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Izvle£ek:

Cilj naloge je preu£iti pokritje in ²irino intervala zaupanja za populacijsko povpre£je.

Izpeljali bomo cenilke za interval zaupanja za primer, ko je preu£evana spremenljivka

porazdeljena normalno ter za primer, ko spremenljivka ni porazdeljena normalno. Po-

leg klasi£nih cenilk za oceno populacijskega povpre£ja bomo uporabljali tudi novej²e

metode samovzor£enja (ang. bootstrap), ki temeljijo izklju£no na podlagi vzorcev.

Preu£evali bomo vpliv velikosti vzorca in oblike porazdelitve.

Za preu£evanje lastnosti cenilk pri majhnih vzorcih bomo uporabili simulacije, kjer nas
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Abstract:

The aim of the �nal project paper is to �rst derive con�dence interval when the variable

that is being studied follows normal distribution and in case it does not. In order to

construct con�dence interval, we will rely on Central Limit Theorem and on the Slutsky

Theorem. After that, we will examine the coverage probability and the width of the

con�dence intervals for di�erent sample sizes and di�erent probability distributions,

using simulations. We will explain what are simulations, when we used them, and why

they are good. Also, we will brie�y present some basic properties of the distributions

we have used for simulations. We will explain what is bootstrapping and how does it

work. At the end will be given results obtained using di�erent methods for constructing

con�dence interval.
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1 Introduction

In statistics, estimation refers to the process by which one makes inferences about

the population, based on information obtained from a sample. The sample statistic is

calculated from the sample data and the population parameter is estimated from this

sample statistics. There are two types of estimates: point estimates and interval esti-

mates. The point estimate is usually di�erent from the population parameter, because

of the sampling error. Because of that, it is better to give an interval estimate, which

is a range of values used to estimate the parameter. Con�dence interval is the most

commonly used interval estimate to make inferences about the population parameters

from the sample data.

Imagine you are trying to �nd out how many days of vacation Slovenians have taken in

the past year. You could ask every Slovenian about his or her vacation schedule to get

the answer, but this would be expensive and time consuming. To save time and money,

you would probably survey a smaller group of Slovenians. However, your �nding may

be di�erent from the actual value if you had surveyed the whole population. That is,

it would be an estimate. Each time you repeat the survey, you would likely get slightly

di�erent results. Commonly, when researchers present this type of estimate, they will

put a con�dence interval around it. The con�dence interval is a range of values, in

which the actual value is likely to fall. It represents the accuracy or precision of an

estimate.

Here, we are interested in the con�dence interval around the population mean. First

of all, we will explain why do we need con�dence interval, and how do we interpret

it. Then, we will continue with presenting two ways of the derivation of the con�-

dence interval. First, when the population variance is known and the variable that is

being studied follows normal distribution, and the second one, when the population

variance is unknown and the variable that is being studied follows t-distribution. Af-

ter that, in the third and the fourth chapter, to explain better the derivation of the

con�dence interval we will present two important theorems; Central Limit Theorem

and Slutsky Theorem. In chapter �ve, we will present a powerful statistical technique,

bootstrapping. Using it, we can deal with samples in cases we can not assume a nor-

mal distribution or the t-distribution. Moreover, our aim is to examine the coverage

probability of the con�dence interval and its width by using di�erent distributions and
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simulations. So for the end, there will be results obtained by using simulations.
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2 Con�dence interval

Interval estimators and derivation of the con�dence interval will be the main topic in

this chapter. The fundamental idea of statistics is to analyze a sample of data, and to

make quantitative inferences about the population, from which the data were sampled.

Con�dence intervals are the most straightforward way to do this.

Example 2.1. Say we are interested in the mean weight of 18-year-old girls living in

the Europe. Since it would have been impractical to weigh all the 18-year-old girls in

the Europe, we take a sample of for example 10 girls with weights of 51, 55, 49, 57, 62,

47, 51, 53, 59, and 56 kg, and �nd that the mean weight is 54 kilograms. The sample

mean of 54 kg is a point estimate of the population mean.

Example 2.2. Let us look once again at the example from the beginning. Say we

have asked 10 Slovenians about their vacation, and we have got the following results:

10, 12, 6, 15, 5, 7, 14, 8, 14 and 9 days. The sample mean in this case is 10 days.

If we just give estimate alone, that does not re�ect a measure of the sampling error

of the obtained value; we do not have a good sense of how far this sample mean may

be from the population mean. Because of that we need con�dence intervals, since they

provide more information than the point estimates.

De�nition 2.3. An interval estimate of a real-valued parameter θ, is any pair of

functions L(x1, . . . , xn) and U(x1, . . . , xn), of a sample that satis�es L(x) ≤ U(x) for

all x = (x1, . . . , xn) from a sample space. If X=x is observed, the inference L(x) ≤ θ ≤
U(x) is made. The random interval [L(X), U(X)] is called an interval estimator.

We will denote by [L(X), U(X)] an interval estimator of θ and by [L(x), U(x)] the

realized value of the interval, based on random sample X = (X1, . . . , Xn). Typically,

con�dence intervals are expressed as a two-sided range. We call this interval a 'two

sided', because it is bounded by both lower and upper con�dence limits. In some

circumstances, it can make more sense to express the con�dence interval in only one

direction, to either the lower or upper con�dence limit. For example, if L(x) = −∞
then we have the one-side interval (−∞, U(x)]. In other situations, it can make sense

to express a one-sided con�dence limit as a lower limit only, so we take U(x) =∞ and

we have [L(x),∞).
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De�nition 2.4. For the interval estimator [L(X), U(X)] of a parameter θ, the cover-

age probability of [L(X), U(X)] is the probability that the random interval [L(X), U(X)]

covers the parameter θ. It is denoted by Pθ(θ ∈ [L(X), U(X)]).

Remark 2.5. The interval is random quantity, not the parameter.

Remark 2.6. The probability statements refer to X not θ.

De�nition 2.7. For an interval estimator [L(X), U(X)] of a parameter θ, the con�-

dence coe�cient of [L(X), U(X)] is the in�mum of the coverage probabilities.

Interval estimators, together with con�dence coe�cient are known as con�dence

intervals. In general, when we are not sure in the exact form of our set, we will speak

about con�dence set with the con�dence coe�cient 1− α. Usually, we are looking for

95% and 99% con�dence intervals. The meaning of a con�dence interval is frequently

misinterpreted.

For the given data of the weight of the girls, 95% con�dence interval is [51, 57]. What

does that mean? If repeated samples were taken and the 95% con�dence interval

computed for the each sample, 95% of the intervals would contain the population

mean. So, con�dence intervals provide more information than the point estimates.

2.1 Con�dence interval around population mean

This chapter is principally concerned with the con�dence interval around the population

mean. We will assume that the population is of size N and that each member of

population X1,. . . ,XN , is determined with a numerical value. These numerical values

will be denoted by x1,x2, . . . , xN . The variable xi may be a numerical value, such as

age or height. The population mean or average is de�ned as:

µ =
1

N

N∑
i=1

Xi.

We will also need to consider the population variance, σ2 = 1
N

∑N
i=1(Xi − µ)2.

A useful identity can be obtained by transforming the expression:

σ2 = 1
N

∑N
i=1(X2

i − 2xiµ+ µ2)

= 1
N

(∑N
i=1 X

2
i − 2µ

∑N
i=1Xi +Nµ2

)
= 1

N

(∑N
i=1 X

2
i − 2Nµ2 +Nµ2

)
= 1

N

∑N
i=1X

2
i − µ2

In order to calculate the con�dence interval, �rst of all we have to select a sample from

our population.
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Simple random sampling is a basic type of sampling, with which every object has the

same probability of being chosen. We will consider two cases, when it is done with and

without replacement. Since we take a sample randomly, the sample mean will also be

random. Next step is to calculate a sample mean and a standard deviation.

As an estimator of the population mean we will consider sample mean:

X̄ =
1

n

n∑
i=1

Xi.

X̄ is a random variable whose distribution is called sampling distribution. The sampling

distribution depends on the Xi.

Lemma 2.8. If we denote the values assumed by the population members by x1, x2, . . . , xN ,

and we assume that all members of the population have distinct values, then Xi is a

discrete random variable with probability mass function

P (Xi = xj) =
1

N
.

