 265–269], ki sprašuje po najmanǰsi
valenci ϑ(n) med valencami ne-Cayleyjevih točkovno tranzitivnih grafov reda n. Ker
so cikli seveda Cayleyjevi grafi, za vsako ne-Cayleyjevo število n velja ϑ(n) ≥ 3.
V disertaciji obravnavamo tista ne-Cayleyjeva števila n, za katera je ϑ(n) = 3, in
med njimi ǐsčemo tiste, za katere so posplošeni Petersenovi grafi edini ne-Cayleyjevi
točkovno tranzitivni grafi reda n. Znano je, da je za praštevilo p vsak točkovno
tranzitiven graf reda p, p2 ali p3 Cayleyjev graf in da je z izjemo Coxeterjevega grafa
vsak kubični ne-Cayleyjev točkovno tranzitiven graf reda 2p, 4p ali 2p2 posplošeni
Petersenov graf. V disertaciji je narejen naslednji korak. Dokazano je, da je vsak
kubični ne-Cayleyjev točkovno tranzitiven graf reda 4p2, p > 7 praštevilo, posplošeni
Petersenov graf. Poleg tega je narejena karakterizacija kubičnih ne-Cayleyjevih
točkovno tranzitivnih grafov reda 2pk, kjer je p > 7 praštevilo in k ≤ p.

Druga v disertaciji obravnavana tema so grupe avtomorfizmov posebne družine
točkovno tranzitivnih grafov. Dokazano je, da je vsak povezan kubični ne-simetrični
Cayleyjev graf grupe G, kjer je G ∈ {M11,M22,M23, J2,Suz,PSL(2, 11),An | n ∈
{5, 11, 23, 47}}, normalen graf. Ta rezultat delno reši problem, ki je bil postavljen v
[Discrete Math. 244 (2002), 67–75].

Tretja v disertaciji obravnavana tema so ena-regularni grafi, posebna družina
točkovno tranzitivnih grafov, ki so bili v zadnjem desetletju predmet številnih raziskav.
Glavni prispevek disertacije je popolna klasifikacija štirivalentnih ena-regularnih gra-
fov reda 4p2, kjer je p praštevilo.

Zadnja tema obravnava enega izmed najpomembneǰsih odprtih problemov v al-
gebraični teoriji grafov, problem obstoja hamiltonskih poti v točkovno tranzitivnih
grafih. V disertaciji je problem obravnavan za točkovno tranzitivne grafe reda 10p,
p 6= 7 praštevilo. Dokazano je, da vsak povezan točkovno tranzitiven graf reda 10p,
p 6= 7 praštevilo, ki ni izomorfen kvaziprimitivnemu grafu glede na delovanje grupe
PSL(2, k) na odsekih po Zk ⋊ Z(k−1)/10, premore hamiltonsko pot.

Math. Subj. Class (2000): 05C25, 05C45, 20B25, 20F05.

Ključne besede: graf, točkovno tranzitiven graf, Cayleyjev graf, ne-Cayleyjev
graf, enostavne grupa, ena-regularen, hamiltonska pot, regularno delovanje, regu-
larni krov, grupa avtomorfizmov.
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Chapter 1

Introduction

The PhD Thesis contains four related topics from algebraic graph theory: non-
Cayley vertex-tansitive graphs, automorphism groups of certain vertex-transitive
graphs, one-regular graphs and Hamilton paths in vertex-transitive graphs. All
these topics concern vertex-transitive graphs, that is, graphs whose automorphism
groups act transitively on the corresponding vertex sets, which justifies the title of
the PhD Thesis. In the literature vertex-transitive graphs are also called vertex
symmetric graphs. Throughout the thesis graphs are finite, simple and undirected,
and groups are finite, unless specified otherwise.

The motivation for these studies comes from four open problems. They are
introduced at the beginning of each chapter, where also an overview of known partial
results is given (see Chapters 3, 4, 5 and 6).

A graph is said to be a Cayley graph if its automorphism group admits a sub-
group acting regularly on its vertex set. Thus every Cayley graph is vertex-transitive.
However, there are vertex-transitive graphs which are not Cayley graphs, the small-
est example is the well-known Petersen graph. Non-Cayley vertex-transitive graphs,
considered in Chapter 3, have been an active topic of research for a long time. Since
connected vertex-transitive graphs of valency 2 are just cycles, which are clearly
Cayley graphs on cyclic groups, the first interesting family of non-Cayley vertex-
transitive graphs are cubic graphs. Consequently, articles found in the literature
study these graphs frequently. The contribution of this PhD Thesis to the topic is
the result that every cubic non-Cayley vertex-transitive graph of order 4p2, p > 7
a prime, is a generalized Petersen graph, see Section 3.1. In addition, cubic non-
Cayley vertex-transitive graphs of order 2pk, where p > 7 is a prime and k ≤ p, are
characterized in the PhD Thesis, see Section 3.2.

Chapter 4 deals with automorphism groups of cubic Cayley graphs on finite
non-abelian simple groups. Li [66] showed that a cubic arc-transitive Cayley graph
on a finite non-abelian simple group G is normal if G is not one of the following
seven groups: A5, PSL(2, 11), M11,A11,M23,A23 and A47. (A Cayley graph X on
a group G is said to be normal if the right regular representation of G is normal
in the automorphism group of X.) For these seven remaining groups, Xu, Fang,
Wang and Xu [123] proved that a cubic arc-transitive Cayley graph on G is normal
if G 6= A47 and it is not normal if G = A47. However, normality of cubic Cayley
graphs on finite non-abelian simple groups which are not arc-transitive is still an
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open problem. In particular, Fang, Li, Wang and Xu [34] proved that a connected
cubic non-arc-transitive Cayley graph on a finite non-abelian simple group G is
normal or G is one of the groups listed in [34]. In the PhD Thesis the normality
of cubic Cayley graphs on ten groups from this list is proved. In particular, it
is shown that a connected non-arc-transitive cubic Cayley graph on G, where G ∈
{M11,M22,M23, J2,Suz,PSL(2, 11),A5,A11,A23,A47}, is a normal Cayley graph, see
Chapter 4.

Chapter 5 deals with one-regular graphs, that is, graphs whose automorphism
groups act regularly on the corresponding arc sets. Clearly, a one-regular graph with
no isolated vertices is connected, and it is of valency 2 if and only if it is a cycle. The
first example of a cubic one-regular graph was constructed by Frucht [40], and later
on lots of work have been done along this line as part of a more general problem
dealing with the investigation of cubic arc-transitive graphs (see [19, 25, 35, 36, 37,
38, 95]). Tetravalent one-regular graphs have also received considerable attention
in recent decades, see Chapter 5. This PhD Thesis contributes to this topic with a
complete classification of tetravalent one-regular graphs of order 4p2, p a prime, see
Theorem 5.4.1.

The results in Chapters 3, 4 and 5 are obtained by detailed study of the au-
tomorphism groups of the graphs in question. In this study basic group-theoretic
results, covering graph techniques and combinatorial techniques are used.

Chapter 6 deals with the problem of existence of Hamilton paths in finite con-
nected vertex-transitive graphs. In particular, in 1969 Lovász [71] asked whether
every finite, connected vertex-transitive graph has a Hamilton path. Although this
problem received considerable attention over the years it remains open. However,
all known connected vertex-transitive graphs have a Hamilton path and with the
exception of K2, only four connected vertex-transitive graphs that do not have a
Hamilton cycle are known to exist. These four graphs are the Petersen graph, the
Coxeter graph and the two graphs obtained from them by replacing each vertex by
a triangle. In the PhD Thesis it is shown that every connected vertex-transitive
graph of order 10p, p 6= 7 a prime, which is not isomorphic to a quasiprimitive graph
arising from the action of PSL(2, k) on cosets of Zk⋊Z(k−1)/10, contains a Hamilton
path, see Theorem 6.0.1. Our strategy in the search for Hamilton paths in connected
vertex-transitive graphs of order 10p is based on the so-called lifting Hamilton cycles
approach, a frequently used approach for constructing Hamilton paths and cycles
in vertex-transitive graphs. This approach is based on a quotienting/reduction with
respect to an imprimitivity block system of the corresponding automorphism group
or with respect to a suitable semiregular automorphism.

In Chapter 2 notions concerning the thesis are introduced together with the
notation and some auxiliary results that are needed throughout the thesis.

The results of this PhD Thesis are published in the following articles:

• C. Zhang and X. G. Fang, A note on the automorphism groups of cubic Cayley
graphs of finite simple groups, Discrete Math. 310 (2010), 3030-3032.

• K. Kutnar, D. Marušič and C. Zhang, On cubic non-Cayley vertex-transitive
graphs, J. Graph Theory, DOI 10.1002/jgt.20573, in press.
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• Y.-Q. Feng, K. Kutnar, D. Marušič and C. Zhang, Tetravalent one-regular
graphs of order 4p2, submitted.

• K. Kutnar, D. Marušič and C. Zhang, Hamilton paths and cycles in vertex-
transitive graphs of order 10p, submitted.
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Chapter 2

Background

2.1 Groups

For group-theoretic terms not defined here we refer the reader to [97, 107, 114].
We will use the symbol Zr, both for cyclic group of order r and the ring of integers
modulo r. In the latter case, Z∗

r will denote the multiplicative group of units of Zr.
By D2n we denote the dihedral group of order 2n.

2.1.1 Group action

Let G be a group and let Ω be a nonempty set. Then a (right) group action of
G on Ω is a binary function

Ω ×G→ Ω

denoted

(ω, g) 7→ ωg

which satisfies the following two axioms: 1. ω1 = ω for every ω in Ω (where 1
denotes the identity element of G) and 2. (ωg)h = ωgh for all g, h ∈ G and ω ∈ Ω.
This group action we denote by (Ω, G). In a similar way we can define (left) group
action (G,Ω).

A right group action of a group G on the set Ω gives rise to a group homomor-
phism χ : G→ Symr(Ω) defined by the rule:

g 7→ χg, χg(ω) := ωg,

where Symr(Ω) is the right symmetric group of the set Ω (that is, the set of all
bijective maps φ : Ω → Ω, which are called permutations of the set Ω, together with
the composition of the permutations). Conversely: if f : G → Symr(Ω) is a group
homomorphism then it gives rise to the right group action of the group G on the set
Ω in such a way that χ = f . The group homomorphism χ is called the representation
of the right action (Ω, G). The image GR = Gχ is the right representation of the
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group G. The degree of the right representation GR of the group G is the cardinality
of the set Ω. The kernel of the homomorphism χ is the set of all those elements
of the group G that act on a trivial way: Kerχ = {g ∈ G | χg = id} = {g ∈ G |
χg(ω) = ω, ∀ω ∈ Ω} = {g ∈ G | ωg = ω, ∀ω ∈ Ω}. If the kernel is trivial then the
action is said to be faithful.

Let a group G act on the set Ω. Then the set

OrbG(ω) = ωG = {ωg | g ∈ G},

where ω ∈ Ω, is called a G-orbit (in short an orbit if the group G is clear from the
context) of the element ω with respect to the action of the group G. If an orbit
OrbG(ω) is equal to the entire set Ω for some element ω in Ω, then G is transitive.

For ω ∈ Ω the set
Gω = {g ∈ G | ωg = ω},

the stabilizer of the element ω, is a subgroup of G. The orbits of Gω on Ω are called
suborbits of the group G (with respect to the element ω). Suborbit {ω} is trivial
suborbit. If |Gω| = 1 for every element ω ∈ Ω then we say that G acts semiregularly.
If G acts on Ω transitively and |Gω| = 1 for every element ω ∈ Ω we say that G acts
regularly (G is regular).

The following well-known fact is known as the Orbit - stabilizer property:

|OrbG(ω)| = |G : Gω| for every ω ∈ Ω.

Given a transitive group G acting on a set Ω, we say that a partition B of Ω is
G-invariant if the elements of G permute the parts, that is, blocks of B, setwise. In
other words, a nonempty subset B ⊆ Ω is a block for the group G if for every g ∈ G

either Bg = B or Bg ∩B = ∅.

If the trivial partitions {Ω} and {{ω} : ω ∈ Ω} are the only G-invariant partitions of
Ω, thenG is said to be primitive, and is said to be imprimitive otherwise. In the latter
case we shall refer to a corresponding G-invariant partition as to an imprimitivity
block system of G (see also [10]). An imprimitive group G with an imprimitivity
block system formed by the orbits of a proper normal subgroup of G is called a
genuinely imprimitive group. If G is imprimitive, but there exists no transitive
subgroup H ≤ G having a nontransitive normal subgroup, then G is said to be
quasiprimitive.

Let a group H act transitively on the set Ω and let G = HR be the right
representation of the group H. Then in a natural way G also acts on the set
Ω × Ω = Ω2. G-orbits on the set Ω × Ω = Ω2 are called orbitals. The orbital
{(ω, ω) | ω ∈ Ω} is a trivial orbital. If ∆ = {(ω, ν) | ω, ν ∈ Ω} ⊆ Ω2 is an orbital,
then also ∆∗ = {(ν, ω) | (ω, ν) ∈ ∆} is an orbital, it is called the paired orbital of
the orbital ∆. If ∆ = ∆∗ then ∆ is said to be selfpaired orbital. There exists a
natural correspondence between suborbits and orbitals. Let Gω be a stabilizer of
an element ω ∈ Ω, let Γ be the suborbit with respect to ω and let ν ∈ Γ. Then
the corresponding orbital is the G-orbit on Ω2 that contains (ω, ν). It is left to the
reader to check up that this orbital is well defined. Moreover, if ∆ is any orbital then
the corresponding suborbit Γ is the suborbit that contains ν where ν is an arbitrary
element from Ω for which: (ω, ν) ∈ ∆.
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2.1.2 Simple groups

A simple group is a nontrivial group whose only normal subgroups are the trivial
group and the group itself. The study of (non-abelian) finite simple groups can be
traced back at least as far as Galois (see [115]) who understood their fundamental
significance as obstacles to the solution of polynomial equations by radicals (square
roots, cube roots, etc.). However, the classification of finite simple groups was not
completed until 1980’s.

The Classification Theorem of Finite Simple Groups [50]: Every finite simple
group is cyclic of prime order, an alternating group, a finite simple group of Lie type,
or one of the twenty-six sporadic finite simple groups.

Finite simple groups will be considered throughout the thesis. In particular, we
will frequently use the following result.

Proposition 2.1.1 [53] Let G be a non-abelian simple group, H < G and |G : H| =
pn, where p is a prime and n is a positive integer. Then one of the following holds:

(i) G = Am and H ∼= Am−1, where m = pn;

(ii) G = PSL(m, q), H is the stabilizer of a line or hyperplane, and |G : H| =
qm−1
q−1 = pn;

(iii) G = PSL(2, 11) and H ∼= A5;

(iv) G = M23 and H ∼= M22, or G = M11 and H ∼= M10;

(v) G = U4(2) ∼= S4(3) and H is the parabolic subgroup of index 27.

We wrap up this subsection by a result on imprimitive groups of degree 5p,
p ≥ 7 a prime, which will be needed later on in Chapter 6. In the proof of this result
Proposition 2.1.1 and the following result will be needed.

Proposition 2.1.2 [104] Let G be a finite group and H ≤ G. If |G : H| = n, then
G/HG is isomorphic to a subgroup of the symmetric group Sn, where HG is the
largest normal subgroup of G that is contained in H.

Proposition 2.1.3 Let G be a transitive non-abelian simple group of degree 5p,
p ≥ 7 a prime, and let H be a maximal subgroup of G such that Gα < H < G. Then
G is quasiprimitive and one of the following holds:

(i) G = PSL(2, 11), H = A5, |G : H| = 11 and Gα = A4;

(ii) G = PSL(m, q), H is the stabilizer of a line or hyperplane, m is a prime, q is
a prime power and |G : H| = qm−1

q−1 = p.

Proof. Let G be a transitive non-abelian simple group of degree 5p, where p ≥ 7
is a prime. Since the stabilizer Gα of a point α is not maximal the group G is
imprimitive, and consequently, since it is a simple group, it is quasiprimitive.

By the Praeger’s classification of quasiprimitive groups [99], one can see that G
is in class AS. Let H be a maximal subgroup of G such that Gα < H < G. Since
|G : Gα| = 5p, we can conclude that either |G : H| = 5 or |G : H| = p. If |G : H| = 5,
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then |H : Gα| = p, and since G is a non-abelian simple group, Proposition 2.1.2
implies that G is isomorphic to a subgroup of S5. We can conclude that G ∼= A5

and thus H ∼= A4. But since p ≥ 7, A4 has no subgroup of index p, a contradiction.
If, however, |G : H| = p, then |H : Gα| = 5, and thus G is one of the groups listed
in Proposition 2.1.1(i)-(iv).

Suppose that G is the group from Proposition 2.1.1(i). Then G = Ap and
H ∼= Ap−1. For p− 1 ≤ 4 the group H ∼= Ap−1 has no subgroup of index 5. On the
other hand, if p − 1 ≥ 5, then H ∼= Ap−1 is a simple group, and it has a subgroup
of index 5 if and only if p − 1 = 5. But then p = 6 is not a prime, a contradiction.
It follows that G is not a group from Proposition 2.1.1(i). Further, since M22 and
M10 have no subgroup of index 5, G cannot be a group from Proposition 2.1.1(iv)
either, and we can conclude that G is a group from Proposition 2.1.1(ii) or (iii).

2.1.3 Group-theoretic results

In this section, we will introduce various group-theoretic results that will be
used in the proofs throughout this PhD Thesis. For a subgroup H of a group G, we
denote by CG(H) the centralizer of H in G and by NG(H) the normalizer of H in
G.

Proposition 2.1.4 [114, Proposition 4.4] A transitive abelian group G on a set Ω
is regular and the centralizer CSΩ

(G) of G in the symmetric group SΩ is equal to G.

Proposition 2.1.5 [56, Chapter I, Theorem 4.5] Let G be a group and H a subgroup
of G. Then the quotient group NG(H)/CG(H) is isomorphic to a subgroup of the
automorphism group Aut(H) of H.

Proposition 2.1.6 [104, Theorem 8.5.3] Every group of order pmqn, where p and
q are primes, and m and n are non-negative integers, is solvable.

Proposition 2.1.7 [114, Theorem 3.4] Let p be a prime and let P be a Sylow p-
subgroup of a permutation group G acting on a set Ω. If pm divides the length of the
G-orbit containing ω ∈ Ω, then pm also divides the length of the P -orbit containing
ω.

The following result can be extracted from [24, pp. 285].

Proposition 2.1.8 [24] Let G = PSL(2, 7). Then Sylow 2-subgroups of G are iso-
morphic to D8. Moreover, all involutions of G are conjugate, and G has no subgroup
of order 14.

A transitive group G acting on a set Ω is said to be doubly transitive if it acts
transitively on the set of ordered pairs of points from Ω. Further, G is said to be
simply primitive if it is primitive but not doubly transitive. The following result is
due to Burnside [9].
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Proposition 2.1.9 [9] Let G be a transitive group of prime degree p. Then either
G is doubly transitive or G contains a normal Sylow p-subgroup.

The following result on primitive groups of degree 2p may be deduced from [70].

Proposition 2.1.10 [70] A primitive group G of degree 2p, p a prime, is one of the
following:

(i) p = 5, and G = A5 or G = S5;

(ii) G = A2p or G = S2p;

(iii) p = 11 and G = M22;

(iv) p = 1+q2
t

2 , and G is a subgroup of Aut(PSL(2, k)) containing PSL(2, k), where

k = q2
t

and q is an odd prime.

Moreover, G is simply primitive in case (i) and is doubly transitive in all other cases.

We wrap up this subsection by the result that may be extracted from [28, The-
orem 2.10].

Proposition 2.1.11 [28] Let G be a transitive permutation group of degree 10p, p ≥
5 a prime, with an imprimitivity block system B formed by a (proper, intransitive)
minimal normal subgroup N of G. Then NB is simple for all blocks B ∈ B.

2.2 Graphs

A graph or undirected graph X is an ordered pair X = (V,E) where V = V (X) is
a set, whose elements are called vertices and E = E(X) is a set of pairs (unordered)
of distinct vertices, called edges. The vertices belonging to an edge are called the
endvertices of the edge. The order of a graph X is the cardinality of its vertex set
|V (X)|. A multigraph is a generalization of a graph in which we allow multiedges
and loops.

For adjacent vertices u and v in X, we write u ∼ v and denote the corresponding
edge by uv. If u ∈ V (X) then N(u) denotes the set of neighbors of u. The valency
(or degree) of a vertex u in X is the number of edges incident to the vertex u, that
is |N(u)|. If each vertex of the graph has the same valency d the graph is called a
regular graph of valency d. A graph X is cubic if it is regular of valency 3. A graph
X is tetravalent if it is regular of valency 4.

A walk is a sequence of graph vertices and graph edges such that the vertices and
the edges are adjacent. A path on a graph is a sequence v1, v2, . . . , vn such that v1v2,
v2v3, . . ., vn−1vn are edges of the graph and the vertices vi are distinct. A closed
path v1, v2, . . . , vn, v1 on a graph is called a cycle. A Hamilton path in a graph X is
a path which visits each vertex of X exactly once. A Hamilton cycle in a graph X
is a cycle that visits each vertex of X exactly once (except the vertex which is both
the start and the end, and so is visited twice). A graph is hamiltonian if it possess
a Hamilton cycle. By an n-cycle we shall always mean a cycle with n vertices.
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The distance d(u, v) between two vertices u and v in a graph is the number of
edges in a shortest path connecting them. With Ni(u) we denote the set of vertices
at distance i > 1 from a vertex u. A graph is connected if there exists a path between
all pairs of vertices in the graph, otherwise the graph is disconnected. A bipartite
graph is a graph X whose vertices can be divided into two disjoint sets U and U ′

(U,U ′ ⊆ V (X), U ∪ U ′ = V (X)) such that every edge connects a vertex in U and
one in U ′; that is, there is no edge between two vertices in the same set.

An ordered pair (u, v) of adjacent vertices u and v in a graph X is called an
arc. If e = (u, v) is an arc in X then eλ = (v, u) denotes the same edge but with
the opposite direction. The arc eλ is called the reverse of the arc e. A sequence
(u0, u1, u2, . . . , uk) of distinct vertices in X is called a k-arc if ui is adjacent to ui+1

for every i ∈ {0, 1, . . . , k − 1}.

The complement of a graph X will be denoted by Xc, that is, V (Xc) = V (X)
and there is an edge between two different vertices u and v in Xc if and only if
uv 6∈ E(X). Let U and W be disjoint subsets of V (X). The subgraph of X induced
by U will be denoted by X〈U〉. Similarly, we let X[U,W ] (in short [U,W ]) denote
the bipartite subgraph of X induced by the edges having one endvertex in U and
the other endvertex in W .

2.2.1 Action of groups on graphs

An automorphism α of a graph X = (V,E) is an isomorphism of X with itself.
Thus each automorphism α ofX is a permutation of the vertex set V which preserves
adjacency. The set of all automorphisms of X together with the composition of the
permutations form the automorphism group Aut(X) of the graph X. Any subgroup
G of the automorphism group Aut(X) of the graph X in a natural way acts on the
set of vertices V (X), set of edges E(X) and set of arcs A(X) of X. A subgroup G ≤
Aut(X) is said to be vertex-transitive, edge-transitive and arc-transitive provided it
acts transitively on the set of vertices, edges and arcs of X, respectively. A graph
X is said to be G-vertex-transitive, G-edge-transitive, and G-arc-transitive if G is
vertex-transitive, edge-transitive and arc-transitive, respectively. If G = Aut(X)
we simply say that X is vertex-transitive, edge-transitive or arc-transitive. An arc-
transitive graph is also called a symmetric graph. A subgroup G ≤ Aut(X) is said
to be s-regular if it acts transitively on the set of s-arcs and the stabilizer of an s-arc
in G is trivial. If G = Aut(X) the graph X is said to be s-regular.

If the subgroupG of the automorphism group Aut(X) of a graphX acts (im)primi-
tively on the vertex set V (X) we say that X is G-(im)primitive. A vertex-transitive
graph for which each transitive subgroup of its automorphism group is primitive is
called a primitive graph. Otherwise it is called an imprimitive graph. If X is imprim-
itive with an imprimitivity block system which is formed by the orbits of a proper
normal subgroup of some transitive subgroup G ≤ Aut(X), then the graph X is
said to be genuinely imprimitive. If X is imprimitive, but there exists no transitive
subgroup G ≤ Aut(X) having a nontransitive normal subgroup, then X is said to
be quasiprimitive. Note that if B is an imprimitivity block system of some vertex-
transitive graph, then any two blocks B,B′ ∈ B induce isomorphic vertex-transitive
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subgraphs.
Imprimitive vertex-transitive graphs of order 2p, p a prime, were described in

[75]. Among other things it was proved there that, provided a vertex-transitive
graph X of order 2p admits an imprimitive group G (with blocks of size p or 2),
one can always find an imprimitive subgroup of G which has blocks of size p. In
particular, the following result is proved in [75] and will be used later on.

Proposition 2.2.1 Let X be a vertex-transitive graph of order 2p, p a prime. If
G ≤ Aut(X) is an imprimitive subgroup of Aut(X) on X with blocks of size 2, then
there exists an imprimitive subgroup H of G with blocks of size p.

2.2.2 Orbital (di)graphs

Let G be a transitive permutation group of a set Ω and let ∆ ⊆ Ω2 be a nontrivial
orbital. Then the orbital digraph ~X is an directed graph with vertex set Ω and edge
set ∆.

The group G is a subgroup of the automorphism group Aut( ~X) of the graph ~X
and it acts transitively on the vertex set and on the set of directed edges. If instead
of directed edges we take undirected edges we get orbital graph X with vertex set
Ω and edge set {{ω, ν} | (ω, ν) ∈ ∆}. This graph is vertex- and edge-transitive but
it is not necessarily arc-transitive. It is symmetric (arc-transitive) if and only if the
orbital ∆ is selfpaired.

2.2.3 Cayley graphs and normal Cayley graphs

Given a group G and a generating set S of G such that S = S−1 and 1 6∈ S,
the Cayley graph Cay(G,S) of G relative to S has vertex set G and edge set {g ∼
sg | g ∈ G, s ∈ S}. Then X = Cay(G,S) admits a right regular action of G on
V (X) = G, hereafter identified with G (this should cause no confusion). Sabidussi
characterized [105] Cayley graphs as follows. A graph is a Cayley graph on a group
G if and only if its automorphism group contains a regular subgroup isomorphic to
G.

Let Aut(G,S) = {α ∈ Aut(G) | Sα = S} be a group of all those automorphisms
of G fixing S setwise. By Godsil [49, Lemma 2.1], for a connected Cayley graph
X = Cay(G,S) we have NAut(X)(G) = G⋊ Aut(G,S).

Following Xu [121], X = Cay(G,S) is called a normal Cayley graph if G is normal
in Aut(X), that is, if Aut(G,S) coincides with the vertex stabilizer of 1 ∈ G, that
is, Aut(G,S) = A1. So, for a normal Cayley graph X = Cay(G,S) we have that
|Aut(G,S)| divides |S|!. And, for a tetravalent one-regular normal Cayley graph
X = Cay(G,S), the set S consists of four elements, say s1, s2, s3 and s4, and either
there exists α ∈ Aut(G,S) cyclically permuting s1, s2, s3 and s4 (in which case

A1
∼= Z4), or there exist α, β ∈ Aut(G,S) such that sα1 = s2 and sβ3 = s4 (in which

case A1
∼= Z2

2).
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2.2.4 Generalized Petersen graphs

Let n ≥ 3 be a positive integer, and let r ∈ {1, . . . , n−1}\{n/2}. The generalized
Petersen graph GP(n, r) is a graph with

V (GP(n, r)) = {ui | i ∈ Zn} ∪ {vi | i ∈ Zn}

and

E(GP(n, r)) = {uiui+1 | i ∈ Zn} ∪ {vivi+r | i ∈ Zn} ∪ {uivi | i ∈ Zn}.

Note that GP(n, r) is cubic, and it is easy to see that GP(n, r) ∼= GP(n, n − r).
In 1971 Frucht, Graver and Watkins [42] proved that a generalized Petersen graph
GP(n, t) is vertex-transitive if and only if t2 ≡ ±1 (mod n) or (n, t) = (10, 2), and
that there are only seven symmetric generalized Petersen graphs: GP(4, 1), GP(5, 2),
GP(8, 3), GP(10, 2), GP(10, 3), GP(12, 5), and GP(24, 5). Moreover, the following
proposition holds.

Proposition 2.2.2 [42, 96] The generalized Petersen graph GP(n, t) is a non-Cayley
vertex-transitive graph if and only if either t2 ≡ −1 (mod n) or (n, t) = (10, 2). In
addition, if t2 ≡ −1 (mod n) and (n, t) 6∈ {(10, 3), (5, 2)}, then

Aut(GP(n, t)) = 〈a, b|an = b4 = 1, b−1ab = at〉.

2.2.5 Semiregular automorphisms and quotient graphs

Given a graph X and a partition W of its vertex set we let the quotient graph
corresponding to W be the graph XW whose vertex set equals W with W,W ′ ∈ W
adjacent if there exist vertices a ∈ W and b ∈ W ′, such that a ∼ b in X. When
W is the set of orbits of a subgroup H in Aut(X) the quotient graph XW we will
denoted by XH .

Let m ≥ 1 and n ≥ 2 be integers. An automorphism of a graph is called (m,n)-
semiregular if it has m orbits of length n and no other orbit. Let now X be a graph
admitting an (m,n)-semiregular automorphism ρ and denote the set of the orbits
of ρ by S. Let S, S′ ∈ S. We let d(S) and d(S, S′) denote the valency of X〈S〉 and
X[S, S′], respectively. (Clearly, the graph X[S, S′] is regular.) We let the quotient
multigraph corresponding to ρ be the multigraph Xρ whose vertex set is S and in
which S, S′ ∈ S are joined by d(S, S′) edges. Observe that S is a partition of V (X),
so we can also consider the quotient graph XS which is precisely the underlying
graph of Xρ.

In the subsequent sections some of the graphs will be represented in Frucht’s
notation [41]. For the sake of completeness we include the definition. Let X be a
connected graph of order mn admitting an (m,n)-semiregular automorphism ρ. Let
S = {Si | i ∈ Zm} be the set of orbits of ρ. Denote the vertices of X by vji , where

i ∈ Zm and j ∈ Zn, in such a way that Si = {vji | j ∈ Zn} with vji = (v0
i )
ρj

. Then X
may be represented by the notation of Frucht [41] emphasizing the m orbits of ρ in
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the following way. The m orbits of ρ are represented by m circles. The symbol n/R,
where R ⊆ Zn \ {0}, inside a circle corresponding to the orbit Si indicates that for
each j ∈ Zn, the vertex vji is adjacent to all the vertices vj+ri , where r ∈ R. When
X〈Si〉 is an independent set of vertices we simply write n inside its circle. Finally,
an arrow pointing from the circle representing the orbit Si to the circle representing
the orbit Sk, k 6= i, labeled by the set T ⊆ Zn indicates that for each j ∈ Zn, the
vertex vji ∈ Si is adjacent to all the vertices vj+tk , where t ∈ T . When the label is
0, the arrow on the line may be omitted. An example illustrating this notation is
given in Figure 2.1.

10/1 10/5 10/3
0 0

Figure 2.1: The Levi graph given in Frucht’s notation with respect to a (3, 10)-
semiregular automorphism.

A graph X admitting an (m,n)-semiregular automorphism is completely deter-
mined by the so-called symbol. However, we define it here only for graphs admitting
a (10, p)-semiregular automorphism. Let ρ be a (10, p)-semiregular automorphism
and let Si, i ∈ Z10, be its orbits. Choose si ∈ Si and define the following subsets
of Zp. For i, j ∈ Z10, we let Ri,j = {r ∈ Zp | si ∼ sρ

r

j }. Note that Rj,i = −Ri,j. It
is clear that the collection of all Ri,j completely determines X. The 10× 10-matrix
Mρ(X) = (Ri,j)i,j , whose (i, j)-th entry is the set Ri,j, is the symbol of X relative
to (ρ, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9). The symbols will be used in Chapter 6 to
give relevant quasiprimitive and primitive graphs of order 10p, p a prime.

The following proposition which is a generalization of [75, Theorem 3.4] is given
in [64, Lemma 2.1] .

Proposition 2.2.3 Let X be a vertex-transitive graph of order mp, where p is a
prime and m < p, and let G ≤ Aut(X) be a transitive subgroup of automorphisms
of X. Then there exists some (m, p)-semiregular automorphism ρ of X, such that
ρ ∈ G.

We wrap up this subsection with two results about imprimitive graphs of certain
orders which will be useful later on. The first result is a reformulation of [64,
Lemma 2.1], and the second result may be deduced from [26, Lemma 2].

Proposition 2.2.4 Let X be a G-imprimitive graph of order mq, q a prime, with a
G-invariant partition B and let H ≤ G have m orbits of length q. Let S be an orbit
of H and let B ∈ B be such that B ∩ S 6= ∅. Then one of the following holds:

(i) |B ∩S| = 1, in which case |B ∩S′| = 1 for every orbit S′ of H which meets B,
or

(ii) B ∩ S = S, in which case q divides |B|.

Proposition 2.2.5 Let X be a vertex-transitive graph of order mq, q a prime, let G
be an imprimitive subgroup of automorphisms of X and let N be a normal subgroup
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of G with orbits of length q. Then X has an (m, q)-semiregular automorphism whose
orbits coincide with the orbits of N .

