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Izvle£ek:

Predstavljenih je nekaj pomembnej²ih lastnosti Boolovih funkcij, ki so pomembne za

uporabo v kriptografskih algoritmih.

Izmed na²tetih lastnosti se osredoto£imo na nelinearnost in uvedemo de�nicijo maksi-

malno nelinearne Boolove funkcije, kot jo je leta 1976 de�niral Rothaus. Predstavimo

in dokaºemo nekaj ekvivalentnih de�nicij in najbolj uporabnih lastnosti.

Uvedemo koncepta diferen£nih mnoºic in krepko regularnih grafov ter dokaºemo nekaj

njihovih lastnosti, ki jih bomo potrebovali v nadaljevanju. Nato prikaºemo postopka,

s katerima lahko maksimalno nelinearne Boolove funkcije pretvorimo v Hadamarjevo

diferen£no mnoºico in v krepko regularen graf. Navedemo zahtevane parametre obojih.

Prikaºemo dva izmed najbolj znanih postopkov konstruiranja maksimalno nelinearnih

Boolovih funkcij � Maiorana-McFarland postopek in Dillonov postopek. Za konec

prestavimo tudi skupino posplo²enih Rothausovih funkcij, za katere sva z mentor-

jem Enesom Pasalicem dokazala, da so maksimalno nelinearne, in pokaºemo njihovo

povezavo z razredom funkcij, ki jih je predstavil Carlet.
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Abstract:

We introduce some of the more important properties of Boolean functions, used in

cryptographic algorithms.

Among these properties we focus on nonlinearity and introduce the de�nition of bent

functions, as it was de�ned in 1976 by Rothaus. We introduce and prove some equi-

valent de�nitions of bent functions and their most useful properties.

We de�ne di�erence sets and strongly regular graphs and prove some of their properties,

which will be useful in the following proofs. We show step by step how we can turn a

bent function into a Hadamard di�erence set and how to turn it into a strongly regular

graph. In both cases we give exact required parameters.

We show two of the most well-known construction techniques for bent function - the

Maiorana-McFarland construction and Dillon's construction, which gives rise to the

Partial Spread class. Towards the end we introduce a generalization of Rothaus func-

tions, for which we have together with my mentor Enes Pasalic proved that they are

bent. We also show their connection to a class of bent functions introduced by Carlet.
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1 Introduction

Cryptography is a �eld of practice and study as ancient as the need for secrecy.

Secret codes have been utilized by civilizations as old as those of ancient Egypt or

Mesopotamia. Through the ages the codes have of course changed dramatically, while

their complexity, importance in the every-day life and consequently the resources ded-

icated to breaking them have increased staggeringly. When once they were primarily

used for exchanging relatively few information mainly linked to war and trade, today we

are exchanging and storing enormous quantities of information every day. We use the

Internet, wireless communications, sending out information to travel through channels

and be forwarded through servers we have no control over. And despite that we want

it to remain private. Secret. Accessible only to us. And for that we need cryptography.

Its main goal is to make it possible for two parties to safely communicate using an

unprotected channel. When considering cryptographic systems, we usually talk about

Alice as the sender of the message and Bob as the receiver. The actual message they

want to exchange is called �plaintext� and its ciphered version �ciphertext�. When

encrypting the message Alice takes as input the plaintext and the encryption key KE

and gets as output the ciphertext. To decrypt the message Bob runs the decryption

process with ciphertext and decryption key KD as input and gets the original plaintext.

Figure 1: Cryptographic system as usually depicted. [8]

When simulating attacks on a cryptographic system it is assumed that the attacker

or enemy, usually referred to as Eve, knows both encryption and decryption algorithms.

That is, the security of a cryptographic system should not rely on the secrecy of the

algorithms and methods but on the secrecy of the keys. As told in [24], these principles

were stated already in 1883 in [5] and even before that in [18].

If both keysKE andKD are the same, we talk about symmetric cryptography. Some

of the most famous examples of symmetric cryptography are the block ciphers DES
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(Data Encryption Standard) and Rijndael, which is the current algorithm used in the

AES (Advanced Encryption Standard). If, on the other hand, the encryption key KE is

public so that anyone can send Bob a ciphered message that only Bob can decipher with

his private decryption key, we talk about public cryptography. Some main di�erences

between them are that symmetric cryptography can generally be faster implemented

be it in hardware or software, and that in order to ensure the same level of security

symmetric cryptography requires shorter key size. Public cryptography, on the other

hand, can be used not only for safe communication but also for authentication with

digital signatures. Also, the key management is easier and the public and private key

pair does not need to be changed as often.

All of these schemes utilise algorithms in which Boolean functions play an impor-

tant role. Various cryptographic transformations, such as the S-boxes in the block

ciphers or pseudo-random generators in stream ciphers, are composed out of Boolean

functions with a low number of variables [8]. Yet even with limitations on the num-

ber of variables, the number of Boolean functions is extremely high. The number of

Boolean functions on 7 variables is approximately 1038 and not all of them can be used

in the construction of cryptographic algorithms. There are certain criteria a function

must satisfy. Di�erent types of algorithms require di�erent criteria. One special class

of Boolean functions, so-called bent functions, are characterized by the property of

being furthest away from the set of a�ne functions. This class of Boolean functions is

the main topic of this thesis.
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2 Cryptographic criteria for

Boolean functions

As we have already stated in the introduction, Boolean functions play a very im-

portant role in modern day cryptography, yet not all of them are �t to be used. Thus

we will begin by taking a look at some of the most cryptographically desirable prop-

erties for a Boolean function to have, as have been listed in [14] and [8]. If not stated

di�erently, the de�nitions are also derived from the same source.

First, let us formally de�ne Boolean functions and show some basic ways of working

with them. We must mention that we will denote addition over Z, R and C with +,

and addition over vector space Vn = Fn2 , n ∈ Z, with ⊕.

De�nition 2.0.1. [12] A Boolean function f on n variables is a mapping from the

space Vn into F2.

De�nition 2.0.2. Let f be a Boolean function mapping from Vn. Then its truth table

is the (0, 1) sequence (f((0, . . . , 0)), f((0, . . . , 0, 1)), · · · , f((1, . . . , 1))).

De�nition 2.0.3. Let f be a Boolean function mapping from Vn. Then the following

(1,−1) sequence is the sequence of function f :

((−1)f((0,...,0)), (−1)f((0,...,0,1)), · · · , (−1)f((1,...,1)))

.

De�nition 2.0.4. Let f be a Boolean function mapping from Vn. Then we call the

(1,−1)-matrix M of order 2n de�ned by M(i,j) = (−1)f(vi⊕vj) for each vi, vj ∈ Vn, the
matrix of f .

De�nition 2.0.5. A function f mapping from the vector space Vn is called an a�ne

function if it is of the form f(x) = c⊕ a1x1 ⊕ · · · ⊕ anxn, where a1, · · · , an, c ∈ Vn. If

c = 0, the function is called linear.

De�nition 2.0.6. The support of the function f is de�ned as supp(f) = {x|f(x) 6= 0}.

Another two de�nitions vital for operating with vectors are those for Hamming

weight and Hamming distance, which are used to determine how �far� certain vectors

or functions are from one another.
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De�nition 2.0.7. Hamming weight wH of a vector u ∈ Vn is the number of positions

with value 1. That is wH(u) =| {i|ui = 1} |.

De�nition 2.0.8. Hamming distance dH between two vectors u, v ∈ Vn is the number

of positions in which their values di�er. That is dH(u, v) =| {i|ui 6= vi} |. Hamming

distance between two function f, g mapping from Vn is the value dH(f, g) = wH(f(x)⊕
g(x)), where x ∈ Vn.

Example 2.0.9. Let f(x) = x1 ⊕ x2 be a Boolean linear function and g(x) = x1x2,

both mapping from V2. Then the truth table of the function f is

(0, 1, 1, 0),

since

x1 x2 f(x)

0 0 0

0 1 1

1 0 1

1 1 0

.

Its sequence is (1,−1,−1, 1).

Its support set is supp(f) = {(0, 1), (1, 0)}.
Its (1,−1)-matrix is 

1 -1 -1 1

-1 1 1 -1

-1 1 1 -1

1 -1 -1 1

.
Also

dH(f, g) = wH(f(x)⊕ g(x)) = wH((f(x1)⊕ g(x1), f(x2)⊕ g(x2), f(x3)⊕ g(x3))) =

= wH((0⊕ 0, 1⊕ 0, 1⊕ 0, 0⊕ 1)) = 3.

We have now de�ned the basic concepts related to Boolean functions and can take

a look at some important properties that are relevant for their use in cryptography.

Those are:

• balancedness,

• strict avalanche criterion and propagation criterion,

• algebraic degree,
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• correlation immunity and

• nonlinearity.

Among them the one we will be most interested in is nonlinearity. It will be left

for last and it will be explored further in the next chapter.

It should also be mentioned that apart from the above listed criteria there are

other important notions, especially the algebraic immunity and the resistance to fast

algebraic cryptanalysis. The reader can �nd more information about those in [19,28].

2.1 Balancedness

As the name already implies, balanced functions are characterized by the property

that their output values are evenly distributed. The main goal of cryptography is often

to disguise connections between the input and output and disperse the output values

as much as possible so the balanced property is usually mandatory.

De�nition 2.1.1. A function f mapping from Vn to V2 is called balanced if its truth

table has 2n−1 zeros and 2n−1 ones.

Example 2.1.2. Let f = x1x2 ⊕ x3 be a function mapping from V3. Then its truth

table looks like this:

(0, 1, 0, 1, 0, 1, 1, 0).

We see that exactly half the values are 1 and half 0. The function f is therefore balanced.

A standard way of modifying the function's output values while keeping the prop-

erty of balancedness is to apply a nonsingular a�ne transformation as shown below.

Lemma 2.1.3. Let g(x) = f(xB ⊕ b) be a function, where B is a nonsingular matrix

of order n and b is an arbitrary vector from Vn. Then the function g is balanced if and

only if the function f is balanced.

Proof. We know that the vector x runs through all the vectors in the vector �eld Vn.

Since the matrix B is nonsingular, the product xB must run through all the vectors

as well. And as b is an arbitrary vector, the same must therefore go for xB ⊕ b. This
means that the output of functions g and f will be the same, just permuted. The

number of zeros and ones remains the same. Thus the result follows.