Also holds,

E(Xi) = µ

V ar(Xi) = σ2

Proof. From probability theory, we know that probability mass function of a discrete

random variable Xi, in this case will be exactly equal to P (Xi = xj) = 1
N
.

The expected value of the random variable Xi is:

E(Xi) =
N∑
j=1

xjP (Xi = xj) =
1

N

N∑
j=1

xj = µ

To show the last equation we will use the de�nition of variance:

V ar(Xi) = E(X2
i )− [E(Xi)]

2

= 1
N

∑N
j=1 x

2
j − µ2

= σ2

Theorem 2.9. With simple random sampling the expected value of a sample mean,

E(X̄) is µ.

Proof.

E(X̄) = E

(
1

n

n∑
i=1

xi

)
=

1

n

n∑
i=1

E(xi) =
1

n
nµ = µ

.
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In statistics, the bias of an estimator is the di�erence between the estimator's

expected value and the true value of the parameter being estimated. An estimator

with zero bias is called unbiased estimator, in all other cases is biased.

Obviously, the sample mean de�ned as X̄ = 1
n

∑n
i=1Xi, is unbiased estimator of the

population mean.

In order to �nd a standard deviation we have to �nd a variance, since a standard

deviation is the square root of the variance. The variance of a random variable is a

measure of its variability, and the covariance of two random variables is a measure of

their joint variability, or their degree of association.

De�nition 2.10. If X and Y are jointly distributed random variables, with expecta-

tions E(X) and E(Y ) respectively, the covariance of X and Y is

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))]

provided that the expectations exists.

This expression can be simpli�ed by expanding the product and using the linearity

of the expectation.

Cov(X, Y ) = E [XY −XE(Y )− Y E(X) + E(X)E(Y )]

= E(XY )− E(X)E(Y )− E(Y )E(X) + E(X)E(Y )

= E(XY )− E(X)E(Y )

In the case when X and Y are independent, E(XY ) = E(X)E(Y ) so, Cov(X, Y ) =

0. What we can say about Cov(Xi, Xj) when i 6= j?

First, we will look at the case when the sampling was done with replacement. That

means that the population element can be selected more than one time. Then, Xi

are independent, and for i 6= j the Cov(Xi, Xj) = 0, while Cov(Xi, Xi) = E(X2
i ) −

E(Xi)
2 = V ar(Xi) = σ2.

Using the property of the variance for a linear combination of random variables, that

V ar(
∑n

i=1 biXi) =
∑n

i=1

∑n
j=1 bibjCov(Xi, Xj), we have:

V ar(X̄) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

Now we can �nd V ar(X̄).

V ar(X̄) =
1

n2

n∑
i=1

V ar(Xi) =
1

n2

n∑
i=1

σ2 =
σ2

n

The standard deviation of X̄ is σX̄ = σ√
n
.

The other case is when the sampling is done without replacement, when a population
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element can be selected only one time. This causes dependency among Xi. In order to

�nd variance, �rst we need to �nd Cov(Xi, Xj) for i 6= j. First of all, Cov(Xi, Xj) are

the same for all i 6= j, since they have the same distribution.

Cov(Xi,
∑N

j=1 Xj) = 0, because
∑N

j=1Xj is a constant. From this, we have

Cov(Xi, Xi) +
N∑

j=1,j 6=i

Cov(Xi, Xj) = 0

Cov(Xi, Xi) + (N − 1)Cov(Xi, Xj) = 0

This implies, Cov(Xi, Xj) = − σ2

N−1
for i 6= j. We see the covariance depends on the

population size. If the population is very large, the covariance is very close to zero.

Using once again the property of the variance for a linear combination of random

variables we get:

V ar(X̄) = V ar
(

1
n

∑n
i=1Xi

)
= 1

n2

∑n
i=1

∑n
j=1Cov(Xi, Xj)

= 1
n2

(∑n
i=1Cov(Xi, Xi) +

∑n
i=1

∑
j 6=iCov(Xi, Xj)

)
= 1

n2

∑n
i=1 V ar(Xi) + 1

n2

∑n
i=1

∑
j 6=iCov(Xi, Xj)

= σ2

n
− 1

n2n(n− 1) σ2

N−1

= σ2

n

(
1− n−1

N−1

)
= σ2

n

(
N−n
N−1

)
Since the variance is de�ned and calculated as the average squared deviation from

the population mean, intuitively the estimator of the population variance will be de�ned

as the average squared deviation from the sample mean. Uncorrected sample variance

de�ned as σ̂2 = 1
n

∑n
i=1(Xi − X̄)2, is biased estimator of the population variance.

E(σ̂2) = E
[

1
n

∑n
i=1(Xi − X̄)2

]
= E

[
1
n

∑n
i=1(Xi − µ+ µ− X̄)2

]
= E

[
1
n

∑n
i=1((Xi − µ)− (X̄ − µ))2

]
= E

[
1
n

∑n
i=1((Xi − µ)2 − 2(Xi − µ)(X̄ − µ) + (X̄ − µ)2)

]
= E

[
1
n

∑n
i=1(Xi − µ)2 − 2(X̄ − µ) 1

n

∑n
i=1(Xi − µ) + (X̄ − µ)2

]
= E

[
1
n

∑n
i=1(Xi − µ)2 − (X̄ − µ)2

]
= σ2 − E

[
(X̄ − µ)2

]
< σ2

For unbiased estimator of sample variance we suggest s2 = 1
n−1

∑n
i=1(Xi − X̄)2. In

statistics, this is known as Bessel's correction for the sample variance [8].
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Let us show that holds E(s2) = σ2.

E(s2) = E
(

1
n−1

∑n
i=1(Xi − X̄)2

)
= 1

n−1
E
(∑n

i=1 X
2
i − nX̄2

)
= 1

n−1

[∑n
i=1E(X2

i )− nE(X̄2)
]

= 1
n−1

[
nσ2 + nµ− n(σ

2

n
+ µ2)

]
= 1

n−1
[nσ2 + nµ2 − σ2 − nµ2]

= 1
n−1

σ2(n− 1) = σ2

Remark 2.11. V ar(Xi) = E(X2
i )− E(Xi)

2

E(X2
i ) = V ar(Xi) + E(Xi)

2 = σ2 + µ2

E(X̄) = V ar(X̄) + E(X̄)2 =
σ2

n
+ µ2

Remark 2.12. ∑n
i=1(Xi − X̄)2 =

∑n
i=1(X2

i − 2XiX̄ + X̄2)

=
∑n

i=1 X
2
i − 2X̄

∑n
i Xi + nX̄2

=
∑n

i=1 X
2
i − 2X̄nX̄ + nX̄2

=
∑n

i=1X
2
i − nX̄2

To sum up:

- sample mean is de�ned as X̄ = 1
n

∑n
i=1Xi.

- If the variance of the population is known, we have σ2 = 1
N

∑N
i=1(Xi − µ)2.

- If it is not known, we will use unbiased estimator s2 = 1
n−1

∑n
i=1(Xi − X̄)2.

First of all, we will derive the con�dence interval for the population mean when the

standard deviation of the population is known, and the variable that is being studied

follows the normal distribution.

In practice, the population standard deviation is rarely known. However, learning how

to compute a con�dence interval when the standard deviation is known, is an excellent

introduction to how to compute a con�dence interval when the standard deviation has

to be estimated. To obtain this con�dence interval, we need to know the sampling

distribution of the estimator. Once we know the distribution, we can talk about the

con�dence interval. We said before that our assumptions will be that the variable is

normally distributed. The normal distribution is easy to use, since it does not bring

with it too much complexity.

Theorem 2.13. [9] If X and Y are independent random variables that are normally

distributed, then their sum is also normally distributed, i.e. if X ∼ N(µX , σ
2
X) and

Y ∼ N(µY , σ
2
Y ) then X + Y ∼ N(µX + µY , σ

2
X + σ2

Y ).
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As the consequence of this theorem, we obtain the following. If X1, X2,. . . ,Xn are

independent, normally distributed random variables, with mean µ and the standard

deviation σ, then X̄ = 1
n

∑n
i=1Xi is normally distributed with the sample mean µ and

the standard deviation σ√
n
.