2.2.6 Graphs covers

We give here a formal definition of various concepts associated with graph covers.
(For terms not defined here we refer the reader to [52].) An epimorphism ℘ : X̃ →
X of connected graphs is a regular covering projection if it arises essentially as a
factorization X̃ → X̃K

∼= X, where the action of K ≤ Aut(X̃) is semiregular on
both vertices and edges of X̃. Note that the graph X may not be simple even if X̃
is. The graph X̃ is called the covering graph (or regular K-cover) and X is the base
graph. The preimage ℘−1(v), v ∈ V (X), corresponds to an orbit of K on V (X̃) and
is called the (vertex)-fibre over v. Similarly, edge-fibres correspond to orbits of K on
E(X̃). It is well-known that a regular covering projection X̃ → X = X̃K can be
reconstructed in terms of voltage assignments valued in K as follows (see [52]). First
label arbitrarily a vertex in each fibre by 1 ∈ K, and then label all other vertices
by the right regular action of K ≤ Aut(X̃) on each fibre. Consequently, given an
arc e ∈ A(X), the origins and termini of arcs in ℘−1(e) are labeled, respectively,
by g and ag (g ∈ K) for some a ∈ K. This fact is recorded by assigning the
voltage ζ(e) = a ∈ K to the corresponding arc e, with inverse arcs carrying inverse
voltages. Observe that a voltage assignment on arcs extends to an assignment on
walks in a natural way. By connectedness of X̃ , the voltages of all fundamental
closed walks at any vertex v ∈ V (X) generate the whole voltage group K. It is
also well known that a given voltage assignment can be modified so that the arcs
of an arbitrarily prescribed spanning tree receive the trivial voltage, and that the
modified assignment is associated with the same covering projection, see [52]. (A
voltage assignment ζ such that the arcs of a spanning tree T carry the trivial voltage,
is said to be T -reduced.)

We say that α ∈ Aut(X) lifts to an automorphism of X̃ if there exists an auto-
morphism α̃ ∈ Aut(X̃), called a lift of α, such that α̃℘ = ℘α. The problem whether
an automorphism α of X lifts or not is expressed in terms of voltages as follows.
Given α ∈ Aut(X), we define a function ᾱ from the set of voltages of fundamental
closed walks based at a fixed vertex v ∈ V (X) to the voltage group K by the rule
ζ ᾱC = ζCα where C ranges over all fundamental closed walks at v, and ζC and ζCα

are the voltages of C and Cα, respectively. The next proposition, taken from [74,
Theorem 4.2, Corollary 4.3], provides information about the relationship between
automorphisms of graph covers and their base graphs.

Proposition 2.2.6 [74] Let X̃ be a regular cover of X = X̃K with respect to the
voltage assignment ζ. Then, an automorphism α of X lifts if and only if ᾱ extends
to an automorphism α∗ of K.



Chapter 3

Non-Cayley vertex-transitive
graphs

Results of this chapter are published in [63].
Every Cayley graph is vertex-transitive. However, there are vertex-transitive

graphs which are not Cayley graphs, the smallest example is the well-known Petersen
graph. The order of a non-Cayley vertex-transitive graph is called a non-Cayley
number.

In 1983, Marušič [77] asked for which positive integers n there exists a non-Cayley
vertex-transitive graph on n vertices. Several articles directly or indirectly related
to this subject (see [4, 5, 20, 55, 69, 73, 78, 86, 87, 88, 89, 91, 92, 100, 102, 108,
109, 111, 131] for some of the relevant references), have appeared in the literature,
answering this question for particular positive integers. For example, in [78] it is
proved that every vertex-transitive graph of order pk, where p is an odd prime and
k ≤ 3, is a Cayley graph. Further, a family of non-Cayley vertex-transitive graphs of
order pk, where p ≥ 5 is a prime and k ≥ 4, was constructed by McKay and Praeger
in [91]. In 1971 Frucht, Graver and Watkins [42] gave a construction of a family of
non-Cayley vertex-transitive graphs of order 2p, when p ≡ 1 (mod 4) is a prime, and
in 1979 Alspach and Sutcliffe [5] showed that 2p, p a prime, is a non-Cayley number
if and only if p ≡ 1 (mod 4). Results from [4], [86] and [102] combined together give
a classification of all non-Cayley vertex-transitive graphs of order a product of two
primes, and results from [57] and [94] give a characterization of non-Cayley numbers
of the form 2pq, p and q odd primes. In 1996 McKay and Praeger [92] proved that
any positive integer n divisible by a square of a prime number p, with the exception
of n ∈ {12, p2, p3}, is a non-Cayley number. Non-Cayley properties of products of
three distinct primes have been addressed by Seress in [108]. Most recently, Li and
Seress [69] determined those square-free numbers n for which there exist non-Cayley
vertex-transitive graphs of order n with a primitive automorphism group.

We say that an m-Cayley graph X on a group G is a graph admitting a semiregu-
lar automorphism subgroup G having m orbits, all of equal length, say n. In view of
the well-known polycirculant conjecture [75, 83] regarding existence of semiregular
automorphisms in vertex-transitive digraphs it seems natural to pose the following
problem.
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Problem 3.0.1 Given a non-Cayley vertex-transitive graph X determine the small-
est integer m such that X is an m-Cayley graph on a cyclic group.

Motivated by above mentioned research, Feng [40] asked to determine the small-
est valency ϑ(n) among valencies of non-Cayley vertex-transitive graphs of order n.
In particular, he settled the problem for graphs of odd prime power order. Clearly
a non-Cayley number n with ϑ(n) = 3 is an even integer. As is well known, a gen-
eralized Petersen graph GP(n, t) is a non-Cayley vertex-transitive graph if and only
if t2 ≡ −1 (mod n) or (n, t) = (10, 2) (see [42, 72, 96]), and thus for every positive
integer n such that 4 divides φ(n) we have that ϑ(2n) = 3. In view of these com-
ments we propose to continue with the investigation of non-Cayley numbers along
the following lines.

Problem 3.0.2 Classify all non-Cayley numbers n for which ϑ(n) = 3.

Problem 3.0.3 For non-Cayley numbers n with ϑ(n) = 3 classify all connected
cubic non-Cayley vertex-transitive graphs of order n. In particular, when is it true
that every such graph is a generalized Petersen graph.

Problem 3.0.3 has already been solved for integers of the form 2p, 4p, 2p2 and
2pq, where p and q are odd primes (see, respectively, [5, 42, 78], [127], [128] and
[131]). In particular, the generalized Petersen graphs are the only connected cu-
bic non-Cayley vertex-transitive graphs of order 2p, the Coxeter graph is the only
connected cubic non-Cayley vertex-transitive graph of order 4p which is not a gener-
alized Petersen graph, and every connected cubic non-Cayley vertex-transitive graph
of order 2p2 is a generalized Petersen graph. By [131], there exists an infinite family
of cubic non-Cayley vertex-transitive graphs of order 2pq which are not generalized
Petersen graphs, the smallest is the Tutte graph (see [8, 17]). One of the aims of
this chapter is to solve Problem 3.0.3 for n = 4p2, p > 7 a prime. (Throughout this
chapter p will always denote a prime number.) In particular, using group-theoretic
and combinatorial techniques we show that the generalized Petersen graphs are the
only examples of cubic non-Cayley vertex-transitive graphs of order 4p2 (see Theo-
rem 3.1.4). In other words, we show that every cubic non-Cayley vertex-transitive
graph of order 4p2 is a 2-Cayley graph on a cyclic group, thus solving Problem 3.0.1
for this particular class of non-Cayley vertex-transitive graphs. Furthermore, we
show that every cubic non-Cayley vertex-transitive graph of order 2pn, where p > 7
is a prime and n ≤ p, is a 2-Cayley graph on a p-group P generated by two elements
a and b of the same order and admitting an automorphism φ ∈ Aut(P ) of order 4
such that aφ = b and bφ = a−1 (see Theorem 3.2.3).

The following six results about vertex-transitive graphs will be needed in the
remainder of the chapter. The second one is obtained by combining together results
from [37], [126] and [127]. The third one is obtained by combining together [35,
Theorem 3.2 and Corollary 3.6] and [128, Theorem 2.1].

Proposition 3.0.4 [37, Theorem 6.2] The generalized Petersen graph GP(8, 3), also
known as the Moebius-Kantor graph, is the only cubic symmetric graph of order 4p2,
where p is a prime.
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The graph NNC(4n) in the following proposition is a Cayley graph Cay(G,S) on
the group G = 〈a, b | a2n = b2 = 1, b−1ab = a−1〉 with respect to the generating set
S = {b, ab, anb} (see Figure 3.1). In [126] it is shown that Aut(NNC(4p)) ∼= Zp2⋊D2p.

Proposition 3.0.5 Let X be a connected cubic vertex-transitive graph of order 4p,
where p > 7 is a prime. Then either a Sylow p-subgroup of Aut(X) is normal in
Aut(X) or X ∼= NNC(4p).

Figure 3.1: The graph NNC(4p) for p = 7.

Proposition 3.0.6 Let X be a connected cubic vertex-transitive graph of order 2p2,
where p is a prime. Then a Sylow p-subgroup of Aut(X) is normal in Aut(X).

Proposition 3.0.7 [35, Theorem 3.2 and Corollary 3.4] Let p > 5 be a prime and
let n be a positive integer. Then every connected cubic symmetric graph X of order
2pn is a Cayley graph. In addition, if p 6= 7 then a Sylow p-subgroup of Aut(X) is
normal in Aut(X).

Proposition 3.0.8 [128] Every connected cubic non-Cayley vertex-transitive graph
of order 2p2, p a prime, is a generalized Petersen graph.

Proposition 3.0.9 [39, Corollary 3.2] Let p 6= 5 be a prime and let G be a p-group
of order pn with n ≤ p. Then all connected tetravalent Cayley graphs on G are
normal.

3.1 Cubic non-Cayley vertex-transitive graphs of order
4p2

In this section cubic non-Cayley vertex-transitive graphs of order 4p2, where
p > 7 is a prime, are classified. In particular, we solve Problem 3.0.1 for this
particular class of non-Cayley vertex-transitive graphs. The following three results
will be needed in this respect.
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Proposition 3.1.1 Let p > 7 be a prime and let X be a connected cubic vertex-
transitive graph of order 4p2 such that its automorphism group Aut(X) admits a
normal subgroup M ∼= Zp. If XM

∼= NNC(4p) then X is a Cayley graph.

Proof. Let X be a connected vertex-transitive graph of order 4p2 such that there
exists a normal subgroupM of Aut(X) isomorphic to Zp and that the corresponding
quotient graph XM is isomorphic to NNC(4p). Then X is a regular M -cover of the
graph Y = NNC(4p) and thus it can be derived from Y through a suitable voltage
assignment. Let

V (Y ) = {xi, yi, zi, wi | i ∈ Zp} and

E(Y ) = {xiyi, xiyi−1, ziwi, ziwi−1, xiwi, ziyi | i ∈ Zp},

and let T be a spanning tree of Y consisting of the edges xiyi, xiwi, ziyi, where
i ∈ Zp, and xiyi−1, where i ∈ Zp \ {0}, see Figure 3.2. Let ζ : A(Y ) → Zp be a
T -reduced voltage assignment giving rise to X = Ỹ = Cov(Y, ζ), where the voltages
on the cotree arcs are ζ(zi, wi) = ai, ζ(wi−1, zi) = bi, i ∈ Zp and ζ(yp−1, x0) = c, see
also Figure 3.2. There are 2p + 1 fundamental cycles

Cc = x0y0x1y1 . . . xp−1yp−1x0,

Cai
= xiyiziwixi, i ∈ Zp,

Cbi = ziyixiyi−1xi−1wi−1zi, i ∈ Zp \ {0},

Cb0 = z0y0x1y1 . . . xp−1wp−1z0,

which are generated, respectively, by the cotree arcs (yp−1, x0), (zi, wi) and (wi−1, zi).

x0 y0

x1
y1 x2 y2

x3 y3

xp-1 yp-1

wp-1

zp-1w3
z3w2z2w1

z1w0z0

c

b0

a0
b1 a1

a2 a3 ap-1
b2 b3 b4 bp-1

Figure 3.2: The graph NNC(4p) with voltage assignment ζ. The spanning tree
consists of edges without labels, each of them carries voltage 0.

Observe that

Aut(Y ) = 〈ǫi | i ∈ Zp〉 ⋊ 〈ρ, τ〉 ∼= Zp2 ⋊D2p

where ǫi = (yiwi)(xi+1 zi+1), ρ = (x0 x1 . . . xp−1)(y0 y1 . . . yp−1)(z0 z1 . . . zp−1)
(w0 w1 . . . wp−1) and τ =

∏

i∈Zp
(xi y−i)(zi w−i). It is convenient to view elements

ǫ in E = 〈ǫi | i ∈ Zp〉 as vectors in Zp2. Namely, we write ǫ = (e0, . . . , ep−1) where
ei = 1 if and only if ǫi actually appears in ǫ.

Since the orbits of M form an Aut(X)-invariant partition, the whole automor-
phism group Aut(X) of X projects to a subgroup of Aut(Y ). In other words, the
largest subgroup G of Aut(Y ) which lifts with respect to the natural projection
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X = Cov(Y, ζ) → Y is a vertex-transitive subgroup isomorphic to Aut(X)/M .
Since G is a vertex-transitive subgroup of Aut(Y ) it contains a Sylow p-subgroup
of Aut(Y ). In addition, by conjugation, we may, without loss of generality, assume
that 〈ρ〉 ≤ G. If ǫ = (1, 1, 1, . . . , 1) ∈ G then 〈ǫ, ρ, ατ〉, for some α ∈ E, is a regular
subgroup of G, and consequently X is a Cayley graph. Thus we may assume that
(1, 1, 1, . . . , 1) 6∈ G. Then, by [75, Theorem 6.2] (see also [98, Theorem 1]) and since
ρ ∈ G, there exists ǫ = (1, 1, 0, . . .) ∈ E ∩G.

Now let us consider the mappings ρ̄ and ǭ from the set {ai, bi, c | i ∈ Zp} of
voltages of the fundamental cycles of Y to the cyclic group Zp which are defined by
ζ ρ̄C = ζCρ and ζ ǭC = ζCǫ , respectively. Proposition 2.2.6 implies that the mappings ρ̄
and ǭ are extended to automorphisms of Zp. Denote these extended automorphisms
by ρ∗ and ǫ∗, respectively. Considering the fundamental cycle Cc we see that cρ

∗
= c

which implies that either c = 0 or ρ∗ is an automorphism of Zp induced by 1 7→ 1.

Case 1. c = 0.

Considering Cǫa1 we see that either a1 = 0 or ǫ∗ is an automorphism of Zp induced by
1 7→ 1 and therefore the identity automorphism. However, considering Cǫa2 we get

that either a2 = 0 or ǫ∗ is an automorphism of Zp induced by 1 7→ −1. Since aρ
∗i

0 = ai
we can conclude that ai = 0 for every i ∈ Zp. Now, since Cǫb2 = x2y2z2w1z1y1x2 we
have that either b2 = 0 or ǫ∗ is an automorphism of Zp induced by 1 7→ −1.

Consider the forth component of ǫ = (1, 1, 0, . . .) ∈ E ∩ G. If ǫ = (1, 1, 0, 1, . . .)
then Cǫb3 = z3w3x3y2z2w2z3 and thus either b3 = 0 or ǫ∗ is an automorphism of
Zp induced by 1 7→ 1. If, however, ǫ = (1, 1, 0, 0, . . .) then Cǫb3 = z3y3x3y2z2w2z3
and thus either b3 = 0 or ǫ∗ is an automorphism of Zp induced by 1 7→ 1. Since

bρ
∗i

1 = bi+1 we can, in all cases, conclude that bi = 0 for every i ∈ Zp. But then all
the voltages are equal to 0 ∈ Zp and thus X is disconnected, a contradiction.

Case 2. ρ∗ is an automorphism of Zp induced by 1 7→ 1.

Considering the images of the fundamental cycles under the automorphism ρ ∈ G
we get that a0 = a1 = · · · = ap−1 and b1 = b2 = · · · = bp−1 = b0 − c. Moreover,
when considering the images of the fundamental cycles under the automorphism
ǫ ∈ G one can get, using the same method as in Case 1, that ai = 0 for every
i ∈ Zp, bi = 0 for every i ∈ Zp \ {0} and b0 = c. But then we may assume that
b0 = c = 1 and thusX ∼= NNC(4p2) is a Cayley graph on the dihedral groupD4p2 .

Proposition 3.1.2 Let X be a connected cubic vertex-transitive graph, let N be a
normal subgroup of Aut(X), and let K be the kernel of Aut(X) in its action on the
quotient graph XN . If XN is cubic then the stabilizer Kv, v ∈ V (X), is trivial.

Proof. The set of orbits B of N is an imprimitivity block system for Aut(X).
Since X and XN = XB are both cubic graphs every induced subgraph 〈B〉, B ∈ B,
is an independent set of vertices. In addition, any vertex v ∈ V (X) has neighboring
vertices in three different orbits of N , all different from the orbit of N that contains
v. But then, since K fixes each orbit of N setwise, the stabilizer Kv of v in K fixes
every neighbor of v. By connectedness of X, we have Kv = 1 and consequently
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K = NKv = N .

The next result will be crucial in the proof of the main result of this section.

Lemma 3.1.3 Let X be a cubic non-Cayley vertex-transitive graph of order 4p2,
where p > 7 is a prime. Then a Sylow p-subgroup of Aut(X) is normal in Aut(X).

Proof. Let A = Aut(X). Since X is a non-Cayley graph, no subgroup of A is reg-
ular on X. Proposition 3.0.4 implies that X is not arc-transitive, and consequently
the stabilizer Av of v ∈ V (X) in A is a 2-group. Thus |A| = 2np2, where n > 2. Let
P be a Sylow p-subgroup of A, and let M be a minimal normal subgroup of A. By
Proposition 2.1.6, A is solvable and therefore M is an elementary abelian group of
order p, p2 or 2k, where 1 ≤ k ≤ n. If |M | = p2 then clearly M = P and so P is
normal in A. The other two possibilities need a more detailed analysis.

Case 1. |M | = p.

Let XM be the quotient graph of X relative to M and let K be the kernel of A
acting on XM . Then, M ≤ K and A/K is transitive on XM . Let B = {Bi | i ∈ Zm}
be the set of orbits of M . Clearly every orbit of M on V (X) has length p, and thus
since |V (X)| = 4p2, we have that |V (XM )| = m = 4p. Since X is cubic and M is
normal in Aut(X), it follows that XM is regular and of valency 2 or 3. Moreover,
for each Bi ∈ B, 〈Bi〉 is an independent set of vertices. (Namely, since each Bi ∈ B
is of odd order the valency of each 〈Bi〉 has to be an even number.)

Suppose first that XM is of valency 2. Then XM is isomorphic to C4p with
alternating single and double edges. Let the orbits ofM be labeled in such a way that
Bi is adjacent to Bi+1 for every i ∈ Zm, and that, in particular, 〈B2i ∪B2i+1〉 ∼= C2p

and 〈B2i−1 ∪B2i〉 ∼= pK2, where i ∈ Zm. Since K fixes each B ∈ B setwise and X is
connected it follows thatK acts faithfully on 〈B0∪B1〉, and soK ≤ Aut(〈B0∪B1〉) ∼=
D4p. It follows that for any vertex v in B0, we have |Kv| ≤ 4, implying that |K| ≤ 4p.
Since XM = C4p we have that A/K is a subgroup of Aut(XM ) = D8p. Clearly, D8p

has a normal Sylow p-subgroup, and thus also A/K has a normal Sylow p-subgroup,
which is isomorphic to PK/K. Since K is normal in A it now follows that PK is
normal in A, and since |PK : P | ≤ 4 we have that P is normal in PK. Moreover,
since P is a Sylow p-subgroup of PK, it is characteristic in PK, and so P is normal
in A.

Suppose now that XM is cubic. Then, by Proposition 3.1.2, Kv = 1 for every
vertex v ∈ V (X), and consequently K = MKv = M ∼= Zp. Proposition 3.0.5
and Proposition 3.1.1 combined together imply that A/K ≤ Aut(XM ) has a normal
Sylow p-subgroup. Hence it follows that P/K⊳A/K, which implies that P is normal
in A.

Case 2. |M | = 2k, k ≤ n.

Let N = O2(A) be a maximal normal 2-subgroup of A. Clearly M ≤ N and |N | > 1
since |M | > 1. Let XN be the quotient graph of X relative to the orbits of N , let B
be the set of orbits of N , and let K be the kernel of A acting on XN . Then, N ≤ K,
A/K ≤ Aut(XN ) and A/K acts transitively on XN . In view of the fact that N is a
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2-group and X is of order 4p2 we get that XN is either of order p2 or of order 2p2.
In addition, since X is cubic and N is normal, the valency of XN is either 2 or 3.

Subcase 2.1. XN is cubic.

Then, since p2 is odd, XN is of order 2p2. By Proposition 3.0.6, Aut(XN ) has a
normal Sylow p-subgroup, and consequently the subgroup A/K of Aut(XN ) also
has a normal Sylow p-subgroup. It follows that PK/K is normal in A/K, and thus
PK ⊳ A. Since X is of order 4p2 and XN is of order 2p2, we have |B| = 2 for
every B ∈ B. Applying Proposition 3.1.2 we get that K = NKv = N ∼= Z2. But
then |PK : P | = 2, and thus P ⊳ PK. Since P is a Sylow p-subgroup of PK, it is
characteristic in PK, and so P is normal in A.

Subcase 2.2. XN is of valency 2.

Then XN is an m-cycle, where m = p2 or 2p2. Without loss of generality we may as-
sume that the orbits in B are labeled in such a way thatXN = (B0, B1, . . . , Bm−1, B0),
that is, Bi is adjacent to Bi+1 for every i ∈ Zm.

Suppose first that d(B) 6= 0 for an orbit B ∈ B. Then, since B is the set of orbits
of a normal subgroup, there is an edge inside each orbit in B. The fact that X is
cubic implies that the graphs induced on the orbits of N are either all isomorphic
to 2K2 or all isomorphic to K2. Clearly, a vertex v ∈ Bi, i ∈ Zm, has one neighbor
in Bi−1, one in Bi and one in Bi+1. Since K fixes each orbit of N setwise, the
stabilizer Kv of v ∈ V (X) fixes all neighbors of v. Applying the connectivity of X
we get that Kv = 1, and so K = NKv = N . Since A/K is transitive on XN and
XN is a cycle, A/K contains a subgroup, say H/K, acting regularly on XN . Then
H acts transitively on X, and |H| = |V (XN )| · |K| = m · |K|. If XN is of order 2p2

then |B| = 2 for every B ∈ B, whereas if XN is of order p2 then |B| = 4 for every
B ∈ B. In both cases the fact that K = N implies that H is of order 4p2. But then
H acts regularly on X, contradicting the assumption that X is a non-Cayley graph.

Suppose now that d(B) = 0 for every B ∈ B. Since X is cubic and XN is a cycle
we have that the subgraph 〈Bi ∪ Bi+1〉 of X induced on two neighboring orbits Bi
and Bi+1 of N is a regular graph with d(Bi∪Bi+1) = 1 or d(Bi∪Bi+1) = 2. Without
loss of generality we may assume that d(B0 ∪B1) = 1. Then 〈B0 ∪B1〉 = 4p2/mK2

and d(B0 ∪Bm−1) = d(B1 ∪B2) = 2, and by induction,

d(Bi ∪Bi+1) =

{

1 if i is even
2 if i is odd

.

Since d(B0 ∪Bm−1) = 2 we must have that d(Bm−2 ∪Bm−1) = 1, and consequently,
m is even. It follows that m = 2p2, |Bi| = 2 for every i ∈ Zm, and 〈Bi∪Bi+1〉 ∼= 2K2

if i is even whereas 〈Bi ∪ Bi+1〉 ∼= C4 if i ∈ Zm is odd. Let Bi = {xi, yi}, i ∈ Zm.
Then we may, without loss of generality, assume that

E(〈Bi ∪Bi+1〉) =

{

{xixi+1, yiyi+1} if i is even
{xixi+1, yiyi+1, xiyi+1, yixi+1} if i is odd

.

(see also Figure 3.3). Thus X ∼= NC(4p2), which is not possible as X is a non-Cayley
graph.

We are now ready to prove the main result of this section.
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x1 x2x0

x-1

y-1

y0 y1 y2

x-4 x-3
x-2

y-3y-4 y-2

Figure 3.3: The structure of the graph X when N has orbits of length 2 and XN is
a cycle.

Theorem 3.1.4 Let X be a cubic non-Cayley vertex-transitive graph of order 4p2,
where p > 7 is a prime. Then X is a non-symmetric generalized Petersen graph
GP(2p2, t), where t2 ≡ −1 (mod 2p2).

Proof. Let A = Aut(X) and let P be a Sylow p-subgroup of A. Then, by
Lemma 3.1.3, P is normal in A. Let B be the set of orbits of P , and let K be
the kernel of A acting on XP , the quotient graph XP of X relative to P . Then
P ≤ K and A/K is transitive on XP . Proposition 3.0.4 implies that X is not sym-
metric, and consequently the stabilizer Av of v ∈ V (X) in A is a 2-group. Thus A
is a {2, p}-group and A/K is a 2-group. Since X is of order 4p2, Proposition 2.1.7
implies that every orbit of P on X is of length p2, and thus XP is of order 4. Let
V (XP ) = B = {Bi | i ∈ Z4}. The normality of P implies that XP is of valency 2 or
3.

Case 1. XP is of valency 3.

Then XP
∼= K4, and so Aut(XP ) ∼= S4. Since A is a {2, p}-group we have that

A/K ≤ D8. Moreover the fact that A/K is transitive on XP implies that 4 divides
the order of A/K. Therefore |A/K| is either 4 or 8. In the first case, A/K acts
regularly on XP . In the second case, A/K ∼= D8 and so A/K is a Sylow 2-subgroup
of Aut(XP ). Since Aut(XP ) ∼= S4 it follows that A/K has a subgroup acting
regularly on XP . Thus in both cases A/K has a subgroup, call it H/K, acting
regularly on XP . It follows that H acts transitively on X and |H| = 4|K|. Applying
Proposition 3.1.2 we get K = PKv = P , and hence H is a transitive subgroup of A
of order 4p2. But then H is regular on X, a contradiction.

Case 2. XP is of valency 2.

Then XP = C4 = (B0, B1, B2, B3, B0). Clearly d(Bi) = 0, for every i ∈ Z4. Namely
if there is some edge inside an orbit of P then the fact that the orbits are of odd
length implies that the subgraphs induced on the orbits of P are of valency 2, which
is impossible since X is a connected cubic graph and XP is a 4-cycle. Without
loss of generality, we may therefore assume that d(B0, B1) = d(B2, B3) = 2 and
d(B1, B2) = d(B3, B0) = 1. In particular, 〈B1, B2〉 = 〈B3, B0〉 = p2K2, and either
〈B0, B1〉 = 〈B2, B3〉 = pC2p or 〈B0, B1〉 = 〈B2, B3〉 = C2p2 .

Subcase 2.1. 〈B0, B1〉 = 〈B2, B3〉 = pC2p.

(Observe that in this case P ∼= Z2
p.) Let the vertices of X be labeled in such a way

that Bi = {(i, j, k) | j, k ∈ Zp}, i ∈ Z4. Then, since X is connected, the action of
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P on the blocks Bi, i ∈ Z4, implies that we may, without loss of generality, assume
that either

E(X) = {(i, j, k)(i + 1, j, k) | i ∈ Z4 \ {3}, j, k ∈ Zp} ∪

∪ {(i, j, k)(i + 1, j, k − 1) | i ∈ Z4 \ {1, 3}, j, k ∈ Zp} ∪ (3.1)

∪ {(3, j, k)(0, j − 1, k) | j, k ∈ Zp}

or

E(X) = {(i, j, k)(i + 1, j, k) | i ∈ Z4 \ {3}, j, k ∈ Zp} ∪

∪ {(0, j, k)(1, j, k − 1) | j, k ∈ Zp} ∪

∪ {(2, j, k)(3, j − 1, k) | j, k ∈ Zp} ∪ (3.2)

∪ {(3, j, k)(0, j + a, k + b) | j, k ∈ Zp},

where a, b ∈ Zp.
Suppose first that the adjacencies in X are as given in (3.1). Observe that

the sets ∆i,j = {(i, j, k) | k ∈ Zp}, i ∈ Z4 and j ∈ Zp, form an imprimitivity
block system Ω for A such that XΩ

∼= C4p. Therefore we may relabel the blocks

in Ω and the vertices of X in such a way that Ω = {∆i | i ∈ Z4p}, ∆i = {xji |
j ∈ Zp}, XΩ = C4p = (∆0,∆1, . . . ,∆4p−1), and that X[∆2j ∪ ∆2j+1] ∼= C2p and
X[∆2j−1 ∪∆2j] ∼= pK2 for every j ∈ Z4p. But then, however, one can easily see that

α : xji 7→ xji+2, β : xji 7→ xj+1
i and γ : xji 7→ xj4p−1−i, where i ∈ Z4p and j ∈ Zp, are

automorphisms of X that generate a transitive subgroup

G = 〈α, β, γ | α2p = βp = γ2 = 1, αβ = α, γβ = γ, αγ = α−1〉

of Aut(X) isomorphic to the group D4p × Zp of order 4p2, which is impossible in
view of the assumption that X is a non-Cayley graph.

Suppose now that the adjacencies in X are as given in (3.2). Then we first
need to find a and b. Since X is a non-Cayley vertex-transitive graph there exists
a non-identity automorphism α ∈ Aut(X) that fixes the vertex (2, 0, 0), that is,
α ∈ A(2,0,0). Using the fact that Bi, i ∈ Z4, are blocks of imprimitivity for A, one
can see that α fixes (2, i, 0) and (3, i, 0) for every i ∈ Zp. Observe that these vertices
induce a 2p-cycle between B2 and B3, and thus all the vertices of this particular
2p-cycle are fixes by α. Consequently, we get that α fixes (1, i, 0) for every i ∈ Zp.
In addition, since the sets Bi, i ∈ Z4, form an imprimitivity block system, α also
fixes vertices antipodal to vertices (1, i, 0), i ∈ Zp, on the 2p-cycles between blocks
B0 and B1, that is, α fixes

(0, i,
p+ 1

2
) for every i ∈ Zp.

This shows that the vertex (3, 0, 0) is adjacent to a vertex (0, i, p+1
2 ) for some i ∈ Zp.

Namely, if the vertex (3, 0, 0) is adjacent to a vertex in B0 different from (0, i, p+1
2 ),

then it can be seen that α fixes all the vertices of the graph, and consequently, that
α = 1, which contradicts our assumption that α 6= 1. Now observe that the sets
∆0,1,i = {(0, i, j), (1, i, j) | j ∈ Zp} and ∆2,3,i = {(2, j, i), (3, j, i) | j ∈ Zp} form an
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imprimitivity block system for A. Since α ∈ A(∆2,3,0) it follows that there exists a
non-identity automorphism β ∈ A(∆0,1,0). Considering the action of β on X we have
that

(3, i, j) ∼ (0, i +
p+ 1

2
, j +

p+ 1

2
) for every i, j ∈ Zp,

that is, (a, b) = (p+1
2 , p+1

2 ). But then

α : (k, i, j) 7→ (k, i + 1, j),
β : (k, i, j) 7→ (k, i, j + 1),

γ : (0, i, j) 7→ (1, i, j + p−1
2 ), (1, i, j) 7→ (0, i, j + p+1

2 ),

(2, i, j) 7→ (3, i + p−1
2 , j), (3, i, j) 7→ (2, i + p+1

2 , j),

δ : (0, i, j) 7→ (2, j − p+1
2 , i), (1, i, j) 7→ (3, j − p+1

2 , i),

(2, i, j) 7→ (0, j, i + p+1
2 ), (3, i, j) 7→ (1, j, i + p+1

2 ),

where i, j ∈ Zp and k ∈ Z4, are automorphisms of X that generate a regular sub-
group G = 〈α, β, γ, δ | [α, β] = [γ, δ] = [α, γ] = [β, γ] = 1, αδ = β, βδ = α〉 of
Aut(X), a contradiction.

Subcase 2.2. 〈B0, B1〉 = 〈B2, B3〉 = C2p2.

Let C = 〈B0, B1〉 and D = 〈B2, B3〉. Then V (X) = V (C)∪V (D). Let V (C) = {xi |
i ∈ Z2p2} and V (D) = {yi | i ∈ Z2p2}. We may, without loss of generality, assume
that xi is adjacent to xi+1, i ∈ Z2p2. Clearly every vertex in C is adjacent to some
vertex of D, say xi is adjacent to yi, i ∈ Z2p2. Let L be the kernel of A acting on
{C ,D}. Then A/L ∼= Z2 and since every vertex in C is adjacent to some vertex in
D, we have that L acts faithfully on V (C). This shows that L ≤ Aut(C) ∼= D4p2 . If
L acts non-transitively on V (C), then |L| ≤ 2p2, forcing |A| = 4p2, contradicting the
fact thatX is a non-Cayley graph. Thus L acts transitively on V (C), and so there ex-
ists g ∈ L such that xgi = xi+1 for every i ∈ Z2p2. Moreover, {xi , yi}

g = {xi+1 , yi+1},
i ∈ Z2p2 , and so g = (x0, x1, . . . , x2p2−1)(y0, y1, . . . , y2p2−1). Since D = C2p2 we may

assume that y0 is adjacent to yt for some t ∈ Z2p2. Then {y0, yt}
gi

= {yi, yt+i}
for every i ∈ Z2p2 . Consequently, E(X) = {{xi xi+1}, {xi, yi}, {yi, yi+t}|i ∈ Z2p2},
which shows that X is isomorphic to the generalized Petersen graph GP(2p2, t).
Proposition 2.2.2 now implies that t2 ≡ −1( mod 2p2), completing the proof of
Theorem 3.1.4.

3.2 Cubic non-Cayley vertex-transitive graphs of order
2pn

In this section we consider cubic non-Cayley vertex-transitive graphs of order
twice an odd prime power. Examples of such graphs may be found among the gen-
eralized Petersen graphs. In particular, for every prime p ≡ 1 (mod 4), the equation
x2 = −1( mod pn) has a solution t ∈ Z+ and thus giving rise to a cubic non-Cayley
vertex-transitive generalized Petersen graph GP(pn, t) (see Proposition 2.2.2). We
are not aware of any other examples of non-Cayley vertex-transitive graphs of order
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twice an odd prime-power pn, p > 7 a prime, even though in view of Theorem 3.2.3
below such examples might indeed exist.