Example 2.1.4. Let f be the function from the previous example, let B =

 1 1 0

1 0 1

0 1 0


and b = (1, 1, 1). Let now g(x) = f(xB ⊕ b).
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We make some quick computations and see that

g(x1, x2, x3) = f(x1 ⊕ x2 ⊕ 1, x1 ⊕ x3 ⊕ 1, x2 ⊕ 1).

g(0, 0, 0) = f(1, 1, 1)

g(0, 0, 1) = f(1, 0, 1)

g(0, 1, 0) = f(0, 1, 0)

g(0, 1, 1) = f(0, 0, 0)

g(1, 0, 0) = f(0, 0, 1)

g(1, 0, 1) = f(0, 1, 1)

g(1, 1, 0) = f(1, 0, 0)

g(1, 1, 1) = f(1, 1, 0)

The truth table of function g must therefore be just a permuted version of the truth

table of function f , which means that g is balanced as well.

The following two results are well-known but we provide the proofs for self-comple-

teness.

Lemma 2.1.5. Let f be a Boolean function mapping from Vn and g be a function

mapping from Vm. Then f(x)⊕ g(y), where y is �xed, is balanced if f is balanced.

Proof. We know that g(y) is a 0 or 1 constant. When we add that constant to the

truth table of the function f either non of the values change (g(y) = 0) or all of the

values change (g(y) = 1). Therefore, the function remains balanced.

This lemma can also be extended.

Lemma 2.1.6. Let f be Boolean function mapping from Vn that is independent of xi,

i ∈ {1, . . . , n}. That is, let the variable xi never appear in the function's algebraic

normal form (as de�ned in 2.3.1). Then the function g(x) = f(x)⊕ xi is balanced.

Proof. The function f(x) will run through all possible values once the standalone

variable xi equals 0 and once it equals 1. This means that in truth table of the function

g(x) = f(x)⊕ xi exactly half of the values must be 1 and the other half 0.

2.2 Strict avalanche criterion and propagation cri-

terion

Let us �rst introduce the de�nition of propagation and strict avalanche criterion or

SAC for short, as it is de�ned in [7].
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De�nition 2.2.1. Let f be a Boolean function mapping from Vn. We say that f

satis�es

• the propagation criterion with respect to α if f(x)⊕f(x⊕α), where α is a non-zero

vector from Vn, is a balanced function;

• the propagation criterion of degree k if it satis�es the propagation criteria with

respect to all α ∈ Vn, where 1 ≤ wH(α) ≤ k;

• strict avalanche criterion (SAC) if the propagation criterion degree of f is 1.

Example 2.2.2. We will make a quick example for the �rst, most straightforward

criterion.

• Let f = x1x2 ⊕ x3 be a function mapping from V3 and let α = (1, 1, 0). Then,

f(x)⊕ f(x⊕ α) = (x1x2 ⊕ x3)⊕ ((x1 ⊕ 1)(x2 ⊕ 1)⊕ x3)

= x1 ⊕ x2 ⊕ 1

and we can quickly see that it is balanced. Therefore, f satis�es the propagation

criteria with respect to α = (1, 1, 0).

• Let f(x1, x2, x3, x4, x5) = x1 ⊕ x1x5 ⊕ x2x4 ⊕ x2x5 ⊕ x2x4x5 ⊕ x3x4x5 and let

α = (0, 0, 1, 0, 0, ). Then,

f(x)⊕ f(x⊕ α) = x3x4x5 ⊕ (x3 ⊕ 1)x4x5

= x4x5,

which is obviously not balanced and it therefore does not satisfy the propagation

criterion with respect to this α. In fact, this function does not satisfy the said

criterion for none of the following vectors:

(0, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1, 1).

The strict avalanche criterion can be paraphrased into a much more intuitive form.

The de�nition is in fact equivalent to saying that, given a Boolean function f , if you

change one of the input bits from 0 to 1 or the other way around, exactly half of the

output bits will change their value. Let us see why this is true.

Proof. Let f be a Boolean function that satis�es the strict avalanche criterion as we

have de�ned it above and let α be an arbitrary vector from Vn with wH(α) = 1. That

means that in this case x⊕α represents the input with exactly one changed input bit.

We know that, since we are operating with Boolean functions, f(x)⊕ f(x) = 0. By

de�nition it is also true that f(x) ⊕ f(x ⊕ α) is a balanced function. Therefore, the
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addition of α had to change the value of exactly half of the output bits, otherwise the

sum of both functions would not have a balanced outcome.

The process can also be reversed, which means that both de�nitions are equal.

This is in fact the initial de�nition of the strict avalanche criterion, as it is directly

derived from an essential demand for the output not to give away any information about

the modi�ed input [6]. That is, if the input is only slightly changed (like modifying

just one bit) we need the output to drastically change. The functions that satisfy the

strict avalanche criterion are the best in this category - one changed input bit causes

exactly half the output bits to change, which is the optimal scenario.

We give a novel proof of the result below concerning the relation between SAC and

the application of the generalized linear group acting on Vn.

Proposition 2.2.3. Let f be a Boolean function mapping from Vn and let B be a

nonsingular matrix of order n with zero-one entries. If f(x)⊕ f(x⊕ β) is balanced for

each row β of matrix B, then g(x) = f(xB) satis�es the strict avalanche criteria.

Proof. To prove that the function g(x) satis�es the strict avalanche criterion we must

show that g(x) ⊕ g(x ⊕ αi) for i = 1, . . . n, where αi is vector from Vn with all zeros

and 1 in position i, is a balanced function.

g(x)⊕ g(x⊕ αi) = f(x′B)⊕ f((x′ ⊕ αi)B) for some x′ ∈ Vn
= f(x′B)⊕ f(x′B ⊕ αiB)

= f(x′B)⊕ f(x′B ⊕ βi),

where βi is the i-th row of the matrix B.

Since f(x) ⊕ f(x ⊕ β) is a balanced function, by Lemma 2.1.3 so too must be

f(x′B)⊕ f(x′B ⊕ βi). We have therefore proven the proposition.

Example 2.2.4. Here we will make an example of how we can change a function that

does not satisfy the strict avalanche criterion into one that does.

Let f(x) = x1x2 ⊕ x3 and α = (0, 0, 1). Clearly, the function f does not satisfy the

SAC for α since f(x)⊕ f(x⊕ α) = (x1x2 ⊕ x3)⊕ (x1x2 ⊕ (x3 ⊕ 1)) = 1.

But for β = (1, 0, 0), γ = (0, 1, 0) and δ = (1, 1, 1) the functions

f(x)⊕ f(x⊕ β) = f(x)⊕ f(x⊕ γ) = f(x)⊕ f(x⊕ δ) = x1 ⊕ x2 ⊕ 1

are in fact balanced.

Let us therefore consider the matrix B =

 β

γ

δ

 =

 1 0 0

0 1 0

1 1 1

 .



Cepak N. Bent functions

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, leto 2014 9

By Proposition 2.2.3 we see that the modi�ed function g(x) = f(xB) must satisfy

the strict avalanche criterion.

2.3 Algebraic degree

To resist various methods of cryptanalysis, a high algebraic degree is an important

cryptographic criterion in the design of Boolean functions. To properly de�ne it we

will �rst see what algebraic normal form or ANF is.

De�nition 2.3.1 ( [3]). Let f be a Boolean function mapping from Vn, let u be a vector

from Zn2 and let Xu = xu11 · · ·xunn be a Boolean function. Algebraic normal form of a

Boolean function f is

f =
⊕
u∈Zn

huXu,

where hu ∈ {0, 1}.

This formal de�nition is illustrated in the following example.

Example 2.3.2. We get the ANF of the function f(x) = (1 ⊕ x1)(x2 ⊕ x1x3) by

multiplying the components so that our function is of the form g(x) = a0⊕a1x1⊕a2x2⊕
a3x3 ⊕ a4x1x2 ⊕ a5x1x3 ⊕ a6x2x3 ⊕ a7x1x2x3. In our case that is g(x) = x2 ⊕ x1x2.

Example 2.3.3. We will also show a quick example of how, given the truth table of a

function f , we can �nd its uniquely corresponding algebraic normal form.

Let us consider the following truth table: (0, 0, 1, 1) and an arbitrary polynomial on

2 variables of the form a⊕ bx1 ⊕ cx2 ⊕ dx1x2.
We have now four equations with four variables. With substitutions we quickly see

that a = 0, b = 0, c = 1 and d = 0. The polynomial we were looking for must therefore

be f(x) = x2.

Given a truth table of an arbitrary function g on n variables we therefore have a to

solve a system of 2n equations with 2n variables.

De�nition 2.3.4. Let f be a Boolean function written in algebraic normal form. Then

its algebraic degree is the greatest number of variables in any of its monomials.

Example 2.3.5. The algebraic degree of the function f(x) = 1 is therefore 0 and the

degree of g(x) = x1 ⊕ x1x5 ⊕ x2x5 ⊕ x1x2x5x6 is 4.



Cepak N. Bent functions

Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije, leto 2014 10

2.4 Correlation immunity

The correlation immunity was �rst studied for its cryptographic signi�cance in 1984

in [26]. It measures to which degree does the output correlate to a subsets of the input.

It is, of course, desired that the correlation is as low as possible and the optimal situ-

ation arises when the inputs and the output are completely statistically independent.

The property itself was over the years de�ned in various di�erent equivalent ways. We

will be using de�nition as provided in [10]:

De�nition 2.4.1. The Boolean function f mapping from Vn is called correlation im-

mune of order m if for every m indices 1 ≤ i1 < i2 < · · · < im ≤ n and for every

(a1, . . . , am) ∈ Vm we have

P (f(x) = 1|(xi1 , xi2 , . . . xim) = (a1, a2 . . . , am)) = P (f(x) = 1).

That is, if the output is statistically independent of all the m-subsets of the input.

De�nition 2.4.2. If the Boolean function f mapping from Vn is correlation immune

of order m and balanced it is called m-resilient.

One interesting property that ties together the number of variables of a Boolean

function, its correlation immunity and algebraic degree is the following:

Proposition 2.4.3. [26] Let f be a Boolean function on n variables with correlation

immunity of order m and algebraic degree d. Then m+ d ≤ n.

Unfortunately we will not include the proof of this nice proposition here. A more

interested reader may �nd the proof in [26].