If the original population is normally distributed, we will use the above theorem. In

the case the random variables do not have normal distribution, we will use the Central

Limit Theorem. More about the Central Limit Theorem will be in the next chapter.

To sum up, we have Xi ∼ N(µ, σ), X̄ ∼ N(µ, σ√
n
). But how is distributed X̄−µ

σ√
n

?

E

(
X̄ − µ

σ√
n

)
=

1
σ√
n

E(X̄ − µ) =
1
σ√
n

(µ− µ) = 0

V ar

(
X̄ − µ

σ√
n

)
=

1
σ2

n

V ar(X̄ − µ) =
1
σ2

n

σ2

n
= 1

The special case for which µ = 0 and σ = 1 is called standard normal distribution,

which is denoted as Z = X̄−µ
σ√
n

. If we are interested in the probability that a standard

normal variable Z will fall between two values, for example -z in z, we can denote that

as P (−z < Z < z).

We will denote by z the value from the standard normal distribution, for the selected

con�dence level (e.g. for a 95% con�dence level z=1.96). So, when we are looking for

a (1− α) con�dence interval we will have:

P (−zα/2 ≤ Z ≤ zα/2) = 1− α

P (−zα/2 ≤
X̄ − µ

σ√
n

≤ zα/2) = 1− α

P (−zα/2
σ√
n
≤ X̄ − µ ≤ zα/2

σ√
n

) = 1− α

P (−X̄ − zα/2
σ√
n
≤ −µ ≤ −X̄ + zα/2

σ√
n

) = 1− α

P (X̄ − zα/2
σ√
n
≤ µ ≤ X̄ + zα/2

σ√
n

) = 1− α

From the last expression, we obtain the formula for con�dence interval for the pop-

ulation mean. If the standard deviation is known, it will be X̄ ± zα/2 σ√
n
. The lower

limit is obviously X̄ − zα/2 σ√
n
, and the upper limit is X̄ + zα/2

σ√
n
.

In practice, we often do not know the value of the population standard deviation.

In that case, we should use the t-distribution, rather than the normal distribution.

First we have to do, is to estimate standard deviation from the sample data. Since we
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use s as an estimator of the population variance, intuitively to estimate σ, we will use

sX̄ = s√
n
. First, let us look how is distributed X̄−µ

s√
n

.

X̄ − µ
s√
n

=

X̄−µ
σ√
n√

s2

σ2

√
n−1
n−1

We already know that X̄−µ
σ√
n

∼ N(0, 1). Next we will do, is to look at the distribution

of s2(n−1)
σ2 .

s2(n− 1) = 1
n−1

∑n
i=1(Xi − X̄)2(n− 1)

=
∑n

i=1(Xi − X̄)2

=
∑n

i=1(Xi − µ+ µ− X̄)2

=
∑n

i=1(Xi − µ)2 +
∑n

i=1(X̄ − µ)2

This implies the following:

s2(n−1)
σ2 =

∑n
i=1(Xi−X̄)2

σ2

=
∑n

i=1

((
Xi−µ
σ

)2 −
(
X̄−µ
σ

)2
)

=
∑n

i=1

(
Xi−µ
σ

)2 − n
(
X̄−µ
σ

)2

=
∑n

i=1

(
Xi−µ
σ

)2 −
(
X̄−µ
σ√
n

)2

Observe, Zi = Xi−µ
σ
∼ N(0, 1) and Z = X̄−µ

σ√
n

∼ N(0, 1). Before we continue, a few

remarks regarding to relationship between the normal distribution and χ2-distribution.

If Z ∼ N(0, 1), then Z2 ∼ χ2
1.

If X1, . . . , Xn are independent, standard normal random variables, with mean 0 and

variance 1, then the sum of their squares has the χ2-distribution with n degrees of

freedom.

X2
1 + · · ·+X2

n ∼ χ2
n

If X1 ∼ χ2
n and X2 ∼ χ2

m, and they are independent, then X1 +X2 ∼ χ2
n+m

Using the above de�nitions, we have the following:

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

and (
X̄ − µ

σ√
n

)2

∼ χ2
1.

And �nally,

s2(n− 1)

σ2
=

∑n
i=1

(
Xi − X̄

)2

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

−

(
X̄ − µ

σ√
n

)2

∼ χ2
n−1.



Babi¢ S. The e�ects of nonnormal distribution on con�dence interval around population mean.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije,

leto 2015 11

At the very beginning we said that we will use t-distribution.

Student's t-distribution with ν degrees of freedom can be de�ned as the distribution

of the random variable T with

T =
Z√
V/ν

where

- Z has a standard normal distribution;

- V has a χ2-distribution with ν degrees of freedom;

- Z and V are independent.

We are interested in distribution of X̄−µs√
n

. The �rst thing we did, was the transformation

of that expression into
X̄−µ
σ√
n√

s2

σ2

√
n−1
n−1

. If we look again carefully in our case, we will observe

the following:

- Z = X̄−µ
σ√
n

∼ N(0, 1)

- V = s2(n−1)
σ2 ∼ χ2

n−1 with n-1 degrees of freedom.

The only thing we still have to check is the independence of Z and V .

If we look at the normally distributed variables X1, . . . , Xn, vector (X1, . . . , Xn) is

jointly normally distributed, i.e. it is so distributed that every linear combination

a1X1 + · · ·+ anXn has a 1-dimensional normal distribution.

Theorem 2.14. [10] If X1, . . . , Xn are jointly normally distributed, uncorrelated and

Cov(Xi, Xj) = 0 for all i 6= j, then the Xi are independent.

Using the above theorem, we have to check that cov

X̄,

X1 − X̄

...

Xn − X̄


 =


0
...

0

.
But it is enough to check that Cov(X̄,Xi − X̄) = 0.

Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄, X̄) = Cov

(
1

n

n∑
i=1

Xi, Xi

)
− V ar(X̄)

=
1

n
Cov(

n∑
i=1

Xi, Xi)−
σ2

n
=

1

n

[
Cov(Xi, Xi) +

∑
j 6=i

Cov(Xj, Xi)

]
− σ2

n

=
1

n
V ar(Xi)−

σ2

n
=

1

n
σ2 − σ2

n
= 0
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It follows that Z√
V
n−1

∼ tn−1.

Let us denote T = X̄−µ
s√
n

. Then:

P (−tα/2 ≤ T ≤ tα/2) = 1− α

P (−tα/2 ≤
X̄ − µ

s√
n

≤ tα/2) = 1− α

P (X̄ − tα/2
s√
n
≤ µ ≤ X̄ + tα/2

s√
n

) = 1− α

Then, the formula for a con�dence interval for µ when σ is unknown will be:

X̄ ± tα/2
s√
n
.

The values of t are larger than the values of z, so con�dence intervals when σ is esti-

mated are generally wider than con�dence intervals when σ is known.

Constructing con�dence intervals with the t-distribution is the same as using the nor-

mal distribution, except it replaces the z-score with a t-score.

Recall the above formula for calculating the con�dence interval for a mean. Notice

again, in our calculations we used the sample standard deviation s, instead of the true

population standard deviation σ. This estimation of σ introduces extra error, and this

extra error can be pretty big when sample size is not enough large. Because s is a poor

estimator of σ with a small sample size, we will not assume that the sample distribution

is normal. Instead, we will use the t-distribution, which is designed to give us a better

interval estimate of the mean when we have a small sample size.

For the end of this part just a few remarks regarding the formula of the con�dence

interval. We said 1− α is a con�dence coe�cient. So, α is the value we choose at the

beginning, and the most commonly used con�dence levels are 95%, 99% or sometimes

90%. To �nd the critical value, or zα/2 we use tables for a standard normal distribution,

where the values of the cumulative distribution function of the normal distribution are

given. Or, when we are using t-distribution, the critical value tα/2,df is obtained from

tables for a t-distribution.
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3 Central Limit Theorem

Up to this point, we started from the assumption that the variable follows the nor-

mal distribution. In this chapter we will discuss one of the fundamental theorems of

probability - the Central Limit Theorem, since CLT enables us to use the approximate

formula for the CI based on standard normal distribution, even when the variable that

is being studied does not follow the normal distribution.