We first show that for a prime p > 7 the automorphism group of a cubic vertex-
transitive graph of order 2pn, n ≤ p, has a normal Sylow p-subgroup. We note that
the next result may be extracted from the classification of vertex-transitive graphs
of order 2p, p a prime (see [75, Theorem 6.2]). However, for the sake of completeness
we give here a direct self-contained proof.

Lemma 3.2.1 Let X be a connected cubic vertex-transitive graph of order 2p, where
p > 7 is a prime. Then a Sylow p-subgroup of Aut(X) is normal in Aut(X).

Proof. Let A = Aut(X). By Proposition 3.0.7, we may assume that X is not arc-
transitive, and consequently that the stabilizer Av of v ∈ V (X) in A is a 2-group.
Thus A is of order |A| = 2mp, where m ≥ 1. Let P be a Sylow p-subgroup of A, and
let M be a minimal normal subgroup of A. By Proposition 2.1.6, A is solvable and
thus M is an elementary abelian 2-group or p-group of order p.

Suppose that P is not normal in A. Then M is an elementary abelian 2-group
with orbits of size 2. This implies that XM is of odd order p and as such it cannot be
cubic. ThereforeXM is a cycle of length p. Without loss of generality we may assume
that the orbits in B are labeled in such a way that XM = (B0, B1, . . . , Bp−1, B0),
that is, Bi is adjacent to Bi+1 for every i ∈ Zp. Observe that d(B) 6= 0 for every
B ∈ B. Namely, if d(B) = 0 for some B ∈ B then d(B′) = 0 for every orbit B′ ∈ B
and d(Bi ∪Bi+1) ∈ {1, 2} for every i ∈ Zp. In addition, whenever d(Bi ∪Bi+1) = 1
(respectively, 2), we must have that d(Bi−1 ∪Bi) = d(Bi+1 ∪Bi) = 2 (respectively,
1), which is clearly impossible since XM is of odd order. Therefore the subgraphs of
X induced on the orbits of M are all isomorphic to the complete graph K2, and X
is isomorphic to the Cartesian product Cp�K2 of a p-cycle and the complete graph
K2. Since the automorphism group of Cp�K2 is isomorphic to D2p × Z2, we can
conclude that P is normal in A.

Lemma 3.2.2 Let X be a connected cubic vertex-transitive graph of order 2pn,
where p > 7 is a prime and n ≤ p. Then a Sylow p-subgroup of Aut(X) is normal
in Aut(X).

Proof. Let A = Aut(X). By Proposition 3.0.7 we may assume that X is not
arc-transitive, and consequently that the stabilizer Av of a vertex v ∈ V (X) in A is
a 2-group. Thus A is a {2, p}-group. Let |A| = 2mpn, where m ≥ 1, 1 ≤ n ≤ p and
let P be a Sylow p-subgroup of A. We proof this lemma by induction on n. If n = 1
then, by Lemma 3.2.1, P is normal in A. Thus we may assume that n ≥ 2.

By Proposition 2.1.6, A is solvable. We will distinguish two different cases de-
pending on whether a minimal normal subgroup M (an elementary abelian group)
of A is a 2-group or a p-group. Let B be the set of orbits of M .

Case 1. M is a 2-group.

Then, the orbits of M are of length 2 and therefore XM is of odd order pn. This
implies that XM cannot be cubic, and hence XM is a cycle of odd length pn. Using
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the same argument as in the proof of Lemma 3.2.1 we get that X is isomorphic to
the Cartesian product Cpn�K2 of a pn-cycle and the complete graph K2. Since the
automorphism group of Cpn�K2 is isomorphic to D2pn × Z2, we conclude that P is
normal in A.

Case 2. M is a p-group.

Let |M | = pd, d ≤ n. If d = n then M = P and thus P is normal in A. We may
therefore assume that d < n. Let XM be the quotient graph of X relative to the
orbits B of M , and let K be the kernel of A acting on XM . Then M ≤ K, and
A/K ≤ Aut(XM ) acts transitively on XM . Since M is a p-group and X is of order
2pn, we have that XM is of order 2pk where k < n. In addition, since X is cubic
and M is normal in Aut(X), it follows that XM is regular of valency 2 or 3.

Subcase 2.1. XM is of valency 2.

Then XM = (B0, B1, . . . , B2pk) is a cycle of length 2pk, k > 0, and A/K ≤
Aut(XM ) = D4pk . The facts that X is cubic, that k > 0 and that orbits of M
are of odd length combined together imply that there is no edge inside the orbits of
M , and consequently we may assume that

d(Bi, Bi+1) =

{

1 if i even
2 if i odd

,

where i ∈ Z2pk . Clearly X is bipartite. Let G ≤ A be the index 2 subgroup of
Aut(X) that preserves the bipartition of V (X). Applying Proposition 2.1.7 we get
that P has two orbits, say U0 and U1 on V (X) which coincide with the bipartition of
V (X), and therefore P ≤ G is a Sylow p-subgroup of G. Clearly P acts regularly on
both U0 and U1. Since M ≤ P we may assume that U0 = {Bi | i ∈ Z2pk even} and
U1 = {Bi | i ∈ Z2pk odd}. Now collapsing every edge in the matchings 〈Bi, Bi+1〉 =

pdK2, where i ∈ Z2pd is even, to a vertex gives a 4-valent vertex-transitive graph

Y of order pk. Moreover G ≤ Aut(Y ) and P acts regularly on V (Y ). Thus Y is a
Cayley graph on P . Since n ≤ p, Proposition 3.0.9 implies that P is normal in G.
Finally, since P is a Sylow p-subgroup of G it is characteristic in G ⊳ A, and hence
P ⊳ A.

Subcase 2.2. XM is cubic.

Then, by Proposition 3.1.2, Kv = 1 and therefore K = MKv = M . By induc-
tion, Aut(XM ) has a normal Sylow p-subgroup and so A/K = A/M has a normal
Sylow p-subgroup too. In particular, P/M is normal in A/M , giving us that PEA.

Let Dip3 denote the 3-dipole (that is, the graph with two vertices and three
parallel edges), and let I denote the graph with two vertices, with one edge between
these two vertices and with a loop at each of the two vertices. We are now ready to
prove the main result of this section.

Theorem 3.2.3 Let X be a connected cubic non-Cayley vertex-transitive graph of
order 2pn, where p > 7 is a prime and n ≤ p. Then X is a non-symmetric regular
P -cover of I, where P is a Sylow p-subgroup of Aut(X). In addition, either
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(i) X is isomorphic to a generalized Petersen graph GP(pn, t), where t2 ≡ −1
(mod pn), or

(ii) X is of order |V (X)| > 2p2 and P = 〈a, b | ap
k

= bp
k

= 1, . . .〉 is a non-cyclic
p-group generated by two elements a and b of the same order and admitting an
automorphism φ ∈ Aut(P ) of order 4 such that aφ = b and bφ = a−1.

Proof. Proposition 3.0.7 implies that X is a non-symmetric graph. If n = 1 then
X is of order 2p and isomorphic to a generalized Petersen graph. If n = 2 then
Proposition 3.0.8 implies that X is a generalized Petersen graph. We may therefore
assume that n ≥ 3.

By Lemma 3.2.2, a Sylow p-subgroup P of A = Aut(X) is normal in A. Observe
that |P | = pn and that, by Proposition 2.1.7, P has two orbits of length pn on V (X),
which implies that X is a regular P -cover of XP ∈ {Dip3,I}. In addition, since the
orbits of P form an A-invariant partition, A projects to a subgroup of Aut(XP ). On
the other hand, the graph X can be viewed as a regular P -cover of XP , and it can
therefore be derived from XP through a suitable voltage assignment.

a

b

1

a b
1

vu v u

Figure 3.4: The voltage graphs.

Case 1. XP
∼= Dip3.

Let V (XP ) = {u, v} and let ζ : A(XP ) → P be a voltage assignment giving rise
to X = X̃P = Cov(XP , ζ), and assigning 1 ∈ P to the two arcs of the underlying
edge uv in the spanning tree T , whereas the voltages on the cotree arcs are as
shown in the left-hand side picture in Figure 3.4. The connectedness of X implies
that P = 〈a, b〉. Moreover, since X is vertex-transitive an automorphism of XP

interchanging u and v must lift along this covering projection. In particular, in
view of Proposition 2.2.6, there is an automorphism α ∈ Aut(XP ) which gives rise
to an automorphism α∗ of P such that {a, b}α

∗
= {a−1, b−1}. If aα

∗
= a−1 then

bα
∗

= b−1, and consequently α̃ ∈ Aut(X) is of order 2. But then P 〈α̃〉 is a regular
subgroup of A, contradicting our assumption that X is a non-Cayley graph. We
may therefore assume that aα

∗
= b−1 and bα

∗
= a−1. Then aα

∗2
= (b−1)α

∗
= a and

bα
∗2

= (a−1)α
∗

= b, showing that α∗2 fixes all the voltages, and consequently that
the lift α̃ is of order 2. This implies that in this case too, P 〈α̃〉 is a regular subgroup
of A, a contradiction.

Case 2. XP
∼= I.

Let V (XP ) = {u, v} and let ζ : A(XP ) → P be a voltage assignment giving rise to
X = X̃P = Cov(XP , ζ), and assigning 1 ∈ P to the two arcs of the underlying edge
uv in the spanning tree T , whereas the voltages on the cotree arcs are as shown
in the right-hand side picture in Figure 3.4. The connectedness of X implies that



28 3.2 Cubic non-Cayley vertex-transitive graphs of order 2pn

P = 〈a, b〉. Moreover, since X is vertex-transitive an automorphism of XP inter-
changing u and v must lift along this covering projection. In particular, in view
of Proposition 2.2.6, there is an automorphism α ∈ Aut(XP ) which gives rise to
an automorphism α∗ of P such that aα

∗
∈ {b, b−1}. Without loss of generality we

may assume that aα
∗

= b. If bα
∗

= a then α̃ ∈ Aut(X) is of order 2, and conse-
quently P 〈α̃〉 is a regular subgroup of A, a contradiction. Therefore bα

∗
= a−1 and

α∗ ∈ Aut(P ) is of order 4. Finally, P is non-cyclic since in the cyclic case X is a
generalized Petersen graph.

Example 3.2.4 Using program package Magma [7] one can see that for a prime
p ∈ {3, 5} a regular G-cover of the graph I, where

G = 〈a, b, c|ap
2

= bp
2

= cp = 1, [a, b] = c, [c, a] = ap, [c, b] = bp〉,

arising from voltage assignment as indicated in the right-hand side picture in Fig-
ure 3.4 is a connected non-Cayley vertex-transitive graph of order 2 · p5 which is not
isomorphic to a generalized Petersen graph.

3.2.1 Observations and conclusions

In this chapter Problem 3.0.1 is solved for cubic non-Cayley vertex-transitive
graphs of orders 4p2 and 2pn, where p > 7 is a prime and n ≤ p. In addition, a
complete classification of non-Cayley vertex-transitive graphs of order 4p2 is given
in Theorem 3.1.4 whereas Theorem 3.2.3 characterizes non-Cayley vertex-transitive
graphs of order 2pn, p > 7 a prime and n ≤ p. If, however, one is to obtain a
complete classification of non-Cayley vertex-transitive graphs of order 2pn, p > 7 a
prime and n ≤ p, then p-groups P = 〈a, b | ap

k

= bp
k

= 1, . . .〉 generated by two
elements a and b of the same order and admitting an automorphism φ ∈ Aut(P )
of order 4 such that aφ = b and bφ = a−1 need to be characterized. By [106,
Theorem 3.5] the automorphism group of a nonsplit metacyclic p-group (p odd
prime) is a p-group which implies that the group P in Theorem 3.2.3 is not a
nonsplit metacyclic p-group. Also, if P is non-abelian and 〈a〉 ∩ 〈b〉 = 〈1〉 then
coreP (〈a〉) 6= 〈a〉 and coreP (〈b〉) 6= 〈b〉. Namely, if, say, 〈a〉 is normal in P then
[a, b] = a−1b−1ab = a−1+l for some l ∈ Zpk \ {0}. Applying the automorphism φ we

get that b−1+l = (a−1+l)φ = [a, b]φ = b−1aba−1 = a−1+l, which shows that l = 1 and
consequently P is abelian.

Let us also remark that each group P satisfying Theorem 3.2.3(ii) gives rise to
a tetravalent arc-transitive Cayley graph Cay(P, {a, a−1, b, b−1}) of order pn. Such
Cayley graphs belong to one of four families of tetravalent edge-transitive Cayley
graphs with odd number of vertices given in [68]. However, no further information
on the existence of such graphs is given there. This gives additional motivation for
the following problem.

Problem 3.2.5 Characterize non-cyclic p-groups P = 〈a, b | ap
k

= bp
k

= 1, . . .〉
generated by two elements a and b of the same order and admitting an automorphism
φ ∈ Aut(P ) of order 4 such that aφ = b and bφ = a−1.



Chapter 4

On automorphism groups of
certain vertex-transitive graphs

Results of this chapter are published in [125].

In this chapter we consider normality of connected cubic Cayley graphs on finite
non-abelian simple groups. Li [66] proved that a connected cubic symmetric Cayley
graph on a finite non-abelian simple group different from

A5,PSL(2, 11),M11,A11,M23,A23 andA47

is normal. Later on Xu and Xu [124] proved that a connected cubic symmetric
Cayley graph on the alternating group A5 is normal. Further, using results from
[33], Xu [123] proved that connected cubic symmetric Cayley graphs on A47 are
non-normal whereas connected cubic symmetric Cayley graphs on the remaining
six groups listed above are all normal. In addition, Fang [34] proved that most of
connected cubic non-symmetric Cayley graphs on finite non-abelian simple groups
are normal. In particular, the following proposition holds.

Proposition 4.0.1 [34] Let X be a connected cubic Cayley graph on one of the
following finite simple groups

(i) a sporadic simple group different from M11, M22, M23, J2, and Suz;

(ii) An, where n 6∈ {5, 11, 23, 47} ∪ {2m − 1 | m ≥ 3};

(iii) a simple group of Lie type of odd characteristic with a possible exception
PSL(2, 11);

(iv) PSL(2, 2e), PSL(3, 2e), U3(2
e), PSp4(2

e), E8(2
e), F4(2

e), 2F4(2
e)′, G2(2

e) or
Sz(2e).

Then Aut(X) = G⋊ Aut(G,S) and Aut(G,S) ≤ S3.

In the PhD Thesis the normality of connected cubic non-symmetric Cayley
graphs on groups given in Proposition 4.0.1(i), (iii) and (ii) with n ∈ {5, 11, 23, 47}
is considered. In particular, we show that each such graph is normal, see Theo-
rem 4.0.4. This result depends on the classification of finite simple groups.
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The following two lemmas will be needed in the proof of Theorem 4.0.4. The first
lemma gives a general description of the full automorphism group of a connected
Cayley graph on a finite non-abelian simple group.

Lemma 4.0.2 [33, Theorem 1.1] Let X = Cay(G,S) be a connected Cayley graph
on a finite non-abelian simple group G. Let M be a subgroup of Aut(X) containing
G⋊ Aut(G,S). Then either M = G⋊ Aut(G,S) or one of the following holds:

(i) M is almost simple with Soc(M) containing G as a proper subgroup;

(ii) G ⋊ Inn(G) ≤ M ≤ G ⋊ Aut(G,S).2 and S is a self-inverse union of G-
conjugacy classes;

(iii) M is not quasiprimitive on V (X) and there is a maximal intransitive normal
subgroup K of M such that one of the following holds:

(a) M/K is almost simple, and Soc(M/K) contains GK/K ∼= G and is tran-
sitive on V (XK);

(b) M/K = AGL3(2), G = PSL(2, 7) and XK
∼= K8;

(c) Soc(M/K) ∼= T ×T and GK/K ∼= G is a diagonal subgroup of Soc(M/K)
(see Table 1 of [34] for T and G).

For a finite group L, let m(L) denote the minimal index of a proper subgroup of
L. The following lemma records an upper bound on the order of a Sylow subgroup
of a finite simple group G in terms of m(G).

Lemma 4.0.3 [32, Lemma 2.1] Let G be a finite non-abelian simple group and let p
be a prime divisor of |G|. Suppose that a Sylow p-subgroup of G has order pd. Then
d ≤ (m(G) − 1)/(p − 1) if p 6= 2 and d ≤ m(G) − 2 if p = 2.

Theorem 4.0.4 Let X = Cay(G,S) be a connected cubic non-symmetric Cayley
graph on G, where G ∈ {M11,M22,M23, J2,Suz,PSL(2, 11),A5,A11,A23,A47}. Then
Aut(X) = G⋊ Aut(G,S).

Proof. For X = Cay(G,S) given in Theorem 4.0.4, write A = Aut(X) and let
A1 denote the stabilizer of Aut(X) fixing v = 1 ∈ V (X). Then Aut(X) = GA1

with G ∩A1 = 1. Since X is a cubic non-symmetric graph, A1 is a 2-group, and so
|A1| = 2s for some integer s ≥ 0. If G is not normal in A then there is a subgroup
M of A such that G ⋊ Aut(G,S) is maximal in M . Then either Lemma 4.0.2(i)
or 4.0.2(iii)(a) occurs. In the former case M is almost simple with Soc(M) properly
containing G, which implies that G is not normal in M . It follows that |Soc(M) :
G| = 2n, for some integer n ≥ 2, which by Proposition 2.1.1 is not the case for G
given in Theorem 4.0.4. So we need only to consider Lemma 4.0.2(iii)(a).

Then M has a maximal intransitive normal subgroup K such that M/K is an
almost simple group containing GK/K ∼= G. Since K ∩ G = 1, K is a 2-group.
Let |K| = 2m, for some integer m ≥ 1. If Soc(M/K) 6= GK/K, again by Propo-
sition 2.1.1, a similar argument as above yields a contradiction. So Soc(M/K) =
GK/K ∼= G, which implies that GK ⊳ M . If K is centralized by G, then G is
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a characteristic subgroup of GK and hence G ⊳ M , which is not the case since
NAut(X)(G) = G ⋊ Aut(G,S) is a maximal subgroup of M . Thus by conjugation G

acts nontrivially on K and hence G is isomorphic to a subgroup of Aut(K). Then,
by Hall [54], we conclude further that G is isomorphic to an irreducible subgroup of
PSL(d, 2), for some integer d ≤ m. On the other hand, K must be semiregular on
V (X) (otherwise, the quotient graph XK has valency two and Aut(XK) is a dihedral
group, which contradicts to the fact that GK/K ≤M/K ≤ Aut(XK). This implies
that |G|2 is divisible by |K| and hence by 2d, where |G|2 stands for the 2-part of |G|.
Moreover, if |G|2 = 2d, then XK is a cubic graph of odd order, which is impossible.
So 2d is a proper divisor of |G|2. Now we check the ten groups case by case.

If G = M11, then |G|2 = 24. However, by Kleidman and Liebeck [60, Proposition
5.3.8], d ≥ 5, a contradiction. A similar argument shows that also G = M23 does
not occur.

For G = M22, we have |G|2 = 27, and, by Kleidman and Liebeck [60, Proposition
5.3.8], d ≥ 6. Thus d = 6 and |K| = 26. It follows that K ∼= Z6

2, and hence G is
isomorphic to a proper subgroup of PSL(6, 2). On the other hand, |M22| is divisible
by 11 and (11, |PSL(6, 2)|) = 1, a contradiction. So G = M22 is not the case. A
similar argument shows that G = J2 is not the case either.

For G = Suz we have |G|2 = 213, and, by Kleidman and Liebeck [60, Proposition
5.3.8], d ≥ 12. A similar argument as used for M22 shows that G is isomorphic
to a proper subgroup of PSL(12, 2). On the other hand, it is straightforward to
verify that (13, |PSL(12, 2)|) = 1. Since 13 is a prime divisor of |Suz|, it follows that
|PSL(12, 2)| is not divisible by |Suz|, a contradiction.

For G = PSL(2, 11) we have |G|2 = 22, and, by Kleidman and Liebeck [60, Table
5.3.A], d ≥ 5, a contradiction.

For G = A5 we have |G|2 = 22, and, by Kleidman and Liebeck [60, Proposition
5.3.7], d = 2, a contradiction.

For G = An with n ∈ {11, 23, 47} we have, by Kleidman and Liebeck [60, (i) of
Proposition 5.3.7], d ≥ n− 2. However, by Lemma 4.0.3, |G|2 is at most 2n−2 which
contradicts that 2d is a proper divisor of |G|2.

4.1 Observations and conclusions

In this chapter connected cubic non-symmetric Cayley graphs on finite sim-
ple groups are considered. In particular, it is proved that connected cubic non-
symmetric Cayley graphs on a group G, where

G ∈ {M11,M22,M23, J2,Suz,PSL(2, 11),A5,A11,A23,A47},

are normal. This result improves results given in Proposition 4.0.1. However, cubic
non-symmetric Cayley graphs on finite simple groups are still not completely classi-
fied, see Proposition 4.0.1. Unfortunately, the methods used in this chapter do not
work for the remaining cases. So, to solve these remaining cases a new method must
be developed.
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Chapter 5

One-regular graphs

Not surprisingly arc-transitive graphs, and one-regular graphs in particular, have
received considerable attention over the years, the aim being to obtain structural
results and possibly a classification of such graphs of particular orders or satisfying
certain additional properties. Research in one-regular graphs is interesting for two
reasons, the first being their connection to regular maps, a lively area of research.
Namely, the underlying graphs of chiral maps admit one-regular group actions with
a cyclic vertex stabilizers (see, for example, [18, 21, 22, 23]). Second, one may
argue that one-regular graphs are interesting in their own right if one’s goal is
a description of all arc-transitive graphs. For some classes of Cayley graphs, for
example circulants, this has been achieved, whereas for others, such as Cayley graphs
on dihedral groups, all 2-arc-transitive graphs have been completely classified [30],
but arc-transitivity remains an open problem.

Clearly, a one-regular graph with no isolated vertices is connected, and it is of
valency 2 if and only if it is a cycle. The first example of a cubic one-regular graph
was constructed by Frucht [40]. Further research in cubic one-regular graphs has
been part of a more general project dealing with the investigation of cubic arc-
transitive graphs (see [19, 25, 35, 36, 37, 38, 95]). Tetravalent one-regular graphs
have also received considerable attention. In [11] tetravalent one-regular graphs of
prime order were constructed, and in [82] an infinite family of tetravalent one-regular
Cayley graphs on alternating groups was given. Tetravalent one-regular circulant
graphs were classified in [122], and tetravalent one-regular Cayley graphs on abelian
groups were classified in [120]. Next, one may extract a classification of tetravalent
one-regular Cayley graphs on dihedral groups from [65, 111, 112]. Let p and q be
primes. Clearly every tetravalent one-regular graph of order p is a circulant graph.
Also, by [16, 100, 102, 113, 120, 122], every tetravalent one-regular graph of order
pq or p2 is a circulant graph. Furthermore, the classification of tetravalent one-
regular graphs of order 2pq was given in [129]. The aim of this chapter is to classify
tetravalent one-regular graphs of order 4p2, see Theorem 5.4.1. (For more results on
tetravalent arc-transitive graphs, see [44, 45, 67, 101].)
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5.1 Tetravalent arc-transitive graphs

In this section we gather known results about tetravalent arc-transitive graphs
that will be needed in subsequent sections of this chapter. The first two propositions
can be deduced from [120, Theorem 3.5].

Proposition 5.1.1 [120] Let p be a prime, and G ∼= Z2p2 × Z2 or G ∼= Z4p × Zp.
Then there exists a tetravalent one-regular Cayley graph on G if and only if p− 1 is
a multiple of 4. In particular, in this case, exactly one such graph exists.

Proposition 5.1.2 [120] Let p be a prime and G ∼= Z2p × Z2p. Then there is no
tetravalent one-regular Cayley graph on G.

The following proposition is a ‘reduction’ theorem which is deduced from [44,
Theorem 1.1].

Proposition 5.1.3 [44, Theorem 1.1] Let X be a tetravalent connected symmetric
graph and let G ≤ Aut(X) be an arc-transitive subgroup of Aut(X). Then for each
normal subgroup N of G one of the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N acts transitively on each of the two bipartition sets;

(3) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of length r, and
G induces the full automorphism group D2r of XN ;

(4) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the quotient graph
XN is a tetravalent connected G/N -symmetric graph and X is a regular cover
of XN .

To state the next result we need to introduce three families of tetravalent graphs
that were first defined in [45]. First, let C±1(p; 4, 2) be a graph with vertex set Z2

p×Z4,
and adjacencies in C±1(p; 4, 2) satisfying the following conditions: for i, j ∈ Zp and
k ∈ Z4

(i, j, k) ∼

{

(i± 1, j, k + 1) if k is even
(i, j ± 1, k + 1) if k is odd

.

Second, for a prime p ≡ ±1( mod 8) and an element k ∈ Z∗
p such that k2 ≡

2 (mod p) the graph NC0
4p2 is defined as a graph with

V (NC0
4p2) = Z2

p × Z4 = {(x, y, z) | x, y ∈ Zp, z ∈ Z4},

E(NC0
4p2) = {(x, y, 0)(x ± 1, y, 1) | x, y ∈ Zp} ∪ {(x, y, 1)(x, y ± 1, 2) | x, y ∈ Zp} ∪

{(x, y, 2)(x ∓ 1, y ± k, 3) | x, y ∈ Zp} ∪ {(x, y, 3)(x ∓ k, y ± 1, 0) | x, y

∈ Zp}.
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And third, for a prime p, p ≡ 1( mod 8) or p ≡ 3( mod 8) and an element
k ∈ Z∗

p such that k2 ≡ −2 (mod p) the graph NC1
4p2 is defined as a graph with

V (NC1
4p2) = Z2

p × Z4 = {(x, y, z) | x, y ∈ Zp, z ∈ Z4},

E(NC1
4p2) = {(x, y, 0)(x ± 1, y, 1) | x, y ∈ Zp} ∪ {(x, y, 1)(x, y ± 1, 2) | x, y ∈ Zp} ∪

{(x, y, 2)(x ± 1, y ± k, 3) | x, y ∈ Zp} ∪ {(x, y, 3)(x ± k, y ∓ 1, 0) | x, y

∈ Zp}.

The graphs NC0
4p2 and NC1

4p2 are extracted from [45, Lemma 8.4, Lemma 8.7].
Now we can state the result of Gardiner and Praeger [45, Theorem 1.2] about con-
nected tetravalent graphs admitting arc-transitive subgroups of automorphisms with
a normal elementary abelian p-group N such that the corresponding quotient graph
XN is a cycle.

Proposition 5.1.4 [45, Theorem 1.2] For an odd prime p let X be a connected, G-
symmetric, tetravalent graph of order 4p2, let N = Z2

p be a minimal normal subgroup
of G with orbits of size p2, and let K be the kernel of the action of G on V (XN ).
If XN = C4 and Kv = Z2 then X is isomorphic to one of the following graphs:
C±1(p; 4, 2), NC0

4p2 and NC1
4p2.

In [45] it is proven that the three graphs in the above proposition all admit a
one-regular subgroup of automorphisms. In the following two lemmas we improve
this result by showing that C±1(p; 4, 2) is not one-regular whereas NC0

4p2 and NC1
4p2

are.

Lemma 5.1.5 Let p be a prime. Then C±1(p; 4, 2) is not one-regular graph.

Proof. First recall that the vertex set of C±1(p; 4, 2) is equal to V (X) = {(i, j, k) |
i ∈ Zp, j ∈ Zp, k ∈ Z4} and the edges are of the form

(i, j, 2l) ∼ (i± 1, j, 2l + 1), where i, j ∈ Zp and l ∈ {0, 1}

(i, j, 2l − 1) ∼ (i, j ± 1, 2l), where i, j ∈ Zp and l ∈ {0, 1}.

Then the reader can check that a permutation α of V (X) defined by (i, j, k)α =
(−i, j, k) maps edges to edges, and hence α is an automorphism of X. Since α fixes
the arc (0, 0, 1)(0, 1, 2) ∈ A(X) it follows that X is not one-regular.

Lemma 5.1.6 Let p be a prime, then NC0
4p2 and NC1

4p2 are both one-regular graphs.

Proof. Let X ∈ {NC0
4p2,NC1

4p2} and let X2 be the distance-2-graph of X, that

is, V (X2) = V (X) with two vertices being adjacent in X2 if and only if they are at
distance 2 in X. Let

∆i = {(x, y, i) | x, y ∈ Zp, i ∈ Zp}.

Then for every i ∈ Z4 the subgraph X2[∆i] of X2 induced by the vertices in ∆i is a
2-dimensional grid Cp×Cp whereas any edge uv in X2 with endvertices u ∈ ∆i and
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v ∈ ∆j , where i 6= j, is contained in an induced subgraph of X2 isomorphic to the
complete graph K4. Moreover this induced subgraph isomorphic to K4 containing
the edge uv is unique. Take four vertices u1, u2, u3, u4 ∈ ∆i such that the subgraph
Y of X2 induced on these four vertices is isomorphic to a 4-cycle C4. Then Y g for
any g ∈ Aut(X2) is an induced subgraph of X2 isomorphic to C4. Since there is no
set of four vertices containing vertices from different sets ∆i such that the induced
subgraph of X2 is isomorphic to C4 it follows that Y g is a subgraph of X2[∆j ] for
some j ∈ Z4. This shows that the sets ∆i, i ∈ Z4, are blocks of imprimitivity for
Aut(X). Since ∆i, i ∈ Z4, are blocks of imprimitivity for Aut(X), any automor-
phism g ∈ Aut(X) that fixes the vertices (0, 0, 0) and (1, 0, 1) (and thus it fixes the
arc (0, 0, 0), (1, 0, 1)) also fixes the vertices (2, 0, 0) and (−1, 0, 1). Now looking at
the action of g on X2 we get that g fixes both ∆0 and ∆1 pointwise. Since all the
vertices in ∆1 are fixed by g and the induced bipartite subgraph X[∆1,∆2] is a
disjoint union of p 2p-cycles it follows that also ∆2 is fixed pointwise by g. Using
the same argument for X[∆0,∆3] one can see that g also fixes the vertices in ∆3

and thus g = 1, which shows that X is one-regular.

To state the next result we need to introduce two more families of tetravalent
graphs that were first defined in [45]. The graph C±1(p; 4p, 1) is defined to have the
vertex set Zp×Z4p and the edge set {(i, j)(i±1, j +1) | i ∈ Zp, j ∈ Z4p}. The graph
C±ε(p; 4p, 1) is a graph with vertex set Zp × Z4p with adjacencies in C±ε(p; 4p, 1)
satisfying the following conditions:

(i, j) ∼

{

(i± ε, j + 1) if j is odd
(i± 1, j + 1) if j is even

,

where i ∈ Zp, j ∈ Z4p and ε is an element of order 4 in Z∗
p.

Proposition 5.1.7 [45, Theorem 1.1] Let X be a connected, G-symmetric, tetrava-
lent graph of order 4p2, and let N = Zp be a minimal normal subgroup of G with
orbits of size p, where p is an odd prime. Let K denote the kernel of the action of G
on V (XN ). If XN = C4p and Kv = Z2 then X is isomorphic either to C±1(p; 4p, 1)
or to C±ε(p; 4p, 1).

We end this section with a result on tetravalent arc-transitive graphs of order
4p, where p is a prime. In order to state the result, first recall that the lexicographic
product X[Y ] (sometimes also called the wreath product) of two graphs X and Y
has vertex set V (X) × V (Y ), and two vertices (a, u) and (b, v) are adjacent in
X[Y ] if ab ∈ E(X) or if a = b and uv ∈ E(Y ). Second, following [130], for a
prime p congruent to 1 modulo 4, an element w of order 4 in Z∗

p and the group

G = 〈a〉×〈b〉 ∼= Z2p×Z2, we use notation CA0
4p = Cay(G, {a, a−1, aw

2
b, a−w

2
b}) and

CA1
4p = Cay(G, {a, a−1, awb, a−wb}). Then, for the definition of the graph C(2, p, 2)

stated in the sixth row of Table 5.1 see Section 5.3. Finally, by [130, Example 3.7],
g28 = Cos(G,T, TaT ) is a coset graph of the group G = PGL(2, 7) with respect to a
subgroup T isomorphic to A4 and an involution a from the center of the normalizer
of a Sylow 3-subgroup of T in G.
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Proposition 5.1.8 [130, Theorem 4.1] Let s be a positive integer and let p be a
prime. Then a connected tetravalent graph of order 4p is s-arc-transitive if and only
if it is isomorphic to one of the graphs listed in Table 5.1. Furthermore, all graphs
listed in Table 5.1 are pairwise non-isomorphic.

X s Aut(X) comments

K4,4 3 Z2 ⋉ (S4 × S4) p=2

C2p[2K1] 1 D4p ⋉ Z2p
2 p > 2

CA0
4p 1 Z2

2 ⋉ (Z2p × Z2), p ≡ 1( mod 4)

CA1
4p 1 Z4 ⋉ (Z2p × Z2), p ≡ 1( mod 4)

C(2, p, 2) 1 D2p ⋉ Z2p
2 p > 2

g28 3 PGL(2, 7) × Z2 p = 7

Table 5.1: Tetravalent s-arc-transitive graphs of order 4p.

5.2 Examples

In this section, we give examples of tetravalent one-regular graphs of order 4p2,
where p is a prime.

Example 5.2.1 Introduced by Wilson [116] the bicycle wheels are defined in the
following way, given natural numbers n, a, r and s, the graph X = BWn(a, r, s) is
defined to be a graph of order 3n with the vertex set V (X) = {Ai, Bi, Ci | i ∈ Zn}
and the edge set

E(X) = {AiBi, BiAi+1, BiCi, CiBi+a, AiAi+r, CiCi+s | i ∈ Zn}.

With the help of the computer software package Magma [7] one can see that
BW12(5, 1, 5) is one-regular. In addition, it is a Cayley graph Cay(G36, S) on
the group G36 = 〈a, b, c, d | a2 = b2 = c3 = d3 = 1 = [a, b] = [a, c] = [b, c] =
[c, d], d−1ad = b, d−1bd = ab〉 with respect to the generating set S = {ad, (ad)−1, bdc,
(bdc)−1}, and Aut(CA2

36)
∼= G36 ⋊ Z2

2.