2.5 Nonlinearity

The property we have left for last in this introductory chapter is nonlinearity. It

measures how far away a function f is from the set of a�ne functions. That is, how

much more complex its output is in comparison with a�ne functions that have the

lowest cryptographic complexity excluding the constant functions.

Here we will look at only the basic de�nition of nonlinearity and will further develop

the concept in the following chapters.

De�nition 2.5.1. [12] Let f be a Boolean function mapping from Vn and let An be the

set of all a�ne functions on n variables. Then, the nonlinearity of Boolean function f

is de�ned as
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N(f) = min
f∈An

dH(f, h),

where dH is the Hamming distance.

A very interesting family of Boolean functions are those functions reaching the

highest possible nonlinearity. That is, compared to the simple a�ne functions their

structure is the most complex, the most nonlinear. They are called the bent functions

and will be the focus of this master thesis.

To properly de�ne these, however, we �rst need to introduce the Fourier transfor-

mation.
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3 Nonlinearity

First we will take a look at Fourier transformation and Praseval's identity, both of

which will be then used to prove the connection between nonlinearity and the Walsh-

Hadamard transformation. This connection is very useful, as it provides us with the

easiest way of de�ning a bent function, as we will see in the continuation of this chapter.

3.1 Fourier transformation of Boolean functions

The content of the following chapter is in large part taken from [27].

Since [27] uses an alternative de�nition of Boolean function, introducing it as a

function F that maps F : Vn −→ {1,−1} instead of f : Vn −→ {1, 0}, we will for the
sake of greater consistency denote the function F (x) as F (x) = (−1)f(x), where f is a

Boolean function, as de�ned in 2.0.1.

Our �rst goal is to create a basis of functions to use in the Fourier transformation.

Let us recall that in our case the basis is a set of basis functions, such that any function

of the form F : Vn −→ R can be written as a linear combination of basis functions. We

will name the basis, described in the following, the Fourier basis.

The number of functions in the Fourier basis is 2n. Let �·� denote the inner or dot
product between two vectors. That is, let x ·y = x1y1⊕· · ·⊕xnyn. Then we can create

for each element v ∈ Vn a function χv : Vn −→ {1,−1} where

χv(x) = (−1)v·x.

Together they form the Fourier basis.

We can also quickly see that the functions are mutually orthogonal and that they

in fact form a normal basis.

De�nition 3.1.1. Scalar product of Boolean functions f and g mapping from Vn is

de�ned as

〈g, h〉 =
1

2n

∑
x∈Vn

f(x)g(x)

.
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Corollary 3.1.2 (Fourier transformation). For any function F : Vn −→ R it holds

that

F (x) =
∑
v∈Vn

F̂ (v)χv(x),

where

F̂ (v) = 〈F, χv〉 =
1

2n

∑
x∈Vn

(−1)f(x)⊕v·x

are the Fourier coe�cients.

The Fourier transformation is introduced in more detail, which we are skipping in

this thesis, and with a longer explanation in [27].

We also know of Parseval's identity, which connects Fourier coe�cients with the

function's values.

Theorem 3.1.3 (Parseval's identity). For any function F : Vn −→ R it holds that∑
v∈Vn

F̂ 2(v) = 〈F, F 〉.

Proof. Let us look at the following equation:

〈F, F 〉 =

〈∑
v∈Vn

F̂ (v)χv(x),
∑
u∈Vn

F̂ (u)χu(x)

〉
=

∑
v,u∈Vn

F̂ (v)F̂ (u)〈χv(x), χu(x)〉

we use the fact that the functions χv(x) are orthogonal for every v ∈ V

=
∑
v∈Vn

F̂ 2(v)

Thus the result follows.

For the functions of the form (−1)f(x), where f(x) is a Boolean function, this result

can be even improved.

Corollary 3.1.4. For every function of the form F : Vn −→ {1,−1} it holds that∑
v∈Vn

F̂ 2(v) = 1.

Proof. Let us consider the following equation:
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∑
v∈Vn

F̂ 2(v) = 〈F, F 〉

=
1

2n

∑
x∈Vn

F (x)2

we use the fact that the function F (x) maps to {1,−1}

= 1

Thus the result follows.

Now we have all the tools needed to proceed with further exploration of nonlinearity.

3.2 Nonlinearity of Boolean functions

We must �rst introduce the Walsh-Hadamard transformation, as de�ned in [11].

De�nition 3.2.1. Let f be a Boolean function mapping from Vn, v ∈ Vn and let the

operation · be the usual scalar product between the vectors in Vn. Then the Walsh-

Hadamard transformation of a Boolean function f over the �eld Vn is

Wf (v) =
∑
x∈Vn

(−1)f(x)⊕v·x.

We give a proof of the result below concerning the alternative way of expressing

the nonlinearity of a function compared to the de�nition 2.5.1.

Proposition 3.2.2. Let f be a Boolean function mapping from Vn. Then the nonline-

arity of function f is equal to

N(f) = 2n−1 − 1

2
sup
v∈Vn
| Wf (v) | .

Proof. Let us �rst look at the Walsh-Hadamard transformation, while considering

two cases. First case is when the a�ne function is a linear function. Then, Wf (v) =∑
x∈Vn(−1)f(x)+v·x, where v ·x = v1x1⊕· · ·⊕ vnxn plays the role of our linear function.
When the values of functions f(x) and v ·x are the same, we have (−1)f(x)+v·x = 1,

otherwise (−1)f(x)+v·x = −1.

The number of all elements in the space Vn is 2n. Let k denote number of elements

x ∈ Vn, such that f(x) = v · x, and let l denote the number of elements, such that

f(x) 6= v · x. Thus, we get two equations:

k + l = 2n
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and

k − l = Wf (V ).

We join both equations and get l = 2n−1 − 1
2
Wf (v). Since we would like to get the

smallest possible number of inequalities between the linear functions and the function

f , we must minimize l and therefore maximize Wf (v), where we take into account its

absolute value.

Therefore, 2n−1 − 1
2

supv∈Vn | Wf (v) | is the smallest possible Hamming distance

between the function f and the linear functions.

Let us now consider the second case, where we are dealing with a�ne functions

with the constant coe�cient c = 1. These are in fact just the functions from the

previous case, but with the addition of 1. Therefore, the absolute values of the Walsh

coe�cients remain the same and 2n−1 − 1
2

supv∈Vn | Wf (v) | is indeed the smallest

possible Hamming distance between the function f and the a�ne functions.

With this the lemma is proven.

Let us now try to �nd the highest nonlinearity. We must, obviously, look for

the minimum supremum of Walsh-Hadamard transformation. We give a novel and

simpli�ed proof of the result below concerning the minimum supremum of absolute

value of Walsh-Hadamard coe�cients.

Proposition 3.2.3. The minimum supremum of absolute values of Walsh-Hadamard

transformation of a Boolean function is 2
n
2 .

Proof. Let f be a Boolean function mapping from Vn. Then F (x) = (−1)f(x) is a

well de�ned real function that maps from Vn to {1,−1}, on which we can perform the

Fourier transformation, as was introduced in 3.1.2:

F (x) =
∑
v∈Vn

F̂ (v)χv(x),

where

F̂ (v) = 〈F, χv(y)〉

=
1

2n

∑
y∈Vn

(−1)f(y)(−1)v·y

=
1

2n

∑
y∈Vn

(−1)f(y)⊕v·y

=
1

2n
Wf (y)
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By Corollary 3.1.4 we know that for all Boolean functions the equality
∑

v∈Vn F̂
2(v) =

1 holds.

After rearranging the above equation we get∑
v∈Vn

W 2
f (v) = 22n.

Since we are looking for the minimum supremum of absolute values of Walsh-

Hadamard transformation, we can assume that W 2
f (v) has the same value for every

v ∈ Vn. Let us denote this value with k2.
Then, it follows

∑
v∈Vn

k2 = 22n

2nk2 = 22n

k = ±2
n
2 .

Since the value k represents the minimum supremum of absolute values of Walsh-

Hadamard transformation of a Boolean function, we have proved the proposition.

Remark 3.2.4. It follows from the above proposition that the maximal nonlinearity of

a Boolean function is 2n−1−2
n
2
−1. It is reached exactly when all of the Walsh-Hadamard

coe�cients equal ±2
n
2 .

And �nally we can give a proper de�nition of a bent function.

De�nition 3.2.5. [20] A bent function is a Boolean function f , for which all the

Walsh-Hadamard coe�cients equal ±2
n
2 . That is, Wf (v) = ±2

n
2 for every v ∈ Vn.
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4 Bent functions

4.1 Properties of bent functions

Let us begin with the most simple and obvious property, which concerns the func-

tion's domain. The following properties were noted and proven, as describer bellow,

by Rothaus [22] back in 1960s.

Lemma 4.1.1. If the Boolean function f mapping from Vn is a bent function, then n

is an even number.

Proof. By de�nition of the bent functions, the equationWf (v) = ±2
n
2 holds for every

v ∈ Vn. And by de�nition of the Walsh-Hadamard transformation, all its coe�cients

are integers. Therefore, n is an even number.

We can notice that if f is a bent function, we can write all its Fourier coe�cients

as 2
n
2 F̂ (v) =

1

2
n
2

Wf (v) = (−1)q(v), where the function q(v) is a well de�ned Boolean

function mapping from Vn. We name such a function q the dual function of f .

Lemma 4.1.2. Let the function q be the dual function of bent function f . Then q is a

bent function as well and f is the dual function of q.

Proof. We know the following holds:

1

2
n
2

Wf (v) = (−1)q(v)

1

2
n
2

∑
x∈Vn

(−1)f(x)⊕v·x =
∑
x∈Vn

1

2n
Wq(x)(−1)v·x since F̂ =

1

2n
Wq(x)

∑
x∈Vn

(−1)f(x)⊕v·x =
1

2
n
2

∑
x∈Vn

Wq(x)(−1)v·x

(−1)f(x) =
1

2
n
2

Wq(x) for all x ∈ Vn

From this it follows that the values ofWq(x) must equal ±2
n
2 for every x ∈ Vn. This

means that q is a bent function. From the last line of the equation it is also obvious

that the function f is the dual function of q.