Theorem 3.1. Let X1, . . . , Xn be a sequence of independent random variables having

mean µ and variance σ2. Let each Xi have the distribution function P (Xi ≤ x) = F (x)

and the moment generating function M(t) = E(etXi). Let Sn =
∑n

i=1Xi. Then

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= Φ(x)

for −∞ < x <∞.

Before we give a proof, we need a few facts about moment generating functions.

Recall, the moment generating function of a random variable X is MX(t) = E(etX).

One of the properties of the moment generating functions is, if the moment generating

function exists in an open interval containing zero, then M (r)(0) = E(Xr).

Proposition 3.2. If X and Y are independent random variables with mgfs MX and

MY , then MX+Y (t) = MX(t)MY (t).

Since the proof is quite simple, even though it isn't the main topic we will give it.

Proof.

MX+Y (t) = E(etX+tY ) = E(etX)E(etY ) = MX(t)MY (t)

Proposition 3.3. If X is random variable with mgf MX , and Y = a + bX, then

MY (t) = eatMX(bt).

Proof.

MY (t) = E(etY ) = E(eat+btX) = E(eatebtX) = eatE(ebtX) = eatMX(bt)
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To prove the CLT, we will also need the following theorem, and we will skip the

proof of it.

Theorem 3.4. Let Fn be a sequence of a cumulative distribution functions, or just

distribution functions, with the correspond moment generating functions Mn. Let F be

a distribution function with the moment generating function M . If Mn(t)→M(t), for

all t in an open interval containing zero, then Fn(x) → F (x) for all x at which F is

continuous.

So now we can give the proof of the Central Limit Theorem.

Proof. It su�ces to do the proof in the case µ = 0. In the case µ 6= 0, let Yi = Xi − µ
for each i. Let Tn = Y1 + · · ·+ Yn. Then we have

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= lim

n→∞
P

(
Tn
σ
√
n
≤ x

)
.

Obviously, it is enough to prove the theorem for µ = 0.

Let us denote Zn = Sn
σ
√
n
. Using the above theorem, we see it is enough to show that the

mgf of a standardized sum of n independent, identically distributed random variables

approaches the mgf of a standard normal random variable as n → ∞. So, we will

show that the mgf of Zn tends to the mgf of the standard normal distribution. Since

Sn is a sum of independent random variables, using the �rst proposition, we have

MSn(t) = [M(t)]n, and by second proposition, we have MZn(t) =
[
M
(

t
σ
√
n

)]n
.

We will look at the limit of log [MZn(t)]. First, log [MZn(t)] = log
[
M
(

t
σ
√
n

)]n
=

n log
[
M
(

t
σ
√
n

)]
. We will denote 1√

n
by x. Then we have,

L = lim
x→0

log
[
M( tx

σ
)
]

x2
.

Since M(0) = 1, to calculate the limit we will use l'Hospital's rule.

L = lim
x→0

M ′( tx
σ

) t
σ

M( tx
σ

)

2x
=

t

2σ
lim
x→0

M ′( tx
σ

)

xM( tx
σ

)
=

t2

2σ2
lim
x→0

M ′′( tx
σ

)

M( tx
σ

) + xM ′( tx
σ

) t
σ

=
t2

2σ2

M ′′(0)

M(0) + 0M ′(0) t
σ

=
t2

2σ2

M ′′(0)

M(0)

Using property that M (r)(0) = E(Xr), we get M(0) = E(1) = 1, M ′(0) = E(X) and

M ′′(0) = E(X2) = V ar(X) + E(X)2 = σ2. So, we have L = t2

2
, which is exactly the

logarithm of the moment generating function of the standard normal distribution [5].
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But how the Central Limit Theorem is connected with a �nding con�dence interval

for the population mean?

The central limit theorem states, if you have a population with mean µ and standard

deviation σ, and take su�ciently large random sample from the population, then the

distribution of the sample mean will be approximately normal. This will be true

regardless of whether the distribution in the population is normal or not, provided

that the sample size is su�ciently large. But what do we do if we want to calculate

con�dence interval for a sample of insu�ciently large size?

We use the t-distribution, but only if we feel it is appropriate to assume that the

population distribution itself is normal, or close to normal. By CLT, X̄−µσ√
n

is distributed

normally, even if the population distribution is not normal. But in practice σ is rarely

known. Because of that, we look at the X̄−µ
s√
n

, and we are interested in the distribution

of it in the case when the population distribution is not normal. In that case we rely

on the results of both the CLT, and Slutsky theorem. More about Slutsky theorem

will be in the next chapter.
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4 Slutsky Theorem

Looking for a con�dence interval when we did not know the value of the population

standard deviation, what we have done �rst was to �nd the distribution of X̄−µ
s√
n

.

Using Slutsky's theorem we will show that X̄−µ
s√
n

d→ Z, where Z is random variable with

standard normal distribution. So, �rst of all Slutsky's theorem.

Theorem 4.1. [6] Let X1, X2, . . . and Y1, Y2, . . . be random variables. Suppose that

Xn converges in distribution to random variable X, i.e. (Xn
d→ X), and Yn converges

in probability to a constant c, i.e. (Yn
p→ c), then:

Xn + Yn
d→ X + c

YnXn
d→ cX

Xn

Yn

d→ X

c
if c 6= 0

Remark 4.2. A sequence X1, X2, . . . of random variables is said to converge in distri-

bution to a random variable X, if limn→∞ Fn(x) = F (x) for every x ∈ R at which F

is continuous. Here, Fn and F are distributions functions of random variables Xn and

X respectively.

A sequence X1, X2, . . . of random variables is said to converge in probability towards

the random variable X, if for all ε > 0

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

If Xn
d→ X and P (X = c) = 1, where c is constant, then Xn

p→ c. Convergence

in probability implies the convergence in distribution, so we also have a de�nition of

convergence in probability towards a constant.

As we said before, we will show that X̄−µ
s√
n

d→ Z, where Z is random variable with

standard normal distribution. Before we do that, we need one theorem.

Theorem 4.3. If X1, . . . , Xn are i.i.d. with E(Xi) = µ, the weak law of large numbers

states that the sample average, X̄ = 1
n
(X1 + · · ·+Xn), converges in probability towards

the expected value, when n→∞:

X̄
p→ µ.
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Let X1, . . . , Xn be i.i.d. with mean µ and variance σ2.

The CLT tell us that Zn = X̄−µ
σ√
n

is approximately N(0, 1). But we rarely know σ. We

have seen before that we can estimate it by s2 = 1
n−1

∑n
i=1

(
Xi − X̄

)2.

We will show that if we replace σ by s, then for T = X̄−µ
s√
n

will still hold that approxi-

mately is N(0, 1).

Denote S2 = 1
n

∑n
i=1

(
Xi − X̄

)2.

First, we will show that S2 p→ σ2, where σ2 = 1
N

∑N
i=1 (Xi − µ)2.

1

n

n∑
i=1

(
Xi − X̄

)2
=

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

Let us de�ne Yi = X2
i . Then, by the weak law of large numbers we have:

1

n

n∑
i=1

X2
i =

1

n

n∑
i=1

Yi
p→ E(Yi) = E(X2

i ) = V ar(Xi) + E(Xi)
2 = σ2 + µ2

Again, by the same law we have 1
n

∑n
i=1 Xi

p→ E(Xi) = µ.

Since f(x) = x2 is continuous, we will have
(

1
n

∑n
i=1Xi

)2 p→ µ2, because continuous

functions are limit-preserving. So, S2 p→ (σ2 + µ2)− µ2 = σ2.

But we want to see what will happen if we replace σ by s.

s2 =
n

n− 1

1

n

n∑
i=1

(
Xi − X̄

)2
=

n

n− 1
S2

Since, S2 p→ σ2 and n
n−1
→ 1, we will have s2 p→ σ2.

Once again, we can use that continuous functions are limit-preserving, so s
p→ σ.

Then we have, S
σ

p→ 1 and using that continuous functions are limit-preserving we

obtain σ
s

p→ 1.

