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What is DNA sequencing?

Central dogma of molecular biology
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We read the DNA: the primary piece of information, the letters of the book.

We can get (almost) all letters of the book, but this doesn’t mean that we 
understand the meaning of everything that is written there. 



More and more organisms are getting completely sequ enced
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Who is Illumina?

A company based in San Diego (California, USA) with sites in 
Singapore, Hayward (California) and Chesterford (near Cambridge, UK)Singapore, Hayward (California) and Chesterford (near Cambridge, UK)

Illumina started as a company making microarrays. 

The sequencing technology was invented at Cambridge University and 
developed in a spin-off company called Solexa Ltd.

Illumina bought out Solexa in 2006.

Other companies in the high-throughput sequencing business: Life 
Technologies, 454/Roche, Helicos BioSciences, Complete Genomics, 
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Technologies, 454/Roche, Helicos BioSciences, Complete Genomics, 
Pacific Biosciences, Oxford Nanopore Technologies



Today’s topic: Illumina’s sequencing workflow

Cluster
generation

Sequencing

Sample Preparation

Collection of raw image data

Analysis

55

Primary
analysis

Secondary
analysis

Nondas



Sequencing workflow

Cluster
generation

Sequencing

Sample Preparation

Collection of raw image data

Analysis

66

Primary
analysis

Secondary
analysis



Essence of the sample preparation

3’

5’

+
P

T A
A

5’

5’

Ligation5’ 3’

PP

Cut your DNA randomly 
and ligate the adapters 
to each fragment

77

T

5’

T
A

A

Make single stranded
3’



Fragment Genomic DNA

In practice many steps are involved

Fragment Genomic DNA

Quant/QC  DNA

Clean up

Clean up

Ligate adapters

Size selectionLigate adapters

Fix/Phosphorylate Ends

A-tail Ends

Clean up

Clean up

Clean up

Clean up
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Size selection

Amplification

Clean up

Clean up

Quant/QC  DNA
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DNA (<1 ug) 

Step 1: Cluster generation on the surface

Single molecule seedingSample 
preparation

Cluster growth
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Each cluster is a colony with many copies
of the same fragment. We need many copies
in order to get a detectable signal.



Step 2: Sequencing by Synthesis
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Step 2: Sequencing by Synthesis
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Emitted light

in 4 different colours 

Sequencing cycles (time) 
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5’
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Image acquisition 

Base calling 
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Sequencing cycles (time) 



How do the real images look like?
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Approximately 1 million spots / mm2

For each sequencing cycle we get 4 such images, one for each base colour. 
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Analysis workflow (100% informatics)
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Alignments Visualisation etc
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From the images to the intensities

x y t A C G T

17 23 3 97 2 10 5

17 25 18 3 4 76 1

1. Detection: Find all clusters on the image

17 25 18 3 4 76 1

... ... ... ... ... ... ...

1001 1234 50 5 100 20 7
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1. Detection: Find all clusters on the image

2. Registration: Track clusters over multiple sequencing cycles

3. Extraction: Give intensity estimates for clusters in a given image



Base-calling
Conversion of intensity data into sequences and quality scores. 

x y t A C G T

17 23 3 97 2 10 5

Essentially a classification problem that can be attacked with machine

17 23 3 97 2 10 5

17 25 18 3 4 76 1

... ... ... ... ... ... ...

1001 1234 50 5 100 20 7
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Essentially a classification problem that can be attacked with machine
learning. But it has to be solved very fast.

We need to output not only a base-call, but also a confidence score for the 
correctness of the call. 



Data reduction in primary analysis is crucial

Image
analysis

Base

Images Intensities
Sequences

+
Quality scores

32 TB 2 TB 250 GB

analysis
Base
calling

Reduced data volumes
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Data volumes are shown for a HiSeq run that outputs 200 billion bases.

Massive reduction in data volumes

Image analysis and base-calling are done on the instrument PC.

Only the sequences are transferred to a remote analysis server.

Reduced data volumes



Analysis workflow
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OK, we got 1 billion reads from the instrument.
And now what? ...

Remember that the reads are randomly sampled short sequences across 
the whole genome.

1 billion reads x 100 bases per read = 100 billion bases

Human genome = 3 billion bases

So, every position of the genome is covered 33 .3 times on average.
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More precisely, we use Poisson statistics for the coverage distribution.

We can use the reads to solve two completely different tasks:

re-sequencing and de-novo assembly



Application I: Re-sequencing

Goal:
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Goal:

Align sequences to approximately known reference sequence, allowing 
for small number of differences (approximate pattern matching)

Look for consistent differences between reference and sample



Fundamental task
Alignment of the reads against the reference

Need to work reasonably fast for very large number of reads.

For example, we need to align 1 billion reads (each 100 bases long) against 
the Human reference (3 billion bases long) in a few hours.the Human reference (3 billion bases long) in a few hours.

We can’t afford to use exhaustive dynamic programming algorithms from 
the beginning.

First we need a very fast filtering approach (with some kind of indexing) to 
identify perfect-match candidates.

Then we can use a more sensitive (and time-consuming) algorithm to work 
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Then we can use a more sensitive (and time-consuming) algorithm to work 
out the local details.