Remark: The automorphism group of the graph BW12(5, 1, 5) has a non-normal
Sylow 3-subgroup. Since, by Theorem 5.4.1, the automorphism groups of the graphs
CAi

4p2 , i ∈ {0, 1, 2}, given in Examples 5.2.3 and 5.2.4 and Lemma 5.2.6, all have
normal Sylow p-subgroups, the graph BW12(5, 1, 5) is not isomorphic to any of these
graphs.

Example 5.2.2 Given natural numbers k and m, and a 2 × 2 matrix M over Zn
the 2-dimensional generalized power spidergraph GPS2(k, n,M) is defined to be a
graph with the vertex set Zk×Zn×Zn, and the edge set {(i, x)(i+1, x+ai), (i, x)(i+
1, x+ bi) | i ∈ Zk, x ∈ Zn ×Zn} where ai = (1, 0)M i and bi = (−1, 0)M i (see [116]).
With the use of Magma [7] one can see that GPS2(4, 3, (0 1) : (1 2)) is a one-regular
graph. In addition, it is not a Cayley graph and the stabilizer of a vertex in the
automorphism group is isomorphic to Z4.
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Example 5.2.3 Let p ≡ 1 (mod 4) be a prime and w an element of order 4 in
Z∗
p with 1 ≤ w ≤ p − 1. Let G0

4p2 = 〈a〉 × 〈b〉 ∼= Z2p2 × Z2. Then, by [120,

Proposition 3.3(iv)], the Cayley graph CA0
4p2 = Cay(G0

4p2 , {a, a
−1, awb, a−wb}) is a

tetravalent one-regular graph. Furthermore, Aut(CA0
4p2)

∼= (Z2p2 × Z2) ⋊ Z2
2.

Example 5.2.4 Let p be an odd prime and G1
4p2 = 〈a , b | a4p = bp = 1 , ab =

ba〉 ∼= Z4p × Zp. Then, by [120, Proposition 3.3], the Cayley graph CA1
4p2 =

Cay(G1
4p2 , {ab, a

−1b, ab−1, a−1b−1}) is a tetravalent one-regular graph. Furthermore,

Aut(CA1
4p2)

∼= (Z4p × Zp) ⋊ Z2
2. The graph DW(12, 3) of order 36 given in [116] is

the smallest example of such graphs.

For an odd prime p, the tetravalent graph C±1(p ; 4p, 1) is defined in the para-
graph preceding Proposition 5.1.7. In the following lemma we prove that C±1(p ; 4p, 1)
is isomorphic to CA1

4p2 , and thus Example 5.2.4 implies that it is one-regular.

Lemma 5.2.5 Let p be an odd prime, let G1
4p2 = 〈a , b | a4p = bp = 1 , ab = ba〉 ∼=

Z4p×Zp, and let S = {ab, a−1b, ab−1, a−1b−1}. Then C±1(p ; 4p, 1) ∼= Cay(G1
4p2 , S) =

CA1
4p2 .

Proof. Recall that C±1(p ; 4p, 1) has vertex set Zp × Z4p and edge set {(i, j)(i ±
1, j+1) | i ∈ Zp, j ∈ Z4p}. The map defined by (i, j) 7→ ajbi is an isomorphism from
C±1(p ; 4p, 1) to the Cayley graph CA1

4p2 . We leave the details to the reader.

Let p ≡ 1 (mod 4) be a prime and let ε ∈ Zp be such that ε2 ≡ −1 (mod p).
The following lemma shows that the graph C±ε(p ; 4p, 1) is a Cayley graph.

Lemma 5.2.6 Let p ≡ 1 (mod 4) be a prime, let ε ∈ Zp be such that ε2 ≡
−1 (mod p), let G2

4p2 = 〈a, b | a4p = bp = 1, a−1ba = bε〉, and let

S = {ab, a−1bε, ab−1, a−1b−ε}.

Then CN 2
4p2 = Cay(G2

4p2 , S) is a symmetric graph isomorphic to C±ε(p ; 4p, 1).

Proof. Recall that the graph C±ε(p ; 4p, 1) has vertex set Zp×Z4p with adjacencies
defined as follows:

(i, j) ∼

{

(i± ε, j + 1) if j is odd
(i± 1, j + 1) if j is even

where i ∈ Zp and j ∈ Z4p.

Let G = G2
4p2 and X = Cay(G,S). Then the map defined by (i, j) 7→ ajbi is

an isomorphism from C±ε(p ; 4p, 1) to X. Since, by [45], the graph C±ε(p ; 4p, 1) is
symmetric, the lemma holds.
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5.3 Analysis of tetravalent one-regular graphs of order

4p2

Let p be a prime. Then define C(2, p, 2) to be a graph with V (C(2, p, 2)) =
Z4 × Zp and adjacencies in C(2, p, 2) satisfying the following conditions:

(0, i) ∼ (0, j) ⇐⇒ j − i = ±1,
(0, i) ∼ (1, j) ⇐⇒ j − i = −1,
(0, i) ∼ (2, j) ⇐⇒ j − i = 1,
(1, i) ∼ (2, j) ⇐⇒ j − i = ±1,
(1, i) ∼ (3, j) ⇐⇒ j − i = −1,
(2, i) ∼ (3, j) ⇐⇒ j − i = 1,
(3, i) ∼ (3, j) ⇐⇒ j − i = ±1.

Let X = C(2, p, 2) and let B = {Bi | i ∈ Zp}, where Bi = {(0, i), (1, i), (2, i), (3, i)} ⊆
Z4×Zp. Observe that for each j ∈ Zp, j 6= i, the subgraph X[Bi, Bj ] induced on the
union Bi∪Bj is not an independent set of vertices if and only if j = i±1. Moreover,
for each such j we have that X[Bj , Bj+1] ∼= 2C4, see also Figure 5.1. The following
lemma shows that there is no one-regular Zp-cover of C(2, p, 2).

0 1 2 3 4 5 66

Figure 5.1: A spanning tree in the base graph C(2, p, 2) for p = 7.

Lemma 5.3.1 Let Y be a tetravalent one-regular graph of order 4p2, p > 3 a prime,
such that there exists a normal subgroup H of Aut(Y ) of order p. Then Y is not a
regular Zp-cover of the graph C(2, p, 2).

Proof. Let K = {1, τ1, τ2, τ3} be the Klein 4-group acting on Z4 so that τ1 =
(0 1)(2 3), τ2 = (0 2)(1 3) and τ3 = (0 3)(1 2). Let X = C(2, p, 2), let B = {Bi | i ∈
Zp}, where Bi = {(0, i), (1, i), (2, i), (3, i)} ⊆ Z4 ×Zp, and let K be the kernel of the
action of Aut(X) on B. We shall be sloppy and shall identify restrictions of elements
of K to sets Bi by elements of K. For instance, when we say that the restriction
γi of γ ∈ K to Bi is, for example, τ1, we mean that γi = ((0, i)(1, i))((2, i)(3, i)).
Now, the structure of X indicated in Figure 5.1 implies that the restrictions γi must
satisfy the following conditions:

γi ∈ {1, τ1} ⇐⇒ γi+1 ∈ {1, τ2} ∀i ∈ Zp. (5.1)
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Let the vertices ofX be labeled in the following way: ai = (0, i), bi = (1, i), ci = (2, i)
and di = (3, i). Let E = 〈γi | i ∈ Zp〉. It is well known, see for instance [101, 130],
that Aut(X) = E ⋊ 〈ρ, τ〉 ∼= Zp2 ⋊D2p where

ρ = (a0 a1 . . . ap−1)(b0 b1 . . . bp−1)(c0 c1 . . . cp−1)(d0 d1 . . . dp−1)

and

τ = (a0)(b0 c0)(d0)

p−1
∏

i=1

(ai a−i)(bi c−i)(ci b−i)(di d−i).

Now let Y be a tetravalent one-regular graph of order 4p2. Assume that Aut(Y )
contains a normal subgroupH isomorphic to Zp such that the corresponding quotient
graph YH is isomorphic to X = C(2, p, 2). Then, since the orbits of H form an
Aut(Y )-invariant partition, the whole automorphism group Aut(Y ) of Y projects
to a subgroup of Aut(X). On the other hand, the graph Y can be viewed as an
H-covering graph (that is, a Zp-covering) of X, and it can therefore be derived from
X through a suitable voltage assignment ζ. To find this voltage assignment fixes
the spanning tree T of X as indicated on Figure 5.1.

Let G be the largest subgroup of Aut(X) which lifts with respect to the natural
projection X×ζ Zp ∼= Y → YH ∼= X, where ζ is as given in Figure 5.1. Clearly, since
Y is arc-transitive, we may assume that ρ, τ ∈ G. Let F denote the largest subgroup
of E which lifts. Then G = F ⋊ 〈ρ, τ〉 and thus |G| = 2p|F |. We will show that
|F | > 8. This will then imply that the lift Ḡ of G is of order |Ḡ| = 2p2|F | > 16p2,
and consequently that Y is not one-regular.

Since ρ, τ ∈ G, we have that

if φ ∈ F then φρ, φτ ∈ F. (5.2)

It is convenient to view elements γ in E as vectors in Zp4. Namely, we write γ =
(e0, . . . , ep−1) where ei = s if and only if γi = τs (where ei = 0 means that γi =
τ0 = id). Note that in this context (5.2) can be interpreted as follows: F is invariant
under the “cyclic shift”

φ = (f0, f1, . . . , fp−1) 7→ (fp−1, f0, . . . , fp−2),

and under the “reflection around the first entry”

φ = (f0, f1, . . . , fp−1) 7→ (f ′0, f
′
p−1, f

′
p−2, . . . , f

′
2, f

′
1),

where

f ′i =















0 , if fi = 0
1 , if fi = 2
2 , if fi = 1
3 , if fi = 3

Now choose φ ∈ F . By (5.1) the first two components of φ can be one of the following
pairs: φ = (0, 0, . . .), φ = (0, 2, . . .), φ = (1, 0, . . .), φ = (1, 2, . . .), φ = (2, 1, . . .),
φ = (2, 3, . . .), φ = (3, 1, . . .), or φ = (3, 3, . . .). Since the lift ofG acts arc-transitively
on Y the group G must be of order |G| = 2p|F | ≥ 16p and thus |F | 6= 1.
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Suppose first that there exists ψ ∈ F such that ψ 6∈ {id, (3, 3, . . . , 3)}. Since ρ is
of prime order, the conjugacy class of ψ under 〈ρ〉 is of size p. But then, by (5.2),
we have that |F | > 8, which implies that Ḡ is not acting one-regularly on Y .

Suppose now that (3, 3, . . . , 3) belongs to F . Then, since 〈(3, 3, . . . , 3)〉 ≤ F is of
order 2 and |G| = 2p|F | = 16p, we have that there must also exist a non-identity
automorphism ψ ∈ F which is different from (3, 3, . . . , 3). But then, as above, the
conjugacy class of ψ is of size p, and consequently |F | > 8. This shows that Ḡ is not
acting one-regularly on Y , and the proof is completed.

By the following lemma there are only two normal one-regular Cayley graphs on
the group G = 〈a, b, c, g| ap = bp = c2 = g2 = [a, b] = [c, g] = [a, c] = [b, c] = 1, ag =
b, bg = a〉.

Lemma 5.3.2 Let p be a prime and G = 〈a, b, c, g| ap = bp = c2 = g2 = [a, b] =
[c, g] = [a, c] = [b, c] = 1, ag = b, bg = a〉. Then a tetravalent normal Cayley graph
X of order 4p2 on G is one-regular if and only if it is either isomorphic to

CN 3
4p2 = Cay(G, {ag, bcg, b−1g, a−1cg}) or to

CN 4
4p2 = Cay(G, {ag, bεcg, b−1g, a−εcg}).

Moreover, Aut(CN 3
4p2)

∼= G⋊ Z2
2 and Aut(CN 4

4p2)
∼= G⋊ Z4.

Proof. Let X be a tetravalent one-regular normal Cayley graph Cay(G,S) on the
group G with respect to the generating set S. Since X is one-regular and normal,
the stabilizer A1 = Aut(G,S) of the vertex 1 ∈ G is transitive on S, and either
Aut(G,S) ∼= Z2

2 or Aut(G,S) ∼= Z4. This implies that elements in S are all of the
same order.

Observe that G contains elements of order 2, p and 2p. In particular, elements of
the form c, aibjg and aibjcg, where p | i+ j, are of order 2; elements of the form aibj

are of order p; and elements of the form aibjc, ambng and ambncg, where p ∤ m+ n,
are of order 2p. In the following, we will show that up to isomorphism, there are
only two generating sets of size 4 such that the corresponding Cayley graphs are
normal and one-regular.

First, observe that neither four involutions nor two elements of order p can gen-
erate G. Moreover, G cannot be generated by the following pairs of elements of
order 2p: ai1bj1c and ai2bj2c, am1bn1g and am2bn2g, am1bn1cg and am2bn2cg, where
mi + ni 6= 0 (1 ≤ i ≤ 2). Second, Z(G) = 〈ab, c〉 = 〈ab〉 × 〈c〉 ∼= Zp × Z2,
and thus 〈c〉 char G. Also, since Aut(G,S) is transitive on S, we have that S 6=
{aibjc, ambng, (aibjc)−1, (ambng)−1} and

S 6= {aibjc, ambncg, (aibjc)−1, (ambncg)−1},

where m+ n 6= 0. Now suppose that G is generated by

S0 = {aibjg, am
′
bn

′
cg, (aibjg)−1, (am

′
bn

′
cg)−1},

where p ∤ i+ j and p ∤ m′ + n′.
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Case 1. Aut(G,S0) = 〈α〉×〈β〉 ∼= Z2×Z2, where α and β are such that aα = ai1bj1,
bα = aj1bi1, cα = c, gα = axb−xcg, aβ = ai2bj2, bβ = aj2bi2 , cβ = c and gβ = ayb−yg.

Subcase 1.1. Let i = j.

Since ab ∈ Z(G), G can be generated by S0 if and only if m′ 6= n′. Now take an
automorphism σ of G such that

aσ = ai, bσ = bi, cσ = c, gσ = g.

Then (abg)σ = aibig, and hence

S = S0
σ−1

= {abg, ambncg, (abg)−1, (ambncg)−1}

= {abg, ambncg, a−1b−1g, a−nb−mcg},

where ambncg = (am
′
bn

′
cg)σ

−1
. Moreover, it can be easily seen that m 6= n.

Suppose first that (abg)α = ambncg. Then (ambncg)α = abg, (a−1b−1g)α =
a−nb−mcg, and (a−nb−mcg)α = a−1b−1g. It follows that either m + n = 2 or
m+ n = −2. If m+ n = 2 then, since m 6= n, we have that m 6= 1 and

aα = b, bα = a, cα = c, gα = am−1b1−mcg.

If m+ n = −2, then since m 6= n, we have n 6= −1 and

aα = a−1, bα = b−1, cα = c, gα = a−1−nb1+ncg.

Suppose now that (abg)β = a−1b−1g. Then (a−1b−1g)β = abg, (ambncg)β =
a−nb−mcg, and (a−nb−mcg)β = ambncg. By a similar argument as above, one can
get that

aβ = b−1, bβ = a−1, cβ = c, gβ = g.

Consequently, either S0 = S1 = {abg, amb2−mcg, a−1b−1g, am−2b−mcg}, where m 6=
1, or S0 = S2 = {abg, a−2−nbncg, a−1b−1g, a−nbn+2cg}, where n 6= −1. In addition,
replacing −n with m, it can be seen that S2 = S1. Moreover, it can be easily
seen that G can indeed be generated by S1. Namely, since (abg)p = g we have
g, ab ∈ 〈S1〉. Then, since amb2−mcg ∈ 〈S1〉, we get that amb2−mc ∈ 〈S1〉. Further,
since (amb2−mc)p = c, also c, amb2−m ∈ 〈S1〉. Now, since amb2−m = ambmb2−2m,
m 6= 1, and ab ∈ 〈S1〉, we get that b2−2m ∈ 〈S1〉. Finally, the fact that bg = a implies
that G = 〈S1〉.

Subcase 1.2. Let i 6= j.

Take an automorphism σ of G such that aσ = aibj, bσ = ajbi, cσ = c, and gσ = g.
Then (ag)σ = aibjg and

S = S0
σ−1

= {ag, ambncg, (ag)−1, (ambncg)−1} = {ag, ambncg, b−1g, a−nb−mcg},

where ambncg = (am
′
bn

′
cg)σ

−1
.

Suppose first that (ag)α = ambncg. Then (ambncg)α = ag, (b−1g)α = a−nb−mcg,
and (a−nb−mcg)α = b−1g. In addition, either m+n = 1 or m+n = −1. If m+n = 1
then, since {ag, acg, b−1g, b−1cg} cannot generate G, we have that m 6= 1. Thus α
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is mapping according to the rule: aα = b, bα = a, cα = c, and gα = amb−mcg. If
on the other hand m + n = −1 then, since {ag, b−1cg, b−1g, acg} cannot generate
G, we have that n 6= −1, and hence α is mapping according to the rule: aα = a−1,
bα = b−1, cα = c, and gα = a−nbncg.

Suppose now that (ag)β = b−1g. Then we have that (b−1g)β = ag, (ambncg)β =
a−nb−mcg, and (a−nb−mcg)β = ambncg. Whenever m+n = 1 or m+n = −1, we can
get that β is mapping according to the rule: aβ = b−1, bβ = a−1, cβ = c, and gβ = g.
Thus, we can conclude that either S0 = S3 = {ag, amb1−mcg, b−1g, am−1b−mcg},
where m 6= 1, or S0 = S4 = {ag, a−n−1bncg, b−1g, a−nbn+1cg}, where n 6= −1.
Moreover, replacing −n with m, it can be easily seen that S4 = S3. Also, since
(ag)2 = ab and agamb1−mcg = a2−mbmc, we get that c, a2−mbm ∈ 〈S3〉. Further, the
facts that a2−mbm = a2−2mambm, m 6= 1 and ab ∈ 〈S3〉 combined together imply
that a2−2m ∈ 〈S3〉. Since ag ∈ 〈S3〉, it follows that g ∈ 〈S3〉. Finally, since ag = b,
G is indeed generated by S3.

Now considering the automorphism γ of G defined by aγ = a
1
2 , bγ = b

1
2 , cγ = c,

and gγ = a
1
2 b−

1
2 g we get that S1

γ = {ag, a
m+1

2 b1−
m+1

2 cg, b−1g, a
m+1

2
−1b−

m+1
2 cg},

wherem 6= 1. Thus we only need to consider the generating set S3 = {ag, amb1−mcg,
b−1g, am−1b−mcg}, where m 6= 1.

Case 2. Aut(G,S0) = 〈α〉 ∼= Z4, where α is such that aα = ai1bj1 , bα = aj1bi1,
cα = c, and gα = axb−xcg.

Subcase 2.1. Let i = j.

Since ab ∈ Z(G), G can be generated by S0 (where p ∤ i and p ∤ m′ + n′) if and only
if m′ 6= n′. Now take an automorphism σ of G such that aσ = ai, bσ = bi, cσ = c,
and gσ = g. Then (abg)σ = aibig, and consequently

S = S0
σ−1

= {abg, ambncg, (abg)−1, (ambncg)−1}

= {abg, ambncg, a−1b−1g, a−nb−mcg},

where ambncg = (am
′
bn

′
cg)σ

−1
, and m 6= n.

Suppose first that (abg)α = ambncg. Then (ambncg)α = a−1b−1g, (a−1b−1g)α =
a−nb−mcg, (a−nb−mcg)α = abg. Hence either m + n = ω or m + n = −ω, where
ω2 = −4. If m + n = ω then since m 6= n, we have that m 6= ω

2 . It follows that

aα = aib
ω
2
−i, bα = a

ω
2
−ibi, cα = c, and gα = am−ω

2 b
ω
2
−mcg, where i = (m+1)ω+2−2m

2(2m−ω) .

If on the other hand m + n = −ω then, since m 6= n, we have that n 6= −ω
2 ,

and so aα = aib−
ω
2
−i, bα = a−

ω
2
−ibi, cα = c, and gα = a−

ω
2
−nb

ω
2
+ncg, where

i = 2−2n−(n+1)ω
2(2n+ω) .

Suppose now that (abg)α = a−nb−mcg. Then (a−nb−mcg)α = a−1b−1g, (a−1b−1g)α

= ambncg, and (ambncg)α = abg. Hence, either m + n = ω or m + n = −ω,
where ω2 = −4. If m + n = ω then, since m 6= n, we have that m 6= ω

2 ,

and thus aα = aib−
ω
2
−i, bα = a−

ω
2
−ibi, cα = c, and gα = am−ω

2 b
ω
2
−mcg, where

i = (1−m)ω−2m−2
2(2m−ω) . If however m + n = −ω then, since m 6= n, we have that

n 6= −ω
2 , and so aα = aib

ω
2
−i, bα = a

ω
2
−ibi, cα = c, and gα = a−

ω
2
−nb

ω
2
+ncg, where

i = (n−1)ω−2n−2
2(2n+ω) .
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We can conclude that either S0 = S5 = {abg, ambω−mcg, a−1b−1g, am−ωb−mcg},
where m 6= ω

2 , or S0 = S6 = {abg, a−ω−nbncg, a−1b−1g, a−nbn+ωcg}, where n 6=
−ω

2 . Moreover, replacing −n with m, it can be easily seen that S5 = S6. Also,
the group G is indeed generated by S5. Namely, since (abg)p = g we have that
g, ab ∈ 〈S5〉. Further, since ambω−mcg ∈ 〈S5〉, also ambω−mc ∈ 〈S5〉, and the fact
that (ambω−mc)p = c implies that c, ambω−m ∈ 〈S5〉. Finally, since ambω−m =
ambmbω−2m, m 6= ω

2 , and ab ∈ 〈S5〉, it follows that bω−2m ∈ 〈S5〉. Now this fact and
bg = a combined together imply that G = 〈S5〉.

Subcase 2.2. Let i 6= j.

Take an automorphism σ of G such that aσ = aibj, bσ = ajbi, cσ = c, and gσ = g.
Then (ag)σ = aibjg, and consequently

S = S0
σ−1

= {ag, ambncg, (ag)−1, (ambncg)−1} = {ag, ambncg, b−1g, a−nb−mcg},

where ambncg = (am
′
bn

′
cg)σ

−1
.

Suppose first that (ag)α = ambncg. Then (ambncg)α = b−1g, (b−1g)α = a−nb−mcg,
and (a−nb−mcg)α = ag. Also, either m + n = ε or m + n = −ε, where ε2 = −1.

If m + n = ε then, since {ag, a
ε+1
2 b

ε−1
2 cg, b−1g, a

1−ε
2 b−

ε+1
2 cg} cannot generate G

(namely, for ϕ ∈ Aut(G) such that aϕ = a2, bϕ = b2, cϕ = c, and gϕ = a−1bg we have

{ag, a
ε+1
2 b

ε−1
2 cg, b−1g, a

1−ε
2 b−

ε+1
2 cg}ϕ = {abg, aεbεcg, a−1b−1g, a−εb−εcg}), we have

that m 6= ε+1
2 . It follows that

aα = aibε−i, bα = aε−ibi, cα = c, and gα = am−ibi−mcg,

where i = mε−m+1
2m−ε−1 . If on the other hand m + n = −ε then, since G cannot be

generated by {ag, a
1−ε
2 b−

ε+1
2 cg, b−1g, a

ε+1
2 b

ε−1
2 cg}, we have that n 6= − ε+1

2 , and so

aα = aib−ε−i, bα = a−ε−ibi, cα = c, and gα = a−ε−i−nbε+i+ncg,

where i = − (n+1)ε+n
2n+ε+1 .

Suppose now that (ag)α = a−nb−mcg. Then (a−nb−mcg)α = b−1g, (b−1g)α =
ambncg, and (ambncg)α = ag. Also, either m+n = ε or m+n = −ε, where ε2 = −1.

If m + n = ε then, since {ag, a
ε+1
2 b

ε−1
2 cg, b−1g, a

1−ε
2 b−

ε+1
2 cg} cannot generate G,

we have that m 6= ε+1
2 , and thus

aα = aib−ε−i, bα = a−ε−ibi, cα = c, and gα = am−ε−ibε+i−mcg,

where i = ε(1−m)−m
2m−ε−1 . If however m + n = −ε then, since {ag, a

1−ε
2 b−

ε+1
2 cg, b−1g,

a
ε+1
2 b

ε−1
2 cg} cannot generate G, we have that n 6= − ε+1

2 , and consequently

aα = aibε−i, bα = aε−ibi, cα = c, and gα = a−i−nbi+ncg,

where i = n(ε−1)−1
2n+ε+1 .

We can conclude that either S0 = S7 = {ag, ambε−mcg, b−1g, am−εb−mcg},
where m 6= ε+1

2 , or S0 = S8 = {ag, a−n−εbncg, b−1g, a−nbn+εcg}, where n 6= − ε+1
2 .

Further, replacing −n with m, one can see that S8 = S7. That G is indeed gener-
ated by S7 can be seen in the following way. Since (ag)2 = ab and agambε−mcg =
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aε+1−mbmc, we have that c, aε+1−mbm ∈ 〈S7〉. Then, since aε+1−mbm = aε+1−2mambm,
m 6= ε+1

2 , and ab ∈ 〈S7〉, we get that aε+1−2m ∈ 〈S7〉. Finally, since ag ∈ 〈S7〉, it
follows that also g ∈ 〈S7〉. Now the fact that ag = b implies that G = 〈S7〉.

Now considering the automorphism γ of G defined by

aγ = a
1
2 , bγ = b

1
2 , cγ = c, and gγ = a

1
2 b−

1
2 g,

gives that S5
γ = {ag, a

m+1
2 b

ω
2
−m+1

2 cg, b−1g, a
m+1

2
−ω

2 b−
m+1

2 cg}, where m 6= ω
2 . So

we only need to consider the generating set S7 = {ag, ambε−mcg, b−1g, am−εb−mcg},
where m 6= ε+1

2 and ε2 = −1. Observe also, that this implies that p ≡ 1 (mod 4).

We have proved that when Aut(G,S0) ∼= Z2×Z2 there always exists an automor-
phism σ of G such that S0

σ = S = {ag, bcg, b−1g, a−1cg}. Moreover, Aut(G,S) =
〈α, β〉, where

aα = b, bα = a, cα = c, gα = cg , aβ = b−1, bβ = a−1, cβ = c, and gβ = g.

On the other hand when Aut(G,S0) ∼= Z4 there always exists an automorphism δ of
G such that S0

δ = S = {ag, bεcg, b−1g, a−εcg}. Moreover, in this case Aut(G,S) =
〈ρ〉, where

aρ = a
ε−1
2 b

ε+1
2 , bρ = a

ε+1
2 b

ε−1
2 , cρ = c, and gρ = a

1−ε
2 b

ε−1
2 cg.

Observe also that the following hold:

(1) If ε2 = −1 then {ag, bεcg, b−1g, a−εcg}τ = {ag, b−εcg, b−1g, aεcg}, where τ
is an automorphism of G mapping according to the rule aτ = b−ε, bτ = a−ε,
cτ = c, and gτ = cg.

(2) Since agbcg = a2c, (a2c)2 = a4, (a2c)p = c, ag = b and p is an odd prime, we
can conclude that 〈{ag, bcg, b−1g, a−1cg}〉 = 〈ag, bcg〉 = 〈a, b, c, g〉 = G.

(3) Let ε2 = −1. Then agbεcg = a1+εc, (a1+εc)2 = a2(1+ε), and (a1+εc)p = c. Since
p is an odd prime and ag = b, we can conclude that 〈{ag, bεcg, b−1g, a−εcg}〉 =
〈ag, bεcg〉 = 〈a, b, c, g〉 = G.

To finish the proof, it is sufficient to prove that the graphs Cay(G, {ag, bcg, b−1g,
a−1cg}) and Cay(G, {ag, bεcg, b−1g, a−εcg}) are normal Cayley graphs.

First, let X = Cay(G, {ag, bcg, b−1g, a−1cg}), let A = Aut(X) and let A∗
1 be the

subgroup of the stabilizer A1 fixing the set S = {ag, bcg, b−1g, a−1cg} pointwise.
Then, since the 2-arc (1, ag, a−1bc) lies on a 6-cycle but the 2-arc (1, ag, ab) does not,
one can see that A∗

1 fixes every vertex at distance 2 from 1 in X (see also Figure 5.2).
By connectivity of X and transitivity of A on V (X), A∗

1 fixes every vertex in X and
hence A∗

1 = 1. It follows that A1
∼= AS1 ≤ S4. Since Aut(G,S) = Z2

2 ≤ A1 ≤ S4, we
have that A1 ∈ {Z2

2,D8, A4, S4}. If A1 ∈ {A4, S4} then there exists a permutation
δ in A1 of order 3. We can, without loss of generality, assume that δ fixes ag, and
cyclicly permutates the other three neighbors of 1. But, however, considering the
images of the vertices at distance 2 from 1, one can see that this is impossible (see
Figure 5.2). If A1 = D8 then we may, without loss of generality, assume that there
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Figure 5.2: A local structure of the graph CN 3
4p2 .

exists an involution γ ∈ A1 such that γ 6∈ Aut(G,S), (ag)γ = ag, (b−1g)γ = b−1g,
(bcg)γ = a−1cg and (a−1cg)γ = bcg. However, ab is a common neighbor of ag and bcg
in X, but there is no common neighbor of ag and a−1cg, and thus this case cannot
occur. It follows that A1 = Aut(G,S) = Z2

2, and so X is a normal one-regular
Cayley graph as claimed.

Now let X = Cay(G, {ag, bεcg, b−1g, a−εcg}), let A = Aut(X) and let A∗
1 be

the subgroup of the stabilizer A1 fixing S pointwise. Then considering 6-cycles
passing through the vertex 1 one can see that A∗

1 fixes all the vertices at distance
2 from 1 in X (see also Figure 5.3). Then, connectivity and vertex-transitivity of
X combined together imply that A∗

1 fixes every vertex of X and hence A∗
1 = 1.

It follows that A1
∼= AS1 ≤ S4. Since Aut(G,S) ∼= Z4 . A1 ≤ S4, we have that

A1 ∈ {Z4,D8, S4}. If A1 ∈ {D8, S4} then, without loss of generality, we may as-
sume that there exists an involution ζ ∈ A1 such that ζ 6∈ Aut(G,S), (ag)ζ = ag,
(b−1g)ζ = b−1g, (bεcg)ζ = a−εcg, and (a−εcg)ζ = (bεcg). Since there is no 6-cycle
passing through b−1g, 1, ag and ab, it follows that ζ fixes ab. On the other hand, since
ζ normalizes a Sylow p-subgroup P of G (P EA, see Theorem 5.4.1), we have that

(xy)ζ = 1R(xy)ζ = 1ζ
−1(R(x)R(y))ζ = 1R(x)ζR(y)ζ

= R(x)ζR(y)ζ = 1R(x)ζ
1R(y)ζ

= xζyζ ,
for every x, y ∈ 〈a, b〉. In other words, ζ induces an automorphism on 〈a, b〉. Thus, ζ
fixes 〈ab〉 pointwise, and, in particular, ζ fixes both aεbε and a−εb−ε, a contradiction.
This means that A1 = Aut(G,S) = Z4, and thus X is a normal one-regular Cayley
graph as claimed.

Lemma 5.3.3 CA1
4p2

∼= CN 3
4p2 .

Proof. Let G1
4p2 = 〈a , b | a4p = bp = 1, ab = ba〉 ∼= Z4p × Zp and let G3

4p2 =

〈a, b, c, g| ap = bp = c2 = g2 = [a, b] = [c, g] = [a, c] = [b, c] = 1, ag = b, bg = a〉.
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Figure 5.3: A local structure of the graph CN 4
4p2 .

Then the automorphism group of CN 3
4p2 = Cay(G3

4p2 , {ag, bcg, b
−1g, a−1cg}), is

equal to Aut(CN 3
4p2) = R(G3

4p2) ⋊ A1 = R(G3
4p2) ⋊ 〈α, β〉 ∼= G3

4p2 ⋊ Z2
2, where

aα = b, bα = a, cα = c, gα = cg, aβ = b−1, bβ = a−1, cβ = c, gβ = g.

Let H = 〈R(ag)α, R(b)〉. Then it is easy to see that H = 〈R(ag)α〉 × 〈R(b)〉 ∼=
G1

4p2 . Since H1 ≤ A1 = 〈α, β〉 ∼= Z2
2 and subgroups of order 4 in H are cyclic, we

have that H1 < A1. Moreover, since (R(ag)α)2p is a unique element of order 2 in
H and 1(R(ag)α)2p

6= 1, we have that H1 6∈ {〈α〉, 〈β〉, 〈αβ〉}. Thus H1 = 1, that is,
H is a regular subgroup of Aut(CN 3

4p2). Now Proposition 5.1.1 and Example 5.2.4

combined together imply that CA1
4p2

∼= CN 3
4p2.

Lemma 5.3.4 CN 2
4p2

∼= CN 4
4p2.
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Proof. Let G2
4p2 = 〈a , b | a4p = bp = 1 , a−1ba = bε, ε2 ≡ −1( mod p)〉, and let

G3
4p2 = 〈a, b, c, g| ap = bp = c2 = g2 = [a, b] = [c, g] = [a, c] = [b, c] = 1, ag =

b, bg = a〉. Let 4−1 be the inverse of 4 in Zp and let r = 4−1(ε − 1). Observe that
8r(ε+ 1) + 4 ≡ 0 (mod 4p) and that 4r 6= ε− 1 in Z4p.