Finally,

T =
X̄ − µ

s√
n

=

√
n(X̄ − µ)

s

σ

σ
=

√
n(X̄ − µ)

σ

σ

s

Let us denote Zn =
√
n(X̄−µ)
σ

and V = σ
s
. By Slutsky's theorem, T = ZnV

d→ Z ·1 = Z,

since Zn
d→ Z and V

p→ 1.

If we do not know the distribution of the data we are working with, or do not feel

comfortable making assumptions of normality, we rely on CLT and the Slutsky theorem,

since we can not use the t-distribution without assumption of normality. Therefore,

by the Central Limit and the Slutsky theorem we can use the asymptotic properties

of the statistic T = X̄−µ
s√
n

, to form con�dence intervals based on the standard normal

distribution, without making any assumptions about the distribution of the sample

data, and using s2 to estimate σ2. An important note to remember, it is often the
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case that people say as n becomes large the normal distribution approximates the t-

distribution, but in fact, as shown above, as n becomes large the formulation above

(T) actually approximates the normal distribution (again based on the CLT and the

Slutsky theorems).
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5 Bootstrapping

Bootstrapping is a computer-based method which can answer questions that are compli-

cated for traditional statistical analysis. Most commonly, bootstrap is used to estimate

the variance of the estimators that can not be evaluated theoretically. It is a powerful

statistical technique, which works quite well, even with samples of a small size and

when we do not know anything about the distribution of our data.

Up to now, when we wanted to determine the con�dence interval, we had to assume

the distribution of the population, and in some cases we also had to know the standard

deviation.

But bootstrapping method does not require anything other than the sample, and

assumes that each sample is identically and independently distributed. Basic idea of

bootstrapping is that inference about population from the sample data, can be mod-

eled by resampling the sample data and preforming inference on resample. Bootstrap

samples are obtained by randomly sampling with replacement, to obtain samples with

the same size as the original sample.

So, sample from the population becomes 'population' and resample is a 'sample'.

As the population is unknown, the quality of the inference from the sample is also

unknown, we can not be sure about the sampling error. But using a bootstrap method,

the population is in fact the sample and that is known, so the quality of the inference

from the resample data is measurable. With the following numerical example we will

demonstrate how the process works.

Example 5.1. Assume that our sample is 1,2,3,3,10. Our goal will be a 90% con�dence

interval about the mean of the sample. We begin with a sample from a population that

we know nothing about. Next we do is to form bootstrap samples. Each bootstrap

sample will have the same size as a original sample. In our case, that is �ve. Bootstrap

samples may be di�erent from the original sample and from each other, since we are

randomly selecting and replacing each value. We will take 20 bootstrap samples:

2,1,10,3,2; 3,10,10,2,3; 1,3,1,3,3; 3,1,1,3,10; 3,3,1,3,2;

3,10,10,10,3; 2,3,3,2,1; 2,3,1,10,3; 1,10,2,10,10; 3,3,3,3,3;

3,3,3,3,1; 1,2,3,3,2; 3,3,10,10,2; 3,2,1,3,3; 3,1,10,1,10;

3,2,3,1,1; 3,3,3,2,3; 10,3,1,3,3; 3,2,1,10,2; 10,2,2,1,1.

Now we calculate the means of each of our bootstrap samples. These means, arranged
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in ascending order are: 2, 2.2, 2.2, 2.2, 2.4, 2.4, 2.6, 2.8, 3, 3.2, 3.6, 3.6, 3.6, 3.8, 4,

11, 5.6, 5.6, 6.6, 7.2. From this bootstrap sample means, we can obtain a con�dence

interval. For our example above we have a con�dence interval [2.2, 6.6]. The CI is than

obtained by calculating the 5th and the 95th percentile of the obtained distribution.

Next we will do, is to present conditions that must be satis�ed in order to boot-

strapping procedure gives a reliable results.

Suppose we have a random sample X1, . . . , Xn with values x1, . . . , xn. Its empirical

distribution function is de�ned as F̂ (x) =
#{xj≤x}

n
.

Remark 5.2. #A means the number of times the event A occurs.

Using this empirical distribution function we want to estimate some properties of

some quantity, say T. So we want to estimate a distribution function GF,n(t) = P (T ≤
t). Here, the term {F, n} indicates that we take a sample of size n from the F. The

bootstrap estimate of the last expression will be GF̂ ,n(t) = P (T ≤ t), and similarly, we

take a sample of size n from the F̂ .

Since we have a sample, next step is to take resamples from it. Say we take B

resamples. It is important to emphasize that, we are not using resamples to obtain

some information about the population. We are using them to learn something about

the distribution of the sample statistic. So, we try to approximate the sampling dis-

tribution of some statistic by resampling the sample, and calculating the statistic on

the resamples. In the end, the distribution of the wanted parameter T is approximated

through the empirical distribution of the B estimates for T, since we have taken B

resamples.

In order to obtain reliable results, or in other words, in order to GF̂ ,n approaches

GF,n as n→∞, three conditions must hold.

Suppose that N is the neighbourhood for F , in a suitable space of distributions.

If we want to F̂ walls into N with probability 1, then the following conditions must

hold: [2]

1. For any A ∈ N , GA,n must converge weakly to a limit GA,∞.

2. This convergence must be uniform on N .

3. The function mapping A to GA,∞ must be continuous.

The �rst condition tells us that there is a limit for GF,n. As n increases, F̂ changes,

and the second and third conditions are needed to ensure that GF̂ ,n approaches GF,∞

along every possibly sequences F̂ s.



Babi¢ S. The e�ects of nonnormal distribution on con�dence interval around population mean.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije,

leto 2015 21

Remark 5.3. Weak convergence of GA,n to GA,∞ means that for all integrable functions

h, ∫
h(u)dGA,n(u)→

∫
h(u)dGA,∞(u)

as n→∞.

Under this conditions the bootstrap is reliable, meaning that for any t and ε,

P (GF̂ ,n(t)−GF,n(t) > ε)→ 0 as n→∞.

There are several methods for constructing con�dence intervals from the bootstrap

distribution of a real parameter: basic, percentile, studentized, bias-corrected and BCa

method. Later on, for simulations we will use percentile and BCa method, because of

that we will brie�y explain how do they work.

Percentile method uses B statistics, computed from the bootstrap samples. We

arranged them in an ascending order and if we are looking for the 100(1−α) con�dence

interval we take 50α and 100− 50α percentiles as limits of the interval.

Important issues for the bootstrap, and inference in general, are skewness and bias

since bias estimates can have high variability.

The computation of the BCa con�dence interval is a bit more complicated. It pro-

ceeds in three steps. First, we take a B resamples. Next we have to do is to calculate

a bias correction value. The bias correction coe�cient adjusts for the skewness in the

bootstrap sampling distribution. If the bootstrap sampling distribution is perfectly

symmetric, then the bias correction will be zero. At the end we calculate acceleration

value. The acceleration coe�cient adjusts for nonconstant variances, within the resam-

pled data sets [4]. The formulas for calculating this parameters are quite complicated,

and not so intuitive. More about that is given in Efron and Tibshirani [3].
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6 Probability distributions

In this section, we will present some basic and most commonly used probability dis-

tributions that we will use later for simulations. A function describing the possible

values of a random variable, and their associated probabilities is known as a probabil-

ity distribution. We know that random variables can be discrete, that is, taking any

of a speci�ed �nite or countable list of values, with a probability mass function, or

continuous, taking any numerical value in an interval or collection of intervals, via a

probability density function.

6.1 The Normal Distribution

The most familiar continuous distribution is the normal distribution. The normal

distribution has two parameters, usually denoted by µ and σ2, which are its mean and

variance. The probability density function of the normal distribution is given by:

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

for −∞ < x <∞.

One of the reasons why the normal distribution is one of the most important is Central

Limit Theorem, which shows that normal distribution can be used to approximate a

large variety of distributions in large samples. Some of the properties of the normal

distribution are:

- the mean, median(the middle number in a set of data when it is ranked from

lowest to highest) and mode(the number that occurs most frequently in a data

set) are equal.

- it is symmetrical. This means that if the distribution is cut in half, each side

would be the mirror of the other

- the total area under the curve is equal to one. The total area, however, is not

shown. This is because the tails extend to in�nity.

