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What is DNA sequencing?

replication Central dogma of molecular biology
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» We read the DNA: the primary piece of information, the letters of the book.

» We can get (almost) all letters of the book, but this doesn’t mean that we
understand the meaning of everything that is written there.
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More and more organisms are getting completely sequ enced
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Who is lllumina?

A company based in San Diego (California, USA) with sites in
Singapore, Hayward (California) and Chesterford (near Cambridge, UK)

lllumina started as a company making microarrays.

The sequencing technology was invented at Cambridge University and
developed in a spin-off company called Solexa Ltd.

lllumina bought out Solexa in 2006.

Other companies in the high-throughput sequencing business: Life
Technologies, 454/Roche, Helicos BioSciences, Complete Genomics,
Pacific Biosciences, Oxford Nanopore Technologies
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Today’s topic: lllumina’s sequencing workflow
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Sequencing workflow
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Essence of the sample preparation

Cut your DNA randomly
and ligate the adapters
® to each fragment
5

Make single stranded I | umina




In practice many steps are involved
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Sequencing workflow
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Step 1: Cluster generation on the surface

DNA (<1 ug) |
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Sample

oreparation Single molecule seeding Cluster growth

Each cluster is a colony with many copies
of the same fragment. We need many copies
in order to get a detectable signal.
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Step 2: Sequencing by Synthesis
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Step 2: Sequencing by Synthesis

Dye-labelled
nucleotides
® ©

Emitted light

in 4 different colours

-
Base calling
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How do the real images look like?

Approximately 1 million spots / mm?

For each sequencing cycle we get 4 such images, one for each base colour.
llumina



Sequencing workflow
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Analysis workflow (100% informatics)

Primary analysis
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Analysis workflow

Primary analysis
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From the images to the intensities
17 23 3 2 10 5

> 17 25 18 4 76 1

1001 1234 50 100 20 7

Detection: Find all clusters on the image

Regqistration: Track clusters over multiple sequencing cycles

Extraction: Give intensity estimates for clusters in a given image
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Base-calling

(.

» Conversion of intensity data into sequences and quality scores.

TTTACGATCGATCOTTGCATGETEEOGTAGTGCTACTATA
GEGCTAGTTTCGAT T TACGATCGATCGT TGCATGCTGGE

CCGATGGLCTGGECTAGT TTCGATTTACGATCGATCGTT

CGATGGCCTGEGCTAGT TTCGATTTACGATCGATCETTE

3 97 ATGCCGATGGCCTGGGLTAGT TTCGATTTACGATCGATC
COATGGCCTGGGETAGTTTCGATTTACGATCGATCGTTG

GCCTGGGCTAGTTTCGATT TACGATCGATCGTTGCATGE

ATTTACGATCGATCGTTGCATGLTGGEGETAGTGUTACTAT

17 25 18 = 4 76 1 —————  GCTAGTTTCGATTTACGATCGATCGTTGCATGCTGGGGT.
CTAGTTTCGATTTACGATCCATCGTTGCATGCTGOGETA

CCTGEGEETAGT T TCGAT T TACGATCGATCGTTGLATGLT!

CTAGTTTCGATTTACGATCGATCCTTGCATGCTGGGGTA!

TTCGATT TACGATCGATCGT TGCATGLTGEEGTAGTGETY

TTTACGATCGATCGTTGCATGCTGGGGTAGTGCTACTATA

CTAGTTTCGAT TTACGATCGATCGTTGCAT GLTGGGEETAY

TAGTTTCGATTTACGATCGATCGTTGCATGCTGGGGTAG

1001 1234 50 5 100 20 V4 CTGGGCTAGT TTCGATTTACGATCGATCGTTBCATGCTS!
TAGTTTCGATTTACGATCGATCGTTGCATGCTGGEGTAG

[CEATTTACGATCGATCGTTGCATGCTGEEGTAGTGLTAL

» Essentially a classification problem that can be attacked with machine
learning. But it has to be solved very fast.