There also exist functions which are self-dual, as we will see in the following example.
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Example 4.1.3. Let f = x1x2 be a bent function on 2 variables. Its truth table is

(0, 0, 0, 1) and the Walsh coe�cients are as computed bellow:

v1 v2
1

2
n
2

Wf (v)

0 0
1

2
n
2

((−1)0+0 + (−1)0+0 + (−1)0+0 + (−1)1+0) = 1

0 1
1

2
n
2

((−1)0+0 + (−1)0+1 + (−1)0+0 + (−1)1+1) = 1

1 0
1

2
n
2

((−1)0+0 + (−1)0+0 + (−1)0+1 + (−1)1+1) = 1

1 1
1

2
n
2

((−1)0+0 + (−1)0+1 + (−1)0+1 + (−1)1+0) = −1

Since we are looking for the dual function of f , that is for such a function q that
1

2
n
2

Wf (v) = (−1)q(v), we now know that its truth table should be (0, 0, 0, 1). But that is

exactly the truth table of function f . Therefore, f is a self-dual function.

The following lemma proves useful in �nding the maximum degree of a bent func-

tion.

Lemma 4.1.4. The number of zeros of a Boolean function f equals 2n−1(F̂ (0) + 1). If

the function f is bent, the number of zeros equals 2n−1
(
± 1

2
n
2

+ 1

)
Proof. From the de�nition of the Fourier coe�cient F̂ (v) it follows that di�erence

between the number of zeros and ones of function f(x) + v · x is equal to 2nF̂ (v).

Let us now assume that v = 0. We get that the di�erence between the number of

zeros and ones of f(x) is equal to 2nF̂ (0). Therefore it follows that the number of zeros

of f(x) equals 2n−1(F̂ (0) + 1).

If we now assume that f is a bent function, we know that F̂ (0) =
1

2n
Wf (0) and

that for every Wf (v), v ∈ Vn, Wf (v) = ±2
n
2 . We insert this value into the previous

result and see that the number of zeros in a bent function is indeed 2n−1
(
± 1

2
n
2

+ 1

)
.

To prove the next property of bent functions we will need the following lemma. We

give a proof of the result below concerning the parity of zeros of a function.

Lemma 4.1.5. Let f be a Boolean function mapping from Vn. Then the parity of the

number of zeros equals the coe�cient of the monomial term x1 · · ·xn of the function f .

Proof. We see that the term x1 · · ·xn is the only one that changes the value of the

function an odd number of times (once), since there is only one vector in Vn such that

x1 · · ·xn = 1. All the other terms in�uence the value of the function an even number

of times. It follows from this that we have an even number of zeros (and ones) exactly

when the term x1 · · ·xn does not appear in the function. And the other way around
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- we have an odd number of zeros (and ones) exactly when x1 · · ·xn is a part of the

function.

Proposition 4.1.6. Let f be a bent function that maps from Vn. Then its maximum

algebraic degree is n
2
, except when n

2
= 1.

Proof. We have already proven that n is an even number in 4.1.1. Let us now denote
n
2

= k, where k > 1, and k < r < n, r ∈ N.
Let us now look at the polynomial f(x1, . . . , xr, 0, . . . , 0) = g(x1, . . . , xr) and the

Fourier transformation

(−1)g(x) =
∑
v∈Vr

Ĝ((v1, . . . , vr))(−1)v1x1+···+vrxr .

We also know

(−1)f(x) =
∑
v∈Vn

F̂ ((v1, . . . , vn))(−1)v1x1+···+vrxr .

We compare the two equations. Since the Fourier transformation is unique, it

follows

Ĝ((v1, . . . , vr)) =
∑

u∈Vn−r

F̂ ((v1, . . . , vr, u1, . . . , un−r)).

Now we look at the number of zeros of function f((x1, . . . , xr, 0, · · · , 0)), that is

function g(x1, . . . , xr). By Lemma 4.1.4 the following holds:

number of zeros = 2r−1(Ĝ(0) + 1)

= 2r−1

 ∑
u∈Vn−r

F̂ ((0, . . . , 0, u1, . . . , un−r)) + 1


We have 2n−r summands, all of which equal ± 1

2
n
2

. Therefore the number of zeros

equals z2r−1−
n
2 + 2r−1 for some z ∈ N.

That means that for every r > n
2
the number of zeros will be even. By Lemma

4.1.5 this means that any monomial term of the form x1 · · ·xr will not be present in

the function. Therefore, the maximum possible algebraic degree of a bent function is
n
2
.
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4.2 Equivalent de�nitions

Bent functions themselves can be de�ned in di�erent ways, all of them equivalent

to the de�nition from the previous chapter. Here we will take a brief look at six such

de�nitions, as listed in [14]. These are:

1. The function f is bent.

2. Let ξ be a sequence of function f and let l be sequence of an arbitrary linear

function L. Then 〈ξ, l〉 = ±2
n
2 .

3. Let α be an arbitrary non-zero vector from the vector space Vn. Then f(x) ⊕
f(x⊕ α) is a balanced function.

4. Let M be the associated (1,−1) matrix of the function f of size 2n × 2n. M is a

Hadamard matrix (for the de�nition of the Hadamard matrix see De�nition 4.2.1

bellow).

5. Nonlinearity N(f) of function f satis�es N(f) = 2n−1 − 2
1
2
n−1.

6. LetD be the support set of the bent function f . ThenD is a Hadamard di�erence

set in Vn with parameters (2n, 2n−1 ± 2
1
2
n−1, 2n−2 ± 2

1
2
n−1).

For some of these de�nitions we can already prove that they are equivalent to

our initial de�nition. For De�nition 6 we will wait until Chapter 5 where we de�ne

di�erence sets. De�nition 5 was proven in the previous chapter, as this is exactly what

we observed in Remark 3.2.4.

Let us �rst prove the equivalence of De�nitions 1 and 2.

Proof.[1 ⇔ 2] We must �rst note that the sequence 〈ξ, l〉 is in fact the sequence of

the function f ⊕ L. This can be easily veri�ed as follows. Let ξi = (−1)f(xi) and

li = (−1)L(xi). It follows that ξili = (−1)f(xi)⊕L(xi) = (−1)(f⊕L)(xi).

Let us now suppose that f is indeed a bent function. This means that all of its

Walsh-Hadamard coe�cients equal ±2
n
2 . If we choose for vector v the sequence of

coe�cients of the function L we get

Wf (vL) =
∑
x∈Vn

(−1)f(x)⊕vL·x =
∑
x∈Vn

(−1)(f⊕L)(x).

Now we use the above stated observation and see that we have proved the equivalence

in one direction.

Let us now assume 2. As we have shown above, the vector product 〈ξ, l〉 can be di-

rectly translated into the Walsh-Hadamard coe�cients. By Remark 3.2.4 the function
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f is indeed bent.

The proof of the equivalence of De�nitions 1 and 3 is omitted here, and the inter-

ested reader can �nd the proof in [8].

To prove the equivalence of the De�nition 4 we must �rst de�ne the Hadamard

matrix and show some of its properties.

De�nition 4.2.1. Let H be a (1,−1), n×n matrix. If all of its rows and columns and

mutually orthogonal, we call it a Hadamard matrix.

Example 4.2.2. A generic method of constructing Hadamard matrices recursively is

using the Sylvester's construction, �rst introduced in [17].

We take a Hadamard matrix H of order n. Then the matrix

[
H H

H −H

]
is again

a Hadamard matrix of order 2n, which by itself is an easily observable fact. If two

rows Hi and Hj are mutually orthogonal, then [Hi, Hi] and [Hj, Hj] will be orthogonal

as well. The same is true for [Hi,−Hi] (since the �rst and second part of summands

will neutralize each-other) and [Hj,−Hj]. The same reasoning applies to the columns

of H.

With this construction we get a special class of Hadamard matrices, sometimes also

called the Walsh matrices. We start with matrix [1] and then step by step produce more

matrices. Here we have listed the �rst three:

[
1 1

1 −1

]
,


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 ,



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


De�nition 4.2.3. Let M be a matrix of order n × m. Then MT is its transposed

matrix of order m× n, where MT
i,j = Mj,i.

Lemma 4.2.4. The matrix H of order n is a Hadamard matrix if and only if HHT =

nI, where I is the identity matrix.

Proof. When multiplying HHT we are in fact multiplying the rows of matrix H.

Since all of them are mutually orthogonal, it is obvious that our result will always be
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Figure 2: Some more Hadamard matrices, where entries with value 1 are coloured black

and those with value −1 are coloured white, as depicted on the Wolfram Mathwolrd's

webpage.

zero. Except, of course, when we multiply a row with itself when we are computing a

value of the result matrix's diagonal. In that case we get n.

It is similarly evident that the only way to get the matrix nI is for all columns and

rows to be mutually orthogonal.

At this point we are ready to prove the equivalence between De�nition 1 and 4. We

give bellow a novel proof.

Proof.[1 ⇔ 4] What we need to prove is that the function f is bent if and only if the

vector product of any two of the rows or columns in its matrix M equals zero. Let us

pick the product of two arbitrary rows i and j and see what their product looks like.

Mi ·Mj =
[
(−1)f(xi⊕xk)

]
k=1,...,2n

·
[
(−1)f(xj⊕xk)

]
k=1,...2n

=
∑

k=1,...,2n

(−1)f(xi⊕xk)⊕f(xj⊕xk)

=
∑

k=1,...,2n

(−1)f(xi⊕xk)⊕f((xi⊕xk)⊕(xj⊕xi))

At this point we take a look at the last line of the above equation and remember

the equivalent De�nition 3 of a bent function. Since xk spans across all the vectors in

Vn, we take the vector xi ⊕ xk as our x and the vector xj ⊕ xi as our α. From this we

see that if f is a bent function, then exactly half of the values in the sum will be 1

(when the value of the function f(xi ⊕ xk)⊕ f((xi ⊕ xk)⊕ (xj ⊕ xi)) will equal 0) and

the other half −1, which means the two rows i and j will be orthogonal to each other

and the matrix M will be a Hadamard matrix.
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The opposite obviously holds as well. Thus the equivalence of the de�nitions fol-

lows.

Remark 4.2.5. One more interesting property that relates the bentness of a Boolean

function f and the strict avalanche criterion, as de�ned in 2.2.1, is the fact that f is

bent if and only if the function f satis�es SAC of order n. This follows directly from

the De�nition 3.
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5 Di�erence sets and their relation

to bent functions

In the following two chapters we will introduce two new combinatorial objects,

di�erence sets and strongly regular graphs, and discuss some interesting relationships

between these structures and bent functions.

We will �rst take a look at the representation of bent functions in terms of di�erence

sets, as was shown by Dillon [15].