- the area under the curve can be determined. If the standard deviation is known,

one can determine the percentage of data under sections of the curve.
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- around 68% of the area of a normal distribution is within one standard deviation

of the mean.

- Approximately 95% of the area of a normal distribution is within two standard

deviations of the mean.

The �gure below shows how the percentages of area under the normal curve are dis-

tributed in terms of standard deviation units from the mean.

Figure 1: The percentages of area under the normal curve(�gure is from [7])

The normal distribution is very important distribution, since it is based on theory,

rather than on real data. Many things in life never match this model perfectly, but

approximately they have the normal distribution. Sometimes, we say that normal dis-

tribution is actually a family of normal distributions, since each of them is characterized

by its mean and a standard deviation.

The n-th moment of the probability distribution of the variable X, if exists, is

de�ned as µn = E(Xn). The zeroth moment is the total probability, the �rst moment

is the mean, the second moment is the variance, and because they are used so frequently

we will give them for each distribution individually. As we said, the normal distribution

is actually determined by them. For example, below are shown normal distributions

with µ = 0, σ = 1
2
(solid curve), µ = 1, σ = 1 (dotted curve) and µ = 0, σ = 2 (dashed

curve).
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Figure 2: Probability density function of normal distribution

6.2 The Gamma Distribution

The gamma distribution is another widely used distribution. A continuous random

variable X is said to have a gamma distribution with parameters α > 0 and λ > 0,

shown as X ∼ Gamma(α, λ), if its probability density function is given by

f(x) =
λαxα−1e−xλ

Γ(α)

where x > 0, and Γ(α) is a gamma function.

Some properties of the gamma probability density function are:

- if 0 < α < 1, f is decreasing with f(x)→∞ as x→ 0.

- if α = 1, f is decreasing with f(0) = 1.

- if α > 1, f increases and then decreases, with mode at (α− 1)λ.

- if 0 < α ≤ 1, f is concave upward.

- if 1 < α ≤ 2, f is concave downward and then upward, with in�ection point at

λ(α− 1 +
√
α− 1).

- if α > 2, f is concave upward, then downward, then upward again, with in�ection

points at λ(α− 1±
√
α− 1).

- E[X] = λα

- var(X) = λ2α.
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Figure 3: Probability density function of gamma distribution

Above are shown probability density function of the gamma distribution for di�erent

values of α, for α = 1 and λ = 1/2 (solid curve), for α = 2 and λ = 1/2 (dotted curve)

and for α = 3 and λ = 1/2 (dashed curve).

In case when α = 1 we have a exponential distribution.

6.3 The Exponential Distribution

The probability density function of an exponential distribution is

f(x) =

{
λe−xλ x ≥ 0

0 x < 0
(6.1)

Some properties of it are:

- f is decreasing on [0,∞).

- f is concave upward on [0,∞).

- f(x)→ 0 as x→∞.

- E[X] = 1
λ

- var(X) = 1
λ2 .

Below are shown probability density functions of the exponential distribution for dif-

ferent values of λ. For λ = 1/2 (solid curve), for λ = 1 (dotted curve) and for λ = 2

(dashed curve).



Babi¢ S. The e�ects of nonnormal distribution on con�dence interval around population mean.

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije,

leto 2015 26

Figure 4: Probability density function of exponential distribution

6.4 The Uniform Distribution

The uniform distribution is the simplest continuous random variable you can imagine.

A continuous random variable X is said to have a uniform distribution over the interval

[a, b], shown as X ∼ Uniform(a, b), if its probability density function is given by:

f(x) =

{
1
b−a a < x < b

0 x < a or x > b
(6.2)

Expected value of a random variable X that is uniformly distributed is E[X] = 1
2
(a+b),

and the variance is var(X) = 1
12

(b−a)2. Below is shown a probability density function

of the uniform distribution over the interval [1, 3].

Figure 5: Probability density function of uniform distribution
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6.5 The Pareto type I Distribution

The Pareto Distribution was �rst proposed as a model for the distribution of incomes.

The probability density function is f(x) = aba

xa+1 , for a > 0 and b ≤ x < ∞. The

parameter b is a lower bound on the possible values that a Pareto distributed random

variable can take on. A well known properties of it are:

- E[X] = b a
a−1

if a > 1.

- V ar(X) = b2 a
(a−1)2(a−2)

if a > 2.

Figure 6: Probability density function of Pareto distribution

Above are shown probability density functions of the Pareto distribution for di�er-

ent values of a.
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7 Simulations

Up to now, for the construction of the con�dence interval around population mean, we

have relied on the CLT or the Slutsky's theorem in case n→∞. We would also like to

know what happens in case we have small n. Also, we are interested in the in�uence

of the distribution. What happens if the distribution is symmetric, and what if it is

asymmetric. Using simulations, we provide answers to these questions.

Simulation is a modeling of a random events, by using random numbers to specify

random event outcomes, in order to closely match real-world outcomes. It is a numerical

technique for performing experiments on the computer. Properties of the statistical

simulations must be determined in a such way that method gives a reliable results, but

exact derivations of properties are rarely possible.

There are many reasons for using simulations in statistics. For example, some

situations are di�cult to analyze, time-consuming and very often expensive. Using

simulations, we approximate real-world results, and at the same time we save our time,

money and we need less e�ort. Simulation is useful only if simulated outcomes closely

match real-world outcomes. If we want to produce a useful simulation, �rst of all we

describe what are possible outcomes. Next we do, is to assign to each outcome one

or more random numbers. Also we have to choose a source of random numbers. For

example, that can be random number generator, since in case we have sample of large

size, this is not time consuming. Then we choose a random number, and based on it we

have simulated outcome. We select the numbers and states the simulated results until

we get a stable pattern. In the end, we just have to analyze the simulated outcomes.

Here we will use simulations to check the coverage probability of the con�dence

interval we have found and its width. We will check what happens if the population

has normal, exponential, gamma, uniform and Pareto distribution. Also, we will change

sample sizes and observe how that a�ects on the coverage and on the width. We will

observe for n = 10, 25, 50 and 100. Narrow width and high con�dence level are

desirable, and because of that we are looking for how large n we can get coverage close

to 0.95.

We assumed that true mean in the population is 10, and code for simulations is

made in such way, to return also expected value of the sample mean. Furthermore,

code also provides the standard error of the sample mean. But the most important
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results are the average width of the con�dence intervals, and the coverage. We will

calculate all of that, using four methods, namely: derivation of the con�dence interval

from normal distribution, from t-distribution, using percentile method and using BCa

method. Code was written in R programming language [11].

7.1 Results of simulations

In case the population is distributed normally and we have a sample of size n = 10

the expected value of the sample mean was 9.999085 and standard error was 0.316792.

Regarding the average width and the coverage probability we obtain the following:

Normal distribution t-distribution BS Percentile BS BCa

average width 1.205833 1.391752 1.142680 1.162475

coverage probability 0.91774 0.94920 0.90214 0.90012

Table 1: Normal distribution and n = 10

For n = 25 the expected value is 10.0004 and the standard error is 0.199707.

Normal distribution t-distribution BS Percentile BS BCa

average width 0.7764539 0.8176284 0.7629257 0.7661205

coverage probability 0.93788 0.95006 0.93200 0.93138

Table 2: Normal distribution and n = 25

In case for n = 50 the expected value was 9.999718 and the standard error was

0.1408864.

Normal distribution t-distribution BS Percentile BS BCa

average width 0.5514976 0.5654573 0.5477670 0.5484882

coverage probability 0.94562 0.95146 0.94254 0.94298

Table 3: Normal distribution and n = 50

For n = 100 the expected value was 10.00033 and the standard error was 0.1003401.

Normal distribution t-distribution BS Percentile BS BCa

average width 0.3909936 0.3958318 0.3904553 0.3906429

coverage probability 0.94668 0.94924 0.94610 0.94494

Table 4: Normal distribution and n = 100

Regardless of the sample size, the estimate of the population mean was unbiased and
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as expected, the standard error decreased when the sample size was larger. If we

look at the above tables, we see the coverage probability is the best in case when

we used the t-distribution for constructing the con�dence interval, since for any size

of a sample, the coverage probability was almost 0.95. We obtained the narrowest

con�dence interval in case we used the bootstrapping, but coverage probability for

n = 10 was too much liberal, around 0.90. Later, for n = 50 and more, the coverage

was almost 0.95. So, the bootstrapping works in case of a large sample sizes. But, as

n became bigger the results were more or less the same in all cases. We can see that

in table for n = 100.