Now define a map α from the vertex set of CN 4
4p2 = Cay(G3

4p2 , {ag, b
εcg, b−1g,

a−εcg}) to the vertex set of CN 2
4p2 = Cay(G2

4p2 , {ab, a
−1bε, ab−1, a−1b−ε}) in the

following way:

aibj 7→ a4r(i−j)bi+j

aibjc 7→ a4r(i−j+ε+1)+2bi+j

aibjg 7→ a4r(j−i+1)+1bi+j

aibjgc 7→ a4r(j−i−ε)−1bi+j

where c and g are involutions in G3
4p2 . Then

(aibj , ag · aibj)α = (aibj, aj+1big)α = (a4r(i−j)bi+j, a4r(i−j−1+1)+1bi+j+1)

= (a4r(i−j)bi+j, a4r(i−j)+1bi+j+1)

= (a4r(i−j)bi+j, ab · a4r(i−j)bi+j),

(aibj , bεcg · aibj)α = (aibj, ajbi+εgc)α = (a4r(i−j)bi+j, a4r(i+ε−j−ε)−1bi+j+ε)

= (a4r(i−j)bi+j, a4r(i−j)−1bi+j+ε)

= (a4r(i−j)bi+j, a−1bε · a4r(i−j)bi+j),

(aibj , b−1g · aibj)α = (aibj, ajbi−1g)α = (a4r(i−j)bi+j, a4r(i−1−j+1)+1bi−1+j)

= (a4r(i−j)bi+j, a4r(i−j)+1bi−1+j)

= (a4r(i−j)bi+j, ab−1 · a4r(i−j)bi+j),

(aibj , a−εcg · aibj)α = (aibj, aj−εbigc)α = (a4r(i−j)bi+j, a4r(i−j+ε−ε)−1bi+j−ε)

= (a4r(i−j)bi+j, a4r(i−j)−1bi+j−ε)

= (a4r(i−j)bi+j, a−1b−ε · a4r(i−j)bi+j).

Similarly, it can be checked that for any edge (u, s · u), we have that (u, s · u)α =
(v, s̄ · v), where u ∈ {aibjc, aibjg, aibjgc}, v ∈ {a4r(i−j+ε+1)+2bi+j, a4r(j−i+1)+1bi+j ,
a4r(j−i−ε)−1bi+j}, s ∈ {ag, bεcg, b−1g, a−εcg}, and s̄ ∈ {ab, a−1bε, ab−1, a−1b−ε}.
From this it follows that α is an isomorphism from CN 2

4p2 to CN 4
4p2 . The details are

omitted.

Lemma 5.3.5 The graphs BW12(5, 1, 5), GPS2(4, 3, (0 1):(1 2)), CAi
4p2, i ∈ {0, 1},

CN 2
4p2, NC0

4p2 and NC1
4p2, are pairwise non-isomorphic.

Proof. First, by the remark subsequent to Example 5.2.1, the graph BW12(5, 1, 5)
is not isomorphic to any of the other graphs listed in the lemma. Next, Exam-
ple 5.2.2 shows that GPS2(4, 3, (0 1):(1 2)) is not isomorphic to any of the other
graphs listed in the lemma. Then, since the automorphism group of CA0

4p2 has a

cyclic Sylow p-subgroup, CA0
4p2 is not isomorphic to CA1

4p2 and CN 2
4p2. Also, Ex-

ample 5.2.4 and Lemmas 5.3.3 and 5.3.4 combined together show that CA1
4p2 and
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CN 2
4p2 are not isomorphic. Namely, the stabilizer of a vertex in CA1

4p2 is isomor-

phic to Z2
2 whereas the stabilizer of a vertex in CN 2

4p2 is isomorphic to Z4. Finally,

since the automorphism groups of both NC0
4p2 and NC1

4p2 have a minimal normal

Sylow p-subgroup and the automorphism groups of CA1
4p2, CN 2

4p2 , do not have a

minimal normal Sylow p-subgroup, we have that none of NC0
4p2 and NC1

4p2 is iso-

morphic to CA1
4p2, CN

2
4p2 . Moreover, since the automorphism groups of both NC0

4p2

and NC1
4p2 have an elementary abelian Sylow p-subgroup and the automorphism

group of CA0
4p2 has a cyclic Sylow p-subgroup, which follows that none of NC0

4p2

and NC1
4p2 is isomorphic to CA0

4p2 . The result now follows from the fact that the

stabilizer of a vertex in NC0
4p2 is isomorphic to Z2

2 whereas the stabilizer of a ver-

tex in NC1
4p2 is isomorphic to Z4 (see [45, Lemmas 8.4 and 8.7] and Lemma 5.1.6).
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X |V (X)| Aut(X) References

BW12(5, 1, 5) 36 G36 ⋊ Z2
2 Example 5.2.1

GPS2(4, 3, (0 1):(1 2)) 36 |Aut(X)| = 144 Example 5.2.2

NC0
4p2 4p2, p > 7, given in Lemma 5.1.6

p ≡ ±1 (mod 8) [45, Lemma 8.4]

NC1
4p2 4p2, p > 7, given in Lemma 5.1.6

or p ≡ 1 or 3 (mod 8) [45, Lemma 8.7]

CA0
4p2 4p2, p ≡ 1 (mod 4) (Z2p2 × Z2) ⋊ Z4 Example 5.2.3

CA1
4p2 4p2, p > 2 (Z4p × Zp) ⋊ Z2

2 Example 5.2.4

CN 2
4p2 4p2, p ≡ 1 (mod 4) G3

4p2 ⋊ Z4 Lemmas 5.3.2 and 5.2.6

Table 5.2: Tetravalent one-regular graphs of order 4p2.

We are now ready to state the main theorem of this chapter.

Theorem 5.4.1 Let p be a prime. Then a tetravalent graph X of order 4p2 is
one-regular if and only if it is isomorphic to one of the graphs listed in Table 5.2.
Furthermore, all the graphs listed in Table 5.2 are pairwise non-isomorphic.

Proof. Let X be a tetravalent one-regular graph of order 4p2. Let A = Aut(X)
and let Av be the stabilizer of v ∈ V (X) in A. By [116], there is no tetravalent
one-regular graph of order 16, and BW12(5, 1, 5), GPS2[4, 3, (0 1):(1 2)] and CA1

36

are the only tetravalent one-regular graphs of order 36 (see also Examples 5.2.1,
5.2.2 and 5.2.4). Thus, we assume that p > 3. Since X is one-regular we have that
|A| = 16p2, and thus A is a solvable group. Let P be a Sylow p-subgroup of A.

Claim: P is normal in A.

Since |A| = 16p2 Sylow’s theorems imply that the number of Sylow p-subgroups of
A is equal to |A:NA(P )| = kp + 1. In addition, this number divides 16. Hence, if
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p > 7 then we clearly have that P is normal in A as claimed. Now we will prove
that P is normal in A also when p ∈ {5, 7}.

Let N = O2(A) be the largest normal 2-subgroup of A. Suppose first that
|N | = 16 and consider the quotient graph XN . Then N ≤ K, where K is the
kernel of A acting on V (XN ), XN is a symmetric graph of valency 2 or 4, and, by
Proposition 5.1.3, A/K acts arc-transitively on XN . But then 2 | |A/K|, which
is clearly impossible since |A| = 16p2. Therefore |N ||8. Now we distinguish three
different cases depending on the order of N . Let T be a minimal normal subgroup
of A.

Case 1. |N | = 1.

Then either |T | = p2 or |T | = p. In the former case we have that T = P and
thus P E A as claimed. We may therefore assume that |T | = p. Let XT be the
quotient graph of X relative to the orbits of T , and let K be the kernel of A acting
on V (XT ). Then T ≤ K and A/K acts arc-transitively on XT . If A/T is abelian
then, since A/K is a quotient group of the group A/T , also A/K is abelian. But
since A/K is vertex-transitive on XT , Proposition 2.1.4 implies that it is regular
on XT , contradicting arc-transitivity of A/K on XT . Thus A/T is a non-abelian
group. Let C = CA(T ). Then T ≤ C and, by Proposition 2.1.5, A/C is isomorphic
to a subgroup of Aut(T ) ∼= Zp−1. It follows that A/C is abelian, and consequently
T < C. Let L/T be a minimal normal subgroup of A/T contained in C/T . Then
L/T ∼= Zp, and therefore P = LEA.

Case 2. |N | = 2.

Then |T | ∈ {p2, p, 2}. If |T | = p2 then P E A as claimed. Suppose now that |T | = 2,
and let C = CA(T ). Then T ≤ C and, moreover, by Proposition 2.1.5, |A/C| = 1
which implies that T < C. Let L/T be a minimal normal subgroup of C/T . Then
either |L/T | = p2 or |L/T | = p. In the former case it follows that |L| = 2p2, and
consequently P char L E A, implying that P E A as claimed. In the later case we
have L = Z2×Zp. Suppose first that A/L is abelian and consider the quotient graph
XL of X relative to the orbits of L. Let K be the kernel of A acting on V (XL).
Then L ≤ K, A/K is a quotient group of A/L, and as such also abelian. But
since A/K is vertex-transitive on XL, Proposition 2.1.4 implies that A/K is regular
on XL, which is impossible since A/K acts arc-transitively on XL. Thus, A/L is
a non-abelian group. Let C = CA(L). Then L ≤ C and, by Proposition 2.1.5,
A/C . Aut(L) ∼= Zp−1. It follows that A/C is abelian, and so L < C. Let M/L be
a minimal normal subgroup of A/L contained in C/L. Then M/L ∼= Zp and thus
M E A and |M | = 2p2. In addition, since P char M E A, we have that P E A as
claimed.

Assume now that |T | = p. Then an argument similar to the one used above shows
that A/T is a non-abelian group. Let C = CA(T ). Then, by Proposition 2.1.5,
we have that A/C . Aut(T ) ∼= Zp−1. Thus A/C is abelian, which implies that
T < C. Let L/T be a minimal normal subgroup A/T contained in C/T . Then
either L/T ∼= Zp or L/T ∼= Z2. If L/T ∼= Zp, then clearly L = P E A. If however
L/T ∼= Z2, then L ∼= Z2p and, by Proposition 2.1.5, A/C . Aut(L) ∼= Zp−1 where
C = CA(L). Hence A/C is abelian, and consequently L < C. Now let M/L be
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a minimal normal subgroup of A/L contained in C/L. Then M/L ∼= Zp, and so
|M | = 2p2. But then P char M EA, implying that P EA as claimed.

Case 3. |N | ∈ {4, 8}.

Then either |A/N | = 2p2 or |A/N | = 4p2. Then, clearly PN/N is a Sylow p-
subgroup of A/N and by Sylow’s theorems, PN/N E A/N . Moreover, PN E A. If
|N | = 4 then for p ∈ {5, 7} we have that P is characteristic in PN , and hence normal
in A. Also, if |N | = 8 and p = 5 then one can easily see that P is characteristic
in PN and hence normal in A. Therefore we can now assume that |N | = 8 and
p = 7. Then N is isomorphic to one of the following groups: D8, Q8 (the quaternion
group), Z8, Z4 × Z2 or Z3

2. Let C = CA(N). By Proposition 2.1.5, we have that
A/C . Aut(N). If N 6∼= Z3

2 then 7 ∤ |Aut(N)| and hence 72 | |C|, which implies that
P ≤ C. It follows that P is characteristic in PN and hence normal in A. If however
N ∼= Z3

2 then N ≤ C and Aut(N) ∼= PSL(2, 7). Observe that |A/N | = 98 and
A/C . Aut(N) ∼= PSL(2, 7). But Aut(N) = PSL(2, 7) has no subgroup of order 98
since |PSL(2, 7)| = 168, implying that A/N 6= A/C, and therefore N < C. Note also
that |C| > 8, but 16 ∤ |C|. Namely, if 16 | |C|, the fact that A/K acts arc-transitively
on XC , where K is the kernel of A acting on V (XC), implies that 2 | |A/K|. But
this is impossible since C ≤ K. Therefore 7 | |C|. If 72 ∤ |C| then |C| = 8 · 7 = 56.
But then A/C is a group of order |A/C| = 2 · 7 = 14 isomorphic to a subgroup of
Aut(N) ∼= PSL(2, 7), which by Proposition 2.1.8 is impossible. Therefore 72 | |C|,
and consequently P ≤ CA(N). It follows that P is characteristic in PN , and thus
normal in A. This proves that A always has a normal Sylow p-subgroup as claimed.

Assume first that P is cyclic. Let XP be the quotient graph of X relative to the
orbits of P and let K be the kernel of A acting on V (XP ). By Proposition 2.1.7, the
orbits of P are of length p2. Thus |V (XP )| = 4, P ≤ K andA/K acts arc-transitively
on XP . By Proposition 5.1.3, we have that XP

∼= C4 and hence A/K ∼= D8, forcing
|K| = 2p2. Since A/K is a quotient group of A/P , it follows that A/P is a non-
abelian group. Moreover, |K| = 2p2 and thus K is not semiregular on V (X). Then
Kv

∼= Z2 where v ∈ V (X). By Proposition 2.1.5, A/C . Aut(P ) ∼= Zp(p−1), where
C = CA(P ). Since A/P is non-abelian, we have that P is a proper subgroup of C. If
C ∩K 6= P then C ∩K = K (|K| = 2p2). Since Kv is a Sylow 2-subgroup of K, Kv

is characteristic in K and so normal in A, implying that Kv = 1, a contradiction.
Thus, C ∩K = P and 1 6= C/P = C/(C ∩K) ∼= CK/K EA/K ∼= D8. If C/P ∼= Z2

then C/P is in the center of A/P and since (A/P )/(C/P ) ∼= A/C is cyclic, A/P
is abelian, a contradiction. It follows that |C/P | ∈ {4, 8}, and hence C/P has a
characteristic subgroup of order 4, say H/P . Thus, |H| = 4p2 and H/P E A/P ,
implying that H E A. In addition, since H ≤ C = CA(P ), we have that H is
abelian. Clearly, |Hv| ∈ {1, 2, 4}. First, suppose that |Hv| = 4. Then Hv is a Sylow
2-subgroup of H, implying that Hv is characteristic in H. The normality of H in A
implies that HvEA, forcing Hv = 1, a contradiction. Second, suppose that |Hv| = 2,
and let Q be a Sylow 2-subgroup of H. Then Q E A and Qv = Hv. Consider the
quotient graph XQ of X relative to the orbits of Q. Since |Q| = 4 and Qv ∼= Z2,
Proposition 5.1.3 implies that XQ

∼= C2p2 and hence X ∼= C2p2 [2K1], contradicting
one-regularity of X. Thus, we have that Hv = 1, and since |H| = 4p2, H is regular
on V (X). It follows that X is a Cayley graph on an abelian group with a cyclic



52 5.4 The classification

Sylow p-subgroup P . By elementary group theory, we know that up to isomorphism
Z4p2 and Z2p2 × Z2, where p > 3, are the only abelian groups with a cyclic Sylow
p-subgroup. However, by Xu [122, Theorems 3], there is no tetravalent one-regular
Cayley graph on Z4p2, and so H ∼= Z2p2 × Z2. Proposition 5.1.1 and Example 5.2.3
combined together now imply that X ∼= CA0

4p2.

Now assume that P is elementary abelian. Suppose first that P is a minimal
normal subgroup of A, and consider the quotient graphXP ofX relative to the orbits
of P . Let K be the kernel of A acting on V (XP ). By Proposition 2.1.7, we have that
the orbits of P are of length p2, and thus |V (XP )| = 4. By Proposition 5.1.3, XP

∼=
C4, and hence A/K ∼= D8, forcing |K| = 2p2 and thus Kv = Z2. Proposition 5.1.4
now implies that X is isomorphic to C±1(p; 4, 2), NC0

4p2 or NC1
4p2 . However, by

Lemma 5.1.5, C±1(p; 4, 2) is not one-regular whereas, by Lemma 5.1.6, NC0
4p2 and

NC1
4p2 both are one-regular. Conditions on the prime p written in Table 5.2 follow

from the definition of these graphs (see paragraphs above the Proposition 5.1.4).

Suppose now that P is not a minimal normal subgroup of A. Then a minimal
normal subgroup N of A is isomorphic to Zp. Let XN be the quotient graph of X
relative to the orbits of N and let K be the kernel of A acting on V (XN ). Then
N ≤ K and A/K is transitive on V (XN ). Moreover, we have that |V (XN )| = 4p.
By Proposition 5.1.3, XN is a cycle of length 4p, or N acts semiregularly on V (X),
the quotient graph XN is a tetravalent connected G/N -arc-transitive graph and X
is a regular cover of XN . If XN

∼= C4p, and hence A/K ∼= D8p, then |K| = 2p and
thus Kv = Z2. Applying Proposition 5.1.7 we get that X is either isomorphic to
C±1(p; 4p, 1) or to C±ε(p; 4p, 1) . By Lemmas 5.2.5 and 5.2.6 and Example 5.2.4, these
two graphs are both one-regular and they are, respectively, isomorphic to CA0

4p2 and

CA1
4p2 . If, however, XN is a tetravalent connected G/N -symmetric graph, then, by

Proposition 5.1.3, X is a covering graph of a symmetric graph of order 4p. By Propo-
sition 5.1.8, there are six tetravalent symmetric graphs of order 4p: K4,4, C2p[2K1],
CA0

4p, CA
1
4p, C(2, p, 2) and g28. But, since there is no tetravalent one-regular graph

of order 16, the automorphism group of g28 does not admit a one-regular subgroup,
and since, by Lemma 5.3.1, there is no one-regular Zp-cover of C(2, p, 2), we only
need to consider the covering graphs of C2p[2K1], CA0

4p and CA1
4p. Observe that

in each of these three graphs a one-regular subgroup of automorphisms contains a
normal regular subgroup isomorphic to Z2p × Z2. Let H be a one-regular subgroup
of automorphisms of XN . Since X is one-regular graph, A is the lift of H. Since
H contains a normal regular subgroup isomorphic to Z2p × Z2 also A contains a
normal regular subgroup. Therefore X is a normal Cayley graph of order 4p2. Since
A/Zp ∼= H and Z2p × Z2 E H, there exists a normal subgroup G of A such that
G/Zp ∼= Z2p × Z2. The classification of groups of order 4p2, given in [13, 14], and
a detail analysis of all these groups give that G is either isomorphic to Z2p × Z2p

or to G = 〈a, b, c, g| ap = bp = c2 = g2 = [a, b] = [c, g] = [a, c] = [b, c] = 1, ag =
b, bg = a〉 ∼= (Zp×Z2p) ⋊ Z2. However, by Proposition 5.1.2, there is no tetravalent
one-regular graph on Z2p × Z2p, whereas for the latter group, Lemmas 5.3.2, 5.3.3
and 5.3.4, combined together imply thatX is either isomorphic to CA1

4p2 or to CN 2
4p2.

Since, by Lemma 5.3.3, graphs listed in Table 5.2 are pairwise non-isomorphic the
proof is completed.
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5.5 Observations and conclusions

In this chapter connected tetravalent one-regular graphs of order 4p2, p a prime,
are classified. This result is obtained with the use of basic group theory results,
combinatorial techniques, and covering techniques.
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Chapter 6

The Hamiltonicity problem

In 1969, Lovász [71] asked if every finite, connected vertex-transitive graph has a
Hamilton path, that is, a simple path going through all vertices of the graph. With
the exception of K2, only four connected vertex-transitive graphs that do not have
a Hamilton cycle are known to exist. These four graphs are the Petersen graph,
the Coxeter graph and the two graphs obtained from them by replacing each vertex
by a triangle. The fact that none of these four graphs is a Cayley graph has led
to a folklore conjecture that every Cayley graph with order greater than 2 has a
Hamilton cycle.

Many articles directly and indirectly related to this subject have appeared in the
literature (see [1, 2, 3, 6, 15, 27, 31, 46, 47, 48, 51, 59, 61, 64, 76, 78, 79, 80, 84,
85, 93, 103, 110, 117, 118, 119] for some of the relevant references), affirming the
existence of such paths and, in some cases, even Hamilton cycles. For example, it
is known that connected vertex-transitive graphs of order kp, where k ≤ 5, (except
for the Petersen graph and the Coxeter graph), of order pj , where j ≤ 4, and of
order 2p2, where p is a prime, contain a Hamilton cycle. It is also known that
connected vertex-transitive graphs of order pq, where p and q are primes, admitting
an imprimitive subgroup of automorphisms contain a Hamilton cycle. A Hamilton
path is known to exist in connected vertex-transitive graphs of order 6p. In addition,
it is known that every connected vertex-transitive graph whose automorphism group
contains a transitive subgroup with a cyclic commutator subgroup of prime-power
order, with the exception of the Petersen graph, has a Hamilton cycle (this result
was obtained with a generalization of the method used in [31, 59, 76]). We refer the
reader to [62] for the current status of this problem.

This chapter deals with the existence of Hamilton paths in connected vertex-
transitive graphs of order 10p, where p is a prime. The main object of this chapter
is to show that, with the exception of a certain family of graphs arising from the
action of PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10, every connected vertex-transitive
graph of order 10p, p 6= 7, contains a Hamilton path.

Theorem 6.0.1 Let X be a connected vertex-transitive graph of order 10p, where
p 6= 7 is a prime, not isomorphic to a quasiprimitive graph arising from the action
of PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10. Then X contains a Hamilton path.

The main tool in proving Theorem 6.0.1 is the so-called lifting Hamilton cycles
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approach, a frequently used approach for constructing Hamilton paths and cycles in
vertex-transitive graphs. This approach is based on a quotienting/reduction with
respect to an imprimitivity block system of the corresponding automorphism group
or with respect to a suitable semiregular automorphism, preferably one of prime
order. In particular, every vertex-transitive graph is either genuinely imprimitive,
quasiprimitive or primitive. Following the method in [62] we divide our investigation
depending on which of these three families the graph in question belongs to. There
is no primitive graph of order 10p for p > 19. Also, there is no quasiprimitive graph
of order 10p for p > 31 arising from a group action different from the action of
PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10. For p ≤ 31 all primitive and quasiprimitive
graphs of order 10p are known and the existence of Hamilton cycles in such graphs
(with the exception of the truncation of the Petersen graph) is proved with the help
of program package Magma [7]. In particular, we construct all relevant graphs and
in each of them we either find a transitive group of automorphisms with a cyclic
commutator subgroup of prime-power order (and thus the above mentioned result
proved in [27] applies) or we find a semiregular automorphism of prime order such
that the corresponding quotient graph contains such a Hamilton cycle that it can
be, with the use of the lifting Hamilton cycle approach, lifted to a Hamilton cycle of
the original graph. For the genuinely imprimitive graphs we use the lifting Hamilton
cycle approach based on a quotienting/reduction with respect to an imprimitivity
block system formed by the orbits of a minimal normal subgroup of a genuinely
imprimitive group of automorphisms. In particular, the investigation depends on
the size of the blocks in such imprimitivity block systems.

In Section 6.1 some auxiliary results that are needed in the subsequent sections
are introduced. The rest of the chapter is devoted to proving Theorem 6.0.1. The
genuinely imprimitive graphs are considered in Section 6.2, the quasiprimitive graphs
are considered in Section 6.3, and the primitive graphs are considered in Section 6.4.
Finally, the results are combined in Section 6.5, where the Theorem 6.0.1 is proved.

6.1 Existence of Hamilton cycles/paths in particular
graphs

The following classical result, due to Jackson [58], giving a sufficient condition
for the existence of Hamilton cycles in 2-connected regular graphs will be used
throughout this chapter. (Note that every connected vertex-transitive graph is 2-
connected.)

Proposition 6.1.1 [58, Theorem 6] Every 2-connected regular graph of order n and
valency at least n/3 contains a Hamilton cycle.

A graph is Hamilton-connected if for every pair of vertices there is a Hamilton
path between the two vertices, and it is edge-hamiltonian if each of its edges is
contained in some Hamilton cycle. By the following proposition Cayley graphs on
abelian groups are edge-hamiltonian graphs.
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Proposition 6.1.2 [12, Theorem 6] Let X be a connected Cayley graph on an
abelian group of order at least three. Then each edge of X is contained in some
Hamilton cycle of X.

The following three results about the existence of Hamilton cycles in particular
vertex-transitive graphs will be used in the proofs throughout this chapter.

Proposition 6.1.3 [1] Let X be a connected vertex-transitive graph of order 2p, p
is a prime. Then X is the Petersen graph or X is hamiltonian.

A detailed description of connected vertex-transitive graphs of order qp, q and
p primes, whose automorphism groups contain imprimitive subgroups is given in
[86, 88]. It was proved in [81] that with the exception of the Petersen graph every
such graph has a Hamilton cycle. For q = 5 every connected vertex-transitive
graph of order qp with a primitive automorphism group containing no imprimitive
subgroups arises from one of primitive groups of degree qp without imprimitive
subgroups given in [88, Theorem 2.1], and their hamiltonicity was proved in [29].
Therefore, the following proposition holds.

Proposition 6.1.4 Let X be a connected vertex-transitive graph of order 5p, p a
prime. Then X is the Petersen graph or X is hamiltonian.

Proposition 6.1.5 [27, Theorem 1.1] Let X be a connected vertex-transitive graph
of order at least 3. If there is a transitive group G of automorphisms of X such
that the commutator subgroup of G is cyclic of prime-power order, then X is the
Petersen graph or X is hamiltonian.

We next introduce the following notion of a lift of a path in a graph with a
semiregular automorphism. Let X be a graph that admits an (m,n)-semiregular
automorphism ρ. Let S = {S1, S2, . . . , Sm} be the set of orbits of ρ, let XS be the
corresponding quotient graph and let ℘ : X → XS be the corresponding projection.
Let W = Si1Si2 . . . Sik be a path in XS . We let the lift of the path W be the set of
all paths of X whose images under ℘ are W .

A frequently used approach to constructing Hamilton cycles in vertex-transitive
graphs, which will also be used in this thesis, is based on a quotienting/reduction
with respect to a suitable semiregular automorphism, preferably one of prime order.
Provided the quotient graph contains a Hamilton cycle it is sometimes possible to lift
this cycle to construct a Hamilton cycle in the original graph, consistently spiraling
through the corresponding orbits (see Example 6.1.7). Lifts of Hamilton cycles from
quotient graphs which themselves have a Hamilton cycle are always possible, for
example, where the quotienting is done relative to a semiregular automorphism of
prime order and where in the quotient graph there are at least two adjacent orbits
on the Hamilton cycle joined by a double edge. In this case one can always lift
the Hamilton cycle from the quotient graph because the double edge gives us the
possibility to conveniently “change direction” so as to get a walk in the quotient
that lifts to a full cycle above. In particular, the following lemma is straightforward
and is just a reformulation of [84, Lemma 5].
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Proposition 6.1.6 Let X be a graph admitting an (m, p)-semiregular automor-
phism ρ, where p is a prime. Let C be a cycle of length k in the quotient graph
XS , where S is the set of orbits of ρ. Then, the lift of C either contains a cycle of
length kp or it consists of p disjoint k-cycles. In the latter case we have d(S, S′) = 1
for every edge SS′ of C.

Observe that for a given graphX admitting an (m,n)-semiregular automorphism
ρ, the corresponding quotient graphXρ can be viewed as the graph whose vertices are
circles in Frucht’s notation of X with respect to ρ and edges are the edges between
the circles. For an arc e ∈ A(Xρ) let l(e) denote the label of the corresponding arc
in Frucht’s notation of X with respect to ρ. Similarly, for a walk W in Xρ let l(W )
denote the sum of the labels of the arcs in Frucht’s notation corresponding to the
arcs belonging to the walk W . Throughout the chapter the following observation is
used frequently: If there exists a Hamilton cycle C of Xρ such that (l(C), n) = 1
then X has a Hamilton cycle.

Example 6.1.7 The generalized orbital graph X arising from the action of the
group PSL(2, 11) on cosets of D6 with respect to a union of a self-paired suborbit
of length 1 and a self-paired suborbit of length 3 contains a (10, 11)-semiregular
automorphism ρ, and it can be nicely represented in Frucht’s notation as shown in
Figure 6.1. Since C = S0S1S5S7S3S8S9S6S2S4S0 is a Hamilton cycle in the quotient
graph XS = Xρ, where S = {Si | i ∈ Z10} is the set of orbits of ρ, such that the
sum of the labels of the arcs lying on C is equal to 9 (which is coprime to 11) this
cycle can be lifted to a Hamilton cycle in the original graph X (see Figure 6.1).
This graph is one of the quasiprimitive graphs of order 110 arising from row 2 of
Table 6.1, see Section 6.3.

We end this section with a result about the existence of Hamilton paths in vertex-
transitive graphs admitting a semiregular automorphism of prime order such that
the corresponding quotient graph is of order congruent to 2 modulo 4 and is either
isomorphic to a complete bipartite graph or a complete bipartite graph minus a
matching.

Proposition 6.1.8 Let X be a connected vertex-transitive graph of order 2qm,
where q is a prime and m is odd, admitting a (2m, q)-semiregular automorphism
ρ ∈ Aut(X) and let O be the set of orbits of ρ. If XO ∈ {Km,m,Km,m −mK2} then
X has a Hamilton path.

Proof. Let XO ∈ {Km,m,Km,m −mK2} and let O = {Si, Ti | i ∈ Zm} such that
{Si | i ∈ Zm} and {Ti | i ∈ Zm} are the two bipartite sets of XO. Since every
edge of XO belongs to some Hamilton cycle of XO, we may, by Proposition 6.1.6,
assume that Xρ = XO, that is, d(Si, Tj) = 1 for every i, j ∈ Zm. Since X is regular
it follows that d(S) = d(S′) for any two orbits S, S′ ∈ O. Moreover, since q is a
prime either d(S) = 0 or d(S) ≥ 2 is even. If d(S) = 2 then a Hamilton cycle of X
exists by [3, Theorem 3.9], and if d(S) ≥ 4 then [12, Theorem 4] implies that for
every S ∈ O the subgraph X〈S〉 is Hamilton-connected, and so a Hamilton cycle of
X clearly exists. We may therefore assume that d(S) = 0 for every S ∈ O, that is,



The Hamiltonicity problem 59

S0

S1

S2

S3

S4

S5

S6
S7

S8

S9

11

11

11

11

11

11

11

11

11

11

10

10

2

1

1

7

3

7

Figure 6.1: A vertex-transitive graph arising from the action of PSL(2, 11) on cosets
of D6 given in Frucht’s notation with respect to the (10, 11)-semiregular automor-
phism ρ where undirected lines carry label 0.
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X〈S〉 = qK1. We distinguish two different cases depending on whether XO
∼= Km,m

or XO
∼= Km,m −mK2.

Case 1. XO
∼= Km,m.

Then Si ∼ Tj for every i, j ∈ Zm. If there exists a Hamilton cycle C of Xρ = XS

such that l(C) 6= 0 then X clearly has a Hamilton cycle. Thus we may assume that
no such Hamilton cycle exists in Xρ. Also, if there exist two disjoint cycles C1 and
C2 such that V (Xρ) = V (C1) ∪ V (C2) and l(C1) and l(C2) are both different from
0 then, since q is a prime, we have that C1 and C2 both lift to a single cycle in X,
and consequently the connectedness of X implies that X has a Hamilton path. We
may therefore assume that no such pair of cycles exists in Xρ.

Since S0T0S1T1 · · ·Sm−1Tm−1S0 is a Hamilton cycle in Xρ we may, without loss
of generality, assume that l(SiTi) = l(TiSi+1) = 0 for every i ∈ Zm. Let i ∈
Zm \ {m− 2,m− 1}. Then

Ci = S0TiSiTi−1Si−1 · · ·S1T0S0 and C ′
i = Si+1Tm−1Sm−1Tm−2 · · ·Si+2Ti+1Si+1

are two disjoint cycles such that V (Xρ) = V (Ci) ∪ V (C ′
i), l(Ci) = l(S0Ti) and

l(C ′
i) = l(Si+1Tm−1). If l(Ci) = l(S0Ti) 6= 0 then, by the assumption made in the

preceding paragraph, we have that l(C ′
i) = l(Si+1Tm−1) = 0. Next, since

C ′′
i = S0Ti+1Si+2Ti+2Si+3 · · ·Sm−1Tm−1Si+1TiSiTi−1 · · ·S1T0S0

is a Hamilton cycle of Xρ with l(C ′′
i ) = l(S0Ti+1) we have l(S0Ti+1) = 0. It follows

that
Di = S0Ti+1Si+1TiSiTi−1 · · ·S1T0Si+2Ti+2Si+3 · · · Tm−1S0

is a Hamilton cycle of Xρ with l(Di) = l(T0Si+2), and thus l(T0Si+2) = 0. But then

S0TiSiTi−1Si−1 · · ·S1T0Si+2Ti+2Si+3 · · ·Tm−1Si+1Ti+1S0

is a Hamilton cycle of Xρ with a non-zero label and thus it lifts to a Hamilton cycle
of X. It therefore follows that l(S0Ti) = 0 for every i ∈ Zm \ {m − 2}. Moreover,
by replacing S0 with an orbit Sj, j ∈ Zm \ {0}, in this argument, one can easily see
that we have l(SjTk) = 0 whenever |k − j| 6= m− 2. Further, since in the Hamilton
cycle

C = S0Tm−2Sm−2Tm−3Sm−3Tm−1Sm−1Tm−4Sm−4Tm−5 · · ·S1T0S0

of XO the edge S0Tm−2 is the only edge of the form SiTi+m−2, we have that l(C) =
l(S0Tm−2), and thus l(S0Tm−2) = 0. Since Cψ

j

is a Hamilton cycle of XO and
l(Cψ

j

) = l((S0Tm−2)
ψj

) = l(SjTj+m−2), where

ψ = (S0 S1 . . . Sm−1)(T0 T1 . . . Tm−1) ∈ Aut(XO)

and j ∈ Zm, we get that all the edges of XO carry label 0. But then X is discon-
nected, a contradiction.

Case 2. XO
∼= Km,m −mK2.

We can obtain XO from the graph in Case 1 in such a way that we delete all the
edges of the form {SiTi+1 | i ∈ Zm}. Since none of the edges in the cycles, used in
the proof of Case 1, is of the form SiTi+1, i ∈ Zm, we can apply the same argument
as in Case 1 to show that X has a Hamilton path.
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6.2 Genuinely imprimitive graphs of order 10p

Throughout this section let X be a connected genuinely imprimitive graph of
order 10p, p > 5 a prime, admitting an imprimitive subgroup G of Aut(X) with
a non-transitive minimal normal subgroup N ⊳ G. Let the set of orbits of N be
denoted by B. Then B is a complete imprimitivity block system of G.

Lemmas 6.2.1, 6.2.3, 6.2.4, 6.2.5, 6.2.6 and 6.2.7, each of which covers a particular
size of the blocks in B, combined together imply that every connected genuinely
imprimitive graph of order 10p, p > 7 a prime, possesses a Hamilton path.