Let us �rst introduce the following de�nition.

De�nition 5.0.6. Let H be an abelian group with h elements and K ⊆ H be a set of

k elements of H. If the set of di�erences ki − kj, ki, kj ∈ K, contains every nonzero

element of H exactly α times, then K is an (h, k, α)-di�erence set in H of order

n = k − α.

From here on we will be focusing on di�erence sets on additively written abelian

2-groups.

It is obvious that the parameters h, k, α of the di�erence set cannot be independently

chosen. The following lemma shows some of their dependencies.

Lemma 5.0.7. Let K be an (h, k, α)-di�erence set. Then k(k − 1) = α(h− 1).

Proof. We use double counting on the number of all possible ways to write any non-

zero element of the group H as a di�erence between elements ki and kj, ki, kj ∈ K.

On the one hand, we know we have h − 1 non-zero elements in the group H and

each can be written as a di�erence in α di�erent ways.

On the other hand, we have k elements in K that we can subtract in k(k− 1) ways

to get a non-zero di�erence.

Therefore, the equality holds.

To make operating with a di�erence set easier we can represent it with a matrix

D(K). We de�ne it in the following way:

D(K)hi,hj =

{
1 if hi − hj ∈ K
0 otherwise

.
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We can easily identify some particular entries in the matrix D whose value equals

1. For example, the column belonging to the neutral element in the group H will have

entries 1 in precisely those rows indexed by elements from the set K.

The matrix D itself also has a very useful property as stated by Dillon [15].

Lemma 5.0.8. K is an (h, k, α)-di�erence set if and only if the following equation

holds:

D(K)2 = αJ+ (k − α)I.

Proof. Let us look at the following equation:

(D(K)2)hi,hj =
∑
g∈H

D(K)hi,gD(K)g,hj

=
∑
k∈H

{
1 if hi − g = k′ ∈ H and g − hj = k′ ∈ H
0 otherwise

=
∑
h∈H

{
1 if hi − hj = k′ − k′′

0 otherwise

=

{
α if hi − hj 6= 0

k otherwise
.

The lemma therefore holds.

There is a special family of di�erence sets, the Hadamard di�erence sets, that will

be especially useful in this and the following sections.

De�nition 5.0.9. If an (h, k, α)-di�erence set K satis�es the condition h = 4(k−α),

it is called a Hadamard di�erence set.

Let us brie�y explain the reasons for calling such a set the Hadamard di�erence set.

By De�nition 4.2.1, Hadamard matrix H is a square matrix of size n × n where

entries are either 1 or −1, where all the rows and columns are mutually orthogonal

and with the property that HHT = nI. Let us now take the matrix D(K), replace the

values 0 by 1 and 1 by −1, denote it by D̃(K) and take a look at its square.

D̃(K)2 = (J− 2D(K))2

= J2 − 2JD(K)− 2D(K)J+ 4D(K)2

= hJ− 2kJ− 2kJ+ 4(αJ+ (k − α)I)

= 4(k − α)I+ (h− 4(k − α))J

We see that if K was a Hadamard di�erence set, then D̃(K)2 would equal hI. Since
it follows from the de�nition of D̃(K) that in our case D̃(K) = D̃(K)T , this also means
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that D̃(K) is a Hadamard matrix, as D̃(K)D̃(K)T = D̃(K)2 = hI. This can in fact be

used as an alternative de�nition of a Hadamard di�erence set:

Lemma 5.0.10. An (h, k, α)-di�erence set is Hadamard if and only if D̃(K)2 = hI
and is therefore a Hadamard matrix.

The next theorem demonstrates how the added restriction on the cardinality of our

group h = 2n, since we have already stated that we are dealing with abelian 2-groups,

determines the parameters of the di�erence set. Since these groups can be in fact

considered Vn vector spaces, they can have Boolean functions de�ned on them.

Theorem 5.0.11. Let H be an elementary abelian 2-group with cardinality 2n and

K ⊆ H an (h, k, α)-Hadamard di�erence set. Then n is even, k = 2n−1 ± 2
n
2
−1 and

α = 2n−2 ± 2
n
2
−1.

Proof. K is a Hadamard di�erence set therefore k = h
4

+ α. We insert this into the

equation from Lemma 5.0.7:

0 = k(k − 1)− α(h− 1)

=

(
h

4
+ α

)(
h

4
+ α− 1

)
− α(h− 1)

= α2 − h

2
α +

(
h2

16
− h

4

)
The solutions of this quadratic equation are α = h

4
± 1

2

√
h.

Consequently h must be a square. If we now insert h = 2n, as H is an elementary

abelian 2-group, we see that n must be an even number. The values for the parameters

k and α also follow directly.

The knowledge of the possible values of the parameters that de�ne Hadamard dif-

ference sets in elementary abelian 2-groups enables a nice connection between these

sets and bent functions.

Theorem 5.0.12. Let K ⊆ H be a Hadamard di�erence set in an elementary abelian

2-group H of order 2n. Then there exists a bent function f mapping from Vn, such

that K = supp(f). The opposite also holds. The support of any bent function mapping

from some Vn is a Hadamard di�erence set for an elementary abelian 2-group.

Proof. As we have already noted before, the group H can in this case be considered

as a vector space Vn. Since K, the Hadamard di�erence set, is a subset of the group

H, we can construct a Boolean function f such that K = supp(f).
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Now we have to prove that the function f is bent. Let us therefore consider the

Hadamard matrix D̃(K)k1,k2 =

{
−1 if k1 + k2 = k1 − k2 ∈ K

1 otherwise
= (−1)f(k1+k2) .

We see that the Hadamard matrix D̃(K) is exactly the matrix of the function f .

By the 4-th equivalency above, we now know that f must be a bent function. Since

the opposite is also true (that is, if f is bent, then D̃(K) is a Hadamard matrix), we

have proved the theorem.

The above result also implies the 6-th equivalence introduced in the beginning of

Section 4.2.
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6 Strongly regular graphs and

bent functions

In this section we will show how a bent function is connected to and how it can

be represented by a strongly regular graph. The connection itself was �rst noted and

proven in [1], [2].

Let us begin by de�ning some of the basic concepts from the graph theory.

De�nition 6.0.13. Let V be a set of vertices and E ⊆ V × V be a set of edges.

Then G = (V,E) is a graph where two vertices u, u′ ∈ V are connected precisely when

(u, u′) ∈ E.

In general, a graph G = (V,E) can contain multiple edges between two vertices and

it can contain loops (an edge where the starting vertex and the ending vertex are the

same). The graphs we will use will be �nite graphs without loops and multiple edges.

If a graph has no edges, we call it an empty graph. If a graph G = (V,E) has all

possible edges (E = V × V ), we call it a full graph.

If the vertices u and u′ are connected, we write u ∼ u′.

De�nition 6.0.14. Let G = (V,E) be a graph. Then its complementary graph G =

(V,E) is a graph where the set of vertices remains the same but two vertices are con-

nected if and only if they are not connected in the original graph G.

We note at this point that if we look at the complementary graph of the complement

of graph G, we get the original graph G. That is G = G.

De�nition 6.0.15. We denote the degree of a vertex u in the graph G by degG(u) and

it is equal to the number of edges for which vertex u is a starting vertex.

De�nition 6.0.16. We say that the graph G is regular if every vertex of the graph has

the same degree. If r = degG(u) for every u ∈ V , then the graph G is r-regular.

Having de�ned regular graphs, we can take a look at which conditions must be met

for it to be strongly regular.

De�nition 6.0.17. The graph G = (V,E) is strongly regular with parameters (v, r, λ, µ)

if it is r-regular on v vertices and if the following holds:
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1. every pair of connected vertices u, u′ ∈ V has exactly λ common neighbours;

2. every pair of non-connected vertices u, u′ ∈ V has exactly µ common neighbours.

Example 6.0.18. Let us look at an example of a strongly regular graph. The graph in

Figure 3 is called the Petersen graph and possesses many nice properties, with strong

regularity being just one of them.

Figure 3: The Petersen graph.

The Petersen graph is a graph on 10 vertices and we see that each of them has

valency 3. Because of its symmetries we can quickly check that any two connected

vertices have zero common neighbours, as there are no triangles in the graph. We also

see that any two unconnected vertices have exactly 1 common neighbour.

That means that the Petersen graph is a (10, 3, 0, 1)-strongly regular graph.

Next we de�ne certain structures and prove some of their properties that will help

us in showing how a bent function can be represented by a strongly regular graph.

In our case the easiest way to operate with the graph will be by looking at its

adjacency matrix.

De�nition 6.0.19. The adjacency matrix of graph the G is a square (0, 1)-matrix

A(G) of order | V | where

(A(G))u,u′ =

{
1 if (u, u′) ∈ E
0 otherwise

.

Since we can freely choose in which way to enumerate the vertices, a graph usually

has more than one adjacency matrix. Any of them, however, completely de�nes the

original graph.
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Figure 4: Petersen graph G1 with enumerated vertices.

Example 6.0.20. Here we take a look at the graph G in the Figure 4 and show two

possible adjacency matrices.

Using the enumeration as we see it in Figure 4, we get the bellow adjacency matrix.

A(G1) =



0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0 0

0 0 0 0 1 0 1 1 0 0


If, on the other hand, we use di�erent enumeration, we also get a di�erent adjacency

matrix that is still describing the same, that is, an isomorphic graph.

Now we get a di�erent adjacency matrix:
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Figure 5: Petersen graph G2 with enumerated vertices.

A(G2) =



0 1 1 0 0 0 0 0 1 0

1 0 0 0 0 1 0 1 0 0

1 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 1 0 1

0 0 1 0 0 1 1 0 0 0

0 1 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 1 0

0 1 0 1 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 1

0 0 0 1 0 1 0 0 1 0


De�nition 6.0.21. A walk of length k between vertices u and w is a sequence of k edges

(u, x)(x, y) . . . (t, z)(z, w). If all of the visited vertices are distinct from one another,

we call this a path.

De�nition 6.0.22. The distance between two vertices u and v is the length of the

shortest existing path between them. In case there exists no path between them, we

write dist(u, v) =∞.

Now to show a property of the adjacency matrix that gives us more information

about the number of di�erent paths between vertices that will be used later.

Lemma 6.0.23. Let G = (V,E) be graph, u, u′ ∈ V and k ∈ N. Then the number

((A(G))k)u,u′ is the number of di�erent paths between vertices u and u′ of length k.