Then we have observed what happens if the distribution is exponential. We will give

results for sample sizes as in case for normal distribution.

In case for n = 10 the expected value was 10.00971 and the standard error was

3.17514.

Normal distribution t-distribution BS Percentile BS BCa

average width 11.46271 13.23006 10.73971 11.71961

coverage probability 0.86934 0.89980 0.86290 0.87670

Table 5: Exponential distribution and n = 10

For n = 25 the expected value was 9.982807 and the standard error was 1.98841.

Normal distribution t-distribution BS Percentile BS BCa

average width 7.556746 7.957471 7.389153 7.817267

coverage probability 0.91278 0.92412 0.91276 0.92158

Table 6: Exponential distribution and n = 25

For n = 50 the expected value was 10.00011 and the standard error was 1.412062.

Normal distribution t-distribution BS Percentile BS BCa

average width 5.439803 5.577497 5.390721 5.576672

coverage probability 0.92948 0.93534 0.93028 0.93462

Table 7: Exponential distribution and n = 50

For n = 100 the expected value was 10.00424 and the standard error was 1.002702.

Normal distribution t-distribution BS Percentile BS BCa

average width 3.884842 3.932914 3.874950 3.948652

coverage probability 0.94014 0.94320 0.94080 0.94192

Table 8: Exponential distribution and n = 100
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Again, regardless of the sample size, the estimate of the population mean was unbiased

and the standard error decreased when the sample size was larger.

When the sample size was small (n = 10), the coverage probabilities were too small,

especially when using a normal distribution and BS percentile method, where the

coverage probability was only at around 0.86. The best, although still much too liberal

con�dence interval, was obtained when using the t-distribution, where the average

width of the con�dence interval was the largest.

When the sample size increased, the coverage probabilities of all methods improved

substantially, and were very close to 0.95 when there were 100 samples.

Also we observed what happens if we have gamma distribution.

For n = 10 we obtained the expected value equal to 9.99489 and standard error was

2.232085.

Normal distribution t-distribution BS Percentile BS BCa

average width 8.299800 9.579488 7.820109 8.257750

coverage probability 0.89320 0.92384 0.88302 0.88920

Table 9: Gamma distribution and n = 10

For n = 25 the expected value was 9.994553 and the standard error was 1.420917.

Normal distribution t-distribution BS Percentile BS BCa

average width 5.408255 5.695049 5.299634 5.472949

coverage probability 0.92360 0.93496 0.92164 0.92430

Table 10: Gamma distribution and n = 25

For n = 50 the expected value was 10.00054 and the standard error was 0.9965776.

Normal distribution t-distribution BS Percentile BS BCa

average width 3.875380 3.973475 3.844670 3.916925

coverage probability 0.93766 0.94308 0.93670 0.93910

Table 11: Gamma distribution and n = 50

For n = 100 the expected value was 10.0011 and the standard error was 0.7061736.

Normal distribution t-distribution BS Percentile BS BCa

average width 2.756238 2.790345 2.750383 2.778415

coverage probability 0.94434 0.94716 0.94474 0.94520

Table 12: Gamma distribution and n = 100
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In this situation we noticed that for small sample size (n = 10), the coverage probability

was around 0.88, which is much smaller than the nominal level of 0.95. Only for the

t-distribution was 0.92, but the average width of the con�dence interval obtained by

that method was the largest. The percentile interval, and the adjusted percentile

interval seem to be more narrow then others. We can observe that, as sample size

increased from n = 10 to n = 100, the coverage probabilities tended to improve for all

methods. So, for the largest sample the coverage probability and the average width of

the con�dence intervals were more or less similar in all cases.

Also, we can observe that higher con�dence levels have wider intervals, but an increase

in sample size leads to a decreased interval width.

In case we had the uniform distribution, the results were the following.

For n = 10 the expected value was 10.00116 and the standard error was 1.827826.

Normal distribution t-distribution BS Percentile BS BCa

average width 7.052209 8.139540 6.677899 6.750578

coverage probability 0.91502 0.94498 0.91130 0.93224

Table 13: Uniform distribution and n = 10

For n = 25 the expected value was 10.01008 and the standard error was 1.153798.

Normal distribution t-distribution BS Percentile BS BCa

average width 4.511717 4.750968 4.428073 4.436661

coverage probability 0.93770 0.94900 0.93778 0.94768

Table 14: Uniform distribution and n = 25

For n = 50 the expected value was 10.00324 and the standard error was 0.8182043.

Normal distribution t-distribution BS Percentile BS BCa

average width 3.194766 3.275633 3.170603 3.172679

coverage probability 0.94316 0.94888 0.94256 0.94796

Table 15: Uniform distribution and n = 50

For n = 100 the expected value was 9.998707 and the standard error was 0.5792864.

Normal distribution t-distribution BS Percentile BS BCa

average width 2.261493 2.289477 2.257330 2.258044

coverage probability 0.94632 0.94956 0.94622 0.94834

Table 16: Uniform distribution and n = 100
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Again, for n = 100 the results were almost the same for all methods. For smaller

sample sizes, the width was again the best using the bootstrapping methods, and

the coverage probability was almost 0.95 for all sample sizes in case we used the

t-distribution. As we see, the results are similar to those we obtained in case

the population was normally distributed. That is because both distributions are

symmetric.

The results for Pareto distribution were not so good. For n = 10 the expected value

was 10.18909 and the standard error was 87.79223.

Normal distribution t-distribution BS Percentile BS BCa

average width 17.40290 20.08614 14.67850 21.17690

coverage probability 0.54676 0.58420 0.55722 0.62804

Table 17: Pareto distribution and n = 10

For n = 25 the expected value was 10.0214 and the standard error was 31.29265.

Normal distribution t-distribution BS Percentile BS BCa

average width 13.80296 14.53491 12.18321 17.69689

coverage probability 0.60288 0.61626 0.62516 0.70348

Table 18: Pareto distribution and n = 25

For n = 50 the expected value was 9.866963 and the standard error was 12.8919.

Normal distribution t-distribution BS Percentile BS BCa

average width 11.18041 11.46341 10.13730 14.42519

coverage probability 0.63318 0.64402 0.66070 0.73614

Table 19: Pareto distribution and n = 50

For n = 100 the expected value was 10.08289 and the standard error was 20.79693.

Normal distribution t-distribution BS Percentile BS BCa

average width 10.187482 10.313543 9.256738 13.236690

coverage probability 0.66162 0.66530 0.69058 0.76100

Table 20: Pareto distribution and n = 100

In this case regardless of the sample size and method we used, the standard error was

enormous. For small sample size (n = 10), the best result of the coverage probability

was only 0.62, which is much less than 0.95. As the sample size increased, the coverage
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probability was not so better. For n = 100, we obtained the best result using BCa

method, and it was just 0.76.

Regarding to average width, the con�dence intervals were the narrowest in case we

used percentile method. But comparing to the previous results, for example when

population was normally or gamma distributed, we can not say that we are satis�ed

with the results.

The reason of this, is because Pareto distribution is not an exponential family and also

it is not symmetric. Although the results were not good, the bootstrapping methods

appeared to be the best in this case. Bootstrap methods do not require just large

sample, but also a lot of bootstrap replications in order to be useful. We had 1000

replications.

In case the population was normally distributed we obtained the best results regardless

of sample sizes. But when we observed Pareto distribution, the results were not even

close to good. We can conclude that distribution and sample size have a big in�uence

on the con�dence interval.
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8 Conclusion

We were interested in the con�dence interval around the population mean. First of all,

we de�ned and explained why do we need them. We presented two ways of derivation

CI; in case population variance was known, and when it was unknown. Also, we stated

two important theorems, the CLT and the Slutsky theorem, and explained how we

rely on them for construction CI. One of the most advanced statistical techniques,

bootstrapping, was also presented. For the end, we used simulations to check coverage

probability and width of the con�dence intervals, in cases we had di�erent population

distributions and di�erent sample sizes.