Lemma 6.2.1 If the size of blocks in B is 2 then X has a Hamilton path.

Proof. Since XB is a connected vertex-transitive graph of order 5p, by Propo-
sition 6.1.4, it has a Hamilton cycle C. By Proposition 2.2.5, X has a (5p, 2)-
semiregular automorphism whose set of orbits equals B. Thus, by Proposition 6.1.6,
either C lifts to a Hamilton cycle of X or it lifts to a disjoint union of two cycles of
length 5p. Since X is connected a Hamilton path exists in X.

The following proposition about the graphs whose quotient graph with respect
to B is isomorphic to the Petersen graph will be used in the proof of Lemma 6.2.3.
The proposition is a direct generalization of [64, Lemma 3.2]. We omit the proof.

Proposition 6.2.2 If the size of blocks in B is p and the quotient graph XB is
isomorphic to the Petersen graph then X has a Hamilton path.

In the proof of the next lemma we will be using the following notation. Let
Cn = (0, 1, . . . , n − 1) be an n-cycle. A graph C+

n is a graph with V (C+
n ) = V (Cn)

and E(C+
n ) = E(Cn)∪{{i, i+n/2} | i ∈ Zn} (clearly C+

n is well defined only for even
integers n). A graph Cn(k) is a graph with V (Cn(k)) = V (Cn) and E(Cn(k)) =
E(Cn)∪ {{i, i+ k} | i ∈ Zn}. A graph Cn(k, l) is a graph with V (Cn(k, l)) = V (Cn)
and E(Cn(k, l)) = E(Cn)∪{{i, i+ k}, {i, i+ l} | i ∈ Zn}. Also, recall that the direct
product Y × Z of graphs Y and Z is a graph with V (Y × Z) = V (Y ) × V (Z) and
E(Y × Z) = {{(a, x), (b, y)} | ab ∈ E(Y ) and xy ∈ E(Z)}.

Lemma 6.2.3 If the size of blocks in B is p then X has a Hamilton path.

Proof. The quotient graph XB is a connected vertex-transitive graph of order 10.
By Proposition 6.2.2, we may assume that XB is not isomorphic to the Petersen
graph. By Proposition 2.2.4 the blocks of B coincide with the orbits of some (10, p)-
semiregular automorphism ρ ∈ G of X, which exists by Proposition 2.2.5. Let
S = {Si | i ∈ Z10} denote the set of orbits of ρ.

There exist eighteen connected vertex-transitive graphs of order 10 of which one
is isomorphic to the Petersen graph, see [90]. In particular, the quotient graph
XS = XB is isomorphic to one of the following seventeen graphs:

C10, K5,5, C+
10, C5 ×K2, (K5 ×K2)

c, C10(4),
C10(2), C10(2, 5), C10(4, 5), K5 ×K2, GP (5, 2)c, (C5 ×K2)

c,
(C+

10)
c, (2C5)

c, Cc10, (5K2)
c, K10.
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It is easy to see that in all these cases for any edge e of XS there exists a Hamilton
cycle of XS containing e. Hence, by Proposition 6.1.6, we may assume that no
multiedge exists in Xρ. Since XS is hamiltonian we may label the orbits of ρ in
such a way that Si ∼ Si+1 for every i ∈ Z10. If there exists a Hamilton cycle of
XS whose lift contains a Hamilton cycle of X, there is nothing to prove. Therefore,
we can assume that no such Hamilton cycle of XS exists. Consequently, we may
assume that l(SiSi+1) = 0 for every i ∈ Z10. Note also that we can assume that
X〈Si〉 = pK1 for all i ∈ Z10. Namely, all the subgraphs X〈Si〉 are of the same
valency, and if the subgraphs X〈Si〉 are of valency 2, then a Hamilton cycle of X
exists by [3, Theorem 3.9], and if the subgraphs X〈Si〉 are of valency at least 4, then
[12, Theorem 4] implies that each of X〈Si〉 is Hamilton-connected (that is, there
exists a Hamilton path in X〈Si〉 connecting any two vertices), and so a Hamilton
cycle of X clearly exists.

We distinguish seventeen different cases depending on which of the seventeen
connected vertex-transitive graphs of order 10 the quotient graph XS is isomorphic
to.

If XS
∼= C10 then SiSi+1, where i ∈ Z10, are the only edges of XS , and so X is

not connected, a contradiction.
If XS

∼= K5,5 or XS
∼= K5,5 − 5K2

∼= (K5 ×K2)
c then, by Proposition 6.1.8, X

has a Hamilton path.
If XS

∼= C+
10 then in addition to the edges SiSi+1, also S0S5, S1S6, S2S7, S3S8,

S4S9 ∈ E(XS). Let r0 = l(S0S5), r1 = l(S1S6), r2 = l(S2S7), r3 = l(S3S8), and
r4 = l(S4S9). Since

S0S5S4S3S2S1S6S7S8S9S0, S0S1S2S3S4S9S8S7S6S5S0,

S0S1S6S5S4S3S2S7S8S9S0, S0S1S2S3S8S7S6S5S4S9S0

are Hamilton cycles of XS , Proposition 6.1.6 implies that r0 + r1 = 0, r4 − r0 = 0,
r1 + r2 = 0 and r3 + r4 = 0. It follows that r1 = r3, r0 = r2 = r4, r1 = −r4.
If r1 = 0 then since p is odd it follows that r0 = r1 = r2 = r3 = r4 = 0 and
thus X is disconnected, a contradiction. If, however, r1 6= 0 then r0 6= 0 and since
S0S5S6S1S2S7S8S3S4S9S0 is a Hamilton cycle of XS , Proposition 6.1.6 implies that
r0 − r1 + r2 − r3 + r4 = 0, and so 3r0 = 2r1. But then, since r1 = −r0, it follows
that 5r0 ≡ 0 (mod p), implying that p = 5, a contradiction.

If XS
∼= C5 ×K2 then we may assume that in addition to the edges SiSi+1, also

S1S8, S2S7, S3S6, S4S0, S5S9 ∈ E(XS).

Let r0 = l(S1S8), r1 = l(S2S7), r2 = l(S3S6), r3 = l(S4S0), and r4 = l(S5S9). Since

S0S1S8S9S5S6S7S2S3S4S0, S0S1S2S7S8S9S5S6S3S4S0,

S0S1S2S3S6S7S8S9S5S4S0, S0S9S5S6S7S8S1S2S3S4S0,

are Hamilton cycles of XS , Proposition 6.1.6 implies that r0 − r4 − r1 + r3 = 0,
r1 − r4 − r2 + r3 = 0, r2 − r4 + r3 = 0, and −r4 − r0 + r3 = 0. Combing these
equations we get that r1 = 2r0 = 2r2 and r0 + r2 = 0. Since p is odd it follows
from the first of these two equations that r0 = r2, and then we get from the second
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equation that r0 = r2 = 0. Hence r0 = r1 = r2 = 0 and then from the above
equations we get that r3 = r4. In view of the connectedness of X, we have that
r3 = r4 6= 0. But then S0S1S2S3S4S0 and S9S8S7S6S5S9 are disjoint 5-cycles in
XS that lift to 5p-cycles in X. Since the vertex sets of the obtained 5p-cycles are
disjoint and X is connected, it follows that X has a Hamilton path.

The remaining twelve cases are dealt with in a similar manner. We leave the
details to the reader.

Lemma 6.2.4 If p > 7 and the size of blocks in B is 5 then X has a Hamilton path.

Proof. By Proposition 2.2.5 there exists a (2p, 5)-semiregular automorphism ϕ ∈ G
whose orbit set coincides with B = {Bi | i ∈ Z2p}. Since p > 5 the graph XB is a
vertex-transitive graph of order 2p, not isomorphic to the Petersen graph, and there-
fore, by Proposition 6.1.3, it contains a Hamilton cycle, say C = B0B1 · · ·B2p−1B0.
In view of Proposition 6.1.6 we can assume that the lift of C consists of five dis-
joint 2p-cycles. So d(Bi, Bi+1) = 1 for all i ∈ Z2p. Moreover, we can assume that
X〈B〉 = 5K1 for all B ∈ B. Namely, if for some B ∈ B we have X〈B〉 ∼= Y , where
Y ∈ {C5,K5}, then since B is an imprimitivity block system we have X〈B′〉 ∼= Y
for every block B′ ∈ B. Further, since XB has a Hamilton cycle and since between
any two adjacent blocks of B we have a perfect matching (as B is the set of orbits
of a normal subgroup) one can easily see that X has a Hamilton path.

Let K be the kernel of the action of G on B. Then depending on the (im)primiti-
vity of the action of Ḡ = G/K onXB three cases need to be considered. In particular,
since XB is of order 2p either Ḡ acts primitively on XB or it acts imprimitively with
blocks of size 2 or p. Following the notation given in [61] we denote these possible
types of action of G by (2p : 5), (2 : p : 5), and (p : 2 : 5), respectively.

Case 1. G is of type (2p : 5).

In this case Ḡ = G/K acts primitively on XB. Since p > 5, Proposition 2.1.10,
implies that Ḡ is doubly transitive on XB, and so XB is isomorphic to K2p. Since,
by Proposition 6.1.2, every edge of K2p is contained in some Hamilton cycle, by
Proposition 6.1.6, we may assume that XB = Xϕ

∼= K2p. Clearly, XB can be viewed
as the graph whose vertices are circles in Frucht’s notation of X with respect to ϕ
and edges are the edges between the circles. Observe that if there exists a Hamilton
cycle C of XB such that l(C) 6= 0, where l(C) is the sum of the labels of the arcs
belonging to C, then X has a Hamilton cycle. Therefore, we can assume that no
such Hamilton cycle of XB exists.

Let us relabel the vertices of XB = Xϕ
∼= K2p in such a way that V (XB) =

{vi | i ∈ Z2p}. Let C = v0v1v2v3v4 · · · v2p−1v0 be a Hamilton cycle of XB. Then
l(C) = 0, and moreover we may assume that all the edges of XB contained in C
carry label 0. Further, since v0v2v1v3v4 · · · v2p−1v0 is a Hamilton cycle of XB, we
have l(v0v2) = t = −l(v1v3). In addition, observe that for every i ∈ Z2p

v0v1v2 · · · vi+1vivi+2 · · · v2p−1v0



64 6.2 Genuinely imprimitive graphs of order 10p

is a Hamilton cycle of XB and thus we have

l(vivi+2) =

{

t if i is even
−t if i is odd

where t ∈ Z5.

If p · t 6≡ 0 (mod 5) then p-cycles v0v2 · · · v2p−2v0 and v1v3 · · · v2p−1v1 of XB lift
to two disjoint 5p-cycles in X. Since X is connected it is clear that X contains a
Hamilton path in this case. We may therefore assume that p · t ≡ 0 (mod 5), that
is, t = l(vivi+2) = 0 for every i ∈ Z2p. Further,

Ci = v0v1 · · · vi−1vi+1vi+2vivi+3vi+4 · · · v2p−1v0, i ∈ Z2p

is a Hamilton cycle of XB, and since l(Ci) = l(vivi+3) we have that l(vivi+3) = 0 for
every i ∈ Z2p. Next,

C ′
i = vi+4vivi+3vi+2vi+1vi−1vi−2 · · · vi+5vi+4, i ∈ Z2p

is a Hamilton cycle of XB with l(C ′
i) = l(vivi+4) and thus we have that also

l(vivi+4) = 0 for every i ∈ Z2p. Continuing inductively, we get that all the edges of
XB have label 0. But then X is disconnected, a contradiction.

Case 2. (2 : p : 5).

Then the action of Ḡ on XB gives an imprimitivity block system with two blocks,
say C̄ and D̄, of size p. Let C and D be the corresponding blocks of size 5p of G
in X, and let H be the index 2 subgroup of G such that H̄ = ḠC = ḠD is the
corresponding block stabilizer. Therefore, for a block B ∈ B and a vertex v ∈ B, we
have a sequence of groups Gv ≤ GB ≤ H ≤ G giving the type (2 : p : 5).

Now let C = {x0, x1, . . . , x4} ∈ C and D = {y0, y1, . . . , y4} ∈ D. Since p > 7,
Proposition 2.2.3 implies that there exists a (10, p)-semiregular automorphism π ∈ G
such that C̄ and D̄ are orbits of π̄. Let xij = xπ

i

j and yij = yπ
i

j , i ∈ Zp. Then we

have that C = {Ci | i ∈ Zp} and D = {Di | i ∈ Zp}, where Ci = {xij | j ∈ Z5} and

Di = {yij | j ∈ Z5}. Clearly, B = {Ci,Di | i ∈ Zp}.

Subcase 2.1. H̄ C̄ is unfaithful.

Then XB[C̄, D̄] = Kp,p, and, by Propositions 6.1.8 and 6.1.6, we may assume that
X[Ci,Dj ] ∼= 5K2 for all i, j ∈ Zp, that is, d(Ci,Dj) = 1 for every i, j ∈ Zp. Moreover,
all the edges CiDj in XB carry label 0.

Recall that X〈B〉 ∼= 5K1 for every B ∈ B. If X〈C〉 ∼= X〈D〉 ∼= 5pK1 then the
edge set of XB is equal to the edge set of XB[C̄, D̄], and thus X is disconnected, a
contradiction. If, however, X〈C〉 ∼= X〈D〉 6∼= 5pK1, and thusXB〈C̄〉 ∼= XB〈D̄〉 6∼= pK1,
then XB〈C̄〉 is a connected p-circulant, that is, a Cayley graph on a cyclic group of
order p. By Proposition 6.1.2, XB〈C̄〉 is hamiltonian and moreover, every edge of
XB〈C̄〉 belongs to a Hamilton cycle of XB〈C̄〉. Let CH be a particular Hamilton
cycle of XB〈C̄〉. If l(CH) 6= 0 then CH lifts to a Hamilton cycle of X〈C〉 (to a 5p-
cycle in X). Since X〈C〉 ∼= X〈D〉, also X〈D〉 contains a cycle of length 5p, and the
connectivity of X implies that X has a Hamilton path. Thus we may assume that
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l(CH) = 0, and consequently that d(Ci, Cj) = 1 for any pair of adjacent orbits Ci
and Cj in X〈C〉. Moreover, we may assume that every Hamilton cycle of XB〈C̄〉 as
well as every Hamilton cycle of XB〈D̄〉 lifts to a disjoint union of five p-cycles.

Assume first that all arcs in XB〈C̄〉 have label 0. Then all arcs belonging to CH
have label 0. Since X is connected there exists a Hamilton cycle DH in XB〈D̄〉 such
that not all arcs belonging to DH have label 0. This implies that there exists an
arc e on DH such that l(DH − e) 6= 0. Let e = uv, and let e′ = u′v′ be an arc of
CH . Since XB[C̄, D̄] = Kp,p we have that uu′, vv′ ∈ E(X), and consequently one
can easily see that starting at the vertex u, following the cycle CH till v, then using
the edge vv′, following the cycle DH till u′, and finally using the edge uu′ gives a
Hamilton cycle of XB with non-zero label and thus X has a Hamilton cycle.

Assume now that not all arcs in XB〈C̄〉 have label 0. However, we can, without
loss of generality, assume that there exists an arc e in XB〈C̄〉 with l(e) = 0. Moreover,
without loss of generality we may assume that this arc e belongs to CH . Then
l(CH − e) = 0. If all the arcs in XB〈D̄〉 have label 0 then, by applying the argument
from the preceding paragraph to DH , one can see that X has a Hamilton path. Thus
we may assume that there exists an arc e′ in XB〈D̄〉 with a non-zero label. Since
every edge of XB〈D̄〉 is contained in a Hamilton cycle, there exists a Hamilton cycle
of DH containing e′. Since l(DH) = 0 and l(e′) 6= 0 it follows that l(DH − e′) 6= 0.
Now we can construct a Hamilton cycle of X in a similar manner as in the preceding
paragraph.

Subcase 2.2. H̄ C̄ is faithful.

By Proposition 2.1.9, either H̄ C̄ is solvable and contains a normal Sylow p-subgroup
P , or H̄ C̄ is non-solvable and doubly transitive.

Subsubcase 2.2.1. H̄ C̄ is solvable.

Then a Sylow p-subgroup P of H̄ C̄ is normal in H̄ C̄ and thus π̄ ∈ P . Since H̄ C̄ is
faithful and solvable, H̄ C̄ ∼= H̄ ≤ A(1, p). Since H̄ is primitive and A(1, p) is of
order p(p− 1), P is of order p, and so 〈π̄〉 = P . It follows that 〈π̄〉 is a characteristic
subgroup of H̄, implying that 〈π̄〉 is normal in Ḡ, and finally that 〈π〉 is normal in G.
But then X is a genuinely imprimitive graph with respect to an imprimitivity block
system consisting of blocks of size p, and so, by Lemma 6.2.3, X has a Hamilton
path.

Subsubcase 2.2.2. H̄ C̄ is non-solvable.

Then H̄ C̄ is doubly transitive, and thus either XB〈C̄〉 ∼= Kp or XB〈C̄〉 ∼= pK1.
Moreover, either XB[C̄, D̄] ∼= Kp,p or XB[C̄, D̄] ∼= Kp,p − pK2. Observe that for
XB[C̄, D̄] 6∼= Kp,p − pK2 the existence of a Hamilton path in X can be proved as in
Subcase 2.1. Thus let us assume that XB[C̄, D̄] ∼= Kp,p− pK2. By Propositions 6.1.8
and 6.1.6, we may assume that X[Ci,Dj ] ∼= 5K2 for all i, j ∈ Zp, i 6= j, that is,
d(Ci,Dj) = 1 for every edge CiDj in XB[C̄, D̄]. Moreover, following the argument in
the proof of Proposition 6.1.8 one can see that we may assume that all the edges CiDj

in XB carry label 0. Since X is connected it follows that XB〈C̄〉 ∼= XB〈D̄〉 ∼= Kp.
Therefore XB〈C̄〉 ∼= XB〈D̄〉 is a connected p-circulant, and, by applying the same
argument as in Subcase 2.1, we get that X has a Hamilton path.
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Case 3. (p : 2 : 5).

ThenG/K acts onXB imprimitively with p blocks of size 2, and by Proposition 2.2.1,
there exists a transitive subgroupH/K of G/K with blocks of size p. Therefore there
exists a transitive subgroup of Aut(X) such that with respect to this subgroup X is
of type (2 : p : 5), and so, by Case 2, X has a Hamilton path.

Lemma 6.2.5 If the size of blocks in B is 10 then X has a Hamilton path.

Proof. Note that XB is a connected p-circulant, and so, by Proposition 6.1.2, XB

is edge-hamiltonian. Proposition 2.1.11 implies that NB is a simple group of degree
10 for every B ∈ B. By [132], the only transitive simple groups of degree 10 up to
permutation isomorphism are the alternating groups A10, A6 and A5. Since in each
of these three groups subgroups of index 10 are maximal we can conclude that all
these groups are primitive, and thus NB is a primitive group of degree 10.

Suppose first that there exist two adjacent blocks B,B′ ∈ B such that X[B,B′]
is of valency no less than 3. Let C be a p-cycle in XB that contains the edge BB′

(such a cycle exists since XB is edge-hamiltonian). Since the valency of X[B,B′] is
no less than 3, there exist at least two edges with non-zero voltage, denote them by
i and j, i, j ∈ Z10. If (i, 10) = 1, then the lift of C is clearly a cycle of length 10p,
and thus a Hamilton cycle of X. If (i, 10) = 2, then C lifts to two 5p-cycles, and the
connectivity of X implies that X has a Hamilton path. If, however, (i, 10) = 5, then
(j, 10) 6= 5. Namely, if also (j, 10) = 5 then X has multiedges, which is not possible
since X is a simple graph. Thus, either (j, 10) = 1 or (j, 10) = 2. In both cases X
clearly contains a Hamilton path.

We may now assume that the valency between any two adjacent blocks is less
than 3. If there exist two adjacent blocks B,B′ ∈ B, such that X[B,B′] has valency
2. Then, since X[B,B′] is vertex-transitive, it follows that X[B,B′] is isomorphic to
one of the following graphs: C20, 2C10 and 5C4. However, since NB is primitive only
the first case can occur, in particular X[B,B′] ∼= C20. Since X[B,B′] is of valency
2, there must be one edge with non-zero voltage, denote this voltage by i ∈ Z10.
Since X[B,B′] = C20 we have that (i, 10) = 1. Since XB is edge-hamiltonian, there
exists a Hamilton cycle in XB containing the edge BB′, and thus one can easily see
that X has a Hamilton cycle in this case.

We may therefore assume that for any two adjacent blocks B,B′ ∈ B the bi-
partite graph X[B,B′] is of valency 1, in particular X[B,B′] ∼= 10K2. If X〈B〉 is
a connected graph, then we can easily see that there is a Hamilton path in X. If
X〈B〉 is disconnected then X〈B〉 ∈ {2C5, 2K5, 5K2, 10K1}. However, since NB is
primitive we must have X〈B〉 ∼= 10K1. Since NB is isomorphic to A5, A6 or A10

there exists a nontrivial automorphism α ∈ N such that α fixes a vertex in B. But
then, since X[B,B′] ∼= 10K2 and B is an imprimitivity block system of G arising
from orbits of a normal subgroup N of G, the connectivity of X implies that α fixes
all the vertices of X, a contradiction.

Lemma 6.2.6 If p > 7 and the size of blocks in B is 2p then X has a Hamilton
path.
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Proof. Note that either XB
∼= K5 or XB

∼= C5. Let B = {Bi | i ∈ Z5}. Since
p > 7, by Proposition 2.2.3, there exists a (10, p)-semiregular automorphism ρ ∈ G.
Let S = {Si, S

′
i | i ∈ Z5} be the set of its orbits. By Proposition 2.2.4, each block

in B is a union of two orbits of ρ. With no loss of generality we can assume that
B0 = S0 ∪ S

′
0, B1 = S1 ∪ S

′
1, B2 = S2 ∪ S

′
2, B3 = S3 ∪ S

′
3 and B4 = S4 ∪ S

′
4.

Consider the subgraph X̄S of XS , which is obtained from XS by deleting the
edges SiS

′
i, i ∈ Z5 (if they exist). Observe that for any two adjacent blocks B,B′ ∈ B

we have that either XS [B,B′] ∼= K4 or XS [B,B′] ∼= 2K2.

Suppose that there exist B,B′ ∈ B such that XS [B,B′] ∼= K4. Suppose that
there also exists a pair of adjacent blocks D,D′ ∈ B such that XS [D,D′] ∼= 2K2.
Then, since for any two edges in XB ∈ {K5, C5} there exists a Hamilton cycle
of XB containing both of these two edges, there exists a Hamilton cycle of XB

containing both edges BB′ and DD′, and thus this cycle gives rise to a Hamilton
cycle of XS . Moreover, in view of regularity of X and regularity of the subgraphs
X〈B〉, B ∈ B, this cycle contains a multiedge and so, by Proposition 6.1.6, X has
a Hamilton cycle. We may therefore assume that the bipartite graphs XS [B,B′],
B,B′ ∈ B, are pairwise isomorphic, in particular, either for any two adjacent blocks
B,B′ ∈ B we have XS [B,B′] ∼= K4 or for any two adjacent blocks B,B′ ∈ B we
have XS [B,B′] ∼= 2K2.

Below it will be convenient to have the following notation. For two adjacent
blocks Bi, Bj ∈ B we will say that the bipartite subgraph XS [Bi, Bj ] is of type 0, of
type 1 and of type 2 if, respectively, E(XS [Bi, Bj ]) = {SiSj, S

′
iS

′
j}, E(XS [Bi, Bj ]) =

{SiS
′
j, S

′
iSj} and E(XS [Bi, Bj ]) = {SiSj, SiS

′
j , S

′
iSj, S

′
iS

′
j}. We will say that an edge

in XB is of type k if the corresponding bipartite subgraph in XS is of type k. Note
that, by the above paragraph, either all edges of XB are of type 2 or there are all
of type different from type 2. Moreover, any 5-cycle C = u0u1u2u3u4u0, {ui | i ∈
{0, 1, 2, 3, 4}} ⊆ V (XB), in XB can be represented by a vector [i0, i1, i2, i3, i4], where
ij is the type of the edge ujuj+1. In addition, we will say that the cycle C is of type
[i0, i1, i2, i3, i4].

Now suppose that XB does not contain edges of type 2. Also, suppose that
XB

∼= K5. Then the edge set of XB can be viewed as the set of two disjoint 5-
cycles, say C and C′. Without loss of generality we may assume that one of these
5-cycles, say C, is of type [τ, 0, 0, 0, 0]. If τ = 0 then (for symmetry reasons) we may
assume that C′ is of one of the following types: [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 0, 1, 0, 0],
[1, 1, 1, 0, 0], [1, 1, 0, 1, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1], or [0, 0, 0, 0, 0]. These give eight
possibilities for the graph X̄S . If, however, τ = 1 then, by a detail consideration
of all possible types for C′, one can see that we get eight more possibilities for the
graph X̄S . In Figure 6.2 we show all these possibilities in the graph XB, whereas
in Figure 6.3 we show all possible graphs X̄S . In particular, for XB

∼= K5, X̄S is
isomorphic to one of the graphs Yi, i ∈ {0, 1, 2, . . . , 15}. In addition, if XB

∼= C5

then we can clearly assume that X̄S is isomorphic to one of the graphs Y16 and Y17

in Figure 6.3 (see also Figure 6.2). If, however, XB contains an edge of type 2 then
all edges in XB are of this type, and thus only two more possibilities occur. Let us
denote the graph arising from this case by Y18 if XB

∼= K5 and by Y19 if XB
∼= C5.

Observe that Y0
∼= Y13

∼= Y14, Y1
∼= Y11

∼= Y15, Y2
∼= Y5

∼= Y9
∼= Y10, and

Y3
∼= Y6. We may therefore assume that X̄S is isomorphic to one of the following
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twelve graphs: Y0, Y1, Y2, Y3, Y4, Y7, Y8, Y12, Y16, Y17, Y18 or Y19.

IfX〈B0〉 is a connected graph, then for each of its vertices there exists a Hamilton
path of X〈B0〉 starting at that vertex, so X clearly has a Hamilton path in this case.
We can thus assume that X〈B0〉 is not connected. As it is a vertex-transitive graph,
it is isomorphic to 2pK1, to pK2 or it is a disjoint union of two isomorphic connected
p-circulants. We consider each of the three cases separately.

Case 1. X〈B0〉 ∼= 2pK1.

SinceX is connected, the quotient graphXS = X̄S is isomorphic to one of the graphs
Yi, i ∈ {0, 1, 2, 3, 4, 8, 12, 17, 18, 19}. Then any edge of XS lies on some Hamilton
cycle of XS and thus Proposition 6.1.6 implies that we can assume that no multiedge
exists in Xρ. By considering all Hamilton cycles in XS one can easily see that the
connectedness ofX forces some Hamilton cycle ofXS , whose lift contains a Hamilton
cycle of X, to exist. The details are left to the reader.

Case 2. X〈B0〉 ∼= pK2.

It is clear that X[S0, S1] ∼= pK2. Suppose first that

X̄S
∼= Yi, where i ∈ {0, 1, 2, 3, 4, 8, 12, 17, 18, 19}.

Then, by Case 1, we may assume that no multiedge exists in X̄ρ, and moreover that
all the edges in X̄S carry label 0. Observe also that in all cases there exists a 10-cycle
C in X̄S such that the endvertices of the edges SiS

′
i, i ∈ Z5, are antipodal vertices on

the cycle C in XS . Note also that in all cases for any edge SiS
′
i, i ∈ Z5, there exists

a Hamilton cycle of XS containing this edge, and therefore, by Proposition 6.1.6,
we may assume that there is no multiedge in Xρ. Also, if there exists a Hamilton
cycle C of XS such that l(C) 6= 0 then X has a Hamilton cycle. Therefore, we can
assume that no such Hamilton cycle of XS exists.

Let us relabel the vertices ofXS in such a way that C = u0u1u2u3u4u5u6u7u8u9u0

and let the label of the arc uiui+5, i ∈ Z5, be denoted by ai. Since

u0u5u4u3u2u1u6u7u8u9u0

u0u1u6u5u4u3u2u7u8u9u0

u0u1u2u7u6u5u4u3u8u9u0

u0u1u2u3u8u7u6u5u4u9u0

u0u1u2u3u4u9u8u7u6u5u0

are Hamilton cycles in XS with labels a0 + a1, a1 + a2, a2 + a3, a3 + a4, a4 +
a0, respectively, we have that a0 = a1 = a2 = a3 = a4 6= 0. But, however,
u0u5u6u1u2u7u8u3u4u9u0 is a Hamilton cycle of XS whose label is equal to a0,
and so a0 = 0, a contradiction.

Suppose now that X̄S
∼= Yi, i ∈ {7, 16}. Then every edge of XS is contained on

some Hamilton cycle of XS , and so Proposition 6.1.6 implies that we can assume
that no multiedge exists in Xρ. By considering all Hamilton cycles in XS one can
easily see that the connectedness of X forces some Hamilton cycle of XS , whose lift
contains a Hamilton cycle of X, to exist. The details are left to the reader.
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Figure 6.2: All possible structures of X̄S shown in XB if X̄S does not contain edges
of type 2. Bold edges are edges of type 1.
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Figure 6.3: All possible graphs for X̄S where the graph Yi corresponds to the graph
Zi in Figure 6.2.
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Case 3. X〈B0〉 is isomorphic to a disjoint union of two isomorphic connected p-
circulants.

In view of connectedness of X the quotient graph XS = X̄S is isomorphic to

Yi, i ∈ {0, 1, 2, 3, 4, 8, 12, 17, 18, 19}.

As the p-circulants are precisely the graphs X〈Si〉, where i ∈ Z10, a Hamilton path
exists in X. This completes the proof.

Lemma 6.2.7 If p > 7 and the size of blocks in B is 5p then X has a Hamilton
path.

Proof. Note that |B| = 2 and XB
∼= K2. Let us denote the two blocks of B by B

and B′. By Proposition 2.2.3 there exists a (10, p)-semiregular automorphism ρ ∈ G
of X. Let S = {Si | i ∈ Z10} be the set of its orbits. By Proposition 2.2.4 each
block in B is a union of five orbits of ρ. With no loss of generality we can assume
that B = S0 ∪ S1 ∪ S2 ∪ S3 ∪ S4 and B′ = S5 ∪ S6 ∪ S7 ∪ S8 ∪ S9.

By Proposition 2.1.11, for every B ∈ B the group NB is simple. In addition, by
Proposition 2.1.3, either NB is primitive, or NB ∈ {PSL(2, 11),PSL(m, q)}, where
m is a prime and q is a prime power. The lemma will follow from the five claims
given below. Throughout the proof we will frequently use the following fact about
the number of edges between orbits of ρ in the subgraph X̄S of XS , which is obtained
from XS by deleting the edges between the orbits inside the blocks B and B′ (if
they exist):

∑

j∈{5,...,9}

d(Si, Sj) =
∑

j∈{0,...,4}

d(Sj , Sk) (6.1)

for every i ∈ {0, 1, 2, 3, 4} and k ∈ {5, 6, 7, 8, 9}.

Claim 1. If X〈B〉 ∼= X〈B′〉 is connected then X contains a Hamilton path.

Since X〈B〉 ∼= X〈B′〉 is a connected vertex-transitive graph of order 5p, by Proposi-
tion 6.1.4, it has a Hamilton cycle, and thus, since X is connected, we can conclude
that X contains a Hamilton path.

Claim 2. If X〈B〉 ∼= X〈B′〉 = 5pK1 then X contains a Hamilton path.

Since X〈B〉 ∼= X〈B′〉 ∼= 5pK1 the graph X̄S = XS is a connected bipartite graph
of order 10 with bipartition sets of size 5. Moreover, (6.1) implies that its minimal
valency is not less than 2. From the list of all bipartite graphs of order 10, given
in [90], we get, with the help of the program package Magma [7], that there exist
600 (of which five are regular) nonisomorphic bipartite graphs of order 10 with
bipartition sets of size 5 and minimal valency no less than 2. We consider two cases
depending on whether XS is irregular or regular.

Case 2.1. XS is irregular.

Subcase 2.1.1. XS possesses a Hamilton cycle.
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In every such graph one can, with the help of Magma, find such a Hamilton cycle
that in the corresponding multigraph this Hamilton cycle contains a multiedge, and
thus, by Proposition 6.1.6, X contains a Hamilton cycle.

Subcase 2.1.2. XS does not possess a Hamilton cycle.

With the exception of the two graphs shown in Figure 6.4 every graph belonging
to this subfamily contains a disjoint union of a 4-cycle and a 6-cycle such that in
the corresponding multigraph these two cycles both contain a multiedge. Therefore
these two cycles lift to a disjoint union of a 4p-cycle and 6p-cycle in X, implying
that X contains a Hamilton path.

We may now assume that XS is one of the two graphs shown in Figure 6.4. We
will show that both cases lead to a contradiction.
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Figure 6.4: The two bipartite graphs of order 10 and minimal valency 2 not pos-
sessing a disjoint union of two cycles such that the union of their vertices covers the
vertex set of the graph.

Let the vertices of X be labeled in such a way that Si = {sji | j ∈ Zp}, i ∈ Z10.
Suppose first that XS is the graph shown in the left-hand side picture of Figure 6.4.
Then XS has eight vertices of valency 2 and two vertices of valency 4. Since X is
regular the edges SiSi+5, i ∈ Z10 \ {2, 7}, are multiedges in Xρ. Hence the 6-cycles

S2S5S0S7S1S6S2 and S2S9S4S7S3S8S2

in Xρ both lift to a 6p-cycle in X. Consequently, each of the vertices sji , where
i ∈ Z10 \{2, 7} and j ∈ Zp, is contained on at least one 6p-cycle. On the other hand,
since the above 6-cycles in Xρ both contain S2 and S7, it follows that the vertices

sj2 and sj7, j ∈ Zp, are contained on at least two different 6p-cycles in X. Now

vertex-transitivity of X implies that also the vertices sji , where i ∈ Z10 \ {2, 7} and
j ∈ Zp, are contained on at least two different 6p-cycles. But since any 6p-cycle in

X containing a vertex sji , i ∈ Z10 \{2, 7} and j ∈ Zp, and not arising from the above
mentioned 6-cycles in Xρ, must contain at least one vertex from S7 (respectively,
S2), vertices from the orbits Si, i ∈ Z10 \ {2, 7} lie on less 6p-cycles than those from
the orbits S2 and S7. But this is clearly impossible in view of vertex-transitivity of
X. That the other case (when XS is isomorphic to the graph shown in the right-hand
side picture of Figure 6.4) is not possible can be proved with a similar argument.
The details are left to the reader.
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Case 2.2. XS is a regular graph.