» We need to output not only a base-call, but also a confidence score for the
correctness of the call.

Humina




Data reduction in primary analysis Is crucial

Image
analysis

Base
calling

=)

=)

250 GB

Reduced data volumes

» Data volumes are shown for a HiSeq run that outputs 200 billion bases.

» Massive reduction in data volumes

» Image analysis and base-calling are done on the instrument PC. )
lumina

Only the sequences are transferred to a remote analysis server.




Analysis workflow

Primary analysis
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OK, we got 1 billion reads from the instrument.
And now what? ...

Remember that the reads are randomly sampled short sequences across
the whole genome.

1 billion reads x 100 bases per read = 100 billion bases
Human genome = 3 billion bases
So, every position of the genome is covered 33 .3 times on average.

More precisely, we use Poisson statistics for the coverage distribution.

We can use the reads to solve two completely different tasks:

re-sequencing and de-novo assembly llumina’



 Application I: Re-sequencing

48,166,550 bp 48,166,860 bp 48,166,570 bhp 48,166,550 bp
I I I I

Goal:

» Align sequences to approximately known reference sequence, allowing
for small number of differences (approximate pattern matching)

» Look for consistent differences between reference and sample
Humina




Fundamental task
Alignment of the reads against the reference

Need to work reasonably fast for very large number of reads.

For example, we need to align 1 billion reads (each 100 bases long) against
the Human reference (3 billion bases long) in a few hours.

We can’t afford to use exhaustive dynamic programming algorithms from
the beginning.

First we need a very fast filtering approach (with some kind of indexing) to
identify perfect-match candidates.

Then we can use a more sensitive (and time-consuming) algorithm to work
out the local details.
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Large amount of existing research
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Hash-based algorithm to solve multiple exact matchi ng
problem (Kim/Kim 1999 1)

Problem: Find all exact occurrences of a set of sequences in the reference genome

For all k-mers in genome

Split into prefix and suffix

.........................................................................................................

prefix points you to region
of alist ...
...look in there for S I \
. .  _ ~
matching suffix This hashtable is
constructed from the
reads

Hash table



- What are we doing with the aligned reads?

48,166,550 bp 48,166,860 bp 48,166,570 bhp 48,166,550 bp
I I I I

» Look for consistent differences between reference and sample
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|. Single Nucleotide Polymorphisms (SNPs)
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|l. Structural variants

Look for consistent differences between reference and sample beyond the single
nucleotide level, for instance: larger insertions/deletions, inversions

Each variant has a read pair signature

This is an example for the case of deletions

—————————

Shadows

Singletons

Indel
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Beyond a single genome: Differences between samples

33,345 Single base substitutions
— 286 coding

1018 small indels
— 14 coding

37 Structural rearrangements

— 34 intrachromosomal:
25 deletions
6 insertions
2 duplications
1 complex

— 3 interchromosomal
— 19 breakpoints in genes

198 changes in copy number

IPleasance, Cheetham et al. 2009,
Nature 463:191-6

llumina

Ideograms / val indels / sn,g,, / cdsn / cn /loh / sv



We got 1 billion reads from the instrument. Now wha  t? ...
Application Il: De-novo assembly

Remember that the reads are randomly sampled short sequences across
the whole genome.

De-novo assembly: computational reconstruction of a genome sequence
from the short reads.

Assembly is possible, because if we have high enough coverage, the reads
are partially overlapping.

Outcome of a de-novo assembly: Contiguous reconstructed pieces of the
genome.

llumina



How does it work?

The most common model for assembly are de Bruijn graphs

Split reads into overlapping k-mers (k is an adjustable parameter)

Elegant theoretical model

Does not deal well with sequencing errors and repeats

Widely used assemblers: Velvet, SOAPdenovo, AllPaths, ABySS ~ "'eores & deBrin

llumina



Toy example
read length=5and k=3

AGACTCCTG  Unknown genome

» We want to reconstruct the unknown genome from the reads.