Proof. Let us �rst denote the number of paths of length k between vertices u and u′

by pk(u, u′).
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We will use induction on k. For k = 1, our claim is trivial and by the de�nition of

the adjacency matrix it obviously holds.

Let us now assume that the following is true: pk−1(u, u′) = ((A(G))k−1)u,u′ . There-

fore, since a path of length k between vertices u and u′ must be constructed from a

path of length k−1 between vertices u and some w and from a path of length 1 between

w and u′, the following holds:

pk(u, u
′) =

∑
w∈V

pk−1(u,w)p1(w, u
′)

=
∑
w∈V

((A(G))k−1)u,w((A(G)))w,u′

= ((A(G))k)u,u′

Thus the result follows.

The adjacency matrix of a strongly regular graph also has some additional useful

properties.

Lemma 6.0.24. A graph G is strongly regular with parameters (n, r, λ, µ) if and only

if the following is true:

A(G)2 = (λ− µ)A(G) + µJ+ (r − µ)I.

Proof. By Lemma 6.0.23 we know that A(G)2u,v represents the number of di�erent

paths of length 2 between vertices u and v. Wee need to consider three di�erent cases.

The �rst case is u = u′.

A(G)2u,u = (λ− µ)A(G)u,u + µJu,u + (r − µ)Iu,u
= 0 + µ+ r − µ

= r

Since the graph G is r-regular, this must be true.

The second case is u 6= u′, u ∼ u′.

A(G)2u,u′ = λ− µ+ µ

= λ,

which is again true, since by the de�nition of a strongly regular graph, two connected

vertices always have exactly λ common neighbours.
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The last case arises when u 6= u′, u � u′.

A(G)2u,u′ = µ

By the de�nition of a strongly regular graph, this again holds.

Thus, we see that the theorem holds for every possible pair of points, which com-

pletes the proof.

Lemma 6.0.25. Let G be a (v, r, λ, µ)-strongly regular graph. Then, its complementary

graph G is a (v, v − r − 1, v − 2− 2r + µ, v − 2r + λ)-strongly regular graph.

Proof. The number of vertices in the graph must obviously remain the same so v = v.

Since every vertex is now connected exactly to the vertices to which it was not

connected to in the original graph, it is connected to all the vertices apart from the

vertices it was connected to originally including the connection to itself. Therefore,

r = v − r − 1.

To get the parameter λ we must take two unconnected vertices u and u′ from the

original graph G and count those vertices to which neither u nor u′ are connected

to. By using the inclusion-exclusion principle, the number of these vertices is exactly

v − 2− 2r + µ.

To get the parameter µ we must take two connected vertices w and w′ in the ori-

ginal graph G and count all the vertices neither of them are connected to. We use the

same principle as before and get µ = v − 2r + λ.

Now we have all the necessary tools to create a graph de�ned by a bent function

and prove it is strongly regular.

De�nition 6.0.26. Let f be a bent function on n variables. Then, we de�ne the graph

Gf with V = Vn and two vertices u and u′ are connected if and only if f(u+ u′) 6= 0.

Now we can use the previously de�ned structures and their properties to prove the

main theorem of this section. The proof largely follows the procedure used in [25].

Theorem 6.0.27. Let f be a bent function mapping from Vn. The the graph Gf is a

strongly regular graph with one the following parameters:

(n, r, λ, µ) = (2n, 2n−1 − 2
n
2
−1, 2n−2 − 2

n
2
−1, 2n−2 − 2

n
2
−1) if | supp(f) |= 2n−1 − 2

n
2
−1,

(n, r, λ, µ) = (2n, 2n−1 + 2
n
2
−1, 2n−2 + 2

n
2
−1, 2n−2 + 2

n
2
−1) if | supp(f) |= 2n−1 + 2

n
2
−1

or its complementary graph with the added loops.
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Proof. We will divide the proof into two parts. The �rst part will deal with bent

functions f with the property f(0) = 0, the second with functions where f(0) = 1.

Let us �rst suppose that f(0) = 0. By Theorem 5.0.12, the supp(f) must be a

Hadamard di�erence set in Vn. By the de�nitions of the adjacency matrix and the

matrix D it then follows that A(Gf ) = D(supp(f)). Further, by Theorem 5.0.11 we

know that it is a (2n, k = 2n−1 ± 2
n
2
−1, α = 2n−2 ± 2

n
2
−1)-Hadamard di�erence set.

Therefore, by Lemma 5.0.8, A(Gf )
2 = αJ+ (k−α)I. Then, by Lemma 6.0.24, this

means that Gf is a strongly regular graph with parameters (2n, r, µ, µ) where r = k,

λ = µ = α if the graph is without loops. Since f(0) = 0, graph G does not have loops

and the �rst statement follows.

Now we will see when we get its complementary graph with the added loops. Let

us suppose that f(0) = 1. First we must note that the graph Gf now has a loop on

every vertex since f(u− u) = f(0) = 1, for any vertex u.

We de�ne a new function f̃ = f + 1 so that f̃(0) = 0, and analyse its adjacency

matrix. It is easily veri�ed that by adding 1 to the bent function f in the matrix A(Gf )

the zeros and ones exchange places since if f(u+ v) = 0, then f̃(u+ v) = 1. Therefore,

A(Gf̃ ) = A(Gf ) and Gf̃ = Gf . If we now look at the complements of both graphs we

get Gf̃ = G′f , where G
′
f is the graph Gf but without the loops that were �lost� in the

process because the standard de�nitions of complements hold for simple graphs.

With this we have proved the theorem.

Remark 6.0.28. Notice that the graph Gf for which f(0) = 1 is a strongly regular

graph with parameters

(n, r, λ, µ) = (2n, 2n−1+2
n
2
−1, 2n−2+2

n
2
−1−2, 2n−2+2

n
2
−1) if | supp(f) |= 2n−1−2

n
2
−1,

(n, r, λ, µ) = (2n, 2n−1+2
n
2
−1, 2n−2+3·2

n
2
−1−2, 2n−2+3·2

n
2
−1) if |supp(f)| = 2n−1+2

n
2
−1

with the added loops. This can be shown directly with the use of Lemma 6.0.25 and the

knowledge that in our case Gf will be the complement of a graph of a bent function g

where g(0) = 0.

Example 6.0.29. We now consider a small example of representing a bent function

on V4 in terms of di�erence sets and strongly regular graphs.

Let f = x1x2 ⊕ x3x4 be a bent function mapping from V4.

Its support set is

supp(f) = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}.

We now wish to make certain that supp(f) is a (16, 6, 2)-di�erence set (since the

number of elements in V4 is 16, the number of elements in the support set is 6 and
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since we are looking for a Hadamard di�erence set h = 4(k−a) must hold). With such

small numbers the fastest way would be to take a look at D̃(supp(f))2.

D̃(supp(f)) =



1 1 1 −1 1 1 1 −1 1 1 1 −1 −1 −1 −1 1

1 1 −1 1 1 1 −1 1 1 1 −1 1 −1 −1 1 −1

1 −1 1 1 1 −1 1 1 1 −1 1 1 −1 1 −1 −1

−1 1 1 1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1

1 1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1

1 1 −1 1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1

1 −1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1

−1 1 1 1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1

1 1 1 −1 −1 −1 −1 1 1 1 1 −1 1 1 1 −1

1 1 −1 1 −1 −1 1 −1 1 1 −1 1 1 1 −1 1

1 −1 1 1 −1 1 −1 −1 1 −1 1 1 1 −1 1 1

−1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1

−1 −1 −1 1 1 1 1 −1 1 1 1 −1 1 1 1 −1

−1 −1 1 −1 1 1 −1 1 1 1 −1 1 1 1 −1 1

−1 1 −1 −1 1 −1 1 1 1 −1 1 1 1 −1 1 1

1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 1



D̃(supp(f))2 =



16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16


So we see that supp(f) is indeed a Hadamard di�erence set.
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Now we can also draw a strongly regular graph with the incidence matrix A =

D(supp(f)). Its parameters are, as we can quickly compute, (16, 6, 2, 2).

Figure 6: Strongly regular graph of the function f(x) = x1x2 ⊕ x3x4.
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7 Some generic classes of bent

functions

At this point we know some things about how bent functions behave, what their

most important properties are and how we can represent them. Nevertheless, the design

of bent functions has not been discussed yet.

Even though there exist a few generic classes of bent functions, a complete chara-

cterization of bent functions seems to be elusive. The secondary constructions of bent

functions construct new bent functions from the known ones (for instance on a larger

variable space), whereas the generic classes provide an explicit design method for any

n. Here we will present two of the latter, which are the most important and well known

construction families, as they were described in 2010 by Carlet [8].

In the end we will also present a generalization of bent functions of Rothaus-type,

which turns out to give an e�cient way of de�ning an in�nite class of bent functions.

These results are to be extended to cover vectorial bent functions as well [13].

7.1 Maiorana-McFarland construction

The Maiorana-McFarland class of bent functions M contains functions mapping

from Vn, presented as Vn
2
× Vn

2
, to V2. It is composed from an arbitrary permutation

π on Vn
2
and an arbitrary Boolean function g mapping from Vn

2
and is of the following

form:

f(x, y) = x · π(y)⊕ g(y),

where x, y ∈ Vn
2
.

Let us �rst prove that a function of such a form is indeed a bent function.

Proposition 7.1.1. Let x, y, π and g be as de�ned above. Then the function f(x, y) =

x · π(y)⊕ g(y) is a bent function.

Proof. Let us look at a Walsh-Hadamard coe�cient of the function f .
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Wf (u, v) =
∑

x,y∈Vn
2

(−1)x·π(y)⊕g(y)⊕(x,y)·(u,v)

=
∑

x,y∈Vn
2

(−1)x·π(y)⊕g(y)⊕x·u⊕y·v

=
∑
y∈Vn

2

(−1)g(y)⊕y·v

∑
x∈Vn

2

(−1)x·π(y)⊕x·u


=

∑
y∈Vn

2

(−1)g(y)⊕y·v

∑
x∈Vn

2

(−1)x·(π(y)⊕u)


Here we see that, since for every �xed y and u the vector x runs over the entire

�eld Vn
2
, x · (π(y)⊕ u) will have a balanced output except for the case when π(y) = u.