There are five regular bipartite graphs of order 10 with the two bipartition sets of
size 5: C10, K5,5, K5,5−5K2, C

+
10, and K5,5 − (C6 ∪C4). Observe that the first four

of these graphs are vertex-transitive graphs, and thus the same argument as in the
proof of Lemma 6.2.3 applies. We may, therefore, assume thatXS = K5,5−(C6∪C4).
Let the vertices of XS be labeled in such a way as shown in Figure 6.5. Since

S0S9S1S8S2S5S3S7S4S6S0

is a Hamilton cycle of XS , by Proposition 6.1.6, we can assume that all the edges
on this cycle are single edges in Xρ. Moreover, we can assume that all the edges on
this cycle carry label 0. Further, since every edge of XS lies on some Hamilton cycle
of XS we can assume that XS = Xρ, that is, no multiedge exists in Xρ. Next, since

S0S5S3S8S2S7S4S6S1S9S0,

S0S5S2S7S3S8S1S6S4S9S0,

S0S5S3S7S2S8S1S6S4S9S0,

S0S6S1S8S2S5S3S7S4S9S0,

S0S6S4S7S2S5S3S8S1S9S0,

are Hamilton cycles in XS , by Proposition 6.1.6, we can assume that for the labels
of the arcs of XS the following equations hold:

l(S0S5) + l(S3S8) + l(S2S7) + l(S6S1) = 0,

l(S0S5) + l(S2S7) + l(S3S8) + l(S1S6) + l(S4S9) = 0,

l(S0S5) + l(S7S2) + l(S1S6) + l(S4S9) = 0,

l(S6S1) + l(S4S9) = 0,

l(S7S2) + l(S3S8) = 0.

Combining together these equations one can easily get that l(S0S5) = l(S1S6) =
l(S2S7) = l(S3S8) = l(S4S9) = 0 (using the fact that for k ∈ Zp, p > 7 a prime,
we have 3k ≡ 0 (mod p) if and only if k = 0), and thus X is disconnected, a
contradiction.

Claim 3. If X〈B〉 ∼= X〈B′〉 ∼= pC5 then X contains a Hamilton path.

Observe that 5-cycles in the blocks B and B′ form an imprimitivity block system
C of G. Hence Proposition 2.2.4 implies that either Si ∩ C = ∅ or |Si ∩ C| = 1 for
every i ∈ Zp and every C ∈ C. Since p > 7 it follows that X〈B〉S

∼= X〈B′〉S
∼= C5.

The graph X̄S obtained from XS by deleting the edges inside the blocks B and
B′ is clearly a bipartite graph of order 10 with each bipartition set of size 5. (Note
that X̄S can be disconnected.) Checking the list of all bipartite graphs of order 10
given in [90], and using (6.1), one can see that either X̄S is isomorphic to the graph
shown in the left-hand side picture of Figure 6.4 or X̄S contains 5K2.

Case 3.1. X̄S is isomorphic to the graph shown in the left-hand side picture of
Figure 6.4.
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Figure 6.5: The graph K5,5 − (C6 ∪ C4).

Then we can, without loss of generality, assume that the graph X̃S obtained from XS

by deleting the edges in B′ is the graph shown in Figure 6.6. Also, the regularity ofX
and X〈B〉 ∼= X〈B′〉 combined together imply that d(S0, S5) > 1, and consequently
any Hamilton cycle of XS containing this edge, by Proposition 6.1.6, gives rise to a
Hamilton cycle of X.
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Figure 6.6: The graph X̃S in case X̄S is isomorphic to the graph shown on the
left-hand side picture of Figure 6.4.

Since X〈B′〉 ∼= C5, the vertex S7 is adjacent to two of the vertices from the set
{S5, S6, S8, S9}. In particular, we can assume (for symmetry reasons) that one of
the following occurs in XS :

(i) S7S8, S7S6 ∈ E(XS);

(ii) S7S8, S7S9 ∈ E(XS);

(iii) S7S8, S7S5 ∈ E(XS);

(iv) S7S9, S7S5 ∈ E(XS).
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If (i) occurs then S0S5S2S9S4S3S8S7S6S1S0 is a Hamilton cycle of XS containing a
multiedge in Xρ. Next, if (ii) occurs then since X〈B′〉S ∼= C5, we have that S8 is
either adjacent to S5 or it is adjacent to S6. For the first case,

S0S5S8S7S9S4S3S2S6S1S0

is a Hamilton cycle of XS containing a multiedge in Xρ. For the latter case,
S0S1S6S8S7S9S4S3S2S5S0 is a Hamilton cycle of XS containing a multiedge in Xρ.
Further, if (iii) occurs then S4S9S2S6S1S0S5S7S8S3S4 is a Hamilton cycle of XS

containing a multiedge in Xρ. Finally, if (iv) occurs then S1S6S2S8S3S4S9S7S5S0S1

is a Hamilton cycle of XS containing a multiedge in Xρ. Therefore in all these cases
Proposition 6.1.6 applies.

Case 3.2. X̄S contains 5K2.

Then XS contains one of the four graphs Yi, i ∈ {1, 2, 3, 4} shown in Figure 6.7, and
thus four cases need to be considered. However, recall that all the edges in X〈B〉S
and X〈B′〉S are single edges in Xρ, and moreover, each edge in these two subgraphs
carries label 0.
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Figure 6.7: Possibilities for a subgraph of XS in case X̄S contains 5K2.

Subcase 3.2.1. XS contains Y1.

Observe that every edge of Y1 is contained in a Hamilton cycle and thus we may
assume that all the edges of Y1 are single edges in Xρ. Further, since

C = S0S6S5S9S8S7S1S2S3S4S0

is a Hamilton cycle of Y1, we can assume that it carries label 0. Now, observe that
with permuting the indices of the orbits Si in C with the permutation

(0 1 2 3 4)(6 7 8 9 5)

we get four more Hamilton cycles in Y1. Consequently, we can assume that all
the edges of Y1 carry label 0. Since X is connected, it follows that Y1 is a proper
subgraph of XS , implying that there must exist an arc e in XS carrying a non-zero
label, without loss of generality we can assume that S0 is an endvertex of this arc.
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Since edges of Y1 are single edges inXρ and Y1 is symmetric we can assume that either
e = S0S5 or e = S0S8. In the first case S0S5S6S7S1S2S8S9S3S4S0 is a Hamilton cycle
of XS carrying a non-zero label, and in the second case S0S8S9S5S6S7S1S2S3S4S0

is a Hamilton cycle of XS carrying a non-zero label. Thus we can conclude that in
both cases X has a Hamilton cycle.

Subcase 3.2.2. XS contains Y2 (the Petersen graph).

Recall that all the edges in X〈B〉S and X〈B′〉S are single edges in Xρ, and moreover,
each edge in these two subgraphs carries label 0. Since for any pair of edges from the
set A = {S0S6, S1S7, S2S8, S3S9, S4S5} there exists a disjoint union of two 5-cycles
we can assume that at most one edge from A is a multiedge in Xρ. (Namely, if two
such edges exist in Y2 then we have two disjoint 5-cycles in Y2, each containing one
of these edges, and thus they both give rise to a 5p-cycle in X, implying that X
has a Hamilton path.) If, however, exactly one of the edges from A is a multiedge
in Xρ, say that this edge is the edge S0S6, then the regularity of X implies that S1

is an endvertex of an edge of XS which is not contained in Y2 and is not incident
to neither of the vertices S0 and S6. This shows that S1S8 or S1S9 or S1S5 is an
edge of XS . In each of these cases one can find a Hamilton cycle of Xρ containing
the multiedge S0S6, and thus Proposition 6.1.6 implies that X contains a Hamilton
cycle. In particular

(a) if S1S8 ∈ E(XS) then S0S6S8S1S2S3S9S7S5S4S0 is a Hamilton cycle of Xρ

containing the multiedge S0S6;

(b) if S1S9 ∈ E(XS) then S0S6S8S5S7S9S1S2S3S4S0 is a Hamilton cycle of Xρ

containing the multiedge S0S6;

(c) if S1S5 ∈ E(XS) then S0S6S8S2S1S5S7S9S3S4S0 is a Hamilton cycle of Xρ

containing the multiedge S0S6;

We may therefore assume that no edge in A is a multiedge in Xρ. Let the labels
of the arcs S0S6, S1S7, S2S8, S3S9, S4S5 be denoted, respectively, by a, b, c, d and
e. Observe that if there exist two disjoint 5-cycles in Y2, whose lifts both contain a
5p-cycle, then the connectedness of X implies that X has a Hamilton path. We can
thus assume that no two such 5-cycles exist in XB. Considering all possible disjoint
5-cycles in Y2 we have

a = c or d = e, b = d or a = e, c = e or a = b, a = d or b = c, b = e or c = d.

Assume first that we have a = b = c = d = e. Then, since X is connected we get
that Y2 is a proper subgraph of XS . In particular, there exists a vertex which is
an endvertex of an edge of XS , such that it is not contained in Y2 and that the arc
with the tail in this vertex carries a label t 6∈ {0, a}. Since Y2 is symmetric we can
assume that such a vertex is the vertex S1, and thus for the edge having S1 for one
of its endvertices we again have possibilities (a)-(e) listed above. However, in this
case also S1S6 can be such an edge. But since all the edges in Y2 are single edges in
Xρ, we have (in view of the symmetry of Y2) that it suffices to consider possibilities
(a), (b) and (c). But in all these cases one can easily see that since t 6∈ {0, a} the
listed Hamilton cycles all give rise to a Hamilton cycle of X also in this case.
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Assume now that not all labels a, b, c, d and e are equal. With no loss of
generality assume that a 6= b, and so c = e. Suppose first that a = d. Then
b 6= d, and so d = a = e = c. The reader may check that then the vertices of S1

are contained on precisely two 5-cycles arising from Y2, whereas the vertices of S0

are contained on precisely four 5-cycles arising from Y2, which in view of vertex-
transitivity of X implies that Y2 is a proper subgraph of XS . In particular, since
edges in Y2 are single edges it follows that each vertex of XS lies on an edge that is
not contained in Y2. Consider all possibilities for such an edge with endvertex S1.
Let t ∈ Zp be the label of the corresponding arc with the tail in S1. For symmetry
reasons (since d = a = e = c) it suffices to assume that either S1S8 ∈ E(XS) or
S1S9 ∈ E(XS).

First, suppose that S1S8 ∈ E(XS). Then whenever t 6= a and a 6= 0 the Hamil-
ton cycle given in (a) lifts to a Hamilton cycle of X. Thus we may assume that
t = a (in addition, S1S8 is not a multiedge in Xρ). But then the Hamilton cycle
S0S6S9S3S2S8S1S7S5S4S0 of XS has a non-zero label −t+ b 6= 0 (since t = a 6= b),
and so it gives rise to a Hamilton cycle of X.

And second, suppose that S1S9 ∈ E(XS). Then whenever t 6= a the Hamilton
cycle given in (b) lifts to a Hamilton cycle of X. Thus we may assume that t = a.
But then the Hamilton cycle S0S6S8S2S3S9S1S7S5S4S0 of XS has a non-zero label
b− a, and so it gives rise to a Hamilton cycle of X.

If, however a 6= d then b = c and thus also d = e = c = b. As in the previous
case in view of vertex-transitivity of X we get that Y2 is a proper subgraph of XS .
Also, if we consider all possibilities for edges of XS lying outside the subgraph Y2

and containing S0 (in such a way as for S1 in the previous case) we get that X has
a Hamilton cycle also in this case.

Subcase 3.2.3. XS contains Y3.

Observe that every edge of Y3 is contained in a Hamilton cycle and thus we may
assume that all the edges of Y3 are single edges in Xρ. Further, since

S0S6S9S5S4S3S2S8S7S1S0 S0S6S8S7S1S2S3S9S5S4S0

S0S1S2S3S9S6S8S7S5S4S0 S0S1S7S5S9S6S8S2S3S4S0

are Hamilton cycles in Y3, we can assume that they all carry label 0. Combining
together the corresponding equations for the labels of arcs in Y3 imply that all the
edges in Y3 carry label 0. It follows that Y3 is a proper subgraph of XS , implying
that there must exist an arc e in XS carrying a non-zero label. From symmetry
reasons we may assume that either S0, or S1, or S2 is an endvertex of this arc. In
particular, the following cases need to be considered: e = S0S5, e = S0S8, e = S1S8,
e = S1S9, e = S1S5, e = S1S6, e = S2S7, e = S2S9, e = S2S5, and e = S2S6.
However, since we have the following:

- if e = S0S5 then S0S5S7S1S2S8S6S9S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S0S8 then S0S8S6S9S5S7S1S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;
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- if e = S1S8 then S0S6S9S5S7S8S1S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S9 then S0S6S8S7S5S9S1S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S5 then S0S6S9S3S2S8S7S1S5S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S6 then S0S1S6S9S5S7S8S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S9 then S0S6S8S7S5S4S3S9S2S1S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S5 then S0S1S7S8S6S9S5S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

we can assume that e = S2S7. Since X is regular and edges in Y3 are single edges
there exists an edge f with endvertex S1 that is not contained in Y3. In particular,
either f = S1S5, or f = S1S6, or f = S1S8, or f = S1S9. Assume first that
f 6= S1S6. Then, in view of the first part of this paragraph, we can assume that the
edge f carries label 0, and consequently the following hold:

- if e = S1S5 then S0S6S8S7S2S1S5S9S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S8 then S0S6S8S1S2S7S5S9S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S9 then S0S6S8S2S7S5S4S3S2S1S0 is a Hamilton cycle of XS carrying a
non-zero label.

It follows that eitherX has a Hamilton path or f = S1S6. If, however, f = S1S6 then
since S0S1S6S9S5S7S8S2S3S4S0 is a Hamilton cycle of XS we can assume that it has
label 0, and consequently that f carries label 0. But then S0S1S6S8S2S7S5S9S3S4S0

is a Hamilton cycle of XS carrying a non-zero label, and thus we can conclude that
X possesses a Hamilton path also in this case.

Subcase 3.2.4. XS contains Y4.

Observe that every edge of Y4 is contained in a Hamilton cycle and thus we may
assume that all the edges of Y4 are single edges in Xρ. Further, since

S0S1S2S8S5S6S7S9S3S4S0 S0S6S5S8S9S7S1S2S3S4S0

S0S1S2S3S4S5S8S9S7S6S0 S0S6S7S1S2S3S9S8S5S4S0

S0S6S5S4S3S2S8S9S7S1S0

are Hamilton cycles in Y4, we can assume that they all carry label 0. Combining
together the corresponding equations for the labels of arcs in Y4 imply that either
X has a Hamilton cycle or all the edges in Y4 carry label 0. In particular, we may
assume that Y4 is a proper subgraph of XS , implying that there must exist an arc
e in XS with a non-zero label. From symmetry reasons we may assume that either
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S0, or S1, or S2 is an endvertex of this arc. In particular, the following cases need
to be considered: e = S0S5, e = S0S8, e = S1S8, e = S1S9, e = S1S5, e = S1S6,
e = S2S7, e = S2S9, e = S2S5, and e = S2S6. However, since the following hold:

- if e = S0S5 then S0S5S4S3S9S8S2S1S7S6S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S0S8 then S0S8S9S7S1S2S3S4S5S6S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S8 then S0S1S8S2S3S9S7S6S5S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S9 then S0S1S9S7S6S5S8S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S5 then S0S1S5S6S7S9S8S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S1S6 then S0S6S1S7S9S3S2S8S5S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S7 then S0S1S2S7S6S5S8S9S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S9 then S0S1S7S6S5S8S9S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S5 then S0S1S7S6S5S2S8S9S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label;

- if e = S2S6 then S0S1S7S9S8S5S6S2S3S4S0 is a Hamilton cycle of XS carrying a
non-zero label.

we can conclude that X has a Hamilton cycle in this case.

Claim 4. If NB is primitive on B then X contains a Hamilton path.

Since NB is primitive either X〈B〉 is a connected graph or it is totally disconnected.
In the former case Claim 1 applies whereas in the latter case Claim 2 applies.

Claim 5. If NB is imprimitive on B then X contains a Hamilton path.

Let T = NB . Since T is a non-abelian simple group, it is quasiprimitive on B. Let
∆ be the corresponding imprimitivity block system of T on B. Since T is simple the
kernel of the action of T on X〈B〉∆ is trivial, and so, by Proposition 2.1.2, T is a
transitive group of degree |∆|. It follows that T is isomorphic to a subgroup of S|∆|.
Observe that ∆ cannot consist of blocks of size p. Namely, if this is the case then
|∆| = 5 and consequently T ≤ S5. But this is clearly impossible as p > 7 divides |T |
(since T is a group of degree 5p). We therefore have that ∆ = {∆i | i ∈ Zp} consists
of p blocks of size 5. Then X〈∆i〉, i ∈ Zp, is a vertex-transitive graph of order 5, and
thus it is isomorphic to 5K1, C5 or K5. Observe also that the corresponding quotient
action on X〈B〉∆ is primitive, implying that either X〈B〉∆ ∼= Kp or X〈B〉∆ ∼= pK1.

Suppose first that X〈∆i〉 ∼= 5K1. If X〈B〉∆ ∼= pK1 then X〈B〉 ∼= 5pK1, and, by
Claim 2, X has a Hamilton path. We may therefore assume that X〈B〉∆ ∼= Kp. If
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X〈B〉 is a connected graph then, by Claim 1, X has a Hamilton path. If, however,
X〈B〉 is a disconnected graph (but clearly not totally disconnected) then, since
p > 5 and since, by assumption the graphs induced on the blocks ∆i, i ∈ Zp, are
isomorphic to 5K1, the connected components of X〈B〉 are of size p. However these
connected components form an imprimitivity block system D of T on B consisting
of blocks of size p, which in view of the argument given in the first paragraph of the
proof of this claim is impossible.

Next, suppose that X〈∆i〉 ∼= C5. If X〈B〉∆ ∼= Kp then X〈B〉 is a connected
graph, and, by Claim 1, X has a Hamilton path. If, however, X〈B〉∆ ∼= pK1 then
X〈B〉 is disconnected and X〈B〉 ∼= X〈B′〉 ∼= pC5, and thus, by Claim 3, X has a
Hamilton path.

Finally, suppose that X〈∆i〉 ∼= K5. If X〈B〉 is a connected graph then, by
Claim 1, X has a Hamilton path. If, however, X〈B〉 is disconnected then X〈B〉 ∼=
pK5, and clearly also X〈B′〉 ∼= pK5. The imprimitivity block system ∆ on B
gives rise to an imprimitivity block system of G on X, and in addition, the quo-
tient graph with respect to this imprimitivity block system is a bipartite connected
vertex-transitive graph of order 2p. Let V (X) = {uji | i ∈ Z10, j ∈ Zp} such that the

sets {uji | j ∈ Zp}, i ∈ Z10 are orbits of ρ. Then, without loss of generality, we may

assume that B = {uji | i ∈ {0, 1, 2, 3, 4}, j ∈ Zp}, B
′ = {uji | i ∈ {5, 6, 7, 8, 9}, j ∈

Zp}, and that Fj = {uji | i ∈ {0, 1, 2, 3, 4}} and Tj = {uji | i ∈ {5, 6, 7, 8, 9}},
j ∈ Zp, are the connected components of X〈B〉 and X〈B′〉, respectively. Then
C = {Fj , Tj | j ∈ Zp} is an imprimitivity block system of G on X with blocks of size
5. Since X is connected there must exist two vertices in F0 that have neighbors in
two different blocks of C lying in B′. Since the graph induced on F0 is isomorphic to
K5, we may, without loss of generality, assume that u0

0 is adjacent to u0
5 and that u0

1

is adjacent to ujk, where j 6= 0 and k ∈ {5, 6, 7, 8, 9}. Now one can, with the use of
a (2, p)-semiregular automorphism of XC (arising from the (10, p)-semiregular auto-
morphism ρ of X), see that each of these two edges gives a perfect matching in XC .
Moreover, since j 6= 0, we have that the union of these two perfect matchings is a
Hamilton cycle of XC . Since X〈Fj〉 ∼= K5 and X〈Tj〉 ∼= K5 are Hamilton-connected
we can clearly conclude that X has a Hamilton path.

6.3 Quasiprimitive graphs of order 10p

Throughout this section let X denote a connected quasiprimitive graph of order
10p, p ≥ 7 a prime. In [89] a complete characterization of quasiprimitive graphs
of order pqr, where p, q and r are distinct primes, was given via the well known
generalized orbital graph construction relative to certain simple groups having an
imprimitive permutation representation of degree pqr. All the possible group actions
are given in Tables A and B in [89, pp. 298-299]. For our purposes (we require that
pqr = 10p′) only a handful of group actions needs to be considered. They are given
in Table 6.1. Note that only row 16 of Table 6.1 corresponds to an infinite family
of actions giving rise to quasiprimitive graphs of order 10p. As for the other rows
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of Table 6.1, each case is investigated separately. More precisely, we consider all
the possible generalized orbital graphs and study their structural properties (using
program package Magma [7]) which allows us to easily find a Hamilton cycle in
these graphs.

row p Action

1 7 A7 on cosets of Z2
3 ⋊ Z4

2 11 PSL(2, 11) on cosets of D6

3 11 PSL(2, 11) on cosets of Z6

4 31 PSL(3, 5) on cosets of Z2
5 ⋊ (Z4.D12)

5 31 PSL(3, 5) on cosets of Z2
5 ⋊ (Z4.A4)

6 11 M11 on cosets of M9

7 31 PSL(3, 5) on cosets of Z2
5 ⋊ (Z24.Z2)

8 7 A7 on cosets of A4 × Z3

9 7 PSL(4, 2) on cosets of Z4
2 ⋊ (A3 × S3)

10 7 PSL(4, 2) on cosets of Z4
2 ⋊ (A3 ⋊ S3)

11 31 PSL(5, 2) on cosets of Z6
2 ⋊ (A3 × PSL(3, 2))

12 13 PSL(2, 25) on cosets of PSL(2, 5)

13 11 M11 on cosets of Z2
3 ⋊ Z8

14 11 M11 on cosets of Z2
3 ⋊Q8

15 11 A11 on cosets of A9

16 k+1
2 PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10 where 5 | k−1

2 and k = sm

Table 6.1: Actions giving rise to quasiprimitive graphs of order 10p.

Let G be a group acting on the cosets of its subgroup H in a natural way.
Following the terminology of [64] we say that the set O(G,H) of generalized orbital
graphs (in short GOGs) of this action is a minimal connected orbital graph set for
this action if each connected GOG corresponding to this action contains some graph
of O(G,H) as a spanning subgraph. As we are only interested in whether a given
GOG contains a Hamilton path (or a Hamilton cycle) Proposition 6.1.1 implies that
we can disregard the graphs from O(G,H) whose valencies are at least [G : H]/3.
We let the remaining set of GOGs be the set R(G,H) of relevant graphs for this
action. It is now clear that in order to show that each GOG corresponding to the
above mentioned action of G contains a Hamilton path (Hamilton cycle) we only
need to show that each GOG of R(G,H) has this property.

A graph X admitting an (m,n)-semiregular automorphism is completely deter-
mined by the so-called symbol. However, we define it here only for graphs admitting
a (10, p)-semiregular automorphism. Let ρ be a (10, p)-semiregular automorphism
and let Si, i ∈ Z10, be its orbits. Choose si ∈ Si and define the following subsets
of Zp. For i, j ∈ Z10, we let Ri,j = {r ∈ Zp | si ∼ sρ

r

j }. Note that Rj,i = −Ri,j. It
is clear that the collection of all Ri,j completely determines X. The 10× 10-matrix
Mρ(X) = (Ri,j)i,j , whose (i, j)-th entry is the set Ri,j, is the symbol of X relative
to (ρ, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9). The symbols will be used in Sections 6.3
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and 6.4 to give relevant quasiprimitive and primitive graphs of order 10p, p a prime.

We now describe the method of obtaining R(G,H) for the action of row 2 of
Table 6.1 in full detail. The other actions are dealt with in a similar way, so we only
give the relevant graphs and leave the details to the reader. Each relevant graph X
will be represented in a structural way given by some semiregular automorphism ϕ
of X from which the existence of a Hamilton cycle will be clear. In the case when ϕ
is (10, p)-semiregular its symbol (for the definition see Section 2.2.5) will be given.

Graphs corresponding to row 2 of Table 6.1: Note that these graphs are of order 110.
In the action of PSL(2, 11) on the cosets of D6, we get that D6 has 21 nontrivial
suborbits, 9 of which are self-paired. Of the nine self-paired suborbits, one is of
length 1 and two are of length 3, the others are of length 6. Of the twelve non-
self-paired suborbits, 2 are of length 3, the others are of length 6. Denote these 21
nontrivial suborbits by Ui, i ∈ {1, 2, . . . , 21}, where U1 is of length 1, U2 and U3 are
of length 3, the others are of length 6, U1, U2, . . . , U9 are the self-paired suborbits,
and U2i is paired with U2i+1 for i ∈ {5, 6, · · · , 10}.

The unions U2i ∪ U2i+1, where i ∈ {5, 6, . . . , 10}, give rise to five nonisomorphic
graphs, all of them are connected. Of these five graphs, three graphs admit a
transitive group of automorphisms with a cyclic commutator subgroup of prime-
power order, and thus, by Proposition 6.1.5, have a Hamilton cycle. The other two
graphs are isomorphic to X2 and X3 of Table 6.2, respectively. Using an argument
similar to the one used in the proof of Proposition 6.1.6, one can see that these two
graphs both contain a Hamilton cycle.

For i ∈ {1, 2, 3, . . . , 9} the graphs arising from the suborbits Ui, i ∈ {6, 7, 8, 9},
are all connected. Moreover, the graphs arising from the suborbits U7 and U8 admit
a transitive group of automorphisms with a cyclic commutator subgroup of prime-
power order, and thus Proposition 6.1.5 implies that these graphs contain a Hamilton
cycle. The graph arising from the suborbit U6 is isomorphic to the graph arising from
the suborbit U9, and is isomorphic to the graph X1 in Table 6.2. Proposition 6.1.6
implies that X1 contains a Hamilton cycle.

The graphs arising from the suborbits Ui, i ∈ {1, 2, 3, 4, 5}, are disconnected,
whereas the graphs arising from U1 ∪Ui, i ∈ {2, 3, 4, 5}, are connected and give rise
to two nonisomorphic graphs X4 and X5 in Table 6.2. Proposition 6.1.6 implies that
both graphs contain a Hamilton cycle. The graph X4 is also given in Figure 6.1.

Finally, the unions Ui ∪Uj , where i, j ∈ {2, 3, 4, 5}, give rise to three nonisomor-
phic connected graphs. Two of which admit a transitive group of automorphisms
with a cyclic commutator subgroup of prime-power order, and thus, by Proposition
6.1.5, have a Hamilton cycle. The third graph is isomorphic to the graph X6 in
Table 6.2. Proposition 6.1.6 implies that this graph has a Hamilton cycle.

We have now clearly considered all the relevant graphs R(PSL(2, 11),D6), and
we can conclude that each connected GOG arising from the action of PSL(2, 11) on
the cosets of D6, contains a Hamilton cycle.

Graphs corresponding to row 1 of Table 6.1: The relevant graphs are given in Ta-
ble 6.3, and so it is clear that each GOG arising from this action contains a Hamilton
cycle.
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Graphs corresponding to row 3 of Table 6.1: The relevant graphs are given in Ta-
ble 6.4, and, by Proposition 6.1.6, each of them contains a Hamilton cycle.

Graphs corresponding to row 4 of Table 6.1: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 5 of Table 6.1: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 6 of Table 6.1: There are four connected relevant
graphs. They all admit a transitive group of automorphisms with a cyclic com-
mutator subgroup of prime-power order. Thus Proposition 6.1.5 implies that these
graphs have a Hamilton cycle.

Graphs corresponding to row 7 of Table 6.1: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 8 of Table 6.1: The relevant graphs are given in Ta-
ble 6.5. By Proposition 6.1.6, each of these graphs contains a Hamilton cycle.

Graphs corresponding to row 9 of Table 6.1: The relevant graphs are given in Ta-
ble 6.6. By Proposition 6.1.6, each of these graphs contains a Hamilton cycle.

Graphs corresponding to row 10 of Table 6.1: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 11 of Table 6.1: There is only one connected relevant
graph. It admits a transitive group of automorphisms with a cyclic commutator
subgroup of prime-power order. By Proposition 6.1.5, this graph thus has a Hamilton
cycle.

Graphs corresponding to row 12 of Table 6.1: The relevant graphs are given in
Table 6.9. By Proposition 6.1.6, each of these graphs contains a Hamilton cycle.

Graphs corresponding to row 13 of Table 6.1: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 14 of Table 6.1: The relevant graphs are given in
Table 6.7. By Proposition 6.1.6, each of these graphs contains a Hamilton cycle.

Graphs corresponding to row 15 of Table 6.1: There are two connected relevant
graphs. They both admit a transitive group of automorphisms with a cyclic com-
mutator subgroup of prime-power order. By Proposition 6.1.5, these graphs thus
have a Hamilton cycle.

In view of the fact that the connected quasiprimitive graphs of orders 4p, 2p2,
and 6p (except for the truncation of the Petersen graph) contain a Hamilton cycle
(see [61, 62, 79]), the results of this section imply that the following proposition
holds.

Proposition 6.3.1 Let X be a connected quasiprimitive graph of order 10p, p a
prime, which is not isomorphic to a quasiprimitive graph arising from the action of
PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10. Then X is the truncation of the Petersen
graph or X is hamiltonian.
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X1 X2 X3 X4 X5 X6

p 11 11 11 11 11 11
|V (Xi)| 110 110 110 110 110 110

val 6 12 10 4 7 9

R0,0 ∅ ±4,±5 ±4 ∅ ∅ ∅
R1,1 ∅ ±2,±5 ±4 ∅ ∅ ∅
R2,2 ±3 ±1,±3 ±1 ∅ ∅ ∅
R3,3 ∅ ∅ ±1 ∅ ∅ ∅
R4,4 ∅ ∅ ±5 ∅ ∅ ∅
R5,5 ±2 ∅ ±5 ∅ ∅ ∅
R6,6 ±1 ∅ ±3 ∅ ∅ ∅
R7,7 ±5 ±1,±4 ±2 ∅ ∅ ∅
R8,8 ±4 ±2,±3 ±3 ∅ ∅ ∅
R9,9 ∅ ±4,±5 ±2 ∅ ∅ ∅
R0,1 0 0, 7 0, 8 0 0 0
R0,2 0, 3 0, 9 0, 10 0 0, 10 0, 8
R0,3 ∅ 0 0, 10 0 0 0, 3
R0,4 0 0, 6 0, 7 0 0 0
R0,5 0 0, 7 0, 4 ∅ 0 0, 6
R0,6 0 0 ∅ ∅ 0 0
R0,7 ∅ 0 ∅ ∅ ∅ ∅
R0,8 ∅ 0 ∅ ∅ ∅ ∅
R0,9 ∅ ∅ ∅ ∅ ∅ ∅
R1,2 ∅ 1 6, 7 ∅ 0 8
R1,3 ∅ 10 6, 7 7 0 ∅
R1,4 ∅ ∅ 3, 7 ∅ 0 0, 8
R1,5 ∅ 6 0, 7 0 ∅ 0, 5
R1,6 0 6, 10 ∅ 0 ∅ ∅
R1,7 0 6 ∅ ∅ 0 0, 9
R1,8 0, 4 ∅ ∅ ∅ 0, 3 0
R1,9 0 ∅ ∅ ∅ ∅ ∅
R2,3 0 3, 5 1, 10 ∅ 0 6
R2,4 ∅ 3 ∅ 1 ∅ ∅
R2,5 ∅ 3 ∅ ∅ 0 ∅
R2,6 ∅ ∅ 0, 8 1 ∅ 3
R2,7 ∅ ∅ ∅ 0 0 3, 10
R2,8 ∅ ∅ 0, 8 ∅ ∅ 3, 7
R2,9 7 0 ∅ ∅ 0 ∅
R3,4 7 1, 3 ∅ ∅ ∅ 8, 9
R3,5 ∅ 3 ∅ ∅ ∅ ∅
R3,6 2, 3 5, 8 0, 8 ∅ 0, 6 4, 8
R3,7 ∅ 8 ∅ 10 ∅ ∅
R3,8 5 ∅ 0, 8 0 0 8
R3,9 ∅ 0, 10 ∅ ∅ 0 0
R4,5 0 ∅ 9, 10 3 0, 9 0
R4,6 ∅ 6 ∅ ∅ 0 ∅
R4,7 2, 8 6, 9 0, 6 ∅ 0 ∅
R4,8 10 2, 7 ∅ ∅ 0 0, 9
R4,9 9 5 0, 6 0 ∅ 3
R5,6 ∅ 9, 10 ∅ ∅ 0 0
R5,7 ∅ ∅ 2, 7 10 0 0
R5,8 ∅ 2, 7 ∅ ∅ ∅ ∅
R5,9 5 0, 2 2, 7 0 0 2, 3
R6,7 ∅ 2, 10 2, 4 ∅ ∅ 0, 6
R6,8 ∅ 5 3, 8 0 0 ∅
R6,9 ∅ 9 2, 4 2 0 3, 4
R7,8 ∅ 2 7, 9 7 0 0
R7,9 0 ∅ 2, 9 ∅ 0, 7 3
R8,9 ∅ 0 2, 4 0 0 1, 3

Table 6.2: Relevant graphs corresponding to the action of row 2 of Table 6.1.
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X1 X2

p 7 7
|V (Xi)| 70 70

val 6 18

R0,0 ∅ ∅
R1,1 ∅ ±3
R2,2 ∅ ±2
R3,3 ∅ ±1
R4,4 ±3 ±1
R5,5 ∅ ±1
R6,6 ∅ ±3
R7,7 ∅ ±2
R8,8 ±1 ±2
R9,9 ±2 ±3
R0,1 0 0
R0,2 0 0
R0,3 0 0
R0,4 0, 3 0, 3
R0,5 0 0
R0,6 ∅ 0
R0,7 ∅ 0
R0,8 ∅ 0, 1, 4, 5
R0,9 ∅ 0
R1,2 2 ∅
R1,3 0 ±1
R1,4 ∅ 1, 3, 5
R1,5 0 ∅
R1,6 0 3, 5
R1,7 0 4, 5, 6
R1,8 ∅ 2, 3
R1,9 ∅ 1, 2, 3
R2,3 ∅ 1, 4
R2,4 0, 3 2, 3, 6
R2,5 ∅ ∅
R2,6 5 1, 2
R2,7 5 1, 4, 5
R2,8 ∅ 3, 4
R2,9 ∅ 4, 5, 6
R3,4 ∅ 1, 5
R3,5 0 0, 4
R3,6 ∅ ∅
R3,7 3 1, 4
R3,8 0, 1 ∅
R3,9 ∅ 4, 6
R4,5 ∅ 1, 3, 5
R4,6 ∅ 1, 3
R4,7 ∅ ∅
R4,8 ∅ 3, 6
R4,9 ∅ ∅
R5,6 6 1, 3
R5,7 ∅ 2, 3, 6
R5,8 ∅ 2, 6
R5,9 0, 2 1, 3, 5
R6,7 0 4, 5
R6,8 ∅ ∅
R6,9 1, 3 1, 6
R7,8 4, 5 1, 2
R7,9 ∅ ∅
R8,9 ∅ 4, 5

Table 6.3: Relevant graphs correspond-
ing to the action of row 1 of Table 6.1.