Humina




Toy example
read length=5and k =3

1stread AGACTCCTG  Unknown genome

AGA — GAO — (ACD)

» Slide a window of size k = 3 over the read.
» For each k-mer draw a vertex.

» For adjacent k-mers draw an edge.

Humina




Toy example
read length=5and k =3

2dread AGACTCCTG  Unknown genome

» Slide a window of size k = 3 over the read.
» For each k-mer draw a vertex.

» For adjacent k-mers draw an edge.
lumina




Toy example
read length=5and k =3

3dread AGACTCCTG  Unknown genome

%%\®

16— ©ChH—TCo

» Slide a window of size k = 3 over the read.
» For each k-mer draw a vertex.

» For adjacent k-mers draw an edge.

Humina




Toy example
read length=5and k =3

AGACTCCTG  Unknown genome

%%\®

16— ©ChH—TCo

» Remember that the graph was constructed from the reads.

» Now, we can uncover the unknown genome by walking along the graph.

Humina




Real life is cruel: Repeats introduce ambiguities

AAGACTCCGACTGGGACTTT

Chaisson et al. (2009) Genome Research 19:336-346
llumina



A real de Bruijn graph for E. coli

Chaisson et al. (2009) Genome Research 19:336-346




Using read pairs to build scaffolds

This corresponds to mapping (threading) reads onto the graph and
joining contigs connected by read pairs into scaffolds.
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Other applications of high-throughput sequencing

.

» Whole genome re-sequencing

» De-novo assembly

» Targeted sequencing (regions, genes, exomes)
» Whole transcriptome sequencing

» MIRNA discovery and profiling

» DNA Methylation

» Histone Modification

» DNA-protein interaction

Humina
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Some messages to take home
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The sequencing workflow is a collaborative effort b
chemists, physicists, biologists, engineers and com

Sample Preparation

Cluster

generation

r

Sequencing

Collection of raw image data

etween

puter scientists

Analysis

I

e

Primary
analysis

analysis

Secondary

J

llumina



Conflicting variables need to be optimized simultane ously

Library diversity

Amount of DNA starting
material

Simplicity of sample prep
Robustness of instrument
Versatility

Hands-on time

Time to result

Accuracy

Overall yield

Yield per day
Number of reads
Read length

Error profile

Cost per experiment
Cost per base

Cost of the Instrument

llumina



Improvement of the instruments

Flowcells 1 2

Surface imaging Single Double

Read length 2 x 100 (2 x 150) 2 x 100

Yield per run (PF data) 50Gb (95 Gb) 200 — 350 Gb

Raw Data Quality >90% bases are >99.9% >90% bases are >99.9%
(v5 chemistry, 2 x 100) accurate accurate

Runtime (2x100) 10 days 8 days

Data Rate 5 Gb / day 25— 40 Gb / day

llumina



Increasing data volumes are good news for scientist

Growth of GenBank

(1982 - 2008)
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GenBank Data

Year | Base Pairs | Sequences

1982 680,338 606
1983 2,274,029 2,427
1984 3,368,765 4,175
1985 5,204,420 5,700
1986 9,615,371 9,978
1987 15,514,776 14,584
1988 23,800,000 20,579
1989 34,762,585 28,791
1990 49,179,285 39,533
1991 71,947 426 55,627
1992 101,008,486 78,608
1993 157,152,442 143,492
1994 217,102,462 215,273
1995 384,939,485 555,694
1996 651,972,984 1,021,211
1997 1,160,300 687 1,765,847
1998 2,008,761,784 2,837,897
1999 3.841,163,011 4,864,570
2000 11,101,066,288 10,106,023
2001 15,849,921,438 14,976,310
2002 28,507.,990,166 22,318,883
2003 36,553,368,485 30,968,418
2004 44,575,745,176 40,604,319
2005 56,037.734,462 52,016,762
2006 69,019,290,705 64,893,747
2007 83.874,179.730 80,388,382
2008 99,116,431,942 98,868,465




.. but make bioinformaticians struggle like donkeys
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