This happens exactly once, that is when y = π−1(u). It therefore follows that

Wf (u, v) = (2
n
2 − 1)0 + 1(−1)g·(π

−1(u))⊕(π−1(u))u · 2
n
2

= 2
n
2 (−1)g(π

−1(u))⊕(π−1(u))u,

which means that Wf always equals ±2
n
2 . The function f is therefore bent.

We would also like to mention that the above proposition, where the input is divided

into two parts of equal length, holds if and only if π is a permutation. Otherwise the

function x · π(y)⊕ g(y) is not bent.

The original Maiorana-McFarland construction was then extended to include con-

structions which do not require for the vectors x and y to be of equal length. The

extension was �rst introduced in 1991 in [23]. We will show the result here, as it was

presented in [8].

Proposition 7.1.2. Let n = r + s, where r ≤ s, be even. Let φ be such an arbitrary

function mapping from Vs to Vr that for every a ∈ Vr the set φ−1(a) is an (n − 2r)-

dimensional a�ne subspace of Vs. Let g be an arbitrary Boolean function on Vs, whose

restriction to φ−1(a) (viewed as a Boolean function on Vn−2r via an a�ne isomorphism

between φ−1(a) and this vectorspace) is bent for every a ∈ Vr if n > 2r (no condition

on g being imposed if n = 2r). Then the function fφ,g = x · φ(y)⊕ g(y) is bent on V2n.

Proof. We again take a look at the Walsh coe�cient of the function fφ,g. The initial

transformations can be done the same as in the previous proof:

Wfφ,g(u, v) =
∑
y∈Vs

(−1)g(y)⊕y·v

(∑
x∈Vr

(−1)x·(φ(y)⊕u)

)
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We again see that the only possibility for the sum to take a non-zero value is if

φ(y) = u and, similarly, then above, we have

Wfφ,g(u, v) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕yv

Since the function fφ,g is bent if and only ifWfφ,g(u, v) = 2
n
2 , we see that a necessary

condition for fφ,g to be bent is that r ≤ n
2
and

∑
y∈φ−1(a)(−1)g(y)⊕yv = ±2

n
2
−r.

Because r ≤ s, it holds that r ≤ n
2
, and because g is bent for every a ∈ Vr if n > 2r,

it holds that
∑

y∈φ−1(a)(−1)g(y)⊕yv = ±2
n
2
−r.

Remark 7.1.3. In [21] it has also been observed that in a bent function of the form

as described in the previous proposition, the function φ must be uniformly distributed

over Vr (must be balanced).

7.2 Partial Spreads Class

The Partial Spreads class PS is another class of bent functions, introduced in 1974

by Dillon in his PhD thesis [16]. This class is, in short, the set of all sums modulo 2 of

the indicators of 2
n
2
−1 or 2

n
2
−1 + 1 disjoint n

2
-dimensional subspaces of Vn. Let us now

see what this in fact means, starting with the titular partial spread.

De�nition 7.2.1. [25] Let Vn be vector space where n is even. A set S of n
2
-dimensional

subspaces H ⊂ V is called a partial spread if any two distinct subspaces H and H ′,

H,H ′ ∈ S, are disjoint. That is H ∩H ′ = {0}.

De�nition 7.2.2. [25] A partial spread is called maximal if there exists no partial

spread in which it is strictly contained.

It is also to be mentioned that we refer to the number of subspaces H in S as size of

the partial spread. A partial spread of maximum possible size (2
n
2 + 1) is then simply

called a spread.

The disjoint n
2
-dimensional subspaces of Vn we mentioned before are therefore parts

of the partial spreads.

And we have already encountered functions similar to indicators:

De�nition 7.2.3. The indicator function, also called the characteristic function, i of

a subset S on a set X is de�ned as

iS(x) =

{
1 if x ∈ S
0 otherwise

.
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Now we can more properly de�ne the Partial Spread class. It is divided into two

subclasses: PS+ and PS−.

Proposition 7.2.4. [25] Let S be a partial spread on the vector space Vn of size 2
n
2
−1.

We de�ne the subset W to be

W =

2
n
2−1⋃
k=1

Hk

 \{0},
where Hk ∈ S.

Then, iW is a bent function on Vn of cardinality 2n−1 − 2
n
2
−1.

We denote this class of function with PS−.

Proposition 7.2.5. [25] Let S be a partial spread on the vector space Vn of size 2
n
2
−1+

1. We de�ne the subset W to be

W =

2
n
2−1+1⋃
k=1

Hk

 \{0},
where Hk ∈ S.

Then iW is a bent function on Vn of cardinality 2n−1 + 2
n
2
−1.

We denote this class of function with PS+.

The proof to these two propositions is omitted here, as it would, to be presented in

its entirety, require an introduction of a lot of new de�nitions and propositions related

to vector spaces, but a more interested reader can �nd the proof in [15].

The duals of the functions in the PS class are also quite easy to �nd. If during the

construction of the function f ∈ PS we joined together the subspaces Hk ∈ S to create

the union W , we now in order to create its dual join together subspaces H⊥k . That

is, subspaces orthogonal to the originally chosen subspaces from S. By orthogonal we

mean that

H⊥k = {v ∈ Vn|vh = 0 for ∀h ∈ Hk}.

One can easily verify that the duals are again included in the PS class.

In his work [16] Dillon has also noted that all the elements of the class PS− are of

algebraic degree exactly n
2
, yet the same is not true for the class PS+.

In the same work it is also shown that when n
2
is even, all quadratic bent functions

are equal to some PS+ functions or their complements.
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7.3 A generalization of bent functions of Rothaus-

type

Together with my mentor Enes Pasalic we have considered an extension of a bent

function introduced by Rothaus [22], mapping from V6 f(x) = x1x2x3⊕ x1x4⊕ x2x5⊕
x3x6. The set of Boolean functions we considered was of the form f : Vn −→ V1,

f(x) = x1x2 · · ·xn
2
⊕ x1xn

2
+1 ⊕ x2xn

2
+2 ⊕ · · · ⊕ xn

2
xn, where n is even, and have proven

that all functions of this form are bent. The result is yet unpublished. Let us look at

the proof.

Theorem 7.3.1. Let n be an even number and fn : Vn −→ V2, fn(x) = x1x2 · · ·xn
2
⊕

x1xn
2
+1 ⊕ x2xn

2
+2 ⊕ · · · ⊕ xn

2
xn a Boolean function. Then the function f is bent.

Proof. To prove this theorem we will use the equivalent property 3, which says that

for an arbitrary non-zero vector α ∈ Vn a function f is bent if and only if f(x)⊕f(x⊕α)

is a balanced function.

Let us assume that α = (01, . . . , 0n
2
, b) where b ∈ Vn

2
is a non-zero vector.

f(x)⊕ f(x⊕ α) = x1 · · ·xn
2
⊕ x1xn

2
+1 ⊕ · · · ⊕ xn

2
xn ⊕ x1 · · ·xn

2
⊕ x1(xn

2
+1 ⊕ b1)⊕

⊕ · · · ⊕ xn
2
(xn ⊕ bn

2
)

= x1(xn
2
+1 ⊕ xn

2
+1 ⊕ b1)⊕ · · · ⊕ xn

2
(xn ⊕ xn ⊕ bn

2
)

= x1b1 ⊕ · · · ⊕ xn
2
bn

2

We see that what we got is a linear function where each variable has the coe�cient

either 0 or 1. Therefore it is a balanced function.

Let us now assume that α = (01, . . . , 1i, . . . , 0n
2
, b) where b ∈ Vn

2
and i ∈ {1, . . . , n

2
}.

f(x)⊕ f(x⊕ α) = x1 · · ·xn
2
⊕ x1xn

2
+1 ⊕ · · · ⊕ xn

2
xn ⊕ x1 · · · (xi + 1) · · · xn

2
⊕

⊕x1(xn
2
+1 + b1)⊕ · · · ⊕ (xi + 1)(xn

2
+i ⊕ bi)⊕ · · · ⊕ xn

2
(xn ⊕ bn

2
)

= x1 · · ·xn
2
⊕ x1xn

2
+1 ⊕ · · · ⊕ xn

2
xn ⊕ x1 · · ·xn

2
⊕ x1 · · ·xi−1xi+1 · · ·

· · ·xn
2
⊕ x1xn

2
+1 ⊕ x1b1 ⊕ · · · ⊕ xixn

2
+i ⊕ xibi ⊕ xn

2
+i ⊕ bi ⊕ · · ·

· · · ⊕ xn
2
xn ⊕ xn

2
bn

2

= x1 · · ·xi−1xi+1 · · ·xn
2
⊕ x1b1 ⊕ · · · ⊕ xn

2
bn

2
⊕ xn

2
+i ⊕ bi

We see now that the variable xn
2
+i appears exactly once in the function and it is a

standalone summand. We quickly see that every time that any αJ = 1, J ⊆ {1, . . . , n
2
},

the variables xn
2
+j will appear exactly once and as standalone summand. By Lemma
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2.1.6 the function f(x)⊕ f(x⊕α) will be balanced for any nonzero α. Thus the result

follows.

We can connect this result to one of the two classes C and D that Carlet introduced

in [9], more precisely, we can connect it to a subclass D0 of the class D. It includes

functions of the form x · π(y)⊕ δ0(x), where δ0(x) is the Dirac symbol and equals 1 if

x = 0 and 0 of x 6= 0. The classes we introduced before, the Maiorana-McFarland class

M and the partial spread class PS, are both included in this subclass.

Let us now substitute the variables xn
2
+1, . . . , xn with y1, . . . yn

2
. We can then write

the generalized Rothaus bent functions as

f(x, y) =

n
2∏
i=1

xi ⊕ x · y.

Also, if we set π(y) = y, we can write the functions in the subclass D0 as

fD0 =

n
2∏
i=1

(xi + 1)⊕ x · y.

Note that the addition of 1 in the product is necessary for the value of the whole

product to equal δ0(x). At this point we easily verify see that the generalized Rothaus

bent functions are in fact a�nely equivalent to the D0 function by applying the trans-

formation f(x⊕ (1, . . . , 1), y)⊕ g(y), where g(y) = y1⊕ · · · ⊕ yn
2
. The addition of g(y)

is necessary to neutralize the e�ect of addition of (1, . . . , 1) in the second part of the

function.
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8 Conclusion

In the beginning of the thesis we have brie�y presented cryptography and its main

goals. We have described how a cryptographic system works and how algorithms used

in these systems utilize Boolean functions. Since it is necessary for these functions to

have certain properties, we have proceeded to describe some of them in general. Then

we have focused on Boolean function that are bent.