Large amount of existing research

Build data structure 
from genome

Build data structure 
from reads

NovoAlign 

ELAND

MAQ

Burrows-Wheeler
transform based 
methods

simple 
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Razer-S

segemehl
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methods

BowTie

BWA
SOAP

SSAHA

BLAT

MOSAIK

SOAP2

Pattern Hunter

ZOOM
SSAHA2

PerM



 

Hash-based algorithm to solve multiple exact matchi ng 
problem (Kim/Kim 1999 1)

For all k-mers in genome

Problem: Find all exact occurrences of a set of sequences in the reference genome

 

Split into prefix and suffix

prefix points you to region 
of a list …
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This hashtable is 

constructed from the 

reads

…look in there for 
matching suffix

Hash table

1Proc.17th AoM/IAoM International Conference on Computer Science, May 1999.



What are we doing with the aligned reads?
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Look for consistent differences between reference and sample



I. Single Nucleotide Polymorphisms (SNPs) 

Tumour 

Normal
L

Tumour
L
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Normal
R

Tumour 
R



II. Structural variants

Look for consistent differences between reference and sample beyond the single 
nucleotide level, for instance: larger insertions/deletions, inversions

Each variant has a read pair signatureEach variant has a read pair signature

This is an example for the case of deletions
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Beyond a single genome: Differences between samples

33,345 Single base substitutions
– 286 coding

1018 small indels
– 14 coding– 14 coding

37 Structural rearrangements
– 34 intrachromosomal: 

� 25 deletions 
� 6 insertions

� 2 duplications

� 1 complex

– 3 interchromosomal
– 19 breakpoints in genes
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Ideograms / val indels / sn10M / cdsn / cn /loh / sv

1Pleasance, Cheetham et al. 2009,  
Nature 463:191-6

198 changes in copy number



We got 1 billion reads from the instrument. Now wha t? ...
Application II: De-novo assembly

Remember that the reads are randomly sampled short sequences across 
the whole genome.

De-novo assembly: computational reconstruction of a genome sequence 
from the short reads.
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Assembly is possible, because if we have high enough coverage, the reads 
are partially overlapping. 

Outcome of a de-novo assembly: Contiguous reconstructed pieces of the 
genome.



How does it work?

The most common model for assembly are de Bruijn graphs

Split reads into overlapping k-mers (k is an adjustable parameter)

Elegant  theoretical model

Does not deal well with sequencing errors and repeats

Widely used assemblers: Velvet, SOAPdenovo, AllPaths, ABySS
Nicolaas G. de Bruijn
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Toy example
read length = 5 and k = 3

AGACTCCTG Unknown genome
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We want to reconstruct the unknown genome from the reads.



Toy example
read length = 5 and k = 3

AGACTCCTG Unknown genome1st read

AGA GAC ACT
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Slide a window of size k = 3 over the read.

For each k-mer draw a vertex.

For adjacent k-mers draw an edge.



Toy example
read length = 5 and k = 3

AGACTCCTG Unknown genome2nd read

AGA GAC ACT

CTG CCT TCC
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Slide a window of size k = 3 over the read.

For each k-mer draw a vertex.

For adjacent k-mers draw an edge.



Toy example
read length = 5 and k = 3

AGACTCCTG Unknown genome3rd read

AGA GAC ACT

CTG CCT TCC

CTC
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Slide a window of size k = 3 over the read.

For each k-mer draw a vertex.

For adjacent k-mers draw an edge.



Toy example
read length = 5 and k = 3

AGACTCCTG Unknown genome

AGA GAC ACT

CTG CCT TCC

CTC
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Remember that the graph was constructed from the reads.

Now, we can uncover the unknown genome by walking along the graph.



Real life is cruel: Repeats introduce ambiguities
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Chaisson et al. (2009) Genome Research 19:336-346



A real de Bruijn graph for E. coli

Chaisson et al. (2009) Genome Research 19:336-346
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This corresponds to mapping (threading) reads onto the graph and 

Using read pairs to build scaffolds

This corresponds to mapping (threading) reads onto the graph and 
joining contigs connected by read pairs into scaffolds.
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Other applications of high-throughput sequencing

Whole genome re-sequencing 

De-novo assemblyDe-novo assembly

Targeted sequencing (regions, genes, exomes) 

Whole transcriptome sequencing

miRNA discovery and profiling 

DNA Methylation
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Histone Modification 

DNA-protein interaction  

....



Some messages to take home
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The sequencing workflow is a collaborative effort b etween
chemists, physicists, biologists, engineers and com puter scientists
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Conflicting variables need to be optimized simultane ously

Library diversity

Amount of DNA starting 
material

Overall yield

Yield per day

Number of reads
material

Simplicity of sample prep

Robustness of instrument

Versatility

Hands-on time

Number of reads

Read length

Error profile

Cost per experiment

Cost per base
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Time to result

Accuracy

Cost per base

Cost of the instrument



Improvement of the instruments

Feature GA IIx HiSeq2000

Flowcells 1 2

Surface imaging Single Double

Read length 2  x 100 (2 x 150) 2 x 100

Yield per run (PF data) 50 Gb (95 Gb) 200 – 350 Gb
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Raw Data Quality 
(v5 chemistry, 2 x 100)

>90% bases are >99.9% 
accurate 

>90% bases are >99.9% 
accurate 

Runtime (2x100) 10 days 8 days

Data Rate 5 Gb / day 25 – 40 Gb / day



Increasing data volumes are good news for scientist s ...

4545



... but make bioinformaticians struggle like donkeys
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to Martin for the invitation … 

Many thanks

… and to my colleagues for the slides
- Klaus Maisinger

- David Townley
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- Markus Bauer

- Ole Schulz-Trieglaff

- Niall Gormley