X1 X2

p 11 11
|V (Xi)| 110 110

val 12 6

R0,0 ±3 ±1
R1,1 ±1 ∅
R2,2 ±2 ∅
R3,3 ±2 ±2
R4,4 ±1 ∅
R5,5 ±3 ±5
R6,6 ±4 ∅
R7,7 ±4 ±4
R8,8 ±5 ∅
R9,9 ±4 ±3
R0,1 0, 8 0, 1
R0,2 0, 2 0, 10
R0,3 0, 2 ∅
R0,4 0, 8 ∅
R0,5 0, 5 ∅
R0,6 ∅ ∅
R0,7 ∅ ∅
R0,8 ∅ ∅
R0,9 ∅ ∅
R1,2 ∅ 10
R1,3 ∅ 0, 2
R1,4 ±1 0
R1,5 0, 8 ∅
R1,6 0, 10 ∅
R1,7 0, 10 ∅
R1,8 ∅ ∅
R1,9 ∅ ∅
R2,3 ±2 ∅
R2,4 ∅ ∅
R2,5 6, 8 0, 6
R2,6 ∅ 0
R2,7 ∅ ∅
R2,8 0, 5 ∅
R2,9 0, 6 ∅
R3,4 ∅ 0, 9
R3,5 6, 8 ∅
R3,6 ∅ ∅
R3,7 ∅ ∅
R3,8 0, 5 ∅
R3,9 0, 6 ∅
R4,5 0, 8 ∅
R4,6 0, 10 ∅
R4,7 0, 10 0, 4
R4,8 ∅ 0
R4,9 ∅ ∅
R5,6 ∅ 0, 5
R5,7 ∅ ∅
R5,8 ∅ ∅
R5,9 0, 2 ∅
R6,7 4, 7 ∅
R6,8 ±2 1
R6,9 4, 8 0, 8
R7,8 ±2 0, 7
R7,9 4, 8 ∅
R8,9 0, 1 7, 10

Table 6.4: Relevant graphs correspond-
ing to the action of row 3 of Table 6.1.
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X1 X2 X3

p 7 7 7
|V (Xi)| 70 70 70

val 8 12 12

R0,0 ±3 ±1 ∅
R1,1 ±3 ±3 ∅
R2,2 ∅ ±2 ∅
R3,3 ±2 ±1 ∅
R4,4 ∅ ±1 ∅
R5,5 ∅ ±1 ∅
R6,6 ±2 ±3 ∅
R7,7 ±2 ±2 ∅
R8,8 ±3 ±2 ∅
R9,9 ±1 ±3 ∅
R0,1 0 0, 6 0, 1
R0,2 0 0, 6 0
R0,3 0, 6 0, 2 0, 2
R0,4 0 0, 1 0, 6
R0,5 0 0 0, 6
R0,6 ∅ 0 0
R0,7 ∅ ∅ 0, 5
R0,8 ∅ ∅ ∅
R0,9 ∅ ∅ ∅
R1,2 5 0 5
R1,3 3 ∅ 2, 6
R1,4 ∅ 1 0, 3
R1,5 5 2, 5 2, 5
R1,6 0 3, 6 1
R1,7 0 ∅ ∅
R1,8 0 ∅ 0, 6
R1,9 0 ∅ ∅
R2,3 3 4 5
R2,4 2 1, 5, 6 1, 5, 6
R2,5 ∅ ∅ ∅
R2,6 1 ∅ ∅
R2,7 1 1, 6 0, 1
R2,8 5 0, 4 2, 6
R2,9 5 ∅ 0, 2
R3,4 4 2 3, 5
R3,5 4 0, 5 1, 6
R3,6 ∅ 0, 5 3
R3,7 ∅ ∅ ∅
R3,8 ∅ 0, 3 ∅
R3,9 ∅ ∅ 2, 5
R4,5 5 ∅ ∅
R4,6 0 ∅ ∅
R4,7 0 1, 3 1
R4,8 0 1, 5 4
R4,9 0 0 6
R5,6 1 0, 2, 6 0, 2, 6
R5,7 1 5 5
R5,8 5 4 4
R5,9 5 0, 1 4
R6,7 ±2 4 4, 5
R6,8 ∅ 1 1, 5
R6,9 ∅ 4, 5 0, 2
R7,8 ∅ ∅ 4, 5
R7,9 ∅ 4, 6 1, 3
R8,9 1, 6 3, 4 3, 6

Table 6.5: Relevant graphs correspond-
ing to the action of row 8 of Table 6.1.

X1 X2

p 7 7
|V (Xi)| 70 70

val 16 16

R0,0 ∅ ∅
R1,1 ±2 ±2
R2,2 ±1 ±3
R3,3 ±1 ∅
R4,4 ±3 ∅
R5,5 ∅ ±2
R6,6 ±2 ∅
R7,7 ∅ ±1
R8,8 ±3 ±3
R9,9 ∅ ∅
R0,1 0 0
R0,2 0, 1, 6 0, 1, 6
R0,3 0 0, 2, 5
R0,4 0, 1, 4 0, 2, 6
R0,5 0, 4, 6 0, 3, 6
R0,6 0, 2, 4 0
R0,7 0 0
R0,8 0 0
R0,9 ∅ ∅
R1,2 ∅ 2, 3
R1,3 0, 5 3, 6
R1,4 ∅ 1, 4, 5
R1,5 4 4, 5
R1,6 2, 4 1
R1,7 0, 2, 4 ∅
R1,8 0, 4 ∅
R1,9 0, 2, 4 1, 2, 4
R2,3 0, 6 ∅
R2,4 1, 2 4
R2,5 4, 5, 6 ∅
R2,6 1, 6 2, 3, 4
R2,7 1 2, 4
R2,8 ∅ 3, 5
R2,9 4 3
R3,4 ∅ 3
R3,5 6 ∅
R3,6 ∅ 1, 4, 6
R3,7 0, 1, 2 3, 6
R3,8 0, 6 1, 3
R3,9 4, 5, 6 0
R4,5 2, 3, 6 2
R4,6 0, 4 ∅
R4,7 0 2, 4, 6
R4,8 3, 6 2, 3, 4
R4,9 2 1
R5,6 0, 2, 5 2, 5, 6
R5,7 ∅ 3, 6
R5,8 0 5, 6
R5,9 0 5
R6,7 0 3
R6,8 ∅ 5
R6,9 5 2, 4, 5
R7,8 0, 3, 6 ∅
R7,9 2, 3, 5 0, 3, 5
R8,9 0, 3, 6 1, 2, 3

Table 6.6: Relevant graphs correspond-
ing to the action of row 9 of Table 6.1.
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X1

p 11
|V (Xi)| 110

val 18

R0,0 ±4
R1,1 ±5
R2,2 ±3
R3,3 ±2
R4,4 ±1
R5,5 ±2
R6,6 ±1
R7,7 ±5
R8,8 ±4
R9,9 ±2
R0,1 0
R0,2 0
R0,3 02, 3, 5
R0,4 0, 34, 10
R0,5 0, 4
R0,6 0
R0,7 0
R0,8 0
R0,9 ∅
R1,2 2, 3, 7, 9
R1,3 7
R1,4 3, 8
R1,5 1
R1,6 1, 2, 9, 10
R1,7 1
R1,8 0
R1,9 0
R2,3 10
R2,4 5
R2,5 5
R2,6 3
R2,7 0, 8
R2,8 9
R2,9 7
R3,4 0
R3,5 1
R3,6 0, 2, 6, 8
R3,7 5
R3,8 3, 5
R3,9 8
R4,5 2, 5, 8, 9
R4,6 0
R4,7 6
R4,8 0, 5, 9, 10
R4,9 3
R5,6 9
R5,7 7
R5,8 2
R5,9 0, 1, 2, 9
R6,7 3
R6,8 8
R6,9 9, 10
R7,8 1, 3, 7, 10
R7,9 3, 4, 6, 9
R8,9 2

Table 6.7: Relevant graphs correspond-
ing to the action of row 14 of Table 6.1.

X1

p 19
|V (Xi)| 190

val 36

R0,0 ±5
R1,1 ±9
R2,2 ±1
R3,3 ±3
R4,4 ±8
R5,5 ±7
R6,6 ±1, ±2, ±3, ±4, ±5,±6, ±7, ±8, ±9
R7,7 ±2
R8,8 ±6
R9,9 ±4
R0,1 7, 12, 13, 18
R0,2 0, 1, 5, 6
R0,3 0, 11, 14, 16
R0,4 0, 3, 8, 14
R0,5 0, 5, 12, 17
R0,6 0, 14
R0,7 0, 3, 5, 17
R0,8 0, 5, 6, 11
R0,9 0, 4, 14, 18
R1,2 5, 6, 14, 15
R1,3 0, 6, 9, 16
R1,4 0, 8, 9, 17
R1,5 5, 7, 14, 17
R1,6 0, 9
R1,7 3, 5, 12, 14
R1,8 1, 5, 11, 14
R1,9 0, 4, 9, 13
R2,3 10, 11, 13, 14
R2,4 2, 3, 13, 14
R2,5 50, 11, 12, 18
R2,6 13, 14
R2,7 0, 16, 17, 18
R2,8 0, 5, 6, 18
R2,9 13, 14, 17, 18
R3,4 0, 3, 8, 11
R3,5 1, 5, 8, 17
R3,6 0, 3
R3,7 3, 5, 6, 8
R3,8 5, 8, 11, 14
R3,9 0, 3, 4, 7
R4,5 5, 9, 16, 17
R4,6 0, 11
R4,7 3, 5, 14, 16
R4,8 3, 5, 11, 16
R4,9 0, 4, 11, 15
R5,6 2, 14
R5,7 0, 5, 7, 17
R5,8 0, 6, 7, 13
R5,9 2, 6, 14, 18
R6,7 3, 5
R6,8 5, 11
R6,9 0, 4
R7,8 0, 2, 6, 8
R7,9 1, 14, 16, 18
R8,9 8, 12, 14, 18

Table 6.8: Relevant graphs correspond-
ing to the action of row 2 of Table 6.10.



88 6.3 Quasiprimitive graphs of order 10p

X1 X2 X3 X4 X5

p 13 13 13 13 13
|V (Xi)| 130 130 130 130 130

val 12 20 30 30 24
R0,0 ∅ ±1 ±1, ±5 ±4 ∅
R1,1 ±2, ±6 ±2, ±4 ±4 ±5 ∅
R2,2 ±3, ±4 ±5 ±1, ±5 ±6 ∅
R3,3 ∅ ±1 ±3 ±1 ∅
R4,4 ±5 ±3, ±6 ±2 ±1 ∅
R5,5 ±1 ±2, ±4 ±2 ±6 ∅
R6,6 ∅ ±1 ±6 ±5 ±3, ±5, ±6
R7,7 ∅ ±5 ±3 ±4 ±1, ±2, ±4
R8,8 ∅ ±3, ±6 ∅ ±2, ±3 ±3, ±5, ±6
R9,9 ∅ ∅ ±4 ±2, ±3 ±1, ±2, ±4
R0,1 0 0, 2 0, 2, 6, 8, 9, 12 0, 4, 5, 8 0, 3
R0,2 0 0, 3, 8 0, 8, 10, 11 0, 4, 7, 10 0, 1, 8, 9
R0,3 0, 9, 11 0, 1, 2 0, 10 0, 7, 9 0, 12
R0,4 0, 11 0, 3 0, 11 0, 4, 6 0, 2, 10, 12
R0,5 0 0, 11 0, 11 0, 2, 4, 11 0, 6, 7, 12
R0,6 0 0, 11, 12 0, 3, 4, 7, 9, 11 ∅ 0
R0,7 0, 9 0, 5, 10 0, 3 0, 2 0, 2, 6
R0,8 0 0, 10 0 0, 12 0
R0,9 ∅ ∅ 0 0, 1 0, 2, 9
R1,2 ∅ 3, 7, 11 0 2, 6, 12 2, 4
R1,3 2 0 6, 7, 12 0, 3, 7, 8, 9 3, 6, 10, 12
R1,4 ∅ ∅ 1, 6, 9, 12 ∅ 2, 7
R1,5 3, 11 0, 2, 7, 9 2, 4, 7, 10 3, 7, 10 1, 2
R1,6 4 11 ∅ 8, 12 0, 6, 8
R1,7 ∅ 0, 4, 8 6, 11, 12 2, 7, 11, 12 2, 11, 12
R1,8 6 ∅ 6, 7, 9, 11, 12 2, 4, 5, 7, 8, 10 2, 4, 10
R1,9 0, 1 0, 11 6, 12 ∅ 0, 1, 10
R2,3 8 6 1, 4 0, 1, 2, 7 4, 12
R2,4 7, 8 0, 6 8, 10 2, 7, 8, 9 1, 2, 6, 10
R2,5 ∅ 0, 4, 8 6, 8 4, 7 1, 9, 11, 12
R2,6 9 4 6 2, 6, 12 1, 4, 10
R2,7 4, 12 2, 5 1, 4 0, 2, 9, 11 7
R2,8 7 10 2, 3, 6, 8, 10, 12 3, 8 0, 3, 7
R2,9 ∅ 0, 5, 10 0, 1, 4, 5, 7, 11 ∅ 12
R3,4 7, 9 0, 1, 7 3, 4, 8, 12 0, 6 1, 12
R3,5 12 11 0, 5, 6, 12 0, 6, 7, 8 2, 5
R3,6 8 10, 12 8, 9, 10, 12 ∅ 4, 9, 11
R3,7 8, 12 4 7, 9 0, 4, 11 6, 9, 10
R3,8 8 4, 10, 11 6, 8, 9, 10 1, 3, 4, 5, 6, 8 3, 5, 10
R3,9 ∅ 0, 11, 12 5, 6, 11 5 6, 7, 10
R4,5 ∅ ∅ 4, 7 2, 7, 8, 9 0, 7, 8, 12
R4,6 4 ∅ 7, 8, 12 0, 4, 7, 11, 12 0, 4, 10
R4,7 ∅ 10 1, 2, 7, 8 2, 4, 11 11
R4,8 10 0, 3, 4, 7 3, 4, 12 8 1, 4, 10
R4,9 1, 4 0, 10 1, 4, 6, 11 5, 7, 8, 9, 10 5
R5,6 2, 12 0 1, 2, 10 5, 9, 12 2
R5,7 ∅ 2, 6, 10 1, 5, 6, 10 2, 5, 8, 11 0, 4, 6
R5,8 7, 10 ∅ 3, 11, 12 0, 8 5
R5,9 ∅ 0, 2 1, 4, 9, 11 3, 11 3, 5, 9
R6,7 ∅ 6 1, 2, 3, 5 0, 4, 9, 12 6, 11
R6,8 1, 4, 7 0, 6, 12 1, 5 9 ∅
R6,9 2, 8 0, 1, 2 0, 1, 3, 5, 6 1, 2, 4, 5, 7, 12 1, 2
R7,8 ∅ 0 3, 4, 5, 7 5, 6 0, 12
R7,9 0, 4, 5, 12 0, 3, 8 2, 7, 8 5, 6 ∅
R8,9 2, 9 0, 3 ∅ 0, 1, 3, 11 4, 9

Table 6.9: Relevant graphs corresponding to the action of row 12 of Table 6.1.
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6.4 Primitive graphs of order 10p

Throughout this section let X denote a primitive graph of order 10p, p a prime.
In [43] the complete characterization of primitive graphs of order 2pq, where p and
q are distinct odd primes, was given. Extracting the information about graphs of
order 10p we find that the only primitive graphs of order 10p, p a prime, are the
ones arising from the actions given in Table 6.10. Below we show that each of the
corresponding graphs has a Hamilton cycle. We let the GOGs and the relevant
graphs corresponding to some action be defined as in Section 6.3.

row p Action of Aut(X)

1 13 PSL(4, 3) on cosets of P2

2 19 S20 on pairs

Table 6.10: Primes p for which there exists a graph X on 10p vertices such that
Aut(X) and all vertex-transitive subgroups of Aut(X) act primitively on X.

Graphs corresponding to row 1 of Table 6.10: It turns out that R(G,H) = ∅ in this
case, and so each GOG arising from this action contains a Hamilton cycle.

Graphs corresponding to row 2 of Table 6.10: The relevant graphs are given in
Table 6.8, and so it is clear that each GOG arising from this action contains a
Hamilton cycle.

The results of this section imply that the following proposition holds.

Proposition 6.4.1 A primitive graph of order 10p, p a prime, contains a Hamilton
cycle.

6.5 The proof of the main theorem

Proof of Theorem 6.0.1: If X is not genuinely imprimitive, then either Propo-
sition 6.3.1 or Proposition 6.4.1 applies. If, however, X is genuinely imprimitive,
then in view of the fact that the connected vertex-transitive graphs of orders 4p, 6p
and 2p2 contain a Hamilton path (see [61, 62, 79]), we may assume that p > 7. Now
apply one of Lemma 6.2.1, Lemma 6.2.3, Lemma 6.2.4, Lemma 6.2.5, Lemma 6.2.6
and Lemma 6.2.7, depending on the size of the corresponding blocks.

6.6 Observations and conclusions

In this section it is proved that with the exception of quasiprimitive graphs
arising from the action of PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10, every connected
vertex-transitive graph of order 10p, p 6= 7 a prime, has a Hamilton path. This
result gives a contribution to Lovász question about existence of Hamilton paths
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in connected vertex-transitive graphs. The proof of this result is based on lifting
Hamilton cycles approach and analyzing (im)primitivity of actions of automorphism
groups.



Chapter 7

Conclusion

A number of research problems concerning vertex-transitive graphs are solved.
A complete classification of cubic non-Cayley vertex-transitive graphs of order 4p2,
p > 7 a prime, and a characterization of cubic non-Cayley vertex-transitive graphs
of order 2pk, p > 7 a prime and k ≤ p, are given. It is also proved that cubic
non-symmetric Cayley graphs on a non-abelian simple group

G ∈ {M11,M22,M23, J2,Suz,PSL(2, 11),An | n ∈ {5, 11, 23, 47}}

are normal. Further, a complete classification of tetravalent one-regular graphs
of order 4p2, p a prime, is given. And finally, it is proved that connected vertex-
transitive graphs of order 10p, p a prime, different from quasiprimitive graphs arising
from the action of PSL(2, k) on cosets of Zk ⋊ Z(k−1)/10, possess a Hamilton path.

The first two results give partial solutions to Problems 3.0.1 and 3.0.2. In par-
ticular, it is shown that every cubic non-Cayley vertex-transitive graph of order 4p2,
p > 7 a prime, is a generalized Petersen graph (see Theorem 3.1.4), and that every
cubic non-Cayley vertex-transitive graph of order 2pk, p > 7 a prime and k ≤ p, is
a 2-Cayley graph on a cyclic group (see Theorem 3.2.3).

Next, Theorem 4.0.4 partially solves an open problem about normality of Cay-
ley graphs on non-abelian simple groups posed in [34]. However, for a complete
solution of this problem the normality of cubic Cayley graphs on the following non-
abelian simple groups still need to be consider: An, n = 2m − 1,m ≥ 3, PSL(2, 2e),
PSL(3, 2e), U3(2

e), PSp4(2
e), E8(2

e), F4(2
e), 2F4(2

e)′, G2(2
e), and Sz(2e).

Tetravalent one-regular graphs of orders p, pq and 2pq, p and q primes, are
classified in [16, 100, 102, 113, 120, 122, 129]. And, in the PhD Theiss the next step
needed to be taken if one is to obtain a complete classification of all tetravalent one-
regular graphs, is done. In particular, Theorem 5.4.1, gives a complete classification
of tetravalent one-regular graphs of order 4p2, p a prime.

And finally, the PhD Thesis also gives a partial solution to the hamiltonicity
problem of connected vertex-transitive graphs. In particular, by Theorem 6.0.1
every connected vertex-transitive graph of order 10p, p 6= 7 a prime, which is not
isomorphic to a quasiprimitive graph arising from the action of PSL(2, k) on cosets
of Zk ⋊ Z(k−1)/10, contains a Hamilton path.
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To wrap up, the results of this PhD Thesis represent a contribution to a number
of long standing open problems in algebraic graph theory.
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[67] C. H. Li, Z. P. Lu and D. Marušič, On primitive permutation groups with small suborbits and
their orbital graphs, J. Algebra 279 (2004), 749–770.

[68] C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number
of vertices, J. Combin. Theory Ser. B 96 (2006), 164-181.
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Povzetek v slovenskem jeziku

Disertacija obravnava štiri teme s podorčja algebraične teorije grafov:

• ne-Cayleyjevi točkovno tranzitivni grafi,

• grupe avtomorfizmov točkovno tranzitivnih grafov,

• ena-regularni grafi in

• hamiltonske poti v točkovno tranzitivnih grafih.

Vse te teme govorijo o točkovno tranzitivnih grafih, t.j. grafih, katerih grupe av-
tomorfizmov delujejo tranzitivno na množici točk grafa, kar pojasnuje že naslov
disertacije. V literaturi so točkovno tranzitivni grafi včasih poimenovani točkovno
simetrični grafi. Motivacija za obravnavane teme izhaja iz štirih odprtih problemov,
ki jih prestavljamo v nadaljevanju.

Ne-Cayleyjevi točkovno tranzitivni grafi

Če grupa avtomorfizmov grafa premore podgrupo, ki deluje regularno na množici
točk grafa, grafu pravimo Cayleyjev graf. Vsak Cayleyjev graf je seveda točkovno
tranzitiven, vendar obrat ne velja. Obstajajo točkovno tranzitivni grafi, ki niso
Cayleyjevi. Najmanǰsi primer takega točkovno tranzitivnega grafa je Petersenov
graf. Red ne-Cayleyjevega grafa imenujemo ne-Cayleyjevo število.

Leta 1983 je Marušič [77] vprašal, za katera pozitivna števila n obstaja ne-
Cayleyjev točkovno tranzitiven graf na n točkah. V literaturi obstajajo številna
znanstvena dela, ki delno rešijo ta problem (glej [4, 5, 20, 55, 69, 73, 78, 86, 87, 88,
89, 91, 92, 100, 102, 108, 109, 111, 131]), vendar je v splošnem še vedno odprt. Na
primer, v [78] je dokazano, da je vsak točkovno tranzitiven graf reda pk, kjer je p liho
praštevilo in k ≤ 3, Cayleyjev graf. Družino ne-Cayleyjevih točkovno tranzitivnih
grafov reda pk, kjer je p ≥ 5 praštevilo in k ≥ 4, sta konstruirala McKay in Praeger v
[91]. Leta 1971 so Frucht, Graver in Watkins [42] konstruirali družino ne-Cayleyjevih
točkovno tranzitivnih grafov reda 2p, kjer je p ≡ 1 (mod 4) praštevilo. Nato sta leta
1979 Alspach in Sutcliffe [5] dokazala, da je za praštevilo p število 2p ne-Cayleyjevo
natanko tedaj, ko je p ≡ 1 (mod 4). Rezultati iz [4], [86] in [102] dajo klasifikacijo
ne-Cayleyjevih točkovno tranzitivnih grafov, katerih red je produkt dveh praštevil.
Karakterizacija ne-Cayleyjevih števil oblike 2pq, p in q praštevili, sledi iz [57] in
[94]. Leta 1996 sta McKay in Praeger [92] dokazala, da je vsako pozitivno število
n, ki je deljivo s kvadratom praštevila, z izjemo n ∈ {12, p2, p3}, ne-Cayleyjevo. Ne-
Cayelyjeva števila, ki so produkt treh različnih praštevil, je obravnaval Seress v [108].



Nedavno pa sta Li in Seress [69] določila tista pozitivna števila n prostih kvadratov,
za katera obstaja ne-Cayleyjev točkovno tranzitiven graf reda n s primitivno grupo
avtomorfizmov.

Graf X je m-Cayleyjev graf grupe G, če premore polregularno grupo avtomor-
fizmov G, ki ima natanko m orbit, vse enake dožine n. Glede na domnevo [75, 83]
o obstoju polregularnih avtomorfizmov v vsakem točkovno tranzitivnem grafu je
smiselno postaviti naslednji problem.

Problem 1: Za dani ne-Cayleyjev točkovno tranzitiven graf X določi najmanǰse
celo število m, tako da je X m-Cayleyjev graf ciklične grupe.

Na osnovi zgoraj omenjenega raziskovalnega dela je Feng [40] vprašal po določitvi
najmanǰse valence ϑ(n) med valencami ne-Cayleyjevih točkovno tranzitivnih grafov
reda n. Ta problem je tudi rešil za grafe reda pn, kjer je p liho praštevilo. Očitno je
ne-Cayleyjevo število n, za katerega je ϑ(n) = 3, sodo število. Znano je tudi, da je
posplošeni Petersenov graf GP(n, t) ne-Cayleyjev točkovno tranzitiven graf natanko
tedaj, ko je t2 ≡ −1 (mod n) ali (n, t) = (10, 2) (glej [42, 72, 96]). Zato za vsako
tako pozitivno število n, da 4 deli φ(n), velja ϑ(2n) = 3. Glede na ta dejstva je
smiselno raziskovanje ne-Cayleyjevih števil usmeriti v reševanje spodaj navedenih
problemov.

Problem 2: Klasificiraj ne-Cayleyjeva števila n, za katera je ϑ(n) = 3.

Problem 3: Za ne-Cayleyjevo število n z ϑ(n) = 3 klasificiraj vse povezane kubične
ne-Cayleyjeve točkovno tranzitivne grafe reda n. Za katera števila so posplošeni
Petersenovi grafi edini taki grafi?

Problem 3 je rešen za števila 2p, 4p, 2p2 in 2pq, kjer sta p in q lihi praštevili
(glej, [5, 42, 78, 127, 128, 131]). V disertaciji je ta problem rešen za števila ob-
like 4p2, kjer je p > 7 praštevilo. Z uporabo rezultatov s področja teorije grup in
kombinatoričnih tehnik je dokazano, da so posplošeni Petersenovi grafi edini primeri
povezanih kubičnih ne-Cayleyjevih točkovno tranzitivnih grafov reda 4p2 (glej The-
orem 3.1.4). Z drugimi besedami, dokazano je, da je vsak kubični ne-Cayleyjev
točkovno tranzitiven graf takega reda 2-Cayleyjev graf ciklične grupe. Torej dis-
ertacija reši problem 1 za ta poseben razred ne-Cayleyjevih točkovno tranzitivnih
grafov. Poleg tega je v disertaciji dokazano, da je vsak kubični ne-Cayleyjev točkovno
tranzitiven graf reda 2pn, kjer je p > 7 praštevilo in n ≤ p, 2-Cayleyjev graf p-grupe
P , ki je generirana z dvema elementoma a in b istega reda in premore tak avtomor-
fizem φ ∈ Aut(P ) reda 4, da je aφ = b in bφ = a−1 (glej Theorem 3.2.3).

Grupe avtomorfizmov posebnih točkovno tranzitivnih grafov

Cayleyjevemu grafu X = Cay(G,S) pravimo normalen Cayleyjev graf, če je
grupa G edinka v Aut(X), torej, če je NAut(X)(G) = Aut(X). Li [66] je dokazal, da
je vsak povezan kubični simetrični Cayleyjev graf ne-abelove enostavne grupe, ki je
različna od

A5,PSL(2, 11),M11,A11,M23,A23 in A47,

normalen. Nato sta Xu in Xu [124] dokazala, da so tudi povezani kubični simetrični
Cayleyjevi grafi alternirajoče grupe A5 normalni. Z uporabo rezultatov iz [33] je
kasneje Xu [123] dokazal tudi, da kubični simetrični Cayleyjevi grafi grupe A47



niso normalni, medtem ko so kubični simetrični Cayleyjevi grafi vseh drugih zgoraj
navedenih enostavnih grup normalni. Za povezane kubične ne-simetrične Cayleyjeve
grafe ne-abelovih enostavnih grup je Fang [34] dokazal, da so skorajda vsi normalni.
Natančneje, dokazal je, da so za vse ne-abelove enostavne grupe z izjemo M11, M22,
M23, J2, Suz, An, kjer n ∈ {5, 11, 23, 47}∪ {2m − 1 | m ≥ 3}, PSL(2, 11), PSL(2, 2e),
PSL(3, 2e), U3(2

e), PSp4(2
e), E8(2

e), F4(2
e), 2F4(2

e)′, G2(2
e) in Sz(2e) pripadajoči

povezani kubični ne-simetrični Cayleyjevi grafi normalni. Za navedene izjeme pa
Fang ni uspel določiti, ali so pripadajoči povezani kubični ne-simetrični ne-Cayleyjevi
grafi normalni ali ne. V disertaciji je izbolǰsan Fangov rezultat. Dokazano je, da
so povezani kubični ne-simetrični Cayleyjevi grafi normalni tudi za grupe M11, M22,
M23, J2, Suz, An, kjer n ∈ {5, 11, 23, 47}, in PSL(2, 11).

Ena-regularni grafi

Če grupa avtomorfizmov grafa deluje regularno na množici lokov grafa, prav-
imo, da je graf ena-regularen. Ena-regularni graf brez izoliranih točk je povezan in
je valence 2 natanko tedaj, ko je cikel. Prvi kubični ena-regularni graf je konstru-
iral Frucht [40]. V zadnjih desetletjih so bili ena-regularni grafi predmet številnih
raziskav (glej [19, 25, 35, 36, 37, 38, 95]). V disertaciji je narejena popolna klasi-
fikacija štirivalentnih ena-regularnih grafov reda 4p2, kjer je p praštevilo, glej The-
orem 5.4.1.

Hamiltonskost točkovno tranzitivnih grafov

Leta 1969 je Lovász [71] postavil vprašanje ali ima vsak povezan točkovno tran-
zitiven graf hamiltonsko pot. Vsi znani povezani točkovno tranzitivni grafi imajo
hamiltonsko pot. Še več, z izjemo štirih grafov (to so: Petersenov graf, Coxeterjev
graf in grafa dobljena iz prvih dveh grafov, tako da vsako točko nadomestimo s
trikotnikom) imajo vsi tudi hamiltonski cikel.

Znano je, da imajo povezani točkovno tranzitivni grafi reda p, 2p (z izjemo Pe-
tersenovega grafa), 3p, 4p (z izjemo Coxeterjevega grafa), 5p, p2, p3, p4 in 2p2, kjer
je p praštevilo, hamiltonski cikel (glej [1, 15, 29, 61, 64, 78, 79, 80, 84, 85, 110]).
Za povezane točkovno tranzitivne grafe reda 6p pa je znano le, da imajo hamil-
tonsko pot (glej [64]). Med najpomembneǰse rezultate pa zagotovo sodi rezultat,
da povezani točkovno tranzitivni grafi, katerih grupa avtomorfizmov vsebuje tran-
zitivno podgrupo s ciklično komutatorsko podgrupo moči pk, kjer je p praštevilo, z
izjemo Petersenovega grafa GP(5, 2), premorejo hamiltonski cikel, glej [27].

V disertaciji je Lovászov problem, ki sodi med najpomembneǰse odprte probleme
na področju algebraične teorije grafov, obravnavan za povezane točkovno tranzitivne
grafe reda 10p, kjer je p praštevilo. Dokazano je, da vsak povezan točkovno tranzi-
tiven graf reda 10p, p 6= 7 praštevilo, ki ni izomorfen kvaziprimitivnemu grafu glede
na delovanje grupe PSL(2, k) na odsekih po Zk ⋊ Z(k−1)/10, premore hamiltonsko
pot, glej Theorem 6.0.1.

Navedeno dokazuje, da rezultati disertacije predstavljajo pomemben prispevek k
številnim odprtim problemom v algebraični teoriji grafov.

Naj omenimo še, da so rezultati disertacije objavlejni v naslednjih znanstvenih
člankih:



• C. Zhang and X. G. Fang, A note on the automorphism groups of cubic Cayley
graphs of finite simple groups, Discrete Math. 310 (2010), 3030–3032.

• K. Kutnar, D. Marušič and C. Zhang, On cubic non-Cayley vertex-transitive
graphs, J. Graph Theory, DOI 10.1002/jgt.20573, v tisku.

• Y.-Q. Feng, K. Kutnar, D. Marušič and C. Zhang, Tetravalent one-regular
graphs of order 4p2, poslano v objavo.

• K. Kutnar, D. Marušič and C. Zhang, Hamilton paths and cycles in vertex-
transitive graphs of order 10p, poslano v objavo.
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