We have introduced and proven six equivalent de�nitions of bentness and some of

the more important properties. After that we have introduced two new combinatorial

objects: di�erence sets and strongly regular graphs. We have proven some of their

properties and then shown how a bent function can be transformed into a di�erence

set and into a strongly regular graph.

In the end we have described two of the most widely known constructions of bent

functions, the Maiorana-McFarland construction and Dillon's partial spread classes.

We have also extended a function �rst introduced by Rothaus in 1976 on 6 variables

into an in�nite set of functions and have proven their bentness.

There remain a lot of open problems in the �eld of bent functions and generalized

bent functions, mainly dealing with various methods for their construction.
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Povzetek

Uporaba kriptogra�je je vgrajena v na²e vsakodnevno ºivljenje. Vsaki£, ko se

poveºemo na internet, vsaki£, ko uporabimo mobilno telefonijo, na²i podatki potu-

jejo po povezavah in preko streºnikov, nad katerimi nimamo nikakr²nega nadzora,

kljub temu pa bi si ºeleli, da na²i podatki ostanejo skriti in dostopni le nam. In za to

potrebujemo kriptogra�jo.

Tip funkcij, ki je zelo pogosto uporabljen v kriptografskih algoritmih, so funkcije,

ki slikajo iz prostora Vn v V1, imenovane boolove funkcije. Niso pa vse boolove funkcije

primerne. Tako v zaklju£ni nalogi najprej predstavimo pet glavnih kriptografskih last-

nosti boolovih funkcij: uravnoteºenost, propagacijski kriterij, algebrai£np stopnjp, ko-

relacijskp imunost in nelinearnost.

�e je boolova funkcija uravnoteºena, pomeni, da je natan£no polovica njenih izhod-

nih vrednosti enaka 0 in druga polovica enaka 1. Tak²ne funkcije so uporabne, ker do-

bro prikrivajo povezanost med vhodnimi in izhodnimi podatki, saj so izhodni podatki

enakomerno razdeljeni med moºnimi izhodnimi vrednostmi.

Propagacijski kriteriji merijo, koliko se izhodni podatki funkcije spremenijo glede na

spremenjene vhodne podatke. Idealen primer je, ko se ob enem samem spremenjenem

vhodnem bitu spremeni natanko polovica vseh izhodnih bitov.

Algebrai£na stopnja funkcije je maksimalno ²tevilo njenih spremenljivk, ki nastopajo

v enem £lenu.

Korelacijska imunost meri stopnjo statisti£ne odvisnosti med izhodnimi podatki in

podmnoºicami vhodnih podatkov. �elimo si, da je povezanost kar se da majhna, pri

£emer je idealen primer, £e so vhodni in izhodni podatki statisti£no neodvisni.

Nelinearnost je lastnost, s katero se v zaklju£ni nalogi najve£ ukvarjamo. Meri

oddaljenost neke boolove funkcije od mnoºice a�nih funkcij. Naj bo f boolova funkcija,

ki slika iz prostora Vn, naj bo An mnoºica vseh a�nih funkcij z n spremenljivkami in

naj dH ozna£uje Hammingovo razdaljo. Potem nelinearnost funkcije f de�niramo kot

N(f) = min
f∈An

dH(f, h).

Boolove funkcije, ki dosegajo maksimalno moºno nelinearnost, imenujemo v an-

gle²£ini �bent functions�, v sloven²£ini pa se nana²amo nanje kot na maksimalno ne-

linearne boolove funkcije. V zaklju£ni nalogi je predstavljena njihova de�nicija z

enakim postopkom, kot ga je uporabil Rothaus [22], ki je te funkcije prvi£ opisal leta

1976. Uvedemo pojem Fourierove baze, Fourierove transformacije boolovih funkcij in

dokaºemo Parsevalovo identiteto. De�niramo tudi Walsh-Hadamarjevo transformacijo

boolovih funkcij Wf in s pomo£jo teh transformacij dokaºemo, da lahko izrazimo ne-

linearnost boolove funkcije f tudi kot
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N(f) = 2n−1 − 1

2
sup
v∈Vn
| Wf (v) | .

Dokaºemo, da je maksimalna nelinearnost, ki jo lahko doseºe boolova funkcija,

enaka 2n−1− 2
n
2
−1 in je doseºena natanko takrat, ko so vsi Walsh-Hadamarjevi koe�ci-

enti Wf (v) enaki ±2
n
2 . To vzamemo za na²o uradno de�nicijo maksimalno nelinearnih

boolovih funkcij.

Nato predstavimo nekaj lastnosti maksimalno nelinearnih boolovih funkcij. Da

mora biti ²tevilo spremenljivk n sodo ²tevilo, lahko hitro vidimo. Predstavimo po-

jem duala maksimalno nelinearne funkcije in pokaºemo, da je dual ponovno maksi-

malno nelinearna funkcija. Dokaºemo, da je ²tevilo ni£el tak²ne funkcije vedno enako

2n−1
(
± 1

2
n
2

+ 1

)
in da je njihova maksimalna algebrai£na stopnja n

2
.

Predstavimo in z izjemo ene dokaºemo pet ekvivalentnih de�nicij maksimalno ne-

linearnih boolovih funkcij:

1. Boolova funkcija f je maksimalno nelinearna.

2. Naj bo ξ zaporedje funkcije f in naj bo l zaporedje poljubne linearne funkcije L.

Potem je 〈ξ, l〉 = ±2
n
2 .

3. Naj bo α poljubni neni£elni vektor iz vektorskega prostora Vn. Potem je f(x)⊕
f(x⊕ α) uravnoteºena funkcija.

4. Naj bo M (1,−1) matrika, asociirana funkciji f , velikosti 2n × 2n. Potem je

matrika M Hadamarjeva matrika.

5. Nelinearnost N(f) funkcije f je enaka N(f) = 2n−1 − 2
1
2
n−1.

6. Naj bo mnoºica D podporna mnoºica funkcije f . Potem je mnoºica D Hadamar-

jeva diferen£na mnoºica v prostoru Vn s parametri (2n, 2n−1±2
1
2
n−1, 2n−2±2

1
2
n−1).

Nato opi²emo postopek pretvarjanja maksimalno nelinearne boolove funkcije v

Hadamarjevo diferen£no mnoºico. Strukturo najprej dobro de�niramo in dokaºemo

dolo£ene lastnosti, ki pokaºejo odvisnosti med parametri diferen£ne mnoºice in ki bodo

uporabne pri pretvarjanju. Glede na to, da se tu omejimo na diferen£ne mnoºice na

abelovih 2-grupah, pokaºemo tudi, kako omejitev na kardinalnost grupe ²e nadaljnjo

vpliva na parametre diferen£ne mnoºice. Z uporabo tako dokazanih lastnosti in £etrte

odzgoraj na²tete ekvivalentne de�nicije pretvorimo maksimalno nelinearno boolovo

funkcijo v diferen£no mnoºico in sproti dokaºemo ²esto ekvivalentno de�nicijo.

Nadaljujemo s pretvorbo maksimalno nelinearnih boolovih funkcij v strogo regu-

laren graf. Ponovno pri£nemo z uvajanjem potrebnih de�nicij: graf, regularnost, krepko
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regularen graf, komplement grafa, sosednostna matrika. Podobno kot prej dokaºemo

nekaj lastnosti sosednostne matrike, ki jih bomo potrebovali v nadaljevanju. Na koncu

poglavja pokaºemo, da lahko maksimalno nelinearno boolovo funkcijo f pretvorimo v

prirejeni krepko regularni graf Gf s parametri

(n, r, λ, µ) = (2n, 2n−1−2
n
2
−1, 2n−2−2

n
2
−1, 2n−2−2

n
2
−1), če je | supp(f) |= 2n−1−2

n
2
−1,

(n, r, λ, µ) = (2n, 2n−1+2
n
2
−1, 2n−2+2

n
2
−1, 2n−2+2

n
2
−1), če je | supp(f) |= 2n−1+2

n
2
−1

ali pa njegov komplement z dodanimi zankami. Dodamo tudi primer, v katerem

dokaºemo, da je funkcija f = x1x2⊕x3x4 maksimalno nelinearna, ter jo nato pretvorimo

v diferen£no mnoºico in krepko regularni graf.

Nato prikaºemo dve izmed najbolj poznanih konstrukcij maksimalno nelinearnih

boolovih funkcij. Osnovni Maiorana-McFarland razred vsebuje funkcije oblike f(x, y) =

x · π(y) ⊕ g(y), kjer je π permutacija, x in y sta enako dolga vektorja in g je boolova

funkcija. Ta razred je bil kasneje raz²irjen v [23]: Naj bo n = r+ s, kjer je r ≤ s, sodo.

Naj bo φ tak²na poljubna funkcija, ki slika iz prostora Vs v Vr, da je za vsak vektor a ∈
Vr mnoºica φ−1(a) (n−2r)-dimenzionalen a�n podprostor prostora Vs. Naj bo funkcija

g poljubna boolova funkcija, ki slika iz Vs in je pri omejitvi na φ−1(a) maksimalno

nelinearna za vsak a ∈ Vr, £e je n > 2r. Potem je funkcija fφ,g = x · φ(y) ⊕ g(y)

maksimalno nelinearna na prostoru V2n.

Naslednjo predstavljeno konstrukcijo je prvi opisal Dillon v [16]. Temelji na zdruºe-

vanju 2
n
2
−1 ali 2

n
2
−1 +1 disjunktnih n

2
-dimenzionalnih podprostorov prostora Vn. Glede

na ²tevilo dodanih podprostorov dobimo druºino funkcij PS− oziroma PS+.

Za konec predstavimo ²e posplo²itev maksimalno nelinearnih boolovih funkcij tipa

Rothaus. Z mentorjem Enesom Pasalicem sva vzela funkcijo f(x) = x1x2x3 ⊕ x1x4 ⊕
x2x5⊕x3x6, ki jo je predstavil Rothaus v [22], jo raz²irila v neskon£no druºino boolovih
funkcijo oblike f : Vn −→ V1, f(x) = x1x2 · · · xn

2
⊕ x1xn

2
+1⊕ x2xn

2
+2⊕ · · · ⊕ xn

2
xn, kjer

je n sod, in dokazala, da so maksimalno nelinearne. Rezultat ²e ni objavljen.