For small sample sizes we obtained liberal con�dence intervals, meaning that the cov-

erage probability was much less than 0.95. As we increased the sample size to n = 100,

con�dence intervals become conservative, or in other words, the coverage probability

was almost 0.95. This was not the case only with Pareto distribution where we obtained

wide con�dence intervals with low con�dence level.

We concluded that distribution and sample size have a big in�uence on the con�dence

interval. In all cases, the narrowest CI we obtained using a percentile method. In

most cases, coverage probability was near 0.95 when we used the t-distribution for

constructing CI, except when population had Pareto distribution. In that case, as the

best method for constructing CI proved to be BCa method.

Regarding to sample sizes, when n was 100, almost in all the cases, except when popu-

lation had Pareto distribution, we obtained more or less the same results. Looking at

the results for Pareto distribution, we see that it is recommended to use the bootstrap-

ping methods, in case we do not have distribution with so nice properties, for example

when it is not symmetrical, when mean and median are not the same, when it is not

an exponential family, etc.

More about CI using bootstrap method can be found in Efron and Tibshirani [3].
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9 Povzetek naloge v slovenskem

jeziku

Cilj naloge je preu£iti pokritje in ²irino intervala zaupanja £e izhajamo iz normalne po-

razdelitve in ko preu£evana spremenljivka ni normalno porazdeljena. Ker so to£kovne

ocene za populacijski parameter pogosto nezanesljive, ponavadi i²£emo interval zau-

panja (IZ), recimo [L,D] v katerem bo z neko stopnjo zaupanja leºal iskani param-

eter. Interval zaupanja za populacijski parameter θ s stopnjo zaupanja (1 − α), na

podlagi vzorca X1, . . . , Xn de�niramo kot par statistik [L,D], L = L(X1, . . . , XN) in

D = D(X1, . . . , XN) tako, da velja P (L ≤ θ ≤ D) ≥ (1 − α). Za intervalsko oceno

[L,D] parametra θ, pokritje intervala [L,D] je verjetnost da [L,D] vsebuje parameter

θ. V nalogi smo preu£evali interval zaupanja za populacijsko popre£je. Na za£etku smo

pokazali da, ko izhajamo iz normalne porazdelitve, oziroma, ko je populacijski odklon

σ znan, potem IZ izra£unamo po formuli X̄± zα/2 σ√
n
. Ampak, v praksi skoraj nikoli ne

poznamo populacijskega standardnega odklona in zaradi tega nas zanima kako lahko v

tem primeru izra£unamo IZ. Najprej smo pokazali, da je cenilka za populacijski odklon

s = 1
n−1

∑n
i=1(Xi−X̄)2 in da ima izraz X̄−µ

s√
n

t-porazdelitev, z n−1 stopinjami prostosti.

Se pravi, ko ne poznamo σ, uporabljamo t-porazdelitev, in v tem primeru izra£uamo

IZ kot X̄ ± tα/2 s√
n
.

Ogledali smo si tudi in enega izmed najbolj pomembnih izrekov v verjetnosti - centralni

limitni izrek. Centralni limitni izrek nam pove, da £e imamo populacijo s povpre£jem µ

in standardnim odklonom σ, in £e vzamemo dovolj velik vzorec, potem bo porazdelitev

vzor£nega povpre£ja pribliºno normalna. Pomembna stvar je, da to velja, ne glede na

to ali je populacija porazdeljena normalno ali pa ne.

Ko ne poznamo populacijske porazdelitve in ne moremo predpostaviti, da je le-ta po-

razdeljena normalno, ne moremo uporabiti t-porazdelitve za konstrukcijo IZ. Izraz,

T = X̄−µ
s√
n

, zapi²emo kot, X̄−µ
s√
n

=
√
n(X̄−µ)
s

σ
σ

=
√
n(X̄−µ)
σ

σ
s
. Ozna£imo Zn =

√
n(X̄−µ)
σ

in

V = σ
s
. Centralni limitni izrek nam pove da Zn gre proti Z, kjer je Z ∼ N(0, 1).

Pokazali smo tudi, da V
p→ 1. Z uporabo izreka Slutsky sledi, da T gre proti Z.

Oziroma, lahko konstruiramo IZ z uporabo standardne normalne porazdelitve, brez

predpostavke o porazdelitvi populacije in z uporabo s namesto σ.

Ena izmed novej²ih statisti£nih metod, ki se uporablja za ra£unanje intervala zaupanja
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je samovzor£enje (ang. bootstrapping). Na kratko smo razloºili, kako deluje in zakaj

ga lahko uporabljamo. Pomembna lastnost samovzor£enja je, da statisti£ni izra£uni

temeljijo samo na podlagi razli£nih vzorcev. Pri samovzor£enju na vzorec iz populacije

gledamo kot na populacijo in potem vzor£imo iz tega vzorca, od tu ime samovzor£enje.

'Nova populacija' je znana, ker je to v resnici vzorec in zaradi tega lahko opazimo

napako, ki smo jo naredili pri sklepanju na podlagi ponovnih vzorcev iz za£etnega

vzorca, kateri predstavlja populacijo.

Za konstrukcijo intervala zaupanja smo uporabljali centralni limitni izrek in izrek Slut-

skya za velike vzorce. Kaj se dogaja z malimi vzorcimi, smo preverili z uporabo simu-

lacij. Se pravi, z uporabo simulacij smo preverili pokritje in ²irino intervala zaupanja v

primeru, ko je populacija imela normalno, eksponentno, gama, enakomerno in Pareto

porazdelitev. Spreminjali smo velikost vzorca in pogledali, kaj se dogaja za n = 10,

25, 50 in 100. �eleli smo, da bi imele razli£ne metode za izra£un IZ pokritje £im bliºje

0.95 in £im oºji interval zaupanja. Predpostavili smo, da je populacijsko povpre£je

10 in koda za simulacijo pa je bila zasnovana tako, da je vsaki£ vrnila tudi vzor£no

povpre£je in standardno napako. Ampak, najbolj pomembni rezultati simulacije so

povpre£na ²irina in pokritje intervala zaupanja. Za izra£une IZ smo uporabili ²tiri

metode, konstrukcija intrevala zaupanja z uporabo normalne porazdelitve, z uporabo

t-porazdelitve, z uporabo metode percentilov in BCa metode.

Na koncu se je izkazalo, da ko smo vzorec pove£ali, so bili rezultati za vse ²tiri metode

zelo podobni. V primeru, ko je bila populacija normalno porazdeljena, je bilo pokritje

najbolj blizu 0.95, ko smo uporabljali t-porazdelitev, ne glede na velikost vzorca. �irina

intervala je bila najmanj²a ko smo uporabljali bootstrapping metode, ampak pokritje

je bilo v tem primeru dobro zgolj pri najve£ji velikosti vzorca. Ko smo izhajali iz

eksponentne porazdelitve, smo imeli najoºji interval z uporabo metode percentilov,

ampak pokritje ni bilo dobro. Ko smo pove£ali velikost vzorca, je bilo pokritje blizu

0.95. V primeru, ko je populacija imela gama porazdelitev, smo z metodami samov-

zor£enja zopet dobili najoºji interval in spet je bilo pokritje dobro samo za velike vzorce.

Pokritje je bilo najbolj²e z uporabo t-porazdelitve. Tudi v primeru, ko smo izhajali iz

enakomerne porazdelitve, je bilo pokritje za vse velikosti vzorca najbolj²e z uporabo

t-porazdelitve. Rezultati pokritja in ²irine intervala zaupanja za n = 100 so bili skoraj

isti za vse ²tiri metode. Ko smo izhajali iz Pareto porazdelitve, rezultati niso bili tak

dobri. Napaka je bila velika, ²irina intervala je tudi bila velika in pokritje zelo slabo.

V tem primeru so ²e najbolje delovale metode samovzor£enja. Z uporabo metode

percentilov smo imeli najoºji interval in z uporabo BCa metode smo imeli najbolj²e

pokritje vendar pa je bilo pokritje ²e vedno precej manj²e od ºeljenih 0.95. Opazili smo

torej, da ima oblika porazdelitve lahko velik vpliv na izra£unane IZ, ²e posebej, ko je

velikost vzorca majhna.